1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/kfifo.h> 28 #include <linux/sched/vhost_task.h> 29 #include <linux/call_once.h> 30 31 #include <asm/apic.h> 32 #include <asm/pvclock-abi.h> 33 #include <asm/desc.h> 34 #include <asm/mtrr.h> 35 #include <asm/msr-index.h> 36 #include <asm/asm.h> 37 #include <asm/kvm_page_track.h> 38 #include <asm/kvm_vcpu_regs.h> 39 #include <asm/reboot.h> 40 #include <hyperv/hvhdk.h> 41 42 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 43 44 /* 45 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 46 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 47 */ 48 #ifdef CONFIG_KVM_MAX_NR_VCPUS 49 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 50 #else 51 #define KVM_MAX_VCPUS 1024 52 #endif 53 54 /* 55 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 56 * might be larger than the actual number of VCPUs because the 57 * APIC ID encodes CPU topology information. 58 * 59 * In the worst case, we'll need less than one extra bit for the 60 * Core ID, and less than one extra bit for the Package (Die) ID, 61 * so ratio of 4 should be enough. 62 */ 63 #define KVM_VCPU_ID_RATIO 4 64 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 65 66 /* memory slots that are not exposed to userspace */ 67 #define KVM_INTERNAL_MEM_SLOTS 3 68 69 #define KVM_HALT_POLL_NS_DEFAULT 200000 70 71 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 72 73 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 74 KVM_DIRTY_LOG_INITIALLY_SET) 75 76 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 77 KVM_BUS_LOCK_DETECTION_EXIT) 78 79 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 80 KVM_X86_NOTIFY_VMEXIT_USER) 81 82 /* x86-specific vcpu->requests bit members */ 83 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 84 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 85 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 86 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 87 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 88 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 89 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 90 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 91 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 92 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 93 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 94 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 95 #ifdef CONFIG_KVM_SMM 96 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 97 #endif 98 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 99 #define KVM_REQ_MCLOCK_INPROGRESS \ 100 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 101 #define KVM_REQ_SCAN_IOAPIC \ 102 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 103 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 104 #define KVM_REQ_APIC_PAGE_RELOAD \ 105 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 106 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 107 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 108 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 109 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 110 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 111 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 112 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 113 #define KVM_REQ_APICV_UPDATE \ 114 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 115 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 116 #define KVM_REQ_TLB_FLUSH_GUEST \ 117 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 118 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 119 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 120 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 121 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 123 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 124 #define KVM_REQ_HV_TLB_FLUSH \ 125 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE KVM_ARCH_REQ(34) 127 128 #define CR0_RESERVED_BITS \ 129 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 130 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 131 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 132 133 #define CR4_RESERVED_BITS \ 134 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 135 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 136 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 137 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 138 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 139 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 140 | X86_CR4_LAM_SUP)) 141 142 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 143 144 145 146 #define INVALID_PAGE (~(hpa_t)0) 147 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 148 149 /* KVM Hugepage definitions for x86 */ 150 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 151 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 152 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 153 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 154 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 155 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 156 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 157 158 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 159 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 160 #define KVM_MMU_HASH_SHIFT 12 161 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 162 #define KVM_MIN_FREE_MMU_PAGES 5 163 #define KVM_REFILL_PAGES 25 164 #define KVM_MAX_CPUID_ENTRIES 256 165 #define KVM_NR_VAR_MTRR 8 166 167 #define ASYNC_PF_PER_VCPU 64 168 169 enum kvm_reg { 170 VCPU_REGS_RAX = __VCPU_REGS_RAX, 171 VCPU_REGS_RCX = __VCPU_REGS_RCX, 172 VCPU_REGS_RDX = __VCPU_REGS_RDX, 173 VCPU_REGS_RBX = __VCPU_REGS_RBX, 174 VCPU_REGS_RSP = __VCPU_REGS_RSP, 175 VCPU_REGS_RBP = __VCPU_REGS_RBP, 176 VCPU_REGS_RSI = __VCPU_REGS_RSI, 177 VCPU_REGS_RDI = __VCPU_REGS_RDI, 178 #ifdef CONFIG_X86_64 179 VCPU_REGS_R8 = __VCPU_REGS_R8, 180 VCPU_REGS_R9 = __VCPU_REGS_R9, 181 VCPU_REGS_R10 = __VCPU_REGS_R10, 182 VCPU_REGS_R11 = __VCPU_REGS_R11, 183 VCPU_REGS_R12 = __VCPU_REGS_R12, 184 VCPU_REGS_R13 = __VCPU_REGS_R13, 185 VCPU_REGS_R14 = __VCPU_REGS_R14, 186 VCPU_REGS_R15 = __VCPU_REGS_R15, 187 #endif 188 VCPU_REGS_RIP, 189 NR_VCPU_REGS, 190 191 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 192 VCPU_EXREG_CR0, 193 VCPU_EXREG_CR3, 194 VCPU_EXREG_CR4, 195 VCPU_EXREG_RFLAGS, 196 VCPU_EXREG_SEGMENTS, 197 VCPU_EXREG_EXIT_INFO_1, 198 VCPU_EXREG_EXIT_INFO_2, 199 }; 200 201 enum { 202 VCPU_SREG_ES, 203 VCPU_SREG_CS, 204 VCPU_SREG_SS, 205 VCPU_SREG_DS, 206 VCPU_SREG_FS, 207 VCPU_SREG_GS, 208 VCPU_SREG_TR, 209 VCPU_SREG_LDTR, 210 }; 211 212 enum exit_fastpath_completion { 213 EXIT_FASTPATH_NONE, 214 EXIT_FASTPATH_REENTER_GUEST, 215 EXIT_FASTPATH_EXIT_HANDLED, 216 EXIT_FASTPATH_EXIT_USERSPACE, 217 }; 218 typedef enum exit_fastpath_completion fastpath_t; 219 220 struct x86_emulate_ctxt; 221 struct x86_exception; 222 union kvm_smram; 223 enum x86_intercept; 224 enum x86_intercept_stage; 225 226 #define KVM_NR_DB_REGS 4 227 228 #define DR6_BUS_LOCK (1 << 11) 229 #define DR6_BD (1 << 13) 230 #define DR6_BS (1 << 14) 231 #define DR6_BT (1 << 15) 232 #define DR6_RTM (1 << 16) 233 /* 234 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 235 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 236 * they will never be 0 for now, but when they are defined 237 * in the future it will require no code change. 238 * 239 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 240 */ 241 #define DR6_ACTIVE_LOW 0xffff0ff0 242 #define DR6_VOLATILE 0x0001e80f 243 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 244 245 #define DR7_BP_EN_MASK 0x000000ff 246 #define DR7_GE (1 << 9) 247 #define DR7_GD (1 << 13) 248 #define DR7_FIXED_1 0x00000400 249 #define DR7_VOLATILE 0xffff2bff 250 251 #define KVM_GUESTDBG_VALID_MASK \ 252 (KVM_GUESTDBG_ENABLE | \ 253 KVM_GUESTDBG_SINGLESTEP | \ 254 KVM_GUESTDBG_USE_HW_BP | \ 255 KVM_GUESTDBG_USE_SW_BP | \ 256 KVM_GUESTDBG_INJECT_BP | \ 257 KVM_GUESTDBG_INJECT_DB | \ 258 KVM_GUESTDBG_BLOCKIRQ) 259 260 #define PFERR_PRESENT_MASK BIT(0) 261 #define PFERR_WRITE_MASK BIT(1) 262 #define PFERR_USER_MASK BIT(2) 263 #define PFERR_RSVD_MASK BIT(3) 264 #define PFERR_FETCH_MASK BIT(4) 265 #define PFERR_PK_MASK BIT(5) 266 #define PFERR_SGX_MASK BIT(15) 267 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 268 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 269 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 270 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 271 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 272 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 273 274 /* 275 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 276 * when emulating instructions that triggers implicit access. 277 */ 278 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 279 /* 280 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 281 * when the guest was accessing private memory. 282 */ 283 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 284 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 285 286 /* apic attention bits */ 287 #define KVM_APIC_CHECK_VAPIC 0 288 /* 289 * The following bit is set with PV-EOI, unset on EOI. 290 * We detect PV-EOI changes by guest by comparing 291 * this bit with PV-EOI in guest memory. 292 * See the implementation in apic_update_pv_eoi. 293 */ 294 #define KVM_APIC_PV_EOI_PENDING 1 295 296 struct kvm_kernel_irq_routing_entry; 297 298 /* 299 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 300 * also includes TDP pages) to determine whether or not a page can be used in 301 * the given MMU context. This is a subset of the overall kvm_cpu_role to 302 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 303 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 304 * 305 * Upper-level shadow pages having gptes are tracked for write-protection via 306 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 307 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 308 * otherwise gfn_write_track will overflow and explosions will ensue. 309 * 310 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 311 * cannot be reused. The ability to reuse a SP is tracked by its role, which 312 * incorporates various mode bits and properties of the SP. Roughly speaking, 313 * the number of unique SPs that can theoretically be created is 2^n, where n 314 * is the number of bits that are used to compute the role. 315 * 316 * But, even though there are 20 bits in the mask below, not all combinations 317 * of modes and flags are possible: 318 * 319 * - invalid shadow pages are not accounted, mirror pages are not shadowed, 320 * so the bits are effectively 18. 321 * 322 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 323 * execonly and ad_disabled are only used for nested EPT which has 324 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 325 * 326 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 327 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 328 * paging has exactly one upper level, making level completely redundant 329 * when has_4_byte_gpte=1. 330 * 331 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 332 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 333 * 334 * Therefore, the maximum number of possible upper-level shadow pages for a 335 * single gfn is a bit less than 2^13. 336 */ 337 union kvm_mmu_page_role { 338 u32 word; 339 struct { 340 unsigned level:4; 341 unsigned has_4_byte_gpte:1; 342 unsigned quadrant:2; 343 unsigned direct:1; 344 unsigned access:3; 345 unsigned invalid:1; 346 unsigned efer_nx:1; 347 unsigned cr0_wp:1; 348 unsigned smep_andnot_wp:1; 349 unsigned smap_andnot_wp:1; 350 unsigned ad_disabled:1; 351 unsigned guest_mode:1; 352 unsigned passthrough:1; 353 unsigned is_mirror:1; 354 unsigned :4; 355 356 /* 357 * This is left at the top of the word so that 358 * kvm_memslots_for_spte_role can extract it with a 359 * simple shift. While there is room, give it a whole 360 * byte so it is also faster to load it from memory. 361 */ 362 unsigned smm:8; 363 }; 364 }; 365 366 /* 367 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 368 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 369 * including on nested transitions, if nothing in the full role changes then 370 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 371 * don't treat all-zero structure as valid data. 372 * 373 * The properties that are tracked in the extended role but not the page role 374 * are for things that either (a) do not affect the validity of the shadow page 375 * or (b) are indirectly reflected in the shadow page's role. For example, 376 * CR4.PKE only affects permission checks for software walks of the guest page 377 * tables (because KVM doesn't support Protection Keys with shadow paging), and 378 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 379 * 380 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 381 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 382 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 383 * SMAP aware regardless of CR0.WP. 384 */ 385 union kvm_mmu_extended_role { 386 u32 word; 387 struct { 388 unsigned int valid:1; 389 unsigned int execonly:1; 390 unsigned int cr4_pse:1; 391 unsigned int cr4_pke:1; 392 unsigned int cr4_smap:1; 393 unsigned int cr4_smep:1; 394 unsigned int cr4_la57:1; 395 unsigned int efer_lma:1; 396 }; 397 }; 398 399 union kvm_cpu_role { 400 u64 as_u64; 401 struct { 402 union kvm_mmu_page_role base; 403 union kvm_mmu_extended_role ext; 404 }; 405 }; 406 407 struct kvm_rmap_head { 408 unsigned long val; 409 }; 410 411 struct kvm_pio_request { 412 unsigned long linear_rip; 413 unsigned long count; 414 int in; 415 int port; 416 int size; 417 }; 418 419 #define PT64_ROOT_MAX_LEVEL 5 420 421 struct rsvd_bits_validate { 422 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 423 u64 bad_mt_xwr; 424 }; 425 426 struct kvm_mmu_root_info { 427 gpa_t pgd; 428 hpa_t hpa; 429 }; 430 431 #define KVM_MMU_ROOT_INFO_INVALID \ 432 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 433 434 #define KVM_MMU_NUM_PREV_ROOTS 3 435 436 #define KVM_MMU_ROOT_CURRENT BIT(0) 437 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 438 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 439 440 #define KVM_HAVE_MMU_RWLOCK 441 442 struct kvm_mmu_page; 443 struct kvm_page_fault; 444 445 /* 446 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 447 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 448 * current mmu mode. 449 */ 450 struct kvm_mmu { 451 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 452 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 453 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 454 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 455 struct x86_exception *fault); 456 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 457 gpa_t gva_or_gpa, u64 access, 458 struct x86_exception *exception); 459 int (*sync_spte)(struct kvm_vcpu *vcpu, 460 struct kvm_mmu_page *sp, int i); 461 struct kvm_mmu_root_info root; 462 hpa_t mirror_root_hpa; 463 union kvm_cpu_role cpu_role; 464 union kvm_mmu_page_role root_role; 465 466 /* 467 * The pkru_mask indicates if protection key checks are needed. It 468 * consists of 16 domains indexed by page fault error code bits [4:1], 469 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 470 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 471 */ 472 u32 pkru_mask; 473 474 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 475 476 /* 477 * Bitmap; bit set = permission fault 478 * Byte index: page fault error code [4:1] 479 * Bit index: pte permissions in ACC_* format 480 */ 481 u8 permissions[16]; 482 483 u64 *pae_root; 484 u64 *pml4_root; 485 u64 *pml5_root; 486 487 /* 488 * check zero bits on shadow page table entries, these 489 * bits include not only hardware reserved bits but also 490 * the bits spte never used. 491 */ 492 struct rsvd_bits_validate shadow_zero_check; 493 494 struct rsvd_bits_validate guest_rsvd_check; 495 496 u64 pdptrs[4]; /* pae */ 497 }; 498 499 enum pmc_type { 500 KVM_PMC_GP = 0, 501 KVM_PMC_FIXED, 502 }; 503 504 struct kvm_pmc { 505 enum pmc_type type; 506 u8 idx; 507 bool is_paused; 508 bool intr; 509 /* 510 * Base value of the PMC counter, relative to the *consumed* count in 511 * the associated perf_event. This value includes counter updates from 512 * the perf_event and emulated_count since the last time the counter 513 * was reprogrammed, but it is *not* the current value as seen by the 514 * guest or userspace. 515 * 516 * The count is relative to the associated perf_event so that KVM 517 * doesn't need to reprogram the perf_event every time the guest writes 518 * to the counter. 519 */ 520 u64 counter; 521 /* 522 * PMC events triggered by KVM emulation that haven't been fully 523 * processed, i.e. haven't undergone overflow detection. 524 */ 525 u64 emulated_counter; 526 u64 eventsel; 527 struct perf_event *perf_event; 528 struct kvm_vcpu *vcpu; 529 /* 530 * only for creating or reusing perf_event, 531 * eventsel value for general purpose counters, 532 * ctrl value for fixed counters. 533 */ 534 u64 current_config; 535 }; 536 537 /* More counters may conflict with other existing Architectural MSRs */ 538 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 539 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 540 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 541 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 542 KVM_MAX_NR_AMD_GP_COUNTERS) 543 544 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3 545 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0 546 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \ 547 KVM_MAX_NR_AMD_FIXED_COUTNERS) 548 549 struct kvm_pmu { 550 u8 version; 551 unsigned nr_arch_gp_counters; 552 unsigned nr_arch_fixed_counters; 553 unsigned available_event_types; 554 u64 fixed_ctr_ctrl; 555 u64 fixed_ctr_ctrl_rsvd; 556 u64 global_ctrl; 557 u64 global_status; 558 u64 counter_bitmask[2]; 559 u64 global_ctrl_rsvd; 560 u64 global_status_rsvd; 561 u64 reserved_bits; 562 u64 raw_event_mask; 563 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 564 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 565 566 /* 567 * Overlay the bitmap with a 64-bit atomic so that all bits can be 568 * set in a single access, e.g. to reprogram all counters when the PMU 569 * filter changes. 570 */ 571 union { 572 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 573 atomic64_t __reprogram_pmi; 574 }; 575 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 576 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 577 578 u64 ds_area; 579 u64 pebs_enable; 580 u64 pebs_enable_rsvd; 581 u64 pebs_data_cfg; 582 u64 pebs_data_cfg_rsvd; 583 584 /* 585 * If a guest counter is cross-mapped to host counter with different 586 * index, its PEBS capability will be temporarily disabled. 587 * 588 * The user should make sure that this mask is updated 589 * after disabling interrupts and before perf_guest_get_msrs(); 590 */ 591 u64 host_cross_mapped_mask; 592 593 /* 594 * The gate to release perf_events not marked in 595 * pmc_in_use only once in a vcpu time slice. 596 */ 597 bool need_cleanup; 598 599 /* 600 * The total number of programmed perf_events and it helps to avoid 601 * redundant check before cleanup if guest don't use vPMU at all. 602 */ 603 u8 event_count; 604 }; 605 606 struct kvm_pmu_ops; 607 608 enum { 609 KVM_DEBUGREG_BP_ENABLED = 1, 610 KVM_DEBUGREG_WONT_EXIT = 2, 611 }; 612 613 struct kvm_mtrr { 614 u64 var[KVM_NR_VAR_MTRR * 2]; 615 u64 fixed_64k; 616 u64 fixed_16k[2]; 617 u64 fixed_4k[8]; 618 u64 deftype; 619 }; 620 621 /* Hyper-V SynIC timer */ 622 struct kvm_vcpu_hv_stimer { 623 struct hrtimer timer; 624 int index; 625 union hv_stimer_config config; 626 u64 count; 627 u64 exp_time; 628 struct hv_message msg; 629 bool msg_pending; 630 }; 631 632 /* Hyper-V synthetic interrupt controller (SynIC)*/ 633 struct kvm_vcpu_hv_synic { 634 u64 version; 635 u64 control; 636 u64 msg_page; 637 u64 evt_page; 638 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 639 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 640 DECLARE_BITMAP(auto_eoi_bitmap, 256); 641 DECLARE_BITMAP(vec_bitmap, 256); 642 bool active; 643 bool dont_zero_synic_pages; 644 }; 645 646 /* The maximum number of entries on the TLB flush fifo. */ 647 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 648 /* 649 * Note: the following 'magic' entry is made up by KVM to avoid putting 650 * anything besides GVA on the TLB flush fifo. It is theoretically possible 651 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 652 * which will look identical. KVM's action to 'flush everything' instead of 653 * flushing these particular addresses is, however, fully legitimate as 654 * flushing more than requested is always OK. 655 */ 656 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 657 658 enum hv_tlb_flush_fifos { 659 HV_L1_TLB_FLUSH_FIFO, 660 HV_L2_TLB_FLUSH_FIFO, 661 HV_NR_TLB_FLUSH_FIFOS, 662 }; 663 664 struct kvm_vcpu_hv_tlb_flush_fifo { 665 spinlock_t write_lock; 666 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 667 }; 668 669 /* Hyper-V per vcpu emulation context */ 670 struct kvm_vcpu_hv { 671 struct kvm_vcpu *vcpu; 672 u32 vp_index; 673 u64 hv_vapic; 674 s64 runtime_offset; 675 struct kvm_vcpu_hv_synic synic; 676 struct kvm_hyperv_exit exit; 677 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 678 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 679 bool enforce_cpuid; 680 struct { 681 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 682 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 683 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 684 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 685 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 686 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 687 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 688 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 689 } cpuid_cache; 690 691 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 692 693 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 694 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 695 696 struct hv_vp_assist_page vp_assist_page; 697 698 struct { 699 u64 pa_page_gpa; 700 u64 vm_id; 701 u32 vp_id; 702 } nested; 703 }; 704 705 struct kvm_hypervisor_cpuid { 706 u32 base; 707 u32 limit; 708 }; 709 710 #ifdef CONFIG_KVM_XEN 711 /* Xen HVM per vcpu emulation context */ 712 struct kvm_vcpu_xen { 713 u64 hypercall_rip; 714 u32 current_runstate; 715 u8 upcall_vector; 716 struct gfn_to_pfn_cache vcpu_info_cache; 717 struct gfn_to_pfn_cache vcpu_time_info_cache; 718 struct gfn_to_pfn_cache runstate_cache; 719 struct gfn_to_pfn_cache runstate2_cache; 720 u64 last_steal; 721 u64 runstate_entry_time; 722 u64 runstate_times[4]; 723 unsigned long evtchn_pending_sel; 724 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 725 u32 timer_virq; 726 u64 timer_expires; /* In guest epoch */ 727 atomic_t timer_pending; 728 struct hrtimer timer; 729 int poll_evtchn; 730 struct timer_list poll_timer; 731 struct kvm_hypervisor_cpuid cpuid; 732 }; 733 #endif 734 735 struct kvm_queued_exception { 736 bool pending; 737 bool injected; 738 bool has_error_code; 739 u8 vector; 740 u32 error_code; 741 unsigned long payload; 742 bool has_payload; 743 }; 744 745 /* 746 * Hardware-defined CPUID leafs that are either scattered by the kernel or are 747 * unknown to the kernel, but need to be directly used by KVM. Note, these 748 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those. 749 */ 750 enum kvm_only_cpuid_leafs { 751 CPUID_12_EAX = NCAPINTS, 752 CPUID_7_1_EDX, 753 CPUID_8000_0007_EDX, 754 CPUID_8000_0022_EAX, 755 CPUID_7_2_EDX, 756 CPUID_24_0_EBX, 757 NR_KVM_CPU_CAPS, 758 759 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, 760 }; 761 762 struct kvm_vcpu_arch { 763 /* 764 * rip and regs accesses must go through 765 * kvm_{register,rip}_{read,write} functions. 766 */ 767 unsigned long regs[NR_VCPU_REGS]; 768 u32 regs_avail; 769 u32 regs_dirty; 770 771 unsigned long cr0; 772 unsigned long cr0_guest_owned_bits; 773 unsigned long cr2; 774 unsigned long cr3; 775 unsigned long cr4; 776 unsigned long cr4_guest_owned_bits; 777 unsigned long cr4_guest_rsvd_bits; 778 unsigned long cr8; 779 u32 host_pkru; 780 u32 pkru; 781 u32 hflags; 782 u64 efer; 783 u64 apic_base; 784 struct kvm_lapic *apic; /* kernel irqchip context */ 785 bool load_eoi_exitmap_pending; 786 DECLARE_BITMAP(ioapic_handled_vectors, 256); 787 unsigned long apic_attention; 788 int32_t apic_arb_prio; 789 int mp_state; 790 u64 ia32_misc_enable_msr; 791 u64 smbase; 792 u64 smi_count; 793 bool at_instruction_boundary; 794 bool tpr_access_reporting; 795 bool xfd_no_write_intercept; 796 u64 ia32_xss; 797 u64 microcode_version; 798 u64 arch_capabilities; 799 u64 perf_capabilities; 800 801 /* 802 * Paging state of the vcpu 803 * 804 * If the vcpu runs in guest mode with two level paging this still saves 805 * the paging mode of the l1 guest. This context is always used to 806 * handle faults. 807 */ 808 struct kvm_mmu *mmu; 809 810 /* Non-nested MMU for L1 */ 811 struct kvm_mmu root_mmu; 812 813 /* L1 MMU when running nested */ 814 struct kvm_mmu guest_mmu; 815 816 /* 817 * Paging state of an L2 guest (used for nested npt) 818 * 819 * This context will save all necessary information to walk page tables 820 * of an L2 guest. This context is only initialized for page table 821 * walking and not for faulting since we never handle l2 page faults on 822 * the host. 823 */ 824 struct kvm_mmu nested_mmu; 825 826 /* 827 * Pointer to the mmu context currently used for 828 * gva_to_gpa translations. 829 */ 830 struct kvm_mmu *walk_mmu; 831 832 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 833 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 834 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 835 struct kvm_mmu_memory_cache mmu_page_header_cache; 836 /* 837 * This cache is to allocate external page table. E.g. private EPT used 838 * by the TDX module. 839 */ 840 struct kvm_mmu_memory_cache mmu_external_spt_cache; 841 842 /* 843 * QEMU userspace and the guest each have their own FPU state. 844 * In vcpu_run, we switch between the user and guest FPU contexts. 845 * While running a VCPU, the VCPU thread will have the guest FPU 846 * context. 847 * 848 * Note that while the PKRU state lives inside the fpu registers, 849 * it is switched out separately at VMENTER and VMEXIT time. The 850 * "guest_fpstate" state here contains the guest FPU context, with the 851 * host PRKU bits. 852 */ 853 struct fpu_guest guest_fpu; 854 855 u64 xcr0; 856 u64 guest_supported_xcr0; 857 858 struct kvm_pio_request pio; 859 void *pio_data; 860 void *sev_pio_data; 861 unsigned sev_pio_count; 862 863 u8 event_exit_inst_len; 864 865 bool exception_from_userspace; 866 867 /* Exceptions to be injected to the guest. */ 868 struct kvm_queued_exception exception; 869 /* Exception VM-Exits to be synthesized to L1. */ 870 struct kvm_queued_exception exception_vmexit; 871 872 struct kvm_queued_interrupt { 873 bool injected; 874 bool soft; 875 u8 nr; 876 } interrupt; 877 878 int halt_request; /* real mode on Intel only */ 879 880 int cpuid_nent; 881 struct kvm_cpuid_entry2 *cpuid_entries; 882 bool is_amd_compatible; 883 884 /* 885 * cpu_caps holds the effective guest capabilities, i.e. the features 886 * the vCPU is allowed to use. Typically, but not always, features can 887 * be used by the guest if and only if both KVM and userspace want to 888 * expose the feature to the guest. 889 * 890 * A common exception is for virtualization holes, i.e. when KVM can't 891 * prevent the guest from using a feature, in which case the vCPU "has" 892 * the feature regardless of what KVM or userspace desires. 893 * 894 * Note, features that don't require KVM involvement in any way are 895 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the 896 * guest CPUID provided by userspace. 897 */ 898 u32 cpu_caps[NR_KVM_CPU_CAPS]; 899 900 u64 reserved_gpa_bits; 901 int maxphyaddr; 902 903 /* emulate context */ 904 905 struct x86_emulate_ctxt *emulate_ctxt; 906 bool emulate_regs_need_sync_to_vcpu; 907 bool emulate_regs_need_sync_from_vcpu; 908 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 909 910 gpa_t time; 911 struct pvclock_vcpu_time_info hv_clock; 912 unsigned int hw_tsc_khz; 913 struct gfn_to_pfn_cache pv_time; 914 /* set guest stopped flag in pvclock flags field */ 915 bool pvclock_set_guest_stopped_request; 916 917 struct { 918 u8 preempted; 919 u64 msr_val; 920 u64 last_steal; 921 struct gfn_to_hva_cache cache; 922 } st; 923 924 u64 l1_tsc_offset; 925 u64 tsc_offset; /* current tsc offset */ 926 u64 last_guest_tsc; 927 u64 last_host_tsc; 928 u64 tsc_offset_adjustment; 929 u64 this_tsc_nsec; 930 u64 this_tsc_write; 931 u64 this_tsc_generation; 932 bool tsc_catchup; 933 bool tsc_always_catchup; 934 s8 virtual_tsc_shift; 935 u32 virtual_tsc_mult; 936 u32 virtual_tsc_khz; 937 s64 ia32_tsc_adjust_msr; 938 u64 msr_ia32_power_ctl; 939 u64 l1_tsc_scaling_ratio; 940 u64 tsc_scaling_ratio; /* current scaling ratio */ 941 942 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 943 /* Number of NMIs pending injection, not including hardware vNMIs. */ 944 unsigned int nmi_pending; 945 bool nmi_injected; /* Trying to inject an NMI this entry */ 946 bool smi_pending; /* SMI queued after currently running handler */ 947 u8 handling_intr_from_guest; 948 949 struct kvm_mtrr mtrr_state; 950 u64 pat; 951 952 unsigned switch_db_regs; 953 unsigned long db[KVM_NR_DB_REGS]; 954 unsigned long dr6; 955 unsigned long dr7; 956 unsigned long eff_db[KVM_NR_DB_REGS]; 957 unsigned long guest_debug_dr7; 958 u64 msr_platform_info; 959 u64 msr_misc_features_enables; 960 961 u64 mcg_cap; 962 u64 mcg_status; 963 u64 mcg_ctl; 964 u64 mcg_ext_ctl; 965 u64 *mce_banks; 966 u64 *mci_ctl2_banks; 967 968 /* Cache MMIO info */ 969 u64 mmio_gva; 970 unsigned mmio_access; 971 gfn_t mmio_gfn; 972 u64 mmio_gen; 973 974 struct kvm_pmu pmu; 975 976 /* used for guest single stepping over the given code position */ 977 unsigned long singlestep_rip; 978 979 #ifdef CONFIG_KVM_HYPERV 980 bool hyperv_enabled; 981 struct kvm_vcpu_hv *hyperv; 982 #endif 983 #ifdef CONFIG_KVM_XEN 984 struct kvm_vcpu_xen xen; 985 #endif 986 cpumask_var_t wbinvd_dirty_mask; 987 988 unsigned long last_retry_eip; 989 unsigned long last_retry_addr; 990 991 struct { 992 bool halted; 993 gfn_t gfns[ASYNC_PF_PER_VCPU]; 994 struct gfn_to_hva_cache data; 995 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 996 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 997 u16 vec; 998 u32 id; 999 bool send_user_only; 1000 u32 host_apf_flags; 1001 bool delivery_as_pf_vmexit; 1002 bool pageready_pending; 1003 } apf; 1004 1005 /* OSVW MSRs (AMD only) */ 1006 struct { 1007 u64 length; 1008 u64 status; 1009 } osvw; 1010 1011 struct { 1012 u64 msr_val; 1013 struct gfn_to_hva_cache data; 1014 } pv_eoi; 1015 1016 u64 msr_kvm_poll_control; 1017 1018 /* pv related host specific info */ 1019 struct { 1020 bool pv_unhalted; 1021 } pv; 1022 1023 int pending_ioapic_eoi; 1024 int pending_external_vector; 1025 1026 /* be preempted when it's in kernel-mode(cpl=0) */ 1027 bool preempted_in_kernel; 1028 1029 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1030 bool l1tf_flush_l1d; 1031 1032 /* Host CPU on which VM-entry was most recently attempted */ 1033 int last_vmentry_cpu; 1034 1035 /* AMD MSRC001_0015 Hardware Configuration */ 1036 u64 msr_hwcr; 1037 1038 /* pv related cpuid info */ 1039 struct { 1040 /* 1041 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1042 * leaf. 1043 */ 1044 u32 features; 1045 1046 /* 1047 * indicates whether pv emulation should be disabled if features 1048 * are not present in the guest's cpuid 1049 */ 1050 bool enforce; 1051 } pv_cpuid; 1052 1053 /* Protected Guests */ 1054 bool guest_state_protected; 1055 1056 /* 1057 * Set when PDPTS were loaded directly by the userspace without 1058 * reading the guest memory 1059 */ 1060 bool pdptrs_from_userspace; 1061 1062 #if IS_ENABLED(CONFIG_HYPERV) 1063 hpa_t hv_root_tdp; 1064 #endif 1065 }; 1066 1067 struct kvm_lpage_info { 1068 int disallow_lpage; 1069 }; 1070 1071 struct kvm_arch_memory_slot { 1072 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1073 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1074 unsigned short *gfn_write_track; 1075 }; 1076 1077 /* 1078 * Track the mode of the optimized logical map, as the rules for decoding the 1079 * destination vary per mode. Enabling the optimized logical map requires all 1080 * software-enabled local APIs to be in the same mode, each addressable APIC to 1081 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1082 */ 1083 enum kvm_apic_logical_mode { 1084 /* All local APICs are software disabled. */ 1085 KVM_APIC_MODE_SW_DISABLED, 1086 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1087 KVM_APIC_MODE_XAPIC_CLUSTER, 1088 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1089 KVM_APIC_MODE_XAPIC_FLAT, 1090 /* All software enabled local APICs in x2APIC mode. */ 1091 KVM_APIC_MODE_X2APIC, 1092 /* 1093 * Optimized map disabled, e.g. not all local APICs in the same logical 1094 * mode, same logical ID assigned to multiple APICs, etc. 1095 */ 1096 KVM_APIC_MODE_MAP_DISABLED, 1097 }; 1098 1099 struct kvm_apic_map { 1100 struct rcu_head rcu; 1101 enum kvm_apic_logical_mode logical_mode; 1102 u32 max_apic_id; 1103 union { 1104 struct kvm_lapic *xapic_flat_map[8]; 1105 struct kvm_lapic *xapic_cluster_map[16][4]; 1106 }; 1107 struct kvm_lapic *phys_map[]; 1108 }; 1109 1110 /* Hyper-V synthetic debugger (SynDbg)*/ 1111 struct kvm_hv_syndbg { 1112 struct { 1113 u64 control; 1114 u64 status; 1115 u64 send_page; 1116 u64 recv_page; 1117 u64 pending_page; 1118 } control; 1119 u64 options; 1120 }; 1121 1122 /* Current state of Hyper-V TSC page clocksource */ 1123 enum hv_tsc_page_status { 1124 /* TSC page was not set up or disabled */ 1125 HV_TSC_PAGE_UNSET = 0, 1126 /* TSC page MSR was written by the guest, update pending */ 1127 HV_TSC_PAGE_GUEST_CHANGED, 1128 /* TSC page update was triggered from the host side */ 1129 HV_TSC_PAGE_HOST_CHANGED, 1130 /* TSC page was properly set up and is currently active */ 1131 HV_TSC_PAGE_SET, 1132 /* TSC page was set up with an inaccessible GPA */ 1133 HV_TSC_PAGE_BROKEN, 1134 }; 1135 1136 #ifdef CONFIG_KVM_HYPERV 1137 /* Hyper-V emulation context */ 1138 struct kvm_hv { 1139 struct mutex hv_lock; 1140 u64 hv_guest_os_id; 1141 u64 hv_hypercall; 1142 u64 hv_tsc_page; 1143 enum hv_tsc_page_status hv_tsc_page_status; 1144 1145 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1146 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1147 u64 hv_crash_ctl; 1148 1149 struct ms_hyperv_tsc_page tsc_ref; 1150 1151 struct idr conn_to_evt; 1152 1153 u64 hv_reenlightenment_control; 1154 u64 hv_tsc_emulation_control; 1155 u64 hv_tsc_emulation_status; 1156 u64 hv_invtsc_control; 1157 1158 /* How many vCPUs have VP index != vCPU index */ 1159 atomic_t num_mismatched_vp_indexes; 1160 1161 /* 1162 * How many SynICs use 'AutoEOI' feature 1163 * (protected by arch.apicv_update_lock) 1164 */ 1165 unsigned int synic_auto_eoi_used; 1166 1167 struct kvm_hv_syndbg hv_syndbg; 1168 1169 bool xsaves_xsavec_checked; 1170 }; 1171 #endif 1172 1173 struct msr_bitmap_range { 1174 u32 flags; 1175 u32 nmsrs; 1176 u32 base; 1177 unsigned long *bitmap; 1178 }; 1179 1180 #ifdef CONFIG_KVM_XEN 1181 /* Xen emulation context */ 1182 struct kvm_xen { 1183 struct mutex xen_lock; 1184 u32 xen_version; 1185 bool long_mode; 1186 bool runstate_update_flag; 1187 u8 upcall_vector; 1188 struct gfn_to_pfn_cache shinfo_cache; 1189 struct idr evtchn_ports; 1190 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1191 }; 1192 #endif 1193 1194 enum kvm_irqchip_mode { 1195 KVM_IRQCHIP_NONE, 1196 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1197 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1198 }; 1199 1200 struct kvm_x86_msr_filter { 1201 u8 count; 1202 bool default_allow:1; 1203 struct msr_bitmap_range ranges[16]; 1204 }; 1205 1206 struct kvm_x86_pmu_event_filter { 1207 __u32 action; 1208 __u32 nevents; 1209 __u32 fixed_counter_bitmap; 1210 __u32 flags; 1211 __u32 nr_includes; 1212 __u32 nr_excludes; 1213 __u64 *includes; 1214 __u64 *excludes; 1215 __u64 events[]; 1216 }; 1217 1218 enum kvm_apicv_inhibit { 1219 1220 /********************************************************************/ 1221 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1222 /********************************************************************/ 1223 1224 /* 1225 * APIC acceleration is disabled by a module parameter 1226 * and/or not supported in hardware. 1227 */ 1228 APICV_INHIBIT_REASON_DISABLED, 1229 1230 /* 1231 * APIC acceleration is inhibited because AutoEOI feature is 1232 * being used by a HyperV guest. 1233 */ 1234 APICV_INHIBIT_REASON_HYPERV, 1235 1236 /* 1237 * APIC acceleration is inhibited because the userspace didn't yet 1238 * enable the kernel/split irqchip. 1239 */ 1240 APICV_INHIBIT_REASON_ABSENT, 1241 1242 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1243 * (out of band, debug measure of blocking all interrupts on this vCPU) 1244 * was enabled, to avoid AVIC/APICv bypassing it. 1245 */ 1246 APICV_INHIBIT_REASON_BLOCKIRQ, 1247 1248 /* 1249 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1250 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1251 */ 1252 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1253 1254 /* 1255 * For simplicity, the APIC acceleration is inhibited 1256 * first time either APIC ID or APIC base are changed by the guest 1257 * from their reset values. 1258 */ 1259 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1260 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1261 1262 /******************************************************/ 1263 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1264 /******************************************************/ 1265 1266 /* 1267 * AVIC is inhibited on a vCPU because it runs a nested guest. 1268 * 1269 * This is needed because unlike APICv, the peers of this vCPU 1270 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1271 * a vCPU runs nested. 1272 */ 1273 APICV_INHIBIT_REASON_NESTED, 1274 1275 /* 1276 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1277 * which cannot be injected when the AVIC is enabled, thus AVIC 1278 * is inhibited while KVM waits for IRQ window. 1279 */ 1280 APICV_INHIBIT_REASON_IRQWIN, 1281 1282 /* 1283 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1284 * which AVIC doesn't support for edge triggered interrupts. 1285 */ 1286 APICV_INHIBIT_REASON_PIT_REINJ, 1287 1288 /* 1289 * AVIC is disabled because SEV doesn't support it. 1290 */ 1291 APICV_INHIBIT_REASON_SEV, 1292 1293 /* 1294 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1295 * mapping between logical ID and vCPU. 1296 */ 1297 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1298 1299 NR_APICV_INHIBIT_REASONS, 1300 }; 1301 1302 #define __APICV_INHIBIT_REASON(reason) \ 1303 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1304 1305 #define APICV_INHIBIT_REASONS \ 1306 __APICV_INHIBIT_REASON(DISABLED), \ 1307 __APICV_INHIBIT_REASON(HYPERV), \ 1308 __APICV_INHIBIT_REASON(ABSENT), \ 1309 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1310 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1311 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1312 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1313 __APICV_INHIBIT_REASON(NESTED), \ 1314 __APICV_INHIBIT_REASON(IRQWIN), \ 1315 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1316 __APICV_INHIBIT_REASON(SEV), \ 1317 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED) 1318 1319 struct kvm_arch { 1320 unsigned long n_used_mmu_pages; 1321 unsigned long n_requested_mmu_pages; 1322 unsigned long n_max_mmu_pages; 1323 unsigned int indirect_shadow_pages; 1324 u8 mmu_valid_gen; 1325 u8 vm_type; 1326 bool has_private_mem; 1327 bool has_protected_state; 1328 bool pre_fault_allowed; 1329 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1330 struct list_head active_mmu_pages; 1331 /* 1332 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1333 * replaced by an NX huge page. A shadow page is on this list if its 1334 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1335 * and there are no other conditions that prevent a huge page, e.g. 1336 * the backing host page is huge, dirtly logging is not enabled for its 1337 * memslot, etc... Note, zapping shadow pages on this list doesn't 1338 * guarantee an NX huge page will be created in its stead, e.g. if the 1339 * guest attempts to execute from the region then KVM obviously can't 1340 * create an NX huge page (without hanging the guest). 1341 */ 1342 struct list_head possible_nx_huge_pages; 1343 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1344 struct kvm_page_track_notifier_head track_notifier_head; 1345 #endif 1346 /* 1347 * Protects marking pages unsync during page faults, as TDP MMU page 1348 * faults only take mmu_lock for read. For simplicity, the unsync 1349 * pages lock is always taken when marking pages unsync regardless of 1350 * whether mmu_lock is held for read or write. 1351 */ 1352 spinlock_t mmu_unsync_pages_lock; 1353 1354 u64 shadow_mmio_value; 1355 1356 struct iommu_domain *iommu_domain; 1357 bool iommu_noncoherent; 1358 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1359 atomic_t noncoherent_dma_count; 1360 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1361 atomic_t assigned_device_count; 1362 struct kvm_pic *vpic; 1363 struct kvm_ioapic *vioapic; 1364 struct kvm_pit *vpit; 1365 atomic_t vapics_in_nmi_mode; 1366 struct mutex apic_map_lock; 1367 struct kvm_apic_map __rcu *apic_map; 1368 atomic_t apic_map_dirty; 1369 1370 bool apic_access_memslot_enabled; 1371 bool apic_access_memslot_inhibited; 1372 1373 /* Protects apicv_inhibit_reasons */ 1374 struct rw_semaphore apicv_update_lock; 1375 unsigned long apicv_inhibit_reasons; 1376 1377 gpa_t wall_clock; 1378 1379 bool mwait_in_guest; 1380 bool hlt_in_guest; 1381 bool pause_in_guest; 1382 bool cstate_in_guest; 1383 1384 unsigned long irq_sources_bitmap; 1385 s64 kvmclock_offset; 1386 1387 /* 1388 * This also protects nr_vcpus_matched_tsc which is read from a 1389 * preemption-disabled region, so it must be a raw spinlock. 1390 */ 1391 raw_spinlock_t tsc_write_lock; 1392 u64 last_tsc_nsec; 1393 u64 last_tsc_write; 1394 u32 last_tsc_khz; 1395 u64 last_tsc_offset; 1396 u64 cur_tsc_nsec; 1397 u64 cur_tsc_write; 1398 u64 cur_tsc_offset; 1399 u64 cur_tsc_generation; 1400 int nr_vcpus_matched_tsc; 1401 1402 u32 default_tsc_khz; 1403 bool user_set_tsc; 1404 u64 apic_bus_cycle_ns; 1405 1406 seqcount_raw_spinlock_t pvclock_sc; 1407 bool use_master_clock; 1408 u64 master_kernel_ns; 1409 u64 master_cycle_now; 1410 struct delayed_work kvmclock_update_work; 1411 struct delayed_work kvmclock_sync_work; 1412 1413 struct kvm_xen_hvm_config xen_hvm_config; 1414 1415 /* reads protected by irq_srcu, writes by irq_lock */ 1416 struct hlist_head mask_notifier_list; 1417 1418 #ifdef CONFIG_KVM_HYPERV 1419 struct kvm_hv hyperv; 1420 #endif 1421 1422 #ifdef CONFIG_KVM_XEN 1423 struct kvm_xen xen; 1424 #endif 1425 1426 bool backwards_tsc_observed; 1427 bool boot_vcpu_runs_old_kvmclock; 1428 u32 bsp_vcpu_id; 1429 1430 u64 disabled_quirks; 1431 1432 enum kvm_irqchip_mode irqchip_mode; 1433 u8 nr_reserved_ioapic_pins; 1434 1435 bool disabled_lapic_found; 1436 1437 bool x2apic_format; 1438 bool x2apic_broadcast_quirk_disabled; 1439 1440 bool guest_can_read_msr_platform_info; 1441 bool exception_payload_enabled; 1442 1443 bool triple_fault_event; 1444 1445 bool bus_lock_detection_enabled; 1446 bool enable_pmu; 1447 1448 u32 notify_window; 1449 u32 notify_vmexit_flags; 1450 /* 1451 * If exit_on_emulation_error is set, and the in-kernel instruction 1452 * emulator fails to emulate an instruction, allow userspace 1453 * the opportunity to look at it. 1454 */ 1455 bool exit_on_emulation_error; 1456 1457 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1458 u32 user_space_msr_mask; 1459 struct kvm_x86_msr_filter __rcu *msr_filter; 1460 1461 u32 hypercall_exit_enabled; 1462 1463 /* Guest can access the SGX PROVISIONKEY. */ 1464 bool sgx_provisioning_allowed; 1465 1466 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1467 struct vhost_task *nx_huge_page_recovery_thread; 1468 u64 nx_huge_page_last; 1469 struct once nx_once; 1470 1471 #ifdef CONFIG_X86_64 1472 /* The number of TDP MMU pages across all roots. */ 1473 atomic64_t tdp_mmu_pages; 1474 1475 /* 1476 * List of struct kvm_mmu_pages being used as roots. 1477 * All struct kvm_mmu_pages in the list should have 1478 * tdp_mmu_page set. 1479 * 1480 * For reads, this list is protected by: 1481 * the MMU lock in read mode + RCU or 1482 * the MMU lock in write mode 1483 * 1484 * For writes, this list is protected by tdp_mmu_pages_lock; see 1485 * below for the details. 1486 * 1487 * Roots will remain in the list until their tdp_mmu_root_count 1488 * drops to zero, at which point the thread that decremented the 1489 * count to zero should removed the root from the list and clean 1490 * it up, freeing the root after an RCU grace period. 1491 */ 1492 struct list_head tdp_mmu_roots; 1493 1494 /* 1495 * Protects accesses to the following fields when the MMU lock 1496 * is held in read mode: 1497 * - tdp_mmu_roots (above) 1498 * - the link field of kvm_mmu_page structs used by the TDP MMU 1499 * - possible_nx_huge_pages; 1500 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1501 * by the TDP MMU 1502 * Because the lock is only taken within the MMU lock, strictly 1503 * speaking it is redundant to acquire this lock when the thread 1504 * holds the MMU lock in write mode. However it often simplifies 1505 * the code to do so. 1506 */ 1507 spinlock_t tdp_mmu_pages_lock; 1508 #endif /* CONFIG_X86_64 */ 1509 1510 /* 1511 * If set, at least one shadow root has been allocated. This flag 1512 * is used as one input when determining whether certain memslot 1513 * related allocations are necessary. 1514 */ 1515 bool shadow_root_allocated; 1516 1517 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1518 /* 1519 * If set, the VM has (or had) an external write tracking user, and 1520 * thus all write tracking metadata has been allocated, even if KVM 1521 * itself isn't using write tracking. 1522 */ 1523 bool external_write_tracking_enabled; 1524 #endif 1525 1526 #if IS_ENABLED(CONFIG_HYPERV) 1527 hpa_t hv_root_tdp; 1528 spinlock_t hv_root_tdp_lock; 1529 struct hv_partition_assist_pg *hv_pa_pg; 1530 #endif 1531 /* 1532 * VM-scope maximum vCPU ID. Used to determine the size of structures 1533 * that increase along with the maximum vCPU ID, in which case, using 1534 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1535 */ 1536 u32 max_vcpu_ids; 1537 1538 bool disable_nx_huge_pages; 1539 1540 /* 1541 * Memory caches used to allocate shadow pages when performing eager 1542 * page splitting. No need for a shadowed_info_cache since eager page 1543 * splitting only allocates direct shadow pages. 1544 * 1545 * Protected by kvm->slots_lock. 1546 */ 1547 struct kvm_mmu_memory_cache split_shadow_page_cache; 1548 struct kvm_mmu_memory_cache split_page_header_cache; 1549 1550 /* 1551 * Memory cache used to allocate pte_list_desc structs while splitting 1552 * huge pages. In the worst case, to split one huge page, 512 1553 * pte_list_desc structs are needed to add each lower level leaf sptep 1554 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1555 * page table. 1556 * 1557 * Protected by kvm->slots_lock. 1558 */ 1559 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1560 struct kvm_mmu_memory_cache split_desc_cache; 1561 1562 gfn_t gfn_direct_bits; 1563 }; 1564 1565 struct kvm_vm_stat { 1566 struct kvm_vm_stat_generic generic; 1567 u64 mmu_shadow_zapped; 1568 u64 mmu_pte_write; 1569 u64 mmu_pde_zapped; 1570 u64 mmu_flooded; 1571 u64 mmu_recycled; 1572 u64 mmu_cache_miss; 1573 u64 mmu_unsync; 1574 union { 1575 struct { 1576 atomic64_t pages_4k; 1577 atomic64_t pages_2m; 1578 atomic64_t pages_1g; 1579 }; 1580 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1581 }; 1582 u64 nx_lpage_splits; 1583 u64 max_mmu_page_hash_collisions; 1584 u64 max_mmu_rmap_size; 1585 }; 1586 1587 struct kvm_vcpu_stat { 1588 struct kvm_vcpu_stat_generic generic; 1589 u64 pf_taken; 1590 u64 pf_fixed; 1591 u64 pf_emulate; 1592 u64 pf_spurious; 1593 u64 pf_fast; 1594 u64 pf_mmio_spte_created; 1595 u64 pf_guest; 1596 u64 tlb_flush; 1597 u64 invlpg; 1598 1599 u64 exits; 1600 u64 io_exits; 1601 u64 mmio_exits; 1602 u64 signal_exits; 1603 u64 irq_window_exits; 1604 u64 nmi_window_exits; 1605 u64 l1d_flush; 1606 u64 halt_exits; 1607 u64 request_irq_exits; 1608 u64 irq_exits; 1609 u64 host_state_reload; 1610 u64 fpu_reload; 1611 u64 insn_emulation; 1612 u64 insn_emulation_fail; 1613 u64 hypercalls; 1614 u64 irq_injections; 1615 u64 nmi_injections; 1616 u64 req_event; 1617 u64 nested_run; 1618 u64 directed_yield_attempted; 1619 u64 directed_yield_successful; 1620 u64 preemption_reported; 1621 u64 preemption_other; 1622 u64 guest_mode; 1623 u64 notify_window_exits; 1624 }; 1625 1626 struct x86_instruction_info; 1627 1628 struct msr_data { 1629 bool host_initiated; 1630 u32 index; 1631 u64 data; 1632 }; 1633 1634 struct kvm_lapic_irq { 1635 u32 vector; 1636 u16 delivery_mode; 1637 u16 dest_mode; 1638 bool level; 1639 u16 trig_mode; 1640 u32 shorthand; 1641 u32 dest_id; 1642 bool msi_redir_hint; 1643 }; 1644 1645 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1646 { 1647 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1648 } 1649 1650 struct kvm_x86_ops { 1651 const char *name; 1652 1653 int (*check_processor_compatibility)(void); 1654 1655 int (*enable_virtualization_cpu)(void); 1656 void (*disable_virtualization_cpu)(void); 1657 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1658 1659 void (*hardware_unsetup)(void); 1660 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1661 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1662 1663 unsigned int vm_size; 1664 int (*vm_init)(struct kvm *kvm); 1665 void (*vm_destroy)(struct kvm *kvm); 1666 1667 /* Create, but do not attach this VCPU */ 1668 int (*vcpu_precreate)(struct kvm *kvm); 1669 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1670 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1671 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1672 1673 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1674 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1675 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1676 1677 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1678 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1679 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1680 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1681 void (*get_segment)(struct kvm_vcpu *vcpu, 1682 struct kvm_segment *var, int seg); 1683 int (*get_cpl)(struct kvm_vcpu *vcpu); 1684 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu); 1685 void (*set_segment)(struct kvm_vcpu *vcpu, 1686 struct kvm_segment *var, int seg); 1687 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1688 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1689 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1690 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1691 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1692 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1693 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1694 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1695 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1696 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1697 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1698 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1699 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value); 1700 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1701 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1702 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1703 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1704 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1705 1706 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1707 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1708 #if IS_ENABLED(CONFIG_HYPERV) 1709 int (*flush_remote_tlbs)(struct kvm *kvm); 1710 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1711 gfn_t nr_pages); 1712 #endif 1713 1714 /* 1715 * Flush any TLB entries associated with the given GVA. 1716 * Does not need to flush GPA->HPA mappings. 1717 * Can potentially get non-canonical addresses through INVLPGs, which 1718 * the implementation may choose to ignore if appropriate. 1719 */ 1720 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1721 1722 /* 1723 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1724 * does not need to flush GPA->HPA mappings. 1725 */ 1726 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1727 1728 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1729 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1730 bool force_immediate_exit); 1731 int (*handle_exit)(struct kvm_vcpu *vcpu, 1732 enum exit_fastpath_completion exit_fastpath); 1733 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1734 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1735 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1736 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1737 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1738 unsigned char *hypercall_addr); 1739 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1740 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1741 void (*inject_exception)(struct kvm_vcpu *vcpu); 1742 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1743 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1744 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1745 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1746 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1747 /* Whether or not a virtual NMI is pending in hardware. */ 1748 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1749 /* 1750 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1751 * to allow using static_call_ret0 as the fallback. 1752 */ 1753 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1754 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1755 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1756 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1757 1758 const bool x2apic_icr_is_split; 1759 const unsigned long required_apicv_inhibits; 1760 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1761 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1762 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1763 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1764 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1765 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1766 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1767 int trig_mode, int vector); 1768 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1769 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1770 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1771 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1772 1773 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1774 int root_level); 1775 1776 /* Update external mapping with page table link. */ 1777 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1778 void *external_spt); 1779 /* Update the external page table from spte getting set. */ 1780 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1781 kvm_pfn_t pfn_for_gfn); 1782 1783 /* Update external page tables for page table about to be freed. */ 1784 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1785 void *external_spt); 1786 1787 /* Update external page table from spte getting removed, and flush TLB. */ 1788 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1789 kvm_pfn_t pfn_for_gfn); 1790 1791 bool (*has_wbinvd_exit)(void); 1792 1793 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1794 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1795 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1796 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1797 1798 /* 1799 * Retrieve somewhat arbitrary exit/entry information. Intended to 1800 * be used only from within tracepoints or error paths. 1801 */ 1802 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1803 u64 *info1, u64 *info2, 1804 u32 *intr_info, u32 *error_code); 1805 1806 void (*get_entry_info)(struct kvm_vcpu *vcpu, 1807 u32 *intr_info, u32 *error_code); 1808 1809 int (*check_intercept)(struct kvm_vcpu *vcpu, 1810 struct x86_instruction_info *info, 1811 enum x86_intercept_stage stage, 1812 struct x86_exception *exception); 1813 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1814 1815 /* 1816 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1817 * value indicates CPU dirty logging is unsupported or disabled. 1818 */ 1819 int cpu_dirty_log_size; 1820 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1821 1822 const struct kvm_x86_nested_ops *nested_ops; 1823 1824 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1825 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1826 1827 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1828 uint32_t guest_irq, bool set); 1829 void (*pi_start_assignment)(struct kvm *kvm); 1830 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1831 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1832 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1833 1834 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1835 bool *expired); 1836 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1837 1838 void (*setup_mce)(struct kvm_vcpu *vcpu); 1839 1840 #ifdef CONFIG_KVM_SMM 1841 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1842 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1843 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1844 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1845 #endif 1846 1847 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1848 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1849 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1850 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1851 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1852 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1853 void (*guest_memory_reclaimed)(struct kvm *kvm); 1854 1855 int (*get_feature_msr)(u32 msr, u64 *data); 1856 1857 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1858 void *insn, int insn_len); 1859 1860 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1861 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1862 1863 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1864 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1865 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1866 1867 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1868 1869 /* 1870 * Returns vCPU specific APICv inhibit reasons 1871 */ 1872 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1873 1874 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1875 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1876 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1877 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1878 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn); 1879 }; 1880 1881 struct kvm_x86_nested_ops { 1882 void (*leave_nested)(struct kvm_vcpu *vcpu); 1883 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1884 u32 error_code); 1885 int (*check_events)(struct kvm_vcpu *vcpu); 1886 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1887 void (*triple_fault)(struct kvm_vcpu *vcpu); 1888 int (*get_state)(struct kvm_vcpu *vcpu, 1889 struct kvm_nested_state __user *user_kvm_nested_state, 1890 unsigned user_data_size); 1891 int (*set_state)(struct kvm_vcpu *vcpu, 1892 struct kvm_nested_state __user *user_kvm_nested_state, 1893 struct kvm_nested_state *kvm_state); 1894 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1895 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1896 1897 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1898 uint16_t *vmcs_version); 1899 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1900 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1901 }; 1902 1903 struct kvm_x86_init_ops { 1904 int (*hardware_setup)(void); 1905 unsigned int (*handle_intel_pt_intr)(void); 1906 1907 struct kvm_x86_ops *runtime_ops; 1908 struct kvm_pmu_ops *pmu_ops; 1909 }; 1910 1911 struct kvm_arch_async_pf { 1912 u32 token; 1913 gfn_t gfn; 1914 unsigned long cr3; 1915 bool direct_map; 1916 u64 error_code; 1917 }; 1918 1919 extern u32 __read_mostly kvm_nr_uret_msrs; 1920 extern bool __read_mostly allow_smaller_maxphyaddr; 1921 extern bool __read_mostly enable_apicv; 1922 extern struct kvm_x86_ops kvm_x86_ops; 1923 1924 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1925 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1926 1927 #define KVM_X86_OP(func) \ 1928 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1929 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1930 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1931 #include <asm/kvm-x86-ops.h> 1932 1933 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1934 void kvm_x86_vendor_exit(void); 1935 1936 #define __KVM_HAVE_ARCH_VM_ALLOC 1937 static inline struct kvm *kvm_arch_alloc_vm(void) 1938 { 1939 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1940 } 1941 1942 #define __KVM_HAVE_ARCH_VM_FREE 1943 void kvm_arch_free_vm(struct kvm *kvm); 1944 1945 #if IS_ENABLED(CONFIG_HYPERV) 1946 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1947 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1948 { 1949 if (kvm_x86_ops.flush_remote_tlbs && 1950 !kvm_x86_call(flush_remote_tlbs)(kvm)) 1951 return 0; 1952 else 1953 return -ENOTSUPP; 1954 } 1955 1956 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1957 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1958 u64 nr_pages) 1959 { 1960 if (!kvm_x86_ops.flush_remote_tlbs_range) 1961 return -EOPNOTSUPP; 1962 1963 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1964 } 1965 #endif /* CONFIG_HYPERV */ 1966 1967 enum kvm_intr_type { 1968 /* Values are arbitrary, but must be non-zero. */ 1969 KVM_HANDLING_IRQ = 1, 1970 KVM_HANDLING_NMI, 1971 }; 1972 1973 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 1974 #define kvm_arch_pmi_in_guest(vcpu) \ 1975 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 1976 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 1977 1978 void __init kvm_mmu_x86_module_init(void); 1979 int kvm_mmu_vendor_module_init(void); 1980 void kvm_mmu_vendor_module_exit(void); 1981 1982 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1983 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1984 void kvm_mmu_init_vm(struct kvm *kvm); 1985 void kvm_mmu_uninit_vm(struct kvm *kvm); 1986 1987 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 1988 struct kvm_memory_slot *slot); 1989 1990 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1991 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1992 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1993 const struct kvm_memory_slot *memslot, 1994 int start_level); 1995 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1996 const struct kvm_memory_slot *memslot, 1997 int target_level); 1998 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1999 const struct kvm_memory_slot *memslot, 2000 u64 start, u64 end, 2001 int target_level); 2002 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 2003 const struct kvm_memory_slot *memslot); 2004 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 2005 const struct kvm_memory_slot *memslot); 2006 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 2007 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 2008 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 2009 2010 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 2011 2012 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 2013 const void *val, int bytes); 2014 2015 struct kvm_irq_mask_notifier { 2016 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 2017 int irq; 2018 struct hlist_node link; 2019 }; 2020 2021 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 2022 struct kvm_irq_mask_notifier *kimn); 2023 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 2024 struct kvm_irq_mask_notifier *kimn); 2025 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 2026 bool mask); 2027 2028 extern bool tdp_enabled; 2029 2030 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 2031 2032 /* 2033 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 2034 * userspace I/O) to indicate that the emulation context 2035 * should be reused as is, i.e. skip initialization of 2036 * emulation context, instruction fetch and decode. 2037 * 2038 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 2039 * Indicates that only select instructions (tagged with 2040 * EmulateOnUD) should be emulated (to minimize the emulator 2041 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 2042 * 2043 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2044 * decode the instruction length. For use *only* by 2045 * kvm_x86_ops.skip_emulated_instruction() implementations if 2046 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2047 * 2048 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2049 * retry native execution under certain conditions, 2050 * Can only be set in conjunction with EMULTYPE_PF. 2051 * 2052 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2053 * triggered by KVM's magic "force emulation" prefix, 2054 * which is opt in via module param (off by default). 2055 * Bypasses EmulateOnUD restriction despite emulating 2056 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2057 * Used to test the full emulator from userspace. 2058 * 2059 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2060 * backdoor emulation, which is opt in via module param. 2061 * VMware backdoor emulation handles select instructions 2062 * and reinjects the #GP for all other cases. 2063 * 2064 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case 2065 * the CR2/GPA value pass on the stack is valid. 2066 * 2067 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2068 * state and inject single-step #DBs after skipping 2069 * an instruction (after completing userspace I/O). 2070 * 2071 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2072 * is attempting to write a gfn that contains one or 2073 * more of the PTEs used to translate the write itself, 2074 * and the owning page table is being shadowed by KVM. 2075 * If emulation of the faulting instruction fails and 2076 * this flag is set, KVM will exit to userspace instead 2077 * of retrying emulation as KVM cannot make forward 2078 * progress. 2079 * 2080 * If emulation fails for a write to guest page tables, 2081 * KVM unprotects (zaps) the shadow page for the target 2082 * gfn and resumes the guest to retry the non-emulatable 2083 * instruction (on hardware). Unprotecting the gfn 2084 * doesn't allow forward progress for a self-changing 2085 * access because doing so also zaps the translation for 2086 * the gfn, i.e. retrying the instruction will hit a 2087 * !PRESENT fault, which results in a new shadow page 2088 * and sends KVM back to square one. 2089 */ 2090 #define EMULTYPE_NO_DECODE (1 << 0) 2091 #define EMULTYPE_TRAP_UD (1 << 1) 2092 #define EMULTYPE_SKIP (1 << 2) 2093 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2094 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2095 #define EMULTYPE_VMWARE_GP (1 << 5) 2096 #define EMULTYPE_PF (1 << 6) 2097 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2098 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2099 2100 static inline bool kvm_can_emulate_event_vectoring(int emul_type) 2101 { 2102 return !(emul_type & EMULTYPE_PF); 2103 } 2104 2105 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2106 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2107 void *insn, int insn_len); 2108 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2109 u64 *data, u8 ndata); 2110 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2111 2112 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa); 2113 2114 void kvm_enable_efer_bits(u64); 2115 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2116 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2117 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data); 2118 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2119 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2120 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2121 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2122 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2123 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2124 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2125 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2126 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2127 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2128 2129 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2130 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2131 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2132 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2133 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2134 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2135 2136 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2137 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2138 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2139 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2140 2141 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2142 int reason, bool has_error_code, u32 error_code); 2143 2144 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2145 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2146 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2147 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2148 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2149 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2150 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2151 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2152 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2153 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2154 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2155 2156 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2157 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2158 2159 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2160 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2161 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2162 2163 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2164 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2165 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2166 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2167 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2168 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2169 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2170 struct x86_exception *fault); 2171 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2172 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2173 2174 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2175 int irq_source_id, int level) 2176 { 2177 /* Logical OR for level trig interrupt */ 2178 if (level) 2179 __set_bit(irq_source_id, irq_state); 2180 else 2181 __clear_bit(irq_source_id, irq_state); 2182 2183 return !!(*irq_state); 2184 } 2185 2186 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2187 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2188 2189 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2190 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2191 2192 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2193 2194 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2195 bool always_retry); 2196 2197 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2198 gpa_t cr2_or_gpa) 2199 { 2200 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2201 } 2202 2203 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2204 ulong roots_to_free); 2205 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2206 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2207 struct x86_exception *exception); 2208 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2209 struct x86_exception *exception); 2210 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2211 struct x86_exception *exception); 2212 2213 bool kvm_apicv_activated(struct kvm *kvm); 2214 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2215 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2216 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2217 enum kvm_apicv_inhibit reason, bool set); 2218 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2219 enum kvm_apicv_inhibit reason, bool set); 2220 2221 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2222 enum kvm_apicv_inhibit reason) 2223 { 2224 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2225 } 2226 2227 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2228 enum kvm_apicv_inhibit reason) 2229 { 2230 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2231 } 2232 2233 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2234 void *insn, int insn_len); 2235 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2236 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2237 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2238 u64 addr, unsigned long roots); 2239 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2240 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2241 2242 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2243 int tdp_max_root_level, int tdp_huge_page_level); 2244 2245 2246 #ifdef CONFIG_KVM_PRIVATE_MEM 2247 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2248 #else 2249 #define kvm_arch_has_private_mem(kvm) false 2250 #endif 2251 2252 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2253 2254 static inline u16 kvm_read_ldt(void) 2255 { 2256 u16 ldt; 2257 asm("sldt %0" : "=g"(ldt)); 2258 return ldt; 2259 } 2260 2261 static inline void kvm_load_ldt(u16 sel) 2262 { 2263 asm("lldt %0" : : "rm"(sel)); 2264 } 2265 2266 #ifdef CONFIG_X86_64 2267 static inline unsigned long read_msr(unsigned long msr) 2268 { 2269 u64 value; 2270 2271 rdmsrl(msr, value); 2272 return value; 2273 } 2274 #endif 2275 2276 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2277 { 2278 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2279 } 2280 2281 #define TSS_IOPB_BASE_OFFSET 0x66 2282 #define TSS_BASE_SIZE 0x68 2283 #define TSS_IOPB_SIZE (65536 / 8) 2284 #define TSS_REDIRECTION_SIZE (256 / 8) 2285 #define RMODE_TSS_SIZE \ 2286 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2287 2288 enum { 2289 TASK_SWITCH_CALL = 0, 2290 TASK_SWITCH_IRET = 1, 2291 TASK_SWITCH_JMP = 2, 2292 TASK_SWITCH_GATE = 3, 2293 }; 2294 2295 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2296 2297 #ifdef CONFIG_KVM_SMM 2298 #define HF_SMM_MASK (1 << 1) 2299 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2300 2301 # define KVM_MAX_NR_ADDRESS_SPACES 2 2302 /* SMM is currently unsupported for guests with private memory. */ 2303 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2304 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2305 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2306 #else 2307 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2308 #endif 2309 2310 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2311 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2312 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2313 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2314 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2315 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2316 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2317 2318 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2319 unsigned long ipi_bitmap_high, u32 min, 2320 unsigned long icr, int op_64_bit); 2321 2322 int kvm_add_user_return_msr(u32 msr); 2323 int kvm_find_user_return_msr(u32 msr); 2324 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2325 2326 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2327 { 2328 return kvm_find_user_return_msr(msr) >= 0; 2329 } 2330 2331 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2332 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2333 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2334 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2335 2336 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2337 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2338 2339 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2340 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2341 unsigned long *vcpu_bitmap); 2342 2343 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2344 struct kvm_async_pf *work); 2345 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2346 struct kvm_async_pf *work); 2347 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2348 struct kvm_async_pf *work); 2349 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2350 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2351 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2352 2353 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2354 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2355 2356 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2357 u32 size); 2358 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2359 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2360 2361 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2362 struct kvm_vcpu **dest_vcpu); 2363 2364 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2365 struct kvm_lapic_irq *irq); 2366 2367 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2368 { 2369 /* We can only post Fixed and LowPrio IRQs */ 2370 return (irq->delivery_mode == APIC_DM_FIXED || 2371 irq->delivery_mode == APIC_DM_LOWEST); 2372 } 2373 2374 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2375 { 2376 kvm_x86_call(vcpu_blocking)(vcpu); 2377 } 2378 2379 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2380 { 2381 kvm_x86_call(vcpu_unblocking)(vcpu); 2382 } 2383 2384 static inline int kvm_cpu_get_apicid(int mps_cpu) 2385 { 2386 #ifdef CONFIG_X86_LOCAL_APIC 2387 return default_cpu_present_to_apicid(mps_cpu); 2388 #else 2389 WARN_ON_ONCE(1); 2390 return BAD_APICID; 2391 #endif 2392 } 2393 2394 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2395 2396 #define KVM_CLOCK_VALID_FLAGS \ 2397 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2398 2399 #define KVM_X86_VALID_QUIRKS \ 2400 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2401 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2402 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2403 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2404 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2405 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2406 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2407 KVM_X86_QUIRK_SLOT_ZAP_ALL | \ 2408 KVM_X86_QUIRK_STUFF_FEATURE_MSRS) 2409 2410 /* 2411 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2412 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2413 * remaining 31 lower bits must be 0 to preserve ABI. 2414 */ 2415 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2416 2417 #endif /* _ASM_X86_KVM_HOST_H */ 2418