xref: /linux/arch/x86/include/asm/kvm_host.h (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
28 #include <linux/kfifo.h>
29 
30 #include <asm/apic.h>
31 #include <asm/pvclock-abi.h>
32 #include <asm/desc.h>
33 #include <asm/mtrr.h>
34 #include <asm/msr-index.h>
35 #include <asm/asm.h>
36 #include <asm/kvm_page_track.h>
37 #include <asm/kvm_vcpu_regs.h>
38 #include <asm/hyperv-tlfs.h>
39 
40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
41 
42 /*
43  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
44  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
45  */
46 #ifdef CONFIG_KVM_MAX_NR_VCPUS
47 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
48 #else
49 #define KVM_MAX_VCPUS 1024
50 #endif
51 
52 /*
53  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
54  * might be larger than the actual number of VCPUs because the
55  * APIC ID encodes CPU topology information.
56  *
57  * In the worst case, we'll need less than one extra bit for the
58  * Core ID, and less than one extra bit for the Package (Die) ID,
59  * so ratio of 4 should be enough.
60  */
61 #define KVM_VCPU_ID_RATIO 4
62 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
63 
64 /* memory slots that are not exposed to userspace */
65 #define KVM_INTERNAL_MEM_SLOTS 3
66 
67 #define KVM_HALT_POLL_NS_DEFAULT 200000
68 
69 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
70 
71 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
72 					KVM_DIRTY_LOG_INITIALLY_SET)
73 
74 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
75 						 KVM_BUS_LOCK_DETECTION_EXIT)
76 
77 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
78 						 KVM_X86_NOTIFY_VMEXIT_USER)
79 
80 /* x86-specific vcpu->requests bit members */
81 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
82 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
83 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
84 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
85 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
86 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
87 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
88 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
89 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
90 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
91 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
92 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
93 #ifdef CONFIG_KVM_SMM
94 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
95 #endif
96 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
97 #define KVM_REQ_MCLOCK_INPROGRESS \
98 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
99 #define KVM_REQ_SCAN_IOAPIC \
100 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
101 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
102 #define KVM_REQ_APIC_PAGE_RELOAD \
103 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
104 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
105 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
106 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
107 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
108 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
109 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
110 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
111 #define KVM_REQ_APICV_UPDATE \
112 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
113 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
114 #define KVM_REQ_TLB_FLUSH_GUEST \
115 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
116 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
117 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
118 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
119 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
120 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
121 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_HV_TLB_FLUSH \
123 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
124 
125 #define CR0_RESERVED_BITS                                               \
126 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
127 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
128 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
129 
130 #define CR4_RESERVED_BITS                                               \
131 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
132 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
133 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
134 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
135 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
136 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
137 			  | X86_CR4_LAM_SUP))
138 
139 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
140 
141 
142 
143 #define INVALID_PAGE (~(hpa_t)0)
144 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
145 
146 /* KVM Hugepage definitions for x86 */
147 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
148 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
149 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
150 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
151 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
152 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
153 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
154 
155 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
156 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
157 #define KVM_MMU_HASH_SHIFT 12
158 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
159 #define KVM_MIN_FREE_MMU_PAGES 5
160 #define KVM_REFILL_PAGES 25
161 #define KVM_MAX_CPUID_ENTRIES 256
162 #define KVM_NR_FIXED_MTRR_REGION 88
163 #define KVM_NR_VAR_MTRR 8
164 
165 #define ASYNC_PF_PER_VCPU 64
166 
167 enum kvm_reg {
168 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
169 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
170 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
171 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
172 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
173 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
174 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
175 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
176 #ifdef CONFIG_X86_64
177 	VCPU_REGS_R8  = __VCPU_REGS_R8,
178 	VCPU_REGS_R9  = __VCPU_REGS_R9,
179 	VCPU_REGS_R10 = __VCPU_REGS_R10,
180 	VCPU_REGS_R11 = __VCPU_REGS_R11,
181 	VCPU_REGS_R12 = __VCPU_REGS_R12,
182 	VCPU_REGS_R13 = __VCPU_REGS_R13,
183 	VCPU_REGS_R14 = __VCPU_REGS_R14,
184 	VCPU_REGS_R15 = __VCPU_REGS_R15,
185 #endif
186 	VCPU_REGS_RIP,
187 	NR_VCPU_REGS,
188 
189 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
190 	VCPU_EXREG_CR0,
191 	VCPU_EXREG_CR3,
192 	VCPU_EXREG_CR4,
193 	VCPU_EXREG_RFLAGS,
194 	VCPU_EXREG_SEGMENTS,
195 	VCPU_EXREG_EXIT_INFO_1,
196 	VCPU_EXREG_EXIT_INFO_2,
197 };
198 
199 enum {
200 	VCPU_SREG_ES,
201 	VCPU_SREG_CS,
202 	VCPU_SREG_SS,
203 	VCPU_SREG_DS,
204 	VCPU_SREG_FS,
205 	VCPU_SREG_GS,
206 	VCPU_SREG_TR,
207 	VCPU_SREG_LDTR,
208 };
209 
210 enum exit_fastpath_completion {
211 	EXIT_FASTPATH_NONE,
212 	EXIT_FASTPATH_REENTER_GUEST,
213 	EXIT_FASTPATH_EXIT_HANDLED,
214 };
215 typedef enum exit_fastpath_completion fastpath_t;
216 
217 struct x86_emulate_ctxt;
218 struct x86_exception;
219 union kvm_smram;
220 enum x86_intercept;
221 enum x86_intercept_stage;
222 
223 #define KVM_NR_DB_REGS	4
224 
225 #define DR6_BUS_LOCK   (1 << 11)
226 #define DR6_BD		(1 << 13)
227 #define DR6_BS		(1 << 14)
228 #define DR6_BT		(1 << 15)
229 #define DR6_RTM		(1 << 16)
230 /*
231  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
232  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
233  * they will never be 0 for now, but when they are defined
234  * in the future it will require no code change.
235  *
236  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
237  */
238 #define DR6_ACTIVE_LOW	0xffff0ff0
239 #define DR6_VOLATILE	0x0001e80f
240 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
241 
242 #define DR7_BP_EN_MASK	0x000000ff
243 #define DR7_GE		(1 << 9)
244 #define DR7_GD		(1 << 13)
245 #define DR7_FIXED_1	0x00000400
246 #define DR7_VOLATILE	0xffff2bff
247 
248 #define KVM_GUESTDBG_VALID_MASK \
249 	(KVM_GUESTDBG_ENABLE | \
250 	KVM_GUESTDBG_SINGLESTEP | \
251 	KVM_GUESTDBG_USE_HW_BP | \
252 	KVM_GUESTDBG_USE_SW_BP | \
253 	KVM_GUESTDBG_INJECT_BP | \
254 	KVM_GUESTDBG_INJECT_DB | \
255 	KVM_GUESTDBG_BLOCKIRQ)
256 
257 
258 #define PFERR_PRESENT_BIT 0
259 #define PFERR_WRITE_BIT 1
260 #define PFERR_USER_BIT 2
261 #define PFERR_RSVD_BIT 3
262 #define PFERR_FETCH_BIT 4
263 #define PFERR_PK_BIT 5
264 #define PFERR_SGX_BIT 15
265 #define PFERR_GUEST_FINAL_BIT 32
266 #define PFERR_GUEST_PAGE_BIT 33
267 #define PFERR_IMPLICIT_ACCESS_BIT 48
268 
269 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
270 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
271 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
272 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
273 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
274 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
275 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
276 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
277 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
278 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
279 
280 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
281 				 PFERR_WRITE_MASK |		\
282 				 PFERR_PRESENT_MASK)
283 
284 /* apic attention bits */
285 #define KVM_APIC_CHECK_VAPIC	0
286 /*
287  * The following bit is set with PV-EOI, unset on EOI.
288  * We detect PV-EOI changes by guest by comparing
289  * this bit with PV-EOI in guest memory.
290  * See the implementation in apic_update_pv_eoi.
291  */
292 #define KVM_APIC_PV_EOI_PENDING	1
293 
294 struct kvm_kernel_irq_routing_entry;
295 
296 /*
297  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
298  * also includes TDP pages) to determine whether or not a page can be used in
299  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
300  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
301  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
302  *
303  * Upper-level shadow pages having gptes are tracked for write-protection via
304  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
305  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
306  * otherwise gfn_write_track will overflow and explosions will ensue.
307  *
308  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
309  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
310  * incorporates various mode bits and properties of the SP.  Roughly speaking,
311  * the number of unique SPs that can theoretically be created is 2^n, where n
312  * is the number of bits that are used to compute the role.
313  *
314  * But, even though there are 19 bits in the mask below, not all combinations
315  * of modes and flags are possible:
316  *
317  *   - invalid shadow pages are not accounted, so the bits are effectively 18
318  *
319  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
320  *     execonly and ad_disabled are only used for nested EPT which has
321  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
322  *
323  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
324  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
325  *     paging has exactly one upper level, making level completely redundant
326  *     when has_4_byte_gpte=1.
327  *
328  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
329  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
330  *
331  * Therefore, the maximum number of possible upper-level shadow pages for a
332  * single gfn is a bit less than 2^13.
333  */
334 union kvm_mmu_page_role {
335 	u32 word;
336 	struct {
337 		unsigned level:4;
338 		unsigned has_4_byte_gpte:1;
339 		unsigned quadrant:2;
340 		unsigned direct:1;
341 		unsigned access:3;
342 		unsigned invalid:1;
343 		unsigned efer_nx:1;
344 		unsigned cr0_wp:1;
345 		unsigned smep_andnot_wp:1;
346 		unsigned smap_andnot_wp:1;
347 		unsigned ad_disabled:1;
348 		unsigned guest_mode:1;
349 		unsigned passthrough:1;
350 		unsigned :5;
351 
352 		/*
353 		 * This is left at the top of the word so that
354 		 * kvm_memslots_for_spte_role can extract it with a
355 		 * simple shift.  While there is room, give it a whole
356 		 * byte so it is also faster to load it from memory.
357 		 */
358 		unsigned smm:8;
359 	};
360 };
361 
362 /*
363  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
364  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
365  * including on nested transitions, if nothing in the full role changes then
366  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
367  * don't treat all-zero structure as valid data.
368  *
369  * The properties that are tracked in the extended role but not the page role
370  * are for things that either (a) do not affect the validity of the shadow page
371  * or (b) are indirectly reflected in the shadow page's role.  For example,
372  * CR4.PKE only affects permission checks for software walks of the guest page
373  * tables (because KVM doesn't support Protection Keys with shadow paging), and
374  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
375  *
376  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
377  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
378  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
379  * SMAP aware regardless of CR0.WP.
380  */
381 union kvm_mmu_extended_role {
382 	u32 word;
383 	struct {
384 		unsigned int valid:1;
385 		unsigned int execonly:1;
386 		unsigned int cr4_pse:1;
387 		unsigned int cr4_pke:1;
388 		unsigned int cr4_smap:1;
389 		unsigned int cr4_smep:1;
390 		unsigned int cr4_la57:1;
391 		unsigned int efer_lma:1;
392 	};
393 };
394 
395 union kvm_cpu_role {
396 	u64 as_u64;
397 	struct {
398 		union kvm_mmu_page_role base;
399 		union kvm_mmu_extended_role ext;
400 	};
401 };
402 
403 struct kvm_rmap_head {
404 	unsigned long val;
405 };
406 
407 struct kvm_pio_request {
408 	unsigned long linear_rip;
409 	unsigned long count;
410 	int in;
411 	int port;
412 	int size;
413 };
414 
415 #define PT64_ROOT_MAX_LEVEL 5
416 
417 struct rsvd_bits_validate {
418 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
419 	u64 bad_mt_xwr;
420 };
421 
422 struct kvm_mmu_root_info {
423 	gpa_t pgd;
424 	hpa_t hpa;
425 };
426 
427 #define KVM_MMU_ROOT_INFO_INVALID \
428 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
429 
430 #define KVM_MMU_NUM_PREV_ROOTS 3
431 
432 #define KVM_MMU_ROOT_CURRENT		BIT(0)
433 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
434 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
435 
436 #define KVM_HAVE_MMU_RWLOCK
437 
438 struct kvm_mmu_page;
439 struct kvm_page_fault;
440 
441 /*
442  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
443  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
444  * current mmu mode.
445  */
446 struct kvm_mmu {
447 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
448 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
449 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
450 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
451 				  struct x86_exception *fault);
452 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
453 			    gpa_t gva_or_gpa, u64 access,
454 			    struct x86_exception *exception);
455 	int (*sync_spte)(struct kvm_vcpu *vcpu,
456 			 struct kvm_mmu_page *sp, int i);
457 	struct kvm_mmu_root_info root;
458 	union kvm_cpu_role cpu_role;
459 	union kvm_mmu_page_role root_role;
460 
461 	/*
462 	* The pkru_mask indicates if protection key checks are needed.  It
463 	* consists of 16 domains indexed by page fault error code bits [4:1],
464 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
465 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
466 	*/
467 	u32 pkru_mask;
468 
469 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
470 
471 	/*
472 	 * Bitmap; bit set = permission fault
473 	 * Byte index: page fault error code [4:1]
474 	 * Bit index: pte permissions in ACC_* format
475 	 */
476 	u8 permissions[16];
477 
478 	u64 *pae_root;
479 	u64 *pml4_root;
480 	u64 *pml5_root;
481 
482 	/*
483 	 * check zero bits on shadow page table entries, these
484 	 * bits include not only hardware reserved bits but also
485 	 * the bits spte never used.
486 	 */
487 	struct rsvd_bits_validate shadow_zero_check;
488 
489 	struct rsvd_bits_validate guest_rsvd_check;
490 
491 	u64 pdptrs[4]; /* pae */
492 };
493 
494 enum pmc_type {
495 	KVM_PMC_GP = 0,
496 	KVM_PMC_FIXED,
497 };
498 
499 struct kvm_pmc {
500 	enum pmc_type type;
501 	u8 idx;
502 	bool is_paused;
503 	bool intr;
504 	/*
505 	 * Base value of the PMC counter, relative to the *consumed* count in
506 	 * the associated perf_event.  This value includes counter updates from
507 	 * the perf_event and emulated_count since the last time the counter
508 	 * was reprogrammed, but it is *not* the current value as seen by the
509 	 * guest or userspace.
510 	 *
511 	 * The count is relative to the associated perf_event so that KVM
512 	 * doesn't need to reprogram the perf_event every time the guest writes
513 	 * to the counter.
514 	 */
515 	u64 counter;
516 	/*
517 	 * PMC events triggered by KVM emulation that haven't been fully
518 	 * processed, i.e. haven't undergone overflow detection.
519 	 */
520 	u64 emulated_counter;
521 	u64 eventsel;
522 	struct perf_event *perf_event;
523 	struct kvm_vcpu *vcpu;
524 	/*
525 	 * only for creating or reusing perf_event,
526 	 * eventsel value for general purpose counters,
527 	 * ctrl value for fixed counters.
528 	 */
529 	u64 current_config;
530 };
531 
532 /* More counters may conflict with other existing Architectural MSRs */
533 #define KVM_INTEL_PMC_MAX_GENERIC	8
534 #define MSR_ARCH_PERFMON_PERFCTR_MAX	(MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
535 #define MSR_ARCH_PERFMON_EVENTSEL_MAX	(MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
536 #define KVM_PMC_MAX_FIXED	3
537 #define MSR_ARCH_PERFMON_FIXED_CTR_MAX	(MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1)
538 #define KVM_AMD_PMC_MAX_GENERIC	6
539 
540 struct kvm_pmu {
541 	u8 version;
542 	unsigned nr_arch_gp_counters;
543 	unsigned nr_arch_fixed_counters;
544 	unsigned available_event_types;
545 	u64 fixed_ctr_ctrl;
546 	u64 fixed_ctr_ctrl_mask;
547 	u64 global_ctrl;
548 	u64 global_status;
549 	u64 counter_bitmask[2];
550 	u64 global_ctrl_mask;
551 	u64 global_status_mask;
552 	u64 reserved_bits;
553 	u64 raw_event_mask;
554 	struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC];
555 	struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
556 
557 	/*
558 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
559 	 * set in a single access, e.g. to reprogram all counters when the PMU
560 	 * filter changes.
561 	 */
562 	union {
563 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
564 		atomic64_t __reprogram_pmi;
565 	};
566 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
567 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
568 
569 	u64 ds_area;
570 	u64 pebs_enable;
571 	u64 pebs_enable_mask;
572 	u64 pebs_data_cfg;
573 	u64 pebs_data_cfg_mask;
574 
575 	/*
576 	 * If a guest counter is cross-mapped to host counter with different
577 	 * index, its PEBS capability will be temporarily disabled.
578 	 *
579 	 * The user should make sure that this mask is updated
580 	 * after disabling interrupts and before perf_guest_get_msrs();
581 	 */
582 	u64 host_cross_mapped_mask;
583 
584 	/*
585 	 * The gate to release perf_events not marked in
586 	 * pmc_in_use only once in a vcpu time slice.
587 	 */
588 	bool need_cleanup;
589 
590 	/*
591 	 * The total number of programmed perf_events and it helps to avoid
592 	 * redundant check before cleanup if guest don't use vPMU at all.
593 	 */
594 	u8 event_count;
595 };
596 
597 struct kvm_pmu_ops;
598 
599 enum {
600 	KVM_DEBUGREG_BP_ENABLED = 1,
601 	KVM_DEBUGREG_WONT_EXIT = 2,
602 };
603 
604 struct kvm_mtrr_range {
605 	u64 base;
606 	u64 mask;
607 	struct list_head node;
608 };
609 
610 struct kvm_mtrr {
611 	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
612 	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
613 	u64 deftype;
614 
615 	struct list_head head;
616 };
617 
618 /* Hyper-V SynIC timer */
619 struct kvm_vcpu_hv_stimer {
620 	struct hrtimer timer;
621 	int index;
622 	union hv_stimer_config config;
623 	u64 count;
624 	u64 exp_time;
625 	struct hv_message msg;
626 	bool msg_pending;
627 };
628 
629 /* Hyper-V synthetic interrupt controller (SynIC)*/
630 struct kvm_vcpu_hv_synic {
631 	u64 version;
632 	u64 control;
633 	u64 msg_page;
634 	u64 evt_page;
635 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
636 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
637 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
638 	DECLARE_BITMAP(vec_bitmap, 256);
639 	bool active;
640 	bool dont_zero_synic_pages;
641 };
642 
643 /* The maximum number of entries on the TLB flush fifo. */
644 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
645 /*
646  * Note: the following 'magic' entry is made up by KVM to avoid putting
647  * anything besides GVA on the TLB flush fifo. It is theoretically possible
648  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
649  * which will look identical. KVM's action to 'flush everything' instead of
650  * flushing these particular addresses is, however, fully legitimate as
651  * flushing more than requested is always OK.
652  */
653 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
654 
655 enum hv_tlb_flush_fifos {
656 	HV_L1_TLB_FLUSH_FIFO,
657 	HV_L2_TLB_FLUSH_FIFO,
658 	HV_NR_TLB_FLUSH_FIFOS,
659 };
660 
661 struct kvm_vcpu_hv_tlb_flush_fifo {
662 	spinlock_t write_lock;
663 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
664 };
665 
666 /* Hyper-V per vcpu emulation context */
667 struct kvm_vcpu_hv {
668 	struct kvm_vcpu *vcpu;
669 	u32 vp_index;
670 	u64 hv_vapic;
671 	s64 runtime_offset;
672 	struct kvm_vcpu_hv_synic synic;
673 	struct kvm_hyperv_exit exit;
674 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
675 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
676 	bool enforce_cpuid;
677 	struct {
678 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
679 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
680 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
681 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
682 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
683 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
684 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
685 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
686 	} cpuid_cache;
687 
688 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
689 
690 	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
691 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
692 
693 	struct hv_vp_assist_page vp_assist_page;
694 
695 	struct {
696 		u64 pa_page_gpa;
697 		u64 vm_id;
698 		u32 vp_id;
699 	} nested;
700 };
701 
702 struct kvm_hypervisor_cpuid {
703 	u32 base;
704 	u32 limit;
705 };
706 
707 #ifdef CONFIG_KVM_XEN
708 /* Xen HVM per vcpu emulation context */
709 struct kvm_vcpu_xen {
710 	u64 hypercall_rip;
711 	u32 current_runstate;
712 	u8 upcall_vector;
713 	struct gfn_to_pfn_cache vcpu_info_cache;
714 	struct gfn_to_pfn_cache vcpu_time_info_cache;
715 	struct gfn_to_pfn_cache runstate_cache;
716 	struct gfn_to_pfn_cache runstate2_cache;
717 	u64 last_steal;
718 	u64 runstate_entry_time;
719 	u64 runstate_times[4];
720 	unsigned long evtchn_pending_sel;
721 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
722 	u32 timer_virq;
723 	u64 timer_expires; /* In guest epoch */
724 	atomic_t timer_pending;
725 	struct hrtimer timer;
726 	int poll_evtchn;
727 	struct timer_list poll_timer;
728 	struct kvm_hypervisor_cpuid cpuid;
729 };
730 #endif
731 
732 struct kvm_queued_exception {
733 	bool pending;
734 	bool injected;
735 	bool has_error_code;
736 	u8 vector;
737 	u32 error_code;
738 	unsigned long payload;
739 	bool has_payload;
740 };
741 
742 struct kvm_vcpu_arch {
743 	/*
744 	 * rip and regs accesses must go through
745 	 * kvm_{register,rip}_{read,write} functions.
746 	 */
747 	unsigned long regs[NR_VCPU_REGS];
748 	u32 regs_avail;
749 	u32 regs_dirty;
750 
751 	unsigned long cr0;
752 	unsigned long cr0_guest_owned_bits;
753 	unsigned long cr2;
754 	unsigned long cr3;
755 	unsigned long cr4;
756 	unsigned long cr4_guest_owned_bits;
757 	unsigned long cr4_guest_rsvd_bits;
758 	unsigned long cr8;
759 	u32 host_pkru;
760 	u32 pkru;
761 	u32 hflags;
762 	u64 efer;
763 	u64 apic_base;
764 	struct kvm_lapic *apic;    /* kernel irqchip context */
765 	bool load_eoi_exitmap_pending;
766 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
767 	unsigned long apic_attention;
768 	int32_t apic_arb_prio;
769 	int mp_state;
770 	u64 ia32_misc_enable_msr;
771 	u64 smbase;
772 	u64 smi_count;
773 	bool at_instruction_boundary;
774 	bool tpr_access_reporting;
775 	bool xfd_no_write_intercept;
776 	u64 ia32_xss;
777 	u64 microcode_version;
778 	u64 arch_capabilities;
779 	u64 perf_capabilities;
780 
781 	/*
782 	 * Paging state of the vcpu
783 	 *
784 	 * If the vcpu runs in guest mode with two level paging this still saves
785 	 * the paging mode of the l1 guest. This context is always used to
786 	 * handle faults.
787 	 */
788 	struct kvm_mmu *mmu;
789 
790 	/* Non-nested MMU for L1 */
791 	struct kvm_mmu root_mmu;
792 
793 	/* L1 MMU when running nested */
794 	struct kvm_mmu guest_mmu;
795 
796 	/*
797 	 * Paging state of an L2 guest (used for nested npt)
798 	 *
799 	 * This context will save all necessary information to walk page tables
800 	 * of an L2 guest. This context is only initialized for page table
801 	 * walking and not for faulting since we never handle l2 page faults on
802 	 * the host.
803 	 */
804 	struct kvm_mmu nested_mmu;
805 
806 	/*
807 	 * Pointer to the mmu context currently used for
808 	 * gva_to_gpa translations.
809 	 */
810 	struct kvm_mmu *walk_mmu;
811 
812 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
813 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
814 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
815 	struct kvm_mmu_memory_cache mmu_page_header_cache;
816 
817 	/*
818 	 * QEMU userspace and the guest each have their own FPU state.
819 	 * In vcpu_run, we switch between the user and guest FPU contexts.
820 	 * While running a VCPU, the VCPU thread will have the guest FPU
821 	 * context.
822 	 *
823 	 * Note that while the PKRU state lives inside the fpu registers,
824 	 * it is switched out separately at VMENTER and VMEXIT time. The
825 	 * "guest_fpstate" state here contains the guest FPU context, with the
826 	 * host PRKU bits.
827 	 */
828 	struct fpu_guest guest_fpu;
829 
830 	u64 xcr0;
831 	u64 guest_supported_xcr0;
832 
833 	struct kvm_pio_request pio;
834 	void *pio_data;
835 	void *sev_pio_data;
836 	unsigned sev_pio_count;
837 
838 	u8 event_exit_inst_len;
839 
840 	bool exception_from_userspace;
841 
842 	/* Exceptions to be injected to the guest. */
843 	struct kvm_queued_exception exception;
844 	/* Exception VM-Exits to be synthesized to L1. */
845 	struct kvm_queued_exception exception_vmexit;
846 
847 	struct kvm_queued_interrupt {
848 		bool injected;
849 		bool soft;
850 		u8 nr;
851 	} interrupt;
852 
853 	int halt_request; /* real mode on Intel only */
854 
855 	int cpuid_nent;
856 	struct kvm_cpuid_entry2 *cpuid_entries;
857 	struct kvm_hypervisor_cpuid kvm_cpuid;
858 
859 	/*
860 	 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly
861 	 * when "struct kvm_vcpu_arch" is no longer defined in an
862 	 * arch/x86/include/asm header.  The max is mostly arbitrary, i.e.
863 	 * can be increased as necessary.
864 	 */
865 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG
866 
867 	/*
868 	 * Track whether or not the guest is allowed to use features that are
869 	 * governed by KVM, where "governed" means KVM needs to manage state
870 	 * and/or explicitly enable the feature in hardware.  Typically, but
871 	 * not always, governed features can be used by the guest if and only
872 	 * if both KVM and userspace want to expose the feature to the guest.
873 	 */
874 	struct {
875 		DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES);
876 	} governed_features;
877 
878 	u64 reserved_gpa_bits;
879 	int maxphyaddr;
880 
881 	/* emulate context */
882 
883 	struct x86_emulate_ctxt *emulate_ctxt;
884 	bool emulate_regs_need_sync_to_vcpu;
885 	bool emulate_regs_need_sync_from_vcpu;
886 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
887 
888 	gpa_t time;
889 	struct pvclock_vcpu_time_info hv_clock;
890 	unsigned int hw_tsc_khz;
891 	struct gfn_to_pfn_cache pv_time;
892 	/* set guest stopped flag in pvclock flags field */
893 	bool pvclock_set_guest_stopped_request;
894 
895 	struct {
896 		u8 preempted;
897 		u64 msr_val;
898 		u64 last_steal;
899 		struct gfn_to_hva_cache cache;
900 	} st;
901 
902 	u64 l1_tsc_offset;
903 	u64 tsc_offset; /* current tsc offset */
904 	u64 last_guest_tsc;
905 	u64 last_host_tsc;
906 	u64 tsc_offset_adjustment;
907 	u64 this_tsc_nsec;
908 	u64 this_tsc_write;
909 	u64 this_tsc_generation;
910 	bool tsc_catchup;
911 	bool tsc_always_catchup;
912 	s8 virtual_tsc_shift;
913 	u32 virtual_tsc_mult;
914 	u32 virtual_tsc_khz;
915 	s64 ia32_tsc_adjust_msr;
916 	u64 msr_ia32_power_ctl;
917 	u64 l1_tsc_scaling_ratio;
918 	u64 tsc_scaling_ratio; /* current scaling ratio */
919 
920 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
921 	/* Number of NMIs pending injection, not including hardware vNMIs. */
922 	unsigned int nmi_pending;
923 	bool nmi_injected;    /* Trying to inject an NMI this entry */
924 	bool smi_pending;    /* SMI queued after currently running handler */
925 	u8 handling_intr_from_guest;
926 
927 	struct kvm_mtrr mtrr_state;
928 	u64 pat;
929 
930 	unsigned switch_db_regs;
931 	unsigned long db[KVM_NR_DB_REGS];
932 	unsigned long dr6;
933 	unsigned long dr7;
934 	unsigned long eff_db[KVM_NR_DB_REGS];
935 	unsigned long guest_debug_dr7;
936 	u64 msr_platform_info;
937 	u64 msr_misc_features_enables;
938 
939 	u64 mcg_cap;
940 	u64 mcg_status;
941 	u64 mcg_ctl;
942 	u64 mcg_ext_ctl;
943 	u64 *mce_banks;
944 	u64 *mci_ctl2_banks;
945 
946 	/* Cache MMIO info */
947 	u64 mmio_gva;
948 	unsigned mmio_access;
949 	gfn_t mmio_gfn;
950 	u64 mmio_gen;
951 
952 	struct kvm_pmu pmu;
953 
954 	/* used for guest single stepping over the given code position */
955 	unsigned long singlestep_rip;
956 
957 #ifdef CONFIG_KVM_HYPERV
958 	bool hyperv_enabled;
959 	struct kvm_vcpu_hv *hyperv;
960 #endif
961 #ifdef CONFIG_KVM_XEN
962 	struct kvm_vcpu_xen xen;
963 #endif
964 	cpumask_var_t wbinvd_dirty_mask;
965 
966 	unsigned long last_retry_eip;
967 	unsigned long last_retry_addr;
968 
969 	struct {
970 		bool halted;
971 		gfn_t gfns[ASYNC_PF_PER_VCPU];
972 		struct gfn_to_hva_cache data;
973 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
974 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
975 		u16 vec;
976 		u32 id;
977 		bool send_user_only;
978 		u32 host_apf_flags;
979 		bool delivery_as_pf_vmexit;
980 		bool pageready_pending;
981 	} apf;
982 
983 	/* OSVW MSRs (AMD only) */
984 	struct {
985 		u64 length;
986 		u64 status;
987 	} osvw;
988 
989 	struct {
990 		u64 msr_val;
991 		struct gfn_to_hva_cache data;
992 	} pv_eoi;
993 
994 	u64 msr_kvm_poll_control;
995 
996 	/* set at EPT violation at this point */
997 	unsigned long exit_qualification;
998 
999 	/* pv related host specific info */
1000 	struct {
1001 		bool pv_unhalted;
1002 	} pv;
1003 
1004 	int pending_ioapic_eoi;
1005 	int pending_external_vector;
1006 
1007 	/* be preempted when it's in kernel-mode(cpl=0) */
1008 	bool preempted_in_kernel;
1009 
1010 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1011 	bool l1tf_flush_l1d;
1012 
1013 	/* Host CPU on which VM-entry was most recently attempted */
1014 	int last_vmentry_cpu;
1015 
1016 	/* AMD MSRC001_0015 Hardware Configuration */
1017 	u64 msr_hwcr;
1018 
1019 	/* pv related cpuid info */
1020 	struct {
1021 		/*
1022 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1023 		 * leaf.
1024 		 */
1025 		u32 features;
1026 
1027 		/*
1028 		 * indicates whether pv emulation should be disabled if features
1029 		 * are not present in the guest's cpuid
1030 		 */
1031 		bool enforce;
1032 	} pv_cpuid;
1033 
1034 	/* Protected Guests */
1035 	bool guest_state_protected;
1036 
1037 	/*
1038 	 * Set when PDPTS were loaded directly by the userspace without
1039 	 * reading the guest memory
1040 	 */
1041 	bool pdptrs_from_userspace;
1042 
1043 #if IS_ENABLED(CONFIG_HYPERV)
1044 	hpa_t hv_root_tdp;
1045 #endif
1046 };
1047 
1048 struct kvm_lpage_info {
1049 	int disallow_lpage;
1050 };
1051 
1052 struct kvm_arch_memory_slot {
1053 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1054 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1055 	unsigned short *gfn_write_track;
1056 };
1057 
1058 /*
1059  * Track the mode of the optimized logical map, as the rules for decoding the
1060  * destination vary per mode.  Enabling the optimized logical map requires all
1061  * software-enabled local APIs to be in the same mode, each addressable APIC to
1062  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1063  */
1064 enum kvm_apic_logical_mode {
1065 	/* All local APICs are software disabled. */
1066 	KVM_APIC_MODE_SW_DISABLED,
1067 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1068 	KVM_APIC_MODE_XAPIC_CLUSTER,
1069 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1070 	KVM_APIC_MODE_XAPIC_FLAT,
1071 	/* All software enabled local APICs in x2APIC mode. */
1072 	KVM_APIC_MODE_X2APIC,
1073 	/*
1074 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1075 	 * mode, same logical ID assigned to multiple APICs, etc.
1076 	 */
1077 	KVM_APIC_MODE_MAP_DISABLED,
1078 };
1079 
1080 struct kvm_apic_map {
1081 	struct rcu_head rcu;
1082 	enum kvm_apic_logical_mode logical_mode;
1083 	u32 max_apic_id;
1084 	union {
1085 		struct kvm_lapic *xapic_flat_map[8];
1086 		struct kvm_lapic *xapic_cluster_map[16][4];
1087 	};
1088 	struct kvm_lapic *phys_map[];
1089 };
1090 
1091 /* Hyper-V synthetic debugger (SynDbg)*/
1092 struct kvm_hv_syndbg {
1093 	struct {
1094 		u64 control;
1095 		u64 status;
1096 		u64 send_page;
1097 		u64 recv_page;
1098 		u64 pending_page;
1099 	} control;
1100 	u64 options;
1101 };
1102 
1103 /* Current state of Hyper-V TSC page clocksource */
1104 enum hv_tsc_page_status {
1105 	/* TSC page was not set up or disabled */
1106 	HV_TSC_PAGE_UNSET = 0,
1107 	/* TSC page MSR was written by the guest, update pending */
1108 	HV_TSC_PAGE_GUEST_CHANGED,
1109 	/* TSC page update was triggered from the host side */
1110 	HV_TSC_PAGE_HOST_CHANGED,
1111 	/* TSC page was properly set up and is currently active  */
1112 	HV_TSC_PAGE_SET,
1113 	/* TSC page was set up with an inaccessible GPA */
1114 	HV_TSC_PAGE_BROKEN,
1115 };
1116 
1117 #ifdef CONFIG_KVM_HYPERV
1118 /* Hyper-V emulation context */
1119 struct kvm_hv {
1120 	struct mutex hv_lock;
1121 	u64 hv_guest_os_id;
1122 	u64 hv_hypercall;
1123 	u64 hv_tsc_page;
1124 	enum hv_tsc_page_status hv_tsc_page_status;
1125 
1126 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1127 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1128 	u64 hv_crash_ctl;
1129 
1130 	struct ms_hyperv_tsc_page tsc_ref;
1131 
1132 	struct idr conn_to_evt;
1133 
1134 	u64 hv_reenlightenment_control;
1135 	u64 hv_tsc_emulation_control;
1136 	u64 hv_tsc_emulation_status;
1137 	u64 hv_invtsc_control;
1138 
1139 	/* How many vCPUs have VP index != vCPU index */
1140 	atomic_t num_mismatched_vp_indexes;
1141 
1142 	/*
1143 	 * How many SynICs use 'AutoEOI' feature
1144 	 * (protected by arch.apicv_update_lock)
1145 	 */
1146 	unsigned int synic_auto_eoi_used;
1147 
1148 	struct kvm_hv_syndbg hv_syndbg;
1149 
1150 	bool xsaves_xsavec_checked;
1151 };
1152 #endif
1153 
1154 struct msr_bitmap_range {
1155 	u32 flags;
1156 	u32 nmsrs;
1157 	u32 base;
1158 	unsigned long *bitmap;
1159 };
1160 
1161 #ifdef CONFIG_KVM_XEN
1162 /* Xen emulation context */
1163 struct kvm_xen {
1164 	struct mutex xen_lock;
1165 	u32 xen_version;
1166 	bool long_mode;
1167 	bool runstate_update_flag;
1168 	u8 upcall_vector;
1169 	struct gfn_to_pfn_cache shinfo_cache;
1170 	struct idr evtchn_ports;
1171 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1172 };
1173 #endif
1174 
1175 enum kvm_irqchip_mode {
1176 	KVM_IRQCHIP_NONE,
1177 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1178 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1179 };
1180 
1181 struct kvm_x86_msr_filter {
1182 	u8 count;
1183 	bool default_allow:1;
1184 	struct msr_bitmap_range ranges[16];
1185 };
1186 
1187 struct kvm_x86_pmu_event_filter {
1188 	__u32 action;
1189 	__u32 nevents;
1190 	__u32 fixed_counter_bitmap;
1191 	__u32 flags;
1192 	__u32 nr_includes;
1193 	__u32 nr_excludes;
1194 	__u64 *includes;
1195 	__u64 *excludes;
1196 	__u64 events[];
1197 };
1198 
1199 enum kvm_apicv_inhibit {
1200 
1201 	/********************************************************************/
1202 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1203 	/********************************************************************/
1204 
1205 	/*
1206 	 * APIC acceleration is disabled by a module parameter
1207 	 * and/or not supported in hardware.
1208 	 */
1209 	APICV_INHIBIT_REASON_DISABLE,
1210 
1211 	/*
1212 	 * APIC acceleration is inhibited because AutoEOI feature is
1213 	 * being used by a HyperV guest.
1214 	 */
1215 	APICV_INHIBIT_REASON_HYPERV,
1216 
1217 	/*
1218 	 * APIC acceleration is inhibited because the userspace didn't yet
1219 	 * enable the kernel/split irqchip.
1220 	 */
1221 	APICV_INHIBIT_REASON_ABSENT,
1222 
1223 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1224 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1225 	 * was enabled, to avoid AVIC/APICv bypassing it.
1226 	 */
1227 	APICV_INHIBIT_REASON_BLOCKIRQ,
1228 
1229 	/*
1230 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1231 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1232 	 */
1233 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1234 
1235 	/*
1236 	 * For simplicity, the APIC acceleration is inhibited
1237 	 * first time either APIC ID or APIC base are changed by the guest
1238 	 * from their reset values.
1239 	 */
1240 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1241 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1242 
1243 	/******************************************************/
1244 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1245 	/******************************************************/
1246 
1247 	/*
1248 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1249 	 *
1250 	 * This is needed because unlike APICv, the peers of this vCPU
1251 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1252 	 * a vCPU runs nested.
1253 	 */
1254 	APICV_INHIBIT_REASON_NESTED,
1255 
1256 	/*
1257 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1258 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1259 	 * is inhibited while KVM waits for IRQ window.
1260 	 */
1261 	APICV_INHIBIT_REASON_IRQWIN,
1262 
1263 	/*
1264 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1265 	 * which AVIC doesn't support for edge triggered interrupts.
1266 	 */
1267 	APICV_INHIBIT_REASON_PIT_REINJ,
1268 
1269 	/*
1270 	 * AVIC is disabled because SEV doesn't support it.
1271 	 */
1272 	APICV_INHIBIT_REASON_SEV,
1273 
1274 	/*
1275 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1276 	 * mapping between logical ID and vCPU.
1277 	 */
1278 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1279 };
1280 
1281 struct kvm_arch {
1282 	unsigned long vm_type;
1283 	unsigned long n_used_mmu_pages;
1284 	unsigned long n_requested_mmu_pages;
1285 	unsigned long n_max_mmu_pages;
1286 	unsigned int indirect_shadow_pages;
1287 	u8 mmu_valid_gen;
1288 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1289 	struct list_head active_mmu_pages;
1290 	struct list_head zapped_obsolete_pages;
1291 	/*
1292 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1293 	 * replaced by an NX huge page.  A shadow page is on this list if its
1294 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1295 	 * and there are no other conditions that prevent a huge page, e.g.
1296 	 * the backing host page is huge, dirtly logging is not enabled for its
1297 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1298 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1299 	 * guest attempts to execute from the region then KVM obviously can't
1300 	 * create an NX huge page (without hanging the guest).
1301 	 */
1302 	struct list_head possible_nx_huge_pages;
1303 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1304 	struct kvm_page_track_notifier_head track_notifier_head;
1305 #endif
1306 	/*
1307 	 * Protects marking pages unsync during page faults, as TDP MMU page
1308 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1309 	 * pages lock is always taken when marking pages unsync regardless of
1310 	 * whether mmu_lock is held for read or write.
1311 	 */
1312 	spinlock_t mmu_unsync_pages_lock;
1313 
1314 	struct iommu_domain *iommu_domain;
1315 	bool iommu_noncoherent;
1316 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1317 	atomic_t noncoherent_dma_count;
1318 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1319 	atomic_t assigned_device_count;
1320 	struct kvm_pic *vpic;
1321 	struct kvm_ioapic *vioapic;
1322 	struct kvm_pit *vpit;
1323 	atomic_t vapics_in_nmi_mode;
1324 	struct mutex apic_map_lock;
1325 	struct kvm_apic_map __rcu *apic_map;
1326 	atomic_t apic_map_dirty;
1327 
1328 	bool apic_access_memslot_enabled;
1329 	bool apic_access_memslot_inhibited;
1330 
1331 	/* Protects apicv_inhibit_reasons */
1332 	struct rw_semaphore apicv_update_lock;
1333 	unsigned long apicv_inhibit_reasons;
1334 
1335 	gpa_t wall_clock;
1336 
1337 	bool mwait_in_guest;
1338 	bool hlt_in_guest;
1339 	bool pause_in_guest;
1340 	bool cstate_in_guest;
1341 
1342 	unsigned long irq_sources_bitmap;
1343 	s64 kvmclock_offset;
1344 
1345 	/*
1346 	 * This also protects nr_vcpus_matched_tsc which is read from a
1347 	 * preemption-disabled region, so it must be a raw spinlock.
1348 	 */
1349 	raw_spinlock_t tsc_write_lock;
1350 	u64 last_tsc_nsec;
1351 	u64 last_tsc_write;
1352 	u32 last_tsc_khz;
1353 	u64 last_tsc_offset;
1354 	u64 cur_tsc_nsec;
1355 	u64 cur_tsc_write;
1356 	u64 cur_tsc_offset;
1357 	u64 cur_tsc_generation;
1358 	int nr_vcpus_matched_tsc;
1359 
1360 	u32 default_tsc_khz;
1361 	bool user_set_tsc;
1362 
1363 	seqcount_raw_spinlock_t pvclock_sc;
1364 	bool use_master_clock;
1365 	u64 master_kernel_ns;
1366 	u64 master_cycle_now;
1367 	struct delayed_work kvmclock_update_work;
1368 	struct delayed_work kvmclock_sync_work;
1369 
1370 	struct kvm_xen_hvm_config xen_hvm_config;
1371 
1372 	/* reads protected by irq_srcu, writes by irq_lock */
1373 	struct hlist_head mask_notifier_list;
1374 
1375 #ifdef CONFIG_KVM_HYPERV
1376 	struct kvm_hv hyperv;
1377 #endif
1378 
1379 #ifdef CONFIG_KVM_XEN
1380 	struct kvm_xen xen;
1381 #endif
1382 
1383 	bool backwards_tsc_observed;
1384 	bool boot_vcpu_runs_old_kvmclock;
1385 	u32 bsp_vcpu_id;
1386 
1387 	u64 disabled_quirks;
1388 
1389 	enum kvm_irqchip_mode irqchip_mode;
1390 	u8 nr_reserved_ioapic_pins;
1391 
1392 	bool disabled_lapic_found;
1393 
1394 	bool x2apic_format;
1395 	bool x2apic_broadcast_quirk_disabled;
1396 
1397 	bool guest_can_read_msr_platform_info;
1398 	bool exception_payload_enabled;
1399 
1400 	bool triple_fault_event;
1401 
1402 	bool bus_lock_detection_enabled;
1403 	bool enable_pmu;
1404 
1405 	u32 notify_window;
1406 	u32 notify_vmexit_flags;
1407 	/*
1408 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1409 	 * emulator fails to emulate an instruction, allow userspace
1410 	 * the opportunity to look at it.
1411 	 */
1412 	bool exit_on_emulation_error;
1413 
1414 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1415 	u32 user_space_msr_mask;
1416 	struct kvm_x86_msr_filter __rcu *msr_filter;
1417 
1418 	u32 hypercall_exit_enabled;
1419 
1420 	/* Guest can access the SGX PROVISIONKEY. */
1421 	bool sgx_provisioning_allowed;
1422 
1423 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1424 	struct task_struct *nx_huge_page_recovery_thread;
1425 
1426 #ifdef CONFIG_X86_64
1427 	/* The number of TDP MMU pages across all roots. */
1428 	atomic64_t tdp_mmu_pages;
1429 
1430 	/*
1431 	 * List of struct kvm_mmu_pages being used as roots.
1432 	 * All struct kvm_mmu_pages in the list should have
1433 	 * tdp_mmu_page set.
1434 	 *
1435 	 * For reads, this list is protected by:
1436 	 *	the MMU lock in read mode + RCU or
1437 	 *	the MMU lock in write mode
1438 	 *
1439 	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1440 	 * below for the details.
1441 	 *
1442 	 * Roots will remain in the list until their tdp_mmu_root_count
1443 	 * drops to zero, at which point the thread that decremented the
1444 	 * count to zero should removed the root from the list and clean
1445 	 * it up, freeing the root after an RCU grace period.
1446 	 */
1447 	struct list_head tdp_mmu_roots;
1448 
1449 	/*
1450 	 * Protects accesses to the following fields when the MMU lock
1451 	 * is held in read mode:
1452 	 *  - tdp_mmu_roots (above)
1453 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1454 	 *  - possible_nx_huge_pages;
1455 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1456 	 *    by the TDP MMU
1457 	 * Because the lock is only taken within the MMU lock, strictly
1458 	 * speaking it is redundant to acquire this lock when the thread
1459 	 * holds the MMU lock in write mode.  However it often simplifies
1460 	 * the code to do so.
1461 	 */
1462 	spinlock_t tdp_mmu_pages_lock;
1463 #endif /* CONFIG_X86_64 */
1464 
1465 	/*
1466 	 * If set, at least one shadow root has been allocated. This flag
1467 	 * is used as one input when determining whether certain memslot
1468 	 * related allocations are necessary.
1469 	 */
1470 	bool shadow_root_allocated;
1471 
1472 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1473 	/*
1474 	 * If set, the VM has (or had) an external write tracking user, and
1475 	 * thus all write tracking metadata has been allocated, even if KVM
1476 	 * itself isn't using write tracking.
1477 	 */
1478 	bool external_write_tracking_enabled;
1479 #endif
1480 
1481 #if IS_ENABLED(CONFIG_HYPERV)
1482 	hpa_t	hv_root_tdp;
1483 	spinlock_t hv_root_tdp_lock;
1484 	struct hv_partition_assist_pg *hv_pa_pg;
1485 #endif
1486 	/*
1487 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1488 	 * that increase along with the maximum vCPU ID, in which case, using
1489 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1490 	 */
1491 	u32 max_vcpu_ids;
1492 
1493 	bool disable_nx_huge_pages;
1494 
1495 	/*
1496 	 * Memory caches used to allocate shadow pages when performing eager
1497 	 * page splitting. No need for a shadowed_info_cache since eager page
1498 	 * splitting only allocates direct shadow pages.
1499 	 *
1500 	 * Protected by kvm->slots_lock.
1501 	 */
1502 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1503 	struct kvm_mmu_memory_cache split_page_header_cache;
1504 
1505 	/*
1506 	 * Memory cache used to allocate pte_list_desc structs while splitting
1507 	 * huge pages. In the worst case, to split one huge page, 512
1508 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1509 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1510 	 * page table.
1511 	 *
1512 	 * Protected by kvm->slots_lock.
1513 	 */
1514 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1515 	struct kvm_mmu_memory_cache split_desc_cache;
1516 };
1517 
1518 struct kvm_vm_stat {
1519 	struct kvm_vm_stat_generic generic;
1520 	u64 mmu_shadow_zapped;
1521 	u64 mmu_pte_write;
1522 	u64 mmu_pde_zapped;
1523 	u64 mmu_flooded;
1524 	u64 mmu_recycled;
1525 	u64 mmu_cache_miss;
1526 	u64 mmu_unsync;
1527 	union {
1528 		struct {
1529 			atomic64_t pages_4k;
1530 			atomic64_t pages_2m;
1531 			atomic64_t pages_1g;
1532 		};
1533 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1534 	};
1535 	u64 nx_lpage_splits;
1536 	u64 max_mmu_page_hash_collisions;
1537 	u64 max_mmu_rmap_size;
1538 };
1539 
1540 struct kvm_vcpu_stat {
1541 	struct kvm_vcpu_stat_generic generic;
1542 	u64 pf_taken;
1543 	u64 pf_fixed;
1544 	u64 pf_emulate;
1545 	u64 pf_spurious;
1546 	u64 pf_fast;
1547 	u64 pf_mmio_spte_created;
1548 	u64 pf_guest;
1549 	u64 tlb_flush;
1550 	u64 invlpg;
1551 
1552 	u64 exits;
1553 	u64 io_exits;
1554 	u64 mmio_exits;
1555 	u64 signal_exits;
1556 	u64 irq_window_exits;
1557 	u64 nmi_window_exits;
1558 	u64 l1d_flush;
1559 	u64 halt_exits;
1560 	u64 request_irq_exits;
1561 	u64 irq_exits;
1562 	u64 host_state_reload;
1563 	u64 fpu_reload;
1564 	u64 insn_emulation;
1565 	u64 insn_emulation_fail;
1566 	u64 hypercalls;
1567 	u64 irq_injections;
1568 	u64 nmi_injections;
1569 	u64 req_event;
1570 	u64 nested_run;
1571 	u64 directed_yield_attempted;
1572 	u64 directed_yield_successful;
1573 	u64 preemption_reported;
1574 	u64 preemption_other;
1575 	u64 guest_mode;
1576 	u64 notify_window_exits;
1577 };
1578 
1579 struct x86_instruction_info;
1580 
1581 struct msr_data {
1582 	bool host_initiated;
1583 	u32 index;
1584 	u64 data;
1585 };
1586 
1587 struct kvm_lapic_irq {
1588 	u32 vector;
1589 	u16 delivery_mode;
1590 	u16 dest_mode;
1591 	bool level;
1592 	u16 trig_mode;
1593 	u32 shorthand;
1594 	u32 dest_id;
1595 	bool msi_redir_hint;
1596 };
1597 
1598 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1599 {
1600 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1601 }
1602 
1603 struct kvm_x86_ops {
1604 	const char *name;
1605 
1606 	int (*check_processor_compatibility)(void);
1607 
1608 	int (*hardware_enable)(void);
1609 	void (*hardware_disable)(void);
1610 	void (*hardware_unsetup)(void);
1611 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1612 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1613 
1614 	unsigned int vm_size;
1615 	int (*vm_init)(struct kvm *kvm);
1616 	void (*vm_destroy)(struct kvm *kvm);
1617 
1618 	/* Create, but do not attach this VCPU */
1619 	int (*vcpu_precreate)(struct kvm *kvm);
1620 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1621 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1622 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1623 
1624 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1625 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1626 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1627 
1628 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1629 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1630 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1631 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1632 	void (*get_segment)(struct kvm_vcpu *vcpu,
1633 			    struct kvm_segment *var, int seg);
1634 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1635 	void (*set_segment)(struct kvm_vcpu *vcpu,
1636 			    struct kvm_segment *var, int seg);
1637 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1638 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1639 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1640 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1641 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1642 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1643 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1644 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1645 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1646 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1647 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1648 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1649 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1650 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1651 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1652 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1653 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1654 
1655 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1656 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1657 #if IS_ENABLED(CONFIG_HYPERV)
1658 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1659 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1660 					gfn_t nr_pages);
1661 #endif
1662 
1663 	/*
1664 	 * Flush any TLB entries associated with the given GVA.
1665 	 * Does not need to flush GPA->HPA mappings.
1666 	 * Can potentially get non-canonical addresses through INVLPGs, which
1667 	 * the implementation may choose to ignore if appropriate.
1668 	 */
1669 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1670 
1671 	/*
1672 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1673 	 * does not need to flush GPA->HPA mappings.
1674 	 */
1675 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1676 
1677 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1678 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1679 						  bool force_immediate_exit);
1680 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1681 		enum exit_fastpath_completion exit_fastpath);
1682 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1683 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1684 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1685 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1686 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1687 				unsigned char *hypercall_addr);
1688 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1689 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1690 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1691 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1692 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1693 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1694 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1695 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1696 	/* Whether or not a virtual NMI is pending in hardware. */
1697 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1698 	/*
1699 	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1700 	 * to allow using static_call_ret0 as the fallback.
1701 	 */
1702 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1703 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1704 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1705 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1706 	bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1707 	const unsigned long required_apicv_inhibits;
1708 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1709 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1710 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1711 	void (*hwapic_isr_update)(int isr);
1712 	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1713 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1714 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1715 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1716 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1717 				  int trig_mode, int vector);
1718 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1719 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1720 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1721 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1722 
1723 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1724 			     int root_level);
1725 
1726 	bool (*has_wbinvd_exit)(void);
1727 
1728 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1729 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1730 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1731 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1732 
1733 	/*
1734 	 * Retrieve somewhat arbitrary exit information.  Intended to
1735 	 * be used only from within tracepoints or error paths.
1736 	 */
1737 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1738 			      u64 *info1, u64 *info2,
1739 			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1740 
1741 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1742 			       struct x86_instruction_info *info,
1743 			       enum x86_intercept_stage stage,
1744 			       struct x86_exception *exception);
1745 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1746 
1747 	void (*sched_in)(struct kvm_vcpu *vcpu, int cpu);
1748 
1749 	/*
1750 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1751 	 * value indicates CPU dirty logging is unsupported or disabled.
1752 	 */
1753 	int cpu_dirty_log_size;
1754 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1755 
1756 	const struct kvm_x86_nested_ops *nested_ops;
1757 
1758 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1759 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1760 
1761 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1762 			      uint32_t guest_irq, bool set);
1763 	void (*pi_start_assignment)(struct kvm *kvm);
1764 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1765 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1766 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1767 
1768 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1769 			    bool *expired);
1770 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1771 
1772 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1773 
1774 #ifdef CONFIG_KVM_SMM
1775 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1776 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1777 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1778 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1779 #endif
1780 
1781 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1782 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1783 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1784 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1785 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1786 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1787 
1788 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1789 
1790 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1791 					 void *insn, int insn_len);
1792 
1793 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1794 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1795 
1796 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1797 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1798 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1799 
1800 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1801 
1802 	/*
1803 	 * Returns vCPU specific APICv inhibit reasons
1804 	 */
1805 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1806 
1807 	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1808 	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1809 };
1810 
1811 struct kvm_x86_nested_ops {
1812 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1813 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1814 				    u32 error_code);
1815 	int (*check_events)(struct kvm_vcpu *vcpu);
1816 	bool (*has_events)(struct kvm_vcpu *vcpu);
1817 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1818 	int (*get_state)(struct kvm_vcpu *vcpu,
1819 			 struct kvm_nested_state __user *user_kvm_nested_state,
1820 			 unsigned user_data_size);
1821 	int (*set_state)(struct kvm_vcpu *vcpu,
1822 			 struct kvm_nested_state __user *user_kvm_nested_state,
1823 			 struct kvm_nested_state *kvm_state);
1824 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1825 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1826 
1827 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1828 			    uint16_t *vmcs_version);
1829 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1830 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1831 };
1832 
1833 struct kvm_x86_init_ops {
1834 	int (*hardware_setup)(void);
1835 	unsigned int (*handle_intel_pt_intr)(void);
1836 
1837 	struct kvm_x86_ops *runtime_ops;
1838 	struct kvm_pmu_ops *pmu_ops;
1839 };
1840 
1841 struct kvm_arch_async_pf {
1842 	u32 token;
1843 	gfn_t gfn;
1844 	unsigned long cr3;
1845 	bool direct_map;
1846 };
1847 
1848 extern u32 __read_mostly kvm_nr_uret_msrs;
1849 extern u64 __read_mostly host_efer;
1850 extern bool __read_mostly allow_smaller_maxphyaddr;
1851 extern bool __read_mostly enable_apicv;
1852 extern struct kvm_x86_ops kvm_x86_ops;
1853 
1854 #define KVM_X86_OP(func) \
1855 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1856 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1857 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1858 #include <asm/kvm-x86-ops.h>
1859 
1860 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1861 void kvm_x86_vendor_exit(void);
1862 
1863 #define __KVM_HAVE_ARCH_VM_ALLOC
1864 static inline struct kvm *kvm_arch_alloc_vm(void)
1865 {
1866 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1867 }
1868 
1869 #define __KVM_HAVE_ARCH_VM_FREE
1870 void kvm_arch_free_vm(struct kvm *kvm);
1871 
1872 #if IS_ENABLED(CONFIG_HYPERV)
1873 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1874 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1875 {
1876 	if (kvm_x86_ops.flush_remote_tlbs &&
1877 	    !static_call(kvm_x86_flush_remote_tlbs)(kvm))
1878 		return 0;
1879 	else
1880 		return -ENOTSUPP;
1881 }
1882 
1883 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1884 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1885 						   u64 nr_pages)
1886 {
1887 	if (!kvm_x86_ops.flush_remote_tlbs_range)
1888 		return -EOPNOTSUPP;
1889 
1890 	return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1891 }
1892 #endif /* CONFIG_HYPERV */
1893 
1894 enum kvm_intr_type {
1895 	/* Values are arbitrary, but must be non-zero. */
1896 	KVM_HANDLING_IRQ = 1,
1897 	KVM_HANDLING_NMI,
1898 };
1899 
1900 /* Enable perf NMI and timer modes to work, and minimise false positives. */
1901 #define kvm_arch_pmi_in_guest(vcpu) \
1902 	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1903 	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
1904 
1905 void __init kvm_mmu_x86_module_init(void);
1906 int kvm_mmu_vendor_module_init(void);
1907 void kvm_mmu_vendor_module_exit(void);
1908 
1909 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1910 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1911 void kvm_mmu_init_vm(struct kvm *kvm);
1912 void kvm_mmu_uninit_vm(struct kvm *kvm);
1913 
1914 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1915 					    struct kvm_memory_slot *slot);
1916 
1917 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1918 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1919 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1920 				      const struct kvm_memory_slot *memslot,
1921 				      int start_level);
1922 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1923 				       const struct kvm_memory_slot *memslot,
1924 				       int target_level);
1925 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1926 				  const struct kvm_memory_slot *memslot,
1927 				  u64 start, u64 end,
1928 				  int target_level);
1929 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1930 				   const struct kvm_memory_slot *memslot);
1931 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1932 				   const struct kvm_memory_slot *memslot);
1933 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1934 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1935 
1936 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1937 
1938 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1939 			  const void *val, int bytes);
1940 
1941 struct kvm_irq_mask_notifier {
1942 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1943 	int irq;
1944 	struct hlist_node link;
1945 };
1946 
1947 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1948 				    struct kvm_irq_mask_notifier *kimn);
1949 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1950 				      struct kvm_irq_mask_notifier *kimn);
1951 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1952 			     bool mask);
1953 
1954 extern bool tdp_enabled;
1955 
1956 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1957 
1958 /*
1959  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1960  *			userspace I/O) to indicate that the emulation context
1961  *			should be reused as is, i.e. skip initialization of
1962  *			emulation context, instruction fetch and decode.
1963  *
1964  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1965  *		      Indicates that only select instructions (tagged with
1966  *		      EmulateOnUD) should be emulated (to minimize the emulator
1967  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1968  *
1969  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1970  *		   decode the instruction length.  For use *only* by
1971  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
1972  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
1973  *
1974  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1975  *			     retry native execution under certain conditions,
1976  *			     Can only be set in conjunction with EMULTYPE_PF.
1977  *
1978  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1979  *			     triggered by KVM's magic "force emulation" prefix,
1980  *			     which is opt in via module param (off by default).
1981  *			     Bypasses EmulateOnUD restriction despite emulating
1982  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1983  *			     Used to test the full emulator from userspace.
1984  *
1985  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1986  *			backdoor emulation, which is opt in via module param.
1987  *			VMware backdoor emulation handles select instructions
1988  *			and reinjects the #GP for all other cases.
1989  *
1990  * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1991  *		 case the CR2/GPA value pass on the stack is valid.
1992  *
1993  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1994  *				 state and inject single-step #DBs after skipping
1995  *				 an instruction (after completing userspace I/O).
1996  *
1997  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
1998  *			     is attempting to write a gfn that contains one or
1999  *			     more of the PTEs used to translate the write itself,
2000  *			     and the owning page table is being shadowed by KVM.
2001  *			     If emulation of the faulting instruction fails and
2002  *			     this flag is set, KVM will exit to userspace instead
2003  *			     of retrying emulation as KVM cannot make forward
2004  *			     progress.
2005  *
2006  *			     If emulation fails for a write to guest page tables,
2007  *			     KVM unprotects (zaps) the shadow page for the target
2008  *			     gfn and resumes the guest to retry the non-emulatable
2009  *			     instruction (on hardware).  Unprotecting the gfn
2010  *			     doesn't allow forward progress for a self-changing
2011  *			     access because doing so also zaps the translation for
2012  *			     the gfn, i.e. retrying the instruction will hit a
2013  *			     !PRESENT fault, which results in a new shadow page
2014  *			     and sends KVM back to square one.
2015  */
2016 #define EMULTYPE_NO_DECODE	    (1 << 0)
2017 #define EMULTYPE_TRAP_UD	    (1 << 1)
2018 #define EMULTYPE_SKIP		    (1 << 2)
2019 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2020 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2021 #define EMULTYPE_VMWARE_GP	    (1 << 5)
2022 #define EMULTYPE_PF		    (1 << 6)
2023 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2024 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2025 
2026 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2027 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2028 					void *insn, int insn_len);
2029 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2030 					  u64 *data, u8 ndata);
2031 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2032 
2033 void kvm_enable_efer_bits(u64);
2034 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2035 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2036 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2037 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2038 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2039 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2040 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2041 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2042 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2043 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2044 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2045 
2046 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2047 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2048 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2049 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2050 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2051 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2052 
2053 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2054 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2055 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2056 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2057 
2058 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2059 		    int reason, bool has_error_code, u32 error_code);
2060 
2061 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2062 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2063 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2064 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2065 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2066 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2067 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2068 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2069 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2070 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2071 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2072 
2073 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2074 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2075 
2076 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2077 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2078 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2079 
2080 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2081 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2082 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2083 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2084 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2085 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2086 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2087 				    struct x86_exception *fault);
2088 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2089 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2090 
2091 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2092 				       int irq_source_id, int level)
2093 {
2094 	/* Logical OR for level trig interrupt */
2095 	if (level)
2096 		__set_bit(irq_source_id, irq_state);
2097 	else
2098 		__clear_bit(irq_source_id, irq_state);
2099 
2100 	return !!(*irq_state);
2101 }
2102 
2103 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2104 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2105 
2106 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2107 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2108 
2109 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2110 
2111 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
2112 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2113 			ulong roots_to_free);
2114 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2115 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2116 			      struct x86_exception *exception);
2117 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2118 			       struct x86_exception *exception);
2119 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2120 				struct x86_exception *exception);
2121 
2122 bool kvm_apicv_activated(struct kvm *kvm);
2123 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2124 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2125 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2126 				      enum kvm_apicv_inhibit reason, bool set);
2127 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2128 				    enum kvm_apicv_inhibit reason, bool set);
2129 
2130 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2131 					 enum kvm_apicv_inhibit reason)
2132 {
2133 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2134 }
2135 
2136 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2137 					   enum kvm_apicv_inhibit reason)
2138 {
2139 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2140 }
2141 
2142 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2143 
2144 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2145 		       void *insn, int insn_len);
2146 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2147 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2148 			     u64 addr, unsigned long roots);
2149 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2150 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2151 
2152 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2153 		       int tdp_max_root_level, int tdp_huge_page_level);
2154 
2155 #ifdef CONFIG_KVM_PRIVATE_MEM
2156 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.vm_type != KVM_X86_DEFAULT_VM)
2157 #else
2158 #define kvm_arch_has_private_mem(kvm) false
2159 #endif
2160 
2161 static inline u16 kvm_read_ldt(void)
2162 {
2163 	u16 ldt;
2164 	asm("sldt %0" : "=g"(ldt));
2165 	return ldt;
2166 }
2167 
2168 static inline void kvm_load_ldt(u16 sel)
2169 {
2170 	asm("lldt %0" : : "rm"(sel));
2171 }
2172 
2173 #ifdef CONFIG_X86_64
2174 static inline unsigned long read_msr(unsigned long msr)
2175 {
2176 	u64 value;
2177 
2178 	rdmsrl(msr, value);
2179 	return value;
2180 }
2181 #endif
2182 
2183 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2184 {
2185 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2186 }
2187 
2188 #define TSS_IOPB_BASE_OFFSET 0x66
2189 #define TSS_BASE_SIZE 0x68
2190 #define TSS_IOPB_SIZE (65536 / 8)
2191 #define TSS_REDIRECTION_SIZE (256 / 8)
2192 #define RMODE_TSS_SIZE							\
2193 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2194 
2195 enum {
2196 	TASK_SWITCH_CALL = 0,
2197 	TASK_SWITCH_IRET = 1,
2198 	TASK_SWITCH_JMP = 2,
2199 	TASK_SWITCH_GATE = 3,
2200 };
2201 
2202 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2203 
2204 #ifdef CONFIG_KVM_SMM
2205 #define HF_SMM_MASK		(1 << 1)
2206 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2207 
2208 # define KVM_MAX_NR_ADDRESS_SPACES	2
2209 /* SMM is currently unsupported for guests with private memory. */
2210 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2211 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2212 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2213 #else
2214 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2215 #endif
2216 
2217 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2218 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2219 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2220 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2221 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2222 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2223 
2224 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2225 		    unsigned long ipi_bitmap_high, u32 min,
2226 		    unsigned long icr, int op_64_bit);
2227 
2228 int kvm_add_user_return_msr(u32 msr);
2229 int kvm_find_user_return_msr(u32 msr);
2230 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2231 
2232 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2233 {
2234 	return kvm_find_user_return_msr(msr) >= 0;
2235 }
2236 
2237 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2238 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2239 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2240 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2241 
2242 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2243 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2244 
2245 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2246 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2247 				       unsigned long *vcpu_bitmap);
2248 
2249 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2250 				     struct kvm_async_pf *work);
2251 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2252 				 struct kvm_async_pf *work);
2253 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2254 			       struct kvm_async_pf *work);
2255 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2256 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2257 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2258 
2259 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2260 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2261 
2262 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2263 				     u32 size);
2264 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2265 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2266 
2267 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2268 			     struct kvm_vcpu **dest_vcpu);
2269 
2270 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2271 		     struct kvm_lapic_irq *irq);
2272 
2273 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2274 {
2275 	/* We can only post Fixed and LowPrio IRQs */
2276 	return (irq->delivery_mode == APIC_DM_FIXED ||
2277 		irq->delivery_mode == APIC_DM_LOWEST);
2278 }
2279 
2280 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2281 {
2282 	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2283 }
2284 
2285 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2286 {
2287 	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2288 }
2289 
2290 static inline int kvm_cpu_get_apicid(int mps_cpu)
2291 {
2292 #ifdef CONFIG_X86_LOCAL_APIC
2293 	return default_cpu_present_to_apicid(mps_cpu);
2294 #else
2295 	WARN_ON_ONCE(1);
2296 	return BAD_APICID;
2297 #endif
2298 }
2299 
2300 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2301 
2302 #define KVM_CLOCK_VALID_FLAGS						\
2303 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2304 
2305 #define KVM_X86_VALID_QUIRKS			\
2306 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2307 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2308 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2309 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2310 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2311 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2312 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2313 
2314 /*
2315  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2316  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2317  * remaining 31 lower bits must be 0 to preserve ABI.
2318  */
2319 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2320 
2321 #endif /* _ASM_X86_KVM_HOST_H */
2322