1 #ifndef _ASM_X86_MMU_CONTEXT_H 2 #define _ASM_X86_MMU_CONTEXT_H 3 4 #include <asm/desc.h> 5 #include <linux/atomic.h> 6 #include <linux/mm_types.h> 7 8 #include <trace/events/tlb.h> 9 10 #include <asm/pgalloc.h> 11 #include <asm/tlbflush.h> 12 #include <asm/paravirt.h> 13 #include <asm/mpx.h> 14 #ifndef CONFIG_PARAVIRT 15 static inline void paravirt_activate_mm(struct mm_struct *prev, 16 struct mm_struct *next) 17 { 18 } 19 #endif /* !CONFIG_PARAVIRT */ 20 21 #ifdef CONFIG_PERF_EVENTS 22 extern struct static_key rdpmc_always_available; 23 24 static inline void load_mm_cr4(struct mm_struct *mm) 25 { 26 if (static_key_true(&rdpmc_always_available) || 27 atomic_read(&mm->context.perf_rdpmc_allowed)) 28 cr4_set_bits(X86_CR4_PCE); 29 else 30 cr4_clear_bits(X86_CR4_PCE); 31 } 32 #else 33 static inline void load_mm_cr4(struct mm_struct *mm) {} 34 #endif 35 36 /* 37 * Used for LDT copy/destruction. 38 */ 39 int init_new_context(struct task_struct *tsk, struct mm_struct *mm); 40 void destroy_context(struct mm_struct *mm); 41 42 43 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 44 { 45 #ifdef CONFIG_SMP 46 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) 47 this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY); 48 #endif 49 } 50 51 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, 52 struct task_struct *tsk) 53 { 54 unsigned cpu = smp_processor_id(); 55 56 if (likely(prev != next)) { 57 #ifdef CONFIG_SMP 58 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK); 59 this_cpu_write(cpu_tlbstate.active_mm, next); 60 #endif 61 cpumask_set_cpu(cpu, mm_cpumask(next)); 62 63 /* Re-load page tables */ 64 load_cr3(next->pgd); 65 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 66 67 /* Stop flush ipis for the previous mm */ 68 cpumask_clear_cpu(cpu, mm_cpumask(prev)); 69 70 /* Load per-mm CR4 state */ 71 load_mm_cr4(next); 72 73 /* 74 * Load the LDT, if the LDT is different. 75 * 76 * It's possible that prev->context.ldt doesn't match 77 * the LDT register. This can happen if leave_mm(prev) 78 * was called and then modify_ldt changed 79 * prev->context.ldt but suppressed an IPI to this CPU. 80 * In this case, prev->context.ldt != NULL, because we 81 * never free an LDT while the mm still exists. That 82 * means that next->context.ldt != prev->context.ldt, 83 * because mms never share an LDT. 84 */ 85 if (unlikely(prev->context.ldt != next->context.ldt)) 86 load_LDT_nolock(&next->context); 87 } 88 #ifdef CONFIG_SMP 89 else { 90 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK); 91 BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next); 92 93 if (!cpumask_test_cpu(cpu, mm_cpumask(next))) { 94 /* 95 * On established mms, the mm_cpumask is only changed 96 * from irq context, from ptep_clear_flush() while in 97 * lazy tlb mode, and here. Irqs are blocked during 98 * schedule, protecting us from simultaneous changes. 99 */ 100 cpumask_set_cpu(cpu, mm_cpumask(next)); 101 /* 102 * We were in lazy tlb mode and leave_mm disabled 103 * tlb flush IPI delivery. We must reload CR3 104 * to make sure to use no freed page tables. 105 */ 106 load_cr3(next->pgd); 107 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 108 load_mm_cr4(next); 109 load_LDT_nolock(&next->context); 110 } 111 } 112 #endif 113 } 114 115 #define activate_mm(prev, next) \ 116 do { \ 117 paravirt_activate_mm((prev), (next)); \ 118 switch_mm((prev), (next), NULL); \ 119 } while (0); 120 121 #ifdef CONFIG_X86_32 122 #define deactivate_mm(tsk, mm) \ 123 do { \ 124 lazy_load_gs(0); \ 125 } while (0) 126 #else 127 #define deactivate_mm(tsk, mm) \ 128 do { \ 129 load_gs_index(0); \ 130 loadsegment(fs, 0); \ 131 } while (0) 132 #endif 133 134 static inline void arch_dup_mmap(struct mm_struct *oldmm, 135 struct mm_struct *mm) 136 { 137 paravirt_arch_dup_mmap(oldmm, mm); 138 } 139 140 static inline void arch_exit_mmap(struct mm_struct *mm) 141 { 142 paravirt_arch_exit_mmap(mm); 143 } 144 145 #ifdef CONFIG_X86_64 146 static inline bool is_64bit_mm(struct mm_struct *mm) 147 { 148 return !config_enabled(CONFIG_IA32_EMULATION) || 149 !(mm->context.ia32_compat == TIF_IA32); 150 } 151 #else 152 static inline bool is_64bit_mm(struct mm_struct *mm) 153 { 154 return false; 155 } 156 #endif 157 158 static inline void arch_bprm_mm_init(struct mm_struct *mm, 159 struct vm_area_struct *vma) 160 { 161 mpx_mm_init(mm); 162 } 163 164 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma, 165 unsigned long start, unsigned long end) 166 { 167 /* 168 * mpx_notify_unmap() goes and reads a rarely-hot 169 * cacheline in the mm_struct. That can be expensive 170 * enough to be seen in profiles. 171 * 172 * The mpx_notify_unmap() call and its contents have been 173 * observed to affect munmap() performance on hardware 174 * where MPX is not present. 175 * 176 * The unlikely() optimizes for the fast case: no MPX 177 * in the CPU, or no MPX use in the process. Even if 178 * we get this wrong (in the unlikely event that MPX 179 * is widely enabled on some system) the overhead of 180 * MPX itself (reading bounds tables) is expected to 181 * overwhelm the overhead of getting this unlikely() 182 * consistently wrong. 183 */ 184 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX))) 185 mpx_notify_unmap(mm, vma, start, end); 186 } 187 188 #endif /* _ASM_X86_MMU_CONTEXT_H */ 189