xref: /linux/arch/x86/include/asm/mmu_context.h (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3 
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 
8 #include <trace/events/tlb.h>
9 
10 #include <asm/pgalloc.h>
11 #include <asm/tlbflush.h>
12 #include <asm/paravirt.h>
13 #include <asm/mpx.h>
14 #ifndef CONFIG_PARAVIRT
15 static inline void paravirt_activate_mm(struct mm_struct *prev,
16 					struct mm_struct *next)
17 {
18 }
19 #endif	/* !CONFIG_PARAVIRT */
20 
21 #ifdef CONFIG_PERF_EVENTS
22 extern struct static_key rdpmc_always_available;
23 
24 static inline void load_mm_cr4(struct mm_struct *mm)
25 {
26 	if (static_key_true(&rdpmc_always_available) ||
27 	    atomic_read(&mm->context.perf_rdpmc_allowed))
28 		cr4_set_bits(X86_CR4_PCE);
29 	else
30 		cr4_clear_bits(X86_CR4_PCE);
31 }
32 #else
33 static inline void load_mm_cr4(struct mm_struct *mm) {}
34 #endif
35 
36 /*
37  * Used for LDT copy/destruction.
38  */
39 int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
40 void destroy_context(struct mm_struct *mm);
41 
42 
43 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
44 {
45 #ifdef CONFIG_SMP
46 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
47 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
48 #endif
49 }
50 
51 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
52 			     struct task_struct *tsk)
53 {
54 	unsigned cpu = smp_processor_id();
55 
56 	if (likely(prev != next)) {
57 #ifdef CONFIG_SMP
58 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
59 		this_cpu_write(cpu_tlbstate.active_mm, next);
60 #endif
61 		cpumask_set_cpu(cpu, mm_cpumask(next));
62 
63 		/* Re-load page tables */
64 		load_cr3(next->pgd);
65 		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
66 
67 		/* Stop flush ipis for the previous mm */
68 		cpumask_clear_cpu(cpu, mm_cpumask(prev));
69 
70 		/* Load per-mm CR4 state */
71 		load_mm_cr4(next);
72 
73 		/*
74 		 * Load the LDT, if the LDT is different.
75 		 *
76 		 * It's possible that prev->context.ldt doesn't match
77 		 * the LDT register.  This can happen if leave_mm(prev)
78 		 * was called and then modify_ldt changed
79 		 * prev->context.ldt but suppressed an IPI to this CPU.
80 		 * In this case, prev->context.ldt != NULL, because we
81 		 * never free an LDT while the mm still exists.  That
82 		 * means that next->context.ldt != prev->context.ldt,
83 		 * because mms never share an LDT.
84 		 */
85 		if (unlikely(prev->context.ldt != next->context.ldt))
86 			load_LDT_nolock(&next->context);
87 	}
88 #ifdef CONFIG_SMP
89 	  else {
90 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
91 		BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
92 
93 		if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
94 			/*
95 			 * On established mms, the mm_cpumask is only changed
96 			 * from irq context, from ptep_clear_flush() while in
97 			 * lazy tlb mode, and here. Irqs are blocked during
98 			 * schedule, protecting us from simultaneous changes.
99 			 */
100 			cpumask_set_cpu(cpu, mm_cpumask(next));
101 			/*
102 			 * We were in lazy tlb mode and leave_mm disabled
103 			 * tlb flush IPI delivery. We must reload CR3
104 			 * to make sure to use no freed page tables.
105 			 */
106 			load_cr3(next->pgd);
107 			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
108 			load_mm_cr4(next);
109 			load_LDT_nolock(&next->context);
110 		}
111 	}
112 #endif
113 }
114 
115 #define activate_mm(prev, next)			\
116 do {						\
117 	paravirt_activate_mm((prev), (next));	\
118 	switch_mm((prev), (next), NULL);	\
119 } while (0);
120 
121 #ifdef CONFIG_X86_32
122 #define deactivate_mm(tsk, mm)			\
123 do {						\
124 	lazy_load_gs(0);			\
125 } while (0)
126 #else
127 #define deactivate_mm(tsk, mm)			\
128 do {						\
129 	load_gs_index(0);			\
130 	loadsegment(fs, 0);			\
131 } while (0)
132 #endif
133 
134 static inline void arch_dup_mmap(struct mm_struct *oldmm,
135 				 struct mm_struct *mm)
136 {
137 	paravirt_arch_dup_mmap(oldmm, mm);
138 }
139 
140 static inline void arch_exit_mmap(struct mm_struct *mm)
141 {
142 	paravirt_arch_exit_mmap(mm);
143 }
144 
145 #ifdef CONFIG_X86_64
146 static inline bool is_64bit_mm(struct mm_struct *mm)
147 {
148 	return	!config_enabled(CONFIG_IA32_EMULATION) ||
149 		!(mm->context.ia32_compat == TIF_IA32);
150 }
151 #else
152 static inline bool is_64bit_mm(struct mm_struct *mm)
153 {
154 	return false;
155 }
156 #endif
157 
158 static inline void arch_bprm_mm_init(struct mm_struct *mm,
159 		struct vm_area_struct *vma)
160 {
161 	mpx_mm_init(mm);
162 }
163 
164 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
165 			      unsigned long start, unsigned long end)
166 {
167 	/*
168 	 * mpx_notify_unmap() goes and reads a rarely-hot
169 	 * cacheline in the mm_struct.  That can be expensive
170 	 * enough to be seen in profiles.
171 	 *
172 	 * The mpx_notify_unmap() call and its contents have been
173 	 * observed to affect munmap() performance on hardware
174 	 * where MPX is not present.
175 	 *
176 	 * The unlikely() optimizes for the fast case: no MPX
177 	 * in the CPU, or no MPX use in the process.  Even if
178 	 * we get this wrong (in the unlikely event that MPX
179 	 * is widely enabled on some system) the overhead of
180 	 * MPX itself (reading bounds tables) is expected to
181 	 * overwhelm the overhead of getting this unlikely()
182 	 * consistently wrong.
183 	 */
184 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
185 		mpx_notify_unmap(mm, vma, start, end);
186 }
187 
188 #endif /* _ASM_X86_MMU_CONTEXT_H */
189