1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/kfifo.h> 28 #include <linux/sched/vhost_task.h> 29 #include <linux/call_once.h> 30 #include <linux/atomic.h> 31 32 #include <asm/apic.h> 33 #include <asm/pvclock-abi.h> 34 #include <asm/debugreg.h> 35 #include <asm/desc.h> 36 #include <asm/mtrr.h> 37 #include <asm/msr-index.h> 38 #include <asm/msr.h> 39 #include <asm/asm.h> 40 #include <asm/irq_remapping.h> 41 #include <asm/kvm_page_track.h> 42 #include <asm/kvm_vcpu_regs.h> 43 #include <asm/reboot.h> 44 #include <hyperv/hvhdk.h> 45 46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 47 48 /* 49 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 50 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 51 */ 52 #ifdef CONFIG_KVM_MAX_NR_VCPUS 53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 54 #else 55 #define KVM_MAX_VCPUS 1024 56 #endif 57 58 /* 59 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 60 * might be larger than the actual number of VCPUs because the 61 * APIC ID encodes CPU topology information. 62 * 63 * In the worst case, we'll need less than one extra bit for the 64 * Core ID, and less than one extra bit for the Package (Die) ID, 65 * so ratio of 4 should be enough. 66 */ 67 #define KVM_VCPU_ID_RATIO 4 68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 69 70 /* memory slots that are not exposed to userspace */ 71 #define KVM_INTERNAL_MEM_SLOTS 3 72 73 #define KVM_HALT_POLL_NS_DEFAULT 200000 74 75 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 76 77 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 78 KVM_DIRTY_LOG_INITIALLY_SET) 79 80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 81 KVM_BUS_LOCK_DETECTION_EXIT) 82 83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 84 KVM_X86_NOTIFY_VMEXIT_USER) 85 86 /* x86-specific vcpu->requests bit members */ 87 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 88 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 89 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 90 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 91 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 92 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 93 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 94 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 95 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 96 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 97 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 98 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 99 #ifdef CONFIG_KVM_SMM 100 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 101 #endif 102 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 103 #define KVM_REQ_MCLOCK_INPROGRESS \ 104 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 105 #define KVM_REQ_SCAN_IOAPIC \ 106 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 108 #define KVM_REQ_APIC_PAGE_RELOAD \ 109 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 110 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 111 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 112 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 113 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 114 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 115 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 116 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 117 #define KVM_REQ_APICV_UPDATE \ 118 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 119 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 120 #define KVM_REQ_TLB_FLUSH_GUEST \ 121 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 123 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 125 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 127 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 128 #define KVM_REQ_HV_TLB_FLUSH \ 129 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \ 131 KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT) 132 133 #define CR0_RESERVED_BITS \ 134 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 135 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 136 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 137 138 #define CR4_RESERVED_BITS \ 139 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 140 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 141 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 142 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 143 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 144 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 145 | X86_CR4_LAM_SUP)) 146 147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 148 149 150 151 #define INVALID_PAGE (~(hpa_t)0) 152 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 153 154 /* KVM Hugepage definitions for x86 */ 155 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 156 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 157 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 158 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 159 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 160 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 161 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 162 163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 165 #define KVM_MMU_HASH_SHIFT 12 166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 167 #define KVM_MIN_FREE_MMU_PAGES 5 168 #define KVM_REFILL_PAGES 25 169 #define KVM_MAX_CPUID_ENTRIES 256 170 #define KVM_NR_VAR_MTRR 8 171 172 #define ASYNC_PF_PER_VCPU 64 173 174 enum kvm_reg { 175 VCPU_REGS_RAX = __VCPU_REGS_RAX, 176 VCPU_REGS_RCX = __VCPU_REGS_RCX, 177 VCPU_REGS_RDX = __VCPU_REGS_RDX, 178 VCPU_REGS_RBX = __VCPU_REGS_RBX, 179 VCPU_REGS_RSP = __VCPU_REGS_RSP, 180 VCPU_REGS_RBP = __VCPU_REGS_RBP, 181 VCPU_REGS_RSI = __VCPU_REGS_RSI, 182 VCPU_REGS_RDI = __VCPU_REGS_RDI, 183 #ifdef CONFIG_X86_64 184 VCPU_REGS_R8 = __VCPU_REGS_R8, 185 VCPU_REGS_R9 = __VCPU_REGS_R9, 186 VCPU_REGS_R10 = __VCPU_REGS_R10, 187 VCPU_REGS_R11 = __VCPU_REGS_R11, 188 VCPU_REGS_R12 = __VCPU_REGS_R12, 189 VCPU_REGS_R13 = __VCPU_REGS_R13, 190 VCPU_REGS_R14 = __VCPU_REGS_R14, 191 VCPU_REGS_R15 = __VCPU_REGS_R15, 192 #endif 193 VCPU_REGS_RIP, 194 NR_VCPU_REGS, 195 196 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 197 VCPU_EXREG_CR0, 198 VCPU_EXREG_CR3, 199 VCPU_EXREG_CR4, 200 VCPU_EXREG_RFLAGS, 201 VCPU_EXREG_SEGMENTS, 202 VCPU_EXREG_EXIT_INFO_1, 203 VCPU_EXREG_EXIT_INFO_2, 204 }; 205 206 enum { 207 VCPU_SREG_ES, 208 VCPU_SREG_CS, 209 VCPU_SREG_SS, 210 VCPU_SREG_DS, 211 VCPU_SREG_FS, 212 VCPU_SREG_GS, 213 VCPU_SREG_TR, 214 VCPU_SREG_LDTR, 215 }; 216 217 enum exit_fastpath_completion { 218 EXIT_FASTPATH_NONE, 219 EXIT_FASTPATH_REENTER_GUEST, 220 EXIT_FASTPATH_EXIT_HANDLED, 221 EXIT_FASTPATH_EXIT_USERSPACE, 222 }; 223 typedef enum exit_fastpath_completion fastpath_t; 224 225 struct x86_emulate_ctxt; 226 struct x86_exception; 227 union kvm_smram; 228 enum x86_intercept; 229 enum x86_intercept_stage; 230 231 #define KVM_NR_DB_REGS 4 232 233 #define DR6_BUS_LOCK (1 << 11) 234 #define DR6_BD (1 << 13) 235 #define DR6_BS (1 << 14) 236 #define DR6_BT (1 << 15) 237 #define DR6_RTM (1 << 16) 238 /* 239 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 240 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 241 * they will never be 0 for now, but when they are defined 242 * in the future it will require no code change. 243 * 244 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 245 */ 246 #define DR6_ACTIVE_LOW 0xffff0ff0 247 #define DR6_VOLATILE 0x0001e80f 248 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 249 250 #define DR7_BP_EN_MASK 0x000000ff 251 #define DR7_GE (1 << 9) 252 #define DR7_GD (1 << 13) 253 #define DR7_VOLATILE 0xffff2bff 254 255 #define KVM_GUESTDBG_VALID_MASK \ 256 (KVM_GUESTDBG_ENABLE | \ 257 KVM_GUESTDBG_SINGLESTEP | \ 258 KVM_GUESTDBG_USE_HW_BP | \ 259 KVM_GUESTDBG_USE_SW_BP | \ 260 KVM_GUESTDBG_INJECT_BP | \ 261 KVM_GUESTDBG_INJECT_DB | \ 262 KVM_GUESTDBG_BLOCKIRQ) 263 264 #define PFERR_PRESENT_MASK BIT(0) 265 #define PFERR_WRITE_MASK BIT(1) 266 #define PFERR_USER_MASK BIT(2) 267 #define PFERR_RSVD_MASK BIT(3) 268 #define PFERR_FETCH_MASK BIT(4) 269 #define PFERR_PK_MASK BIT(5) 270 #define PFERR_SGX_MASK BIT(15) 271 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 272 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 273 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 274 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 275 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 276 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 277 278 /* 279 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 280 * when emulating instructions that triggers implicit access. 281 */ 282 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 283 /* 284 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 285 * when the guest was accessing private memory. 286 */ 287 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 288 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 289 290 /* apic attention bits */ 291 #define KVM_APIC_CHECK_VAPIC 0 292 /* 293 * The following bit is set with PV-EOI, unset on EOI. 294 * We detect PV-EOI changes by guest by comparing 295 * this bit with PV-EOI in guest memory. 296 * See the implementation in apic_update_pv_eoi. 297 */ 298 #define KVM_APIC_PV_EOI_PENDING 1 299 300 struct kvm_kernel_irq_routing_entry; 301 302 /* 303 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 304 * also includes TDP pages) to determine whether or not a page can be used in 305 * the given MMU context. This is a subset of the overall kvm_cpu_role to 306 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 307 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 308 * 309 * Upper-level shadow pages having gptes are tracked for write-protection via 310 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 311 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 312 * otherwise gfn_write_track will overflow and explosions will ensue. 313 * 314 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 315 * cannot be reused. The ability to reuse a SP is tracked by its role, which 316 * incorporates various mode bits and properties of the SP. Roughly speaking, 317 * the number of unique SPs that can theoretically be created is 2^n, where n 318 * is the number of bits that are used to compute the role. 319 * 320 * But, even though there are 20 bits in the mask below, not all combinations 321 * of modes and flags are possible: 322 * 323 * - invalid shadow pages are not accounted, mirror pages are not shadowed, 324 * so the bits are effectively 18. 325 * 326 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 327 * execonly and ad_disabled are only used for nested EPT which has 328 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 329 * 330 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 331 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 332 * paging has exactly one upper level, making level completely redundant 333 * when has_4_byte_gpte=1. 334 * 335 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 336 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 337 * 338 * Therefore, the maximum number of possible upper-level shadow pages for a 339 * single gfn is a bit less than 2^13. 340 */ 341 union kvm_mmu_page_role { 342 u32 word; 343 struct { 344 unsigned level:4; 345 unsigned has_4_byte_gpte:1; 346 unsigned quadrant:2; 347 unsigned direct:1; 348 unsigned access:3; 349 unsigned invalid:1; 350 unsigned efer_nx:1; 351 unsigned cr0_wp:1; 352 unsigned smep_andnot_wp:1; 353 unsigned smap_andnot_wp:1; 354 unsigned ad_disabled:1; 355 unsigned guest_mode:1; 356 unsigned passthrough:1; 357 unsigned is_mirror:1; 358 unsigned :4; 359 360 /* 361 * This is left at the top of the word so that 362 * kvm_memslots_for_spte_role can extract it with a 363 * simple shift. While there is room, give it a whole 364 * byte so it is also faster to load it from memory. 365 */ 366 unsigned smm:8; 367 }; 368 }; 369 370 /* 371 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 372 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 373 * including on nested transitions, if nothing in the full role changes then 374 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 375 * don't treat all-zero structure as valid data. 376 * 377 * The properties that are tracked in the extended role but not the page role 378 * are for things that either (a) do not affect the validity of the shadow page 379 * or (b) are indirectly reflected in the shadow page's role. For example, 380 * CR4.PKE only affects permission checks for software walks of the guest page 381 * tables (because KVM doesn't support Protection Keys with shadow paging), and 382 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 383 * 384 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 385 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 386 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 387 * SMAP aware regardless of CR0.WP. 388 */ 389 union kvm_mmu_extended_role { 390 u32 word; 391 struct { 392 unsigned int valid:1; 393 unsigned int execonly:1; 394 unsigned int cr4_pse:1; 395 unsigned int cr4_pke:1; 396 unsigned int cr4_smap:1; 397 unsigned int cr4_smep:1; 398 unsigned int cr4_la57:1; 399 unsigned int efer_lma:1; 400 }; 401 }; 402 403 union kvm_cpu_role { 404 u64 as_u64; 405 struct { 406 union kvm_mmu_page_role base; 407 union kvm_mmu_extended_role ext; 408 }; 409 }; 410 411 struct kvm_rmap_head { 412 atomic_long_t val; 413 }; 414 415 struct kvm_pio_request { 416 unsigned long count; 417 int in; 418 int port; 419 int size; 420 }; 421 422 #define PT64_ROOT_MAX_LEVEL 5 423 424 struct rsvd_bits_validate { 425 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 426 u64 bad_mt_xwr; 427 }; 428 429 struct kvm_mmu_root_info { 430 gpa_t pgd; 431 hpa_t hpa; 432 }; 433 434 #define KVM_MMU_ROOT_INFO_INVALID \ 435 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 436 437 #define KVM_MMU_NUM_PREV_ROOTS 3 438 439 #define KVM_MMU_ROOT_CURRENT BIT(0) 440 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 441 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 442 443 #define KVM_HAVE_MMU_RWLOCK 444 445 struct kvm_mmu_page; 446 struct kvm_page_fault; 447 448 /* 449 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 450 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 451 * current mmu mode. 452 */ 453 struct kvm_mmu { 454 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 455 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 456 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 457 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 458 struct x86_exception *fault); 459 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 460 gpa_t gva_or_gpa, u64 access, 461 struct x86_exception *exception); 462 int (*sync_spte)(struct kvm_vcpu *vcpu, 463 struct kvm_mmu_page *sp, int i); 464 struct kvm_mmu_root_info root; 465 hpa_t mirror_root_hpa; 466 union kvm_cpu_role cpu_role; 467 union kvm_mmu_page_role root_role; 468 469 /* 470 * The pkru_mask indicates if protection key checks are needed. It 471 * consists of 16 domains indexed by page fault error code bits [4:1], 472 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 473 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 474 */ 475 u32 pkru_mask; 476 477 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 478 479 /* 480 * Bitmap; bit set = permission fault 481 * Byte index: page fault error code [4:1] 482 * Bit index: pte permissions in ACC_* format 483 */ 484 u8 permissions[16]; 485 486 u64 *pae_root; 487 u64 *pml4_root; 488 u64 *pml5_root; 489 490 /* 491 * check zero bits on shadow page table entries, these 492 * bits include not only hardware reserved bits but also 493 * the bits spte never used. 494 */ 495 struct rsvd_bits_validate shadow_zero_check; 496 497 struct rsvd_bits_validate guest_rsvd_check; 498 499 u64 pdptrs[4]; /* pae */ 500 }; 501 502 enum pmc_type { 503 KVM_PMC_GP = 0, 504 KVM_PMC_FIXED, 505 }; 506 507 struct kvm_pmc { 508 enum pmc_type type; 509 u8 idx; 510 bool is_paused; 511 bool intr; 512 /* 513 * Base value of the PMC counter, relative to the *consumed* count in 514 * the associated perf_event. This value includes counter updates from 515 * the perf_event and emulated_count since the last time the counter 516 * was reprogrammed, but it is *not* the current value as seen by the 517 * guest or userspace. 518 * 519 * The count is relative to the associated perf_event so that KVM 520 * doesn't need to reprogram the perf_event every time the guest writes 521 * to the counter. 522 */ 523 u64 counter; 524 /* 525 * PMC events triggered by KVM emulation that haven't been fully 526 * processed, i.e. haven't undergone overflow detection. 527 */ 528 u64 emulated_counter; 529 u64 eventsel; 530 struct perf_event *perf_event; 531 struct kvm_vcpu *vcpu; 532 /* 533 * only for creating or reusing perf_event, 534 * eventsel value for general purpose counters, 535 * ctrl value for fixed counters. 536 */ 537 u64 current_config; 538 }; 539 540 /* More counters may conflict with other existing Architectural MSRs */ 541 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 542 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 543 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 544 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 545 KVM_MAX_NR_AMD_GP_COUNTERS) 546 547 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3 548 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0 549 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \ 550 KVM_MAX_NR_AMD_FIXED_COUTNERS) 551 552 struct kvm_pmu { 553 u8 version; 554 unsigned nr_arch_gp_counters; 555 unsigned nr_arch_fixed_counters; 556 unsigned available_event_types; 557 u64 fixed_ctr_ctrl; 558 u64 fixed_ctr_ctrl_rsvd; 559 u64 global_ctrl; 560 u64 global_status; 561 u64 counter_bitmask[2]; 562 u64 global_ctrl_rsvd; 563 u64 global_status_rsvd; 564 u64 reserved_bits; 565 u64 raw_event_mask; 566 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 567 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 568 569 /* 570 * Overlay the bitmap with a 64-bit atomic so that all bits can be 571 * set in a single access, e.g. to reprogram all counters when the PMU 572 * filter changes. 573 */ 574 union { 575 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 576 atomic64_t __reprogram_pmi; 577 }; 578 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 579 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 580 581 u64 ds_area; 582 u64 pebs_enable; 583 u64 pebs_enable_rsvd; 584 u64 pebs_data_cfg; 585 u64 pebs_data_cfg_rsvd; 586 587 /* 588 * If a guest counter is cross-mapped to host counter with different 589 * index, its PEBS capability will be temporarily disabled. 590 * 591 * The user should make sure that this mask is updated 592 * after disabling interrupts and before perf_guest_get_msrs(); 593 */ 594 u64 host_cross_mapped_mask; 595 596 /* 597 * The gate to release perf_events not marked in 598 * pmc_in_use only once in a vcpu time slice. 599 */ 600 bool need_cleanup; 601 602 /* 603 * The total number of programmed perf_events and it helps to avoid 604 * redundant check before cleanup if guest don't use vPMU at all. 605 */ 606 u8 event_count; 607 }; 608 609 struct kvm_pmu_ops; 610 611 enum { 612 KVM_DEBUGREG_BP_ENABLED = BIT(0), 613 KVM_DEBUGREG_WONT_EXIT = BIT(1), 614 /* 615 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by 616 * hardware on exit from or enter to guest. KVM needn't switch them. 617 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM 618 * exit, host values need to be restored. 619 */ 620 KVM_DEBUGREG_AUTO_SWITCH = BIT(2), 621 }; 622 623 struct kvm_mtrr { 624 u64 var[KVM_NR_VAR_MTRR * 2]; 625 u64 fixed_64k; 626 u64 fixed_16k[2]; 627 u64 fixed_4k[8]; 628 u64 deftype; 629 }; 630 631 /* Hyper-V SynIC timer */ 632 struct kvm_vcpu_hv_stimer { 633 struct hrtimer timer; 634 int index; 635 union hv_stimer_config config; 636 u64 count; 637 u64 exp_time; 638 struct hv_message msg; 639 bool msg_pending; 640 }; 641 642 /* Hyper-V synthetic interrupt controller (SynIC)*/ 643 struct kvm_vcpu_hv_synic { 644 u64 version; 645 u64 control; 646 u64 msg_page; 647 u64 evt_page; 648 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 649 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 650 DECLARE_BITMAP(auto_eoi_bitmap, 256); 651 DECLARE_BITMAP(vec_bitmap, 256); 652 bool active; 653 bool dont_zero_synic_pages; 654 }; 655 656 /* The maximum number of entries on the TLB flush fifo. */ 657 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 658 /* 659 * Note: the following 'magic' entry is made up by KVM to avoid putting 660 * anything besides GVA on the TLB flush fifo. It is theoretically possible 661 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 662 * which will look identical. KVM's action to 'flush everything' instead of 663 * flushing these particular addresses is, however, fully legitimate as 664 * flushing more than requested is always OK. 665 */ 666 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 667 668 enum hv_tlb_flush_fifos { 669 HV_L1_TLB_FLUSH_FIFO, 670 HV_L2_TLB_FLUSH_FIFO, 671 HV_NR_TLB_FLUSH_FIFOS, 672 }; 673 674 struct kvm_vcpu_hv_tlb_flush_fifo { 675 spinlock_t write_lock; 676 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 677 }; 678 679 /* Hyper-V per vcpu emulation context */ 680 struct kvm_vcpu_hv { 681 struct kvm_vcpu *vcpu; 682 u32 vp_index; 683 u64 hv_vapic; 684 s64 runtime_offset; 685 struct kvm_vcpu_hv_synic synic; 686 struct kvm_hyperv_exit exit; 687 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 688 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 689 bool enforce_cpuid; 690 struct { 691 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 692 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 693 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 694 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 695 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 696 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 697 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 698 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 699 } cpuid_cache; 700 701 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 702 703 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 704 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 705 706 struct hv_vp_assist_page vp_assist_page; 707 708 struct { 709 u64 pa_page_gpa; 710 u64 vm_id; 711 u32 vp_id; 712 } nested; 713 }; 714 715 struct kvm_hypervisor_cpuid { 716 u32 base; 717 u32 limit; 718 }; 719 720 #ifdef CONFIG_KVM_XEN 721 /* Xen HVM per vcpu emulation context */ 722 struct kvm_vcpu_xen { 723 u64 hypercall_rip; 724 u32 current_runstate; 725 u8 upcall_vector; 726 struct gfn_to_pfn_cache vcpu_info_cache; 727 struct gfn_to_pfn_cache vcpu_time_info_cache; 728 struct gfn_to_pfn_cache runstate_cache; 729 struct gfn_to_pfn_cache runstate2_cache; 730 u64 last_steal; 731 u64 runstate_entry_time; 732 u64 runstate_times[4]; 733 unsigned long evtchn_pending_sel; 734 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 735 u32 timer_virq; 736 u64 timer_expires; /* In guest epoch */ 737 atomic_t timer_pending; 738 struct hrtimer timer; 739 int poll_evtchn; 740 struct timer_list poll_timer; 741 struct kvm_hypervisor_cpuid cpuid; 742 }; 743 #endif 744 745 struct kvm_queued_exception { 746 bool pending; 747 bool injected; 748 bool has_error_code; 749 u8 vector; 750 u32 error_code; 751 unsigned long payload; 752 bool has_payload; 753 }; 754 755 /* 756 * Hardware-defined CPUID leafs that are either scattered by the kernel or are 757 * unknown to the kernel, but need to be directly used by KVM. Note, these 758 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those. 759 */ 760 enum kvm_only_cpuid_leafs { 761 CPUID_12_EAX = NCAPINTS, 762 CPUID_7_1_EDX, 763 CPUID_8000_0007_EDX, 764 CPUID_8000_0022_EAX, 765 CPUID_7_2_EDX, 766 CPUID_24_0_EBX, 767 NR_KVM_CPU_CAPS, 768 769 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, 770 }; 771 772 struct kvm_vcpu_arch { 773 /* 774 * rip and regs accesses must go through 775 * kvm_{register,rip}_{read,write} functions. 776 */ 777 unsigned long regs[NR_VCPU_REGS]; 778 u32 regs_avail; 779 u32 regs_dirty; 780 781 unsigned long cr0; 782 unsigned long cr0_guest_owned_bits; 783 unsigned long cr2; 784 unsigned long cr3; 785 unsigned long cr4; 786 unsigned long cr4_guest_owned_bits; 787 unsigned long cr4_guest_rsvd_bits; 788 unsigned long cr8; 789 u32 host_pkru; 790 u32 pkru; 791 u32 hflags; 792 u64 efer; 793 u64 host_debugctl; 794 u64 apic_base; 795 struct kvm_lapic *apic; /* kernel irqchip context */ 796 bool load_eoi_exitmap_pending; 797 DECLARE_BITMAP(ioapic_handled_vectors, 256); 798 unsigned long apic_attention; 799 int32_t apic_arb_prio; 800 int mp_state; 801 u64 ia32_misc_enable_msr; 802 u64 smbase; 803 u64 smi_count; 804 bool at_instruction_boundary; 805 bool tpr_access_reporting; 806 bool xfd_no_write_intercept; 807 u64 ia32_xss; 808 u64 microcode_version; 809 u64 arch_capabilities; 810 u64 perf_capabilities; 811 812 /* 813 * Paging state of the vcpu 814 * 815 * If the vcpu runs in guest mode with two level paging this still saves 816 * the paging mode of the l1 guest. This context is always used to 817 * handle faults. 818 */ 819 struct kvm_mmu *mmu; 820 821 /* Non-nested MMU for L1 */ 822 struct kvm_mmu root_mmu; 823 824 /* L1 MMU when running nested */ 825 struct kvm_mmu guest_mmu; 826 827 /* 828 * Paging state of an L2 guest (used for nested npt) 829 * 830 * This context will save all necessary information to walk page tables 831 * of an L2 guest. This context is only initialized for page table 832 * walking and not for faulting since we never handle l2 page faults on 833 * the host. 834 */ 835 struct kvm_mmu nested_mmu; 836 837 /* 838 * Pointer to the mmu context currently used for 839 * gva_to_gpa translations. 840 */ 841 struct kvm_mmu *walk_mmu; 842 843 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 844 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 845 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 846 struct kvm_mmu_memory_cache mmu_page_header_cache; 847 /* 848 * This cache is to allocate external page table. E.g. private EPT used 849 * by the TDX module. 850 */ 851 struct kvm_mmu_memory_cache mmu_external_spt_cache; 852 853 /* 854 * QEMU userspace and the guest each have their own FPU state. 855 * In vcpu_run, we switch between the user and guest FPU contexts. 856 * While running a VCPU, the VCPU thread will have the guest FPU 857 * context. 858 * 859 * Note that while the PKRU state lives inside the fpu registers, 860 * it is switched out separately at VMENTER and VMEXIT time. The 861 * "guest_fpstate" state here contains the guest FPU context, with the 862 * host PRKU bits. 863 */ 864 struct fpu_guest guest_fpu; 865 866 u64 xcr0; 867 u64 guest_supported_xcr0; 868 869 struct kvm_pio_request pio; 870 void *pio_data; 871 void *sev_pio_data; 872 unsigned sev_pio_count; 873 874 u8 event_exit_inst_len; 875 876 bool exception_from_userspace; 877 878 /* Exceptions to be injected to the guest. */ 879 struct kvm_queued_exception exception; 880 /* Exception VM-Exits to be synthesized to L1. */ 881 struct kvm_queued_exception exception_vmexit; 882 883 struct kvm_queued_interrupt { 884 bool injected; 885 bool soft; 886 u8 nr; 887 } interrupt; 888 889 int halt_request; /* real mode on Intel only */ 890 891 int cpuid_nent; 892 struct kvm_cpuid_entry2 *cpuid_entries; 893 bool cpuid_dynamic_bits_dirty; 894 bool is_amd_compatible; 895 896 /* 897 * cpu_caps holds the effective guest capabilities, i.e. the features 898 * the vCPU is allowed to use. Typically, but not always, features can 899 * be used by the guest if and only if both KVM and userspace want to 900 * expose the feature to the guest. 901 * 902 * A common exception is for virtualization holes, i.e. when KVM can't 903 * prevent the guest from using a feature, in which case the vCPU "has" 904 * the feature regardless of what KVM or userspace desires. 905 * 906 * Note, features that don't require KVM involvement in any way are 907 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the 908 * guest CPUID provided by userspace. 909 */ 910 u32 cpu_caps[NR_KVM_CPU_CAPS]; 911 912 u64 reserved_gpa_bits; 913 int maxphyaddr; 914 915 /* emulate context */ 916 917 struct x86_emulate_ctxt *emulate_ctxt; 918 bool emulate_regs_need_sync_to_vcpu; 919 bool emulate_regs_need_sync_from_vcpu; 920 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 921 unsigned long cui_linear_rip; 922 923 gpa_t time; 924 s8 pvclock_tsc_shift; 925 u32 pvclock_tsc_mul; 926 unsigned int hw_tsc_khz; 927 struct gfn_to_pfn_cache pv_time; 928 /* set guest stopped flag in pvclock flags field */ 929 bool pvclock_set_guest_stopped_request; 930 931 struct { 932 u8 preempted; 933 u64 msr_val; 934 u64 last_steal; 935 struct gfn_to_hva_cache cache; 936 } st; 937 938 u64 l1_tsc_offset; 939 u64 tsc_offset; /* current tsc offset */ 940 u64 last_guest_tsc; 941 u64 last_host_tsc; 942 u64 tsc_offset_adjustment; 943 u64 this_tsc_nsec; 944 u64 this_tsc_write; 945 u64 this_tsc_generation; 946 bool tsc_catchup; 947 bool tsc_always_catchup; 948 s8 virtual_tsc_shift; 949 u32 virtual_tsc_mult; 950 u32 virtual_tsc_khz; 951 s64 ia32_tsc_adjust_msr; 952 u64 msr_ia32_power_ctl; 953 u64 l1_tsc_scaling_ratio; 954 u64 tsc_scaling_ratio; /* current scaling ratio */ 955 956 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 957 /* Number of NMIs pending injection, not including hardware vNMIs. */ 958 unsigned int nmi_pending; 959 bool nmi_injected; /* Trying to inject an NMI this entry */ 960 bool smi_pending; /* SMI queued after currently running handler */ 961 u8 handling_intr_from_guest; 962 963 struct kvm_mtrr mtrr_state; 964 u64 pat; 965 966 unsigned switch_db_regs; 967 unsigned long db[KVM_NR_DB_REGS]; 968 unsigned long dr6; 969 unsigned long dr7; 970 unsigned long eff_db[KVM_NR_DB_REGS]; 971 unsigned long guest_debug_dr7; 972 u64 msr_platform_info; 973 u64 msr_misc_features_enables; 974 975 u64 mcg_cap; 976 u64 mcg_status; 977 u64 mcg_ctl; 978 u64 mcg_ext_ctl; 979 u64 *mce_banks; 980 u64 *mci_ctl2_banks; 981 982 /* Cache MMIO info */ 983 u64 mmio_gva; 984 unsigned mmio_access; 985 gfn_t mmio_gfn; 986 u64 mmio_gen; 987 988 struct kvm_pmu pmu; 989 990 /* used for guest single stepping over the given code position */ 991 unsigned long singlestep_rip; 992 993 #ifdef CONFIG_KVM_HYPERV 994 bool hyperv_enabled; 995 struct kvm_vcpu_hv *hyperv; 996 #endif 997 #ifdef CONFIG_KVM_XEN 998 struct kvm_vcpu_xen xen; 999 #endif 1000 cpumask_var_t wbinvd_dirty_mask; 1001 1002 unsigned long last_retry_eip; 1003 unsigned long last_retry_addr; 1004 1005 struct { 1006 bool halted; 1007 gfn_t gfns[ASYNC_PF_PER_VCPU]; 1008 struct gfn_to_hva_cache data; 1009 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 1010 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 1011 u16 vec; 1012 u32 id; 1013 u32 host_apf_flags; 1014 bool send_always; 1015 bool delivery_as_pf_vmexit; 1016 bool pageready_pending; 1017 } apf; 1018 1019 /* OSVW MSRs (AMD only) */ 1020 struct { 1021 u64 length; 1022 u64 status; 1023 } osvw; 1024 1025 struct { 1026 u64 msr_val; 1027 struct gfn_to_hva_cache data; 1028 } pv_eoi; 1029 1030 u64 msr_kvm_poll_control; 1031 1032 /* pv related host specific info */ 1033 struct { 1034 bool pv_unhalted; 1035 } pv; 1036 1037 int pending_ioapic_eoi; 1038 int pending_external_vector; 1039 int highest_stale_pending_ioapic_eoi; 1040 1041 /* be preempted when it's in kernel-mode(cpl=0) */ 1042 bool preempted_in_kernel; 1043 1044 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1045 bool l1tf_flush_l1d; 1046 1047 /* Host CPU on which VM-entry was most recently attempted */ 1048 int last_vmentry_cpu; 1049 1050 /* AMD MSRC001_0015 Hardware Configuration */ 1051 u64 msr_hwcr; 1052 1053 /* pv related cpuid info */ 1054 struct { 1055 /* 1056 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1057 * leaf. 1058 */ 1059 u32 features; 1060 1061 /* 1062 * indicates whether pv emulation should be disabled if features 1063 * are not present in the guest's cpuid 1064 */ 1065 bool enforce; 1066 } pv_cpuid; 1067 1068 /* Protected Guests */ 1069 bool guest_state_protected; 1070 bool guest_tsc_protected; 1071 1072 /* 1073 * Set when PDPTS were loaded directly by the userspace without 1074 * reading the guest memory 1075 */ 1076 bool pdptrs_from_userspace; 1077 1078 #if IS_ENABLED(CONFIG_HYPERV) 1079 hpa_t hv_root_tdp; 1080 #endif 1081 }; 1082 1083 struct kvm_lpage_info { 1084 int disallow_lpage; 1085 }; 1086 1087 struct kvm_arch_memory_slot { 1088 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1089 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1090 unsigned short *gfn_write_track; 1091 }; 1092 1093 /* 1094 * Track the mode of the optimized logical map, as the rules for decoding the 1095 * destination vary per mode. Enabling the optimized logical map requires all 1096 * software-enabled local APIs to be in the same mode, each addressable APIC to 1097 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1098 */ 1099 enum kvm_apic_logical_mode { 1100 /* All local APICs are software disabled. */ 1101 KVM_APIC_MODE_SW_DISABLED, 1102 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1103 KVM_APIC_MODE_XAPIC_CLUSTER, 1104 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1105 KVM_APIC_MODE_XAPIC_FLAT, 1106 /* All software enabled local APICs in x2APIC mode. */ 1107 KVM_APIC_MODE_X2APIC, 1108 /* 1109 * Optimized map disabled, e.g. not all local APICs in the same logical 1110 * mode, same logical ID assigned to multiple APICs, etc. 1111 */ 1112 KVM_APIC_MODE_MAP_DISABLED, 1113 }; 1114 1115 struct kvm_apic_map { 1116 struct rcu_head rcu; 1117 enum kvm_apic_logical_mode logical_mode; 1118 u32 max_apic_id; 1119 union { 1120 struct kvm_lapic *xapic_flat_map[8]; 1121 struct kvm_lapic *xapic_cluster_map[16][4]; 1122 }; 1123 struct kvm_lapic *phys_map[]; 1124 }; 1125 1126 /* Hyper-V synthetic debugger (SynDbg)*/ 1127 struct kvm_hv_syndbg { 1128 struct { 1129 u64 control; 1130 u64 status; 1131 u64 send_page; 1132 u64 recv_page; 1133 u64 pending_page; 1134 } control; 1135 u64 options; 1136 }; 1137 1138 /* Current state of Hyper-V TSC page clocksource */ 1139 enum hv_tsc_page_status { 1140 /* TSC page was not set up or disabled */ 1141 HV_TSC_PAGE_UNSET = 0, 1142 /* TSC page MSR was written by the guest, update pending */ 1143 HV_TSC_PAGE_GUEST_CHANGED, 1144 /* TSC page update was triggered from the host side */ 1145 HV_TSC_PAGE_HOST_CHANGED, 1146 /* TSC page was properly set up and is currently active */ 1147 HV_TSC_PAGE_SET, 1148 /* TSC page was set up with an inaccessible GPA */ 1149 HV_TSC_PAGE_BROKEN, 1150 }; 1151 1152 #ifdef CONFIG_KVM_HYPERV 1153 /* Hyper-V emulation context */ 1154 struct kvm_hv { 1155 struct mutex hv_lock; 1156 u64 hv_guest_os_id; 1157 u64 hv_hypercall; 1158 u64 hv_tsc_page; 1159 enum hv_tsc_page_status hv_tsc_page_status; 1160 1161 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1162 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1163 u64 hv_crash_ctl; 1164 1165 struct ms_hyperv_tsc_page tsc_ref; 1166 1167 struct idr conn_to_evt; 1168 1169 u64 hv_reenlightenment_control; 1170 u64 hv_tsc_emulation_control; 1171 u64 hv_tsc_emulation_status; 1172 u64 hv_invtsc_control; 1173 1174 /* How many vCPUs have VP index != vCPU index */ 1175 atomic_t num_mismatched_vp_indexes; 1176 1177 /* 1178 * How many SynICs use 'AutoEOI' feature 1179 * (protected by arch.apicv_update_lock) 1180 */ 1181 unsigned int synic_auto_eoi_used; 1182 1183 struct kvm_hv_syndbg hv_syndbg; 1184 1185 bool xsaves_xsavec_checked; 1186 }; 1187 #endif 1188 1189 struct msr_bitmap_range { 1190 u32 flags; 1191 u32 nmsrs; 1192 u32 base; 1193 unsigned long *bitmap; 1194 }; 1195 1196 #ifdef CONFIG_KVM_XEN 1197 /* Xen emulation context */ 1198 struct kvm_xen { 1199 struct mutex xen_lock; 1200 u32 xen_version; 1201 bool long_mode; 1202 bool runstate_update_flag; 1203 u8 upcall_vector; 1204 struct gfn_to_pfn_cache shinfo_cache; 1205 struct idr evtchn_ports; 1206 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1207 1208 struct kvm_xen_hvm_config hvm_config; 1209 }; 1210 #endif 1211 1212 enum kvm_irqchip_mode { 1213 KVM_IRQCHIP_NONE, 1214 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1215 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1216 }; 1217 1218 struct kvm_x86_msr_filter { 1219 u8 count; 1220 bool default_allow:1; 1221 struct msr_bitmap_range ranges[16]; 1222 }; 1223 1224 struct kvm_x86_pmu_event_filter { 1225 __u32 action; 1226 __u32 nevents; 1227 __u32 fixed_counter_bitmap; 1228 __u32 flags; 1229 __u32 nr_includes; 1230 __u32 nr_excludes; 1231 __u64 *includes; 1232 __u64 *excludes; 1233 __u64 events[]; 1234 }; 1235 1236 enum kvm_apicv_inhibit { 1237 1238 /********************************************************************/ 1239 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1240 /********************************************************************/ 1241 1242 /* 1243 * APIC acceleration is disabled by a module parameter 1244 * and/or not supported in hardware. 1245 */ 1246 APICV_INHIBIT_REASON_DISABLED, 1247 1248 /* 1249 * APIC acceleration is inhibited because AutoEOI feature is 1250 * being used by a HyperV guest. 1251 */ 1252 APICV_INHIBIT_REASON_HYPERV, 1253 1254 /* 1255 * APIC acceleration is inhibited because the userspace didn't yet 1256 * enable the kernel/split irqchip. 1257 */ 1258 APICV_INHIBIT_REASON_ABSENT, 1259 1260 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1261 * (out of band, debug measure of blocking all interrupts on this vCPU) 1262 * was enabled, to avoid AVIC/APICv bypassing it. 1263 */ 1264 APICV_INHIBIT_REASON_BLOCKIRQ, 1265 1266 /* 1267 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1268 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1269 */ 1270 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1271 1272 /* 1273 * For simplicity, the APIC acceleration is inhibited 1274 * first time either APIC ID or APIC base are changed by the guest 1275 * from their reset values. 1276 */ 1277 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1278 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1279 1280 /******************************************************/ 1281 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1282 /******************************************************/ 1283 1284 /* 1285 * AVIC is inhibited on a vCPU because it runs a nested guest. 1286 * 1287 * This is needed because unlike APICv, the peers of this vCPU 1288 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1289 * a vCPU runs nested. 1290 */ 1291 APICV_INHIBIT_REASON_NESTED, 1292 1293 /* 1294 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1295 * which cannot be injected when the AVIC is enabled, thus AVIC 1296 * is inhibited while KVM waits for IRQ window. 1297 */ 1298 APICV_INHIBIT_REASON_IRQWIN, 1299 1300 /* 1301 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1302 * which AVIC doesn't support for edge triggered interrupts. 1303 */ 1304 APICV_INHIBIT_REASON_PIT_REINJ, 1305 1306 /* 1307 * AVIC is disabled because SEV doesn't support it. 1308 */ 1309 APICV_INHIBIT_REASON_SEV, 1310 1311 /* 1312 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1313 * mapping between logical ID and vCPU. 1314 */ 1315 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1316 1317 NR_APICV_INHIBIT_REASONS, 1318 }; 1319 1320 #define __APICV_INHIBIT_REASON(reason) \ 1321 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1322 1323 #define APICV_INHIBIT_REASONS \ 1324 __APICV_INHIBIT_REASON(DISABLED), \ 1325 __APICV_INHIBIT_REASON(HYPERV), \ 1326 __APICV_INHIBIT_REASON(ABSENT), \ 1327 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1328 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1329 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1330 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1331 __APICV_INHIBIT_REASON(NESTED), \ 1332 __APICV_INHIBIT_REASON(IRQWIN), \ 1333 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1334 __APICV_INHIBIT_REASON(SEV), \ 1335 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED) 1336 1337 struct kvm_arch { 1338 unsigned long n_used_mmu_pages; 1339 unsigned long n_requested_mmu_pages; 1340 unsigned long n_max_mmu_pages; 1341 unsigned int indirect_shadow_pages; 1342 u8 mmu_valid_gen; 1343 u8 vm_type; 1344 bool has_private_mem; 1345 bool has_protected_state; 1346 bool pre_fault_allowed; 1347 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1348 struct list_head active_mmu_pages; 1349 /* 1350 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1351 * replaced by an NX huge page. A shadow page is on this list if its 1352 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1353 * and there are no other conditions that prevent a huge page, e.g. 1354 * the backing host page is huge, dirtly logging is not enabled for its 1355 * memslot, etc... Note, zapping shadow pages on this list doesn't 1356 * guarantee an NX huge page will be created in its stead, e.g. if the 1357 * guest attempts to execute from the region then KVM obviously can't 1358 * create an NX huge page (without hanging the guest). 1359 */ 1360 struct list_head possible_nx_huge_pages; 1361 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1362 struct kvm_page_track_notifier_head track_notifier_head; 1363 #endif 1364 /* 1365 * Protects marking pages unsync during page faults, as TDP MMU page 1366 * faults only take mmu_lock for read. For simplicity, the unsync 1367 * pages lock is always taken when marking pages unsync regardless of 1368 * whether mmu_lock is held for read or write. 1369 */ 1370 spinlock_t mmu_unsync_pages_lock; 1371 1372 u64 shadow_mmio_value; 1373 1374 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1375 atomic_t noncoherent_dma_count; 1376 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1377 atomic_t assigned_device_count; 1378 struct kvm_pic *vpic; 1379 struct kvm_ioapic *vioapic; 1380 struct kvm_pit *vpit; 1381 atomic_t vapics_in_nmi_mode; 1382 struct mutex apic_map_lock; 1383 struct kvm_apic_map __rcu *apic_map; 1384 atomic_t apic_map_dirty; 1385 1386 bool apic_access_memslot_enabled; 1387 bool apic_access_memslot_inhibited; 1388 1389 /* Protects apicv_inhibit_reasons */ 1390 struct rw_semaphore apicv_update_lock; 1391 unsigned long apicv_inhibit_reasons; 1392 1393 gpa_t wall_clock; 1394 1395 bool mwait_in_guest; 1396 bool hlt_in_guest; 1397 bool pause_in_guest; 1398 bool cstate_in_guest; 1399 1400 unsigned long irq_sources_bitmap; 1401 s64 kvmclock_offset; 1402 1403 /* 1404 * This also protects nr_vcpus_matched_tsc which is read from a 1405 * preemption-disabled region, so it must be a raw spinlock. 1406 */ 1407 raw_spinlock_t tsc_write_lock; 1408 u64 last_tsc_nsec; 1409 u64 last_tsc_write; 1410 u32 last_tsc_khz; 1411 u64 last_tsc_offset; 1412 u64 cur_tsc_nsec; 1413 u64 cur_tsc_write; 1414 u64 cur_tsc_offset; 1415 u64 cur_tsc_generation; 1416 int nr_vcpus_matched_tsc; 1417 1418 u32 default_tsc_khz; 1419 bool user_set_tsc; 1420 u64 apic_bus_cycle_ns; 1421 1422 seqcount_raw_spinlock_t pvclock_sc; 1423 bool use_master_clock; 1424 u64 master_kernel_ns; 1425 u64 master_cycle_now; 1426 struct delayed_work kvmclock_update_work; 1427 struct delayed_work kvmclock_sync_work; 1428 1429 /* reads protected by irq_srcu, writes by irq_lock */ 1430 struct hlist_head mask_notifier_list; 1431 1432 #ifdef CONFIG_KVM_HYPERV 1433 struct kvm_hv hyperv; 1434 #endif 1435 1436 #ifdef CONFIG_KVM_XEN 1437 struct kvm_xen xen; 1438 #endif 1439 1440 bool backwards_tsc_observed; 1441 bool boot_vcpu_runs_old_kvmclock; 1442 u32 bsp_vcpu_id; 1443 1444 u64 disabled_quirks; 1445 1446 enum kvm_irqchip_mode irqchip_mode; 1447 u8 nr_reserved_ioapic_pins; 1448 1449 bool disabled_lapic_found; 1450 1451 bool x2apic_format; 1452 bool x2apic_broadcast_quirk_disabled; 1453 1454 bool guest_can_read_msr_platform_info; 1455 bool exception_payload_enabled; 1456 1457 bool triple_fault_event; 1458 1459 bool bus_lock_detection_enabled; 1460 bool enable_pmu; 1461 1462 u32 notify_window; 1463 u32 notify_vmexit_flags; 1464 /* 1465 * If exit_on_emulation_error is set, and the in-kernel instruction 1466 * emulator fails to emulate an instruction, allow userspace 1467 * the opportunity to look at it. 1468 */ 1469 bool exit_on_emulation_error; 1470 1471 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1472 u32 user_space_msr_mask; 1473 struct kvm_x86_msr_filter __rcu *msr_filter; 1474 1475 u32 hypercall_exit_enabled; 1476 1477 /* Guest can access the SGX PROVISIONKEY. */ 1478 bool sgx_provisioning_allowed; 1479 1480 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1481 struct vhost_task *nx_huge_page_recovery_thread; 1482 u64 nx_huge_page_last; 1483 struct once nx_once; 1484 1485 #ifdef CONFIG_X86_64 1486 #ifdef CONFIG_KVM_PROVE_MMU 1487 /* 1488 * The number of TDP MMU pages across all roots. Used only to sanity 1489 * check that KVM isn't leaking TDP MMU pages. 1490 */ 1491 atomic64_t tdp_mmu_pages; 1492 #endif 1493 1494 /* 1495 * List of struct kvm_mmu_pages being used as roots. 1496 * All struct kvm_mmu_pages in the list should have 1497 * tdp_mmu_page set. 1498 * 1499 * For reads, this list is protected by: 1500 * RCU alone or 1501 * the MMU lock in read mode + RCU or 1502 * the MMU lock in write mode 1503 * 1504 * For writes, this list is protected by tdp_mmu_pages_lock; see 1505 * below for the details. 1506 * 1507 * Roots will remain in the list until their tdp_mmu_root_count 1508 * drops to zero, at which point the thread that decremented the 1509 * count to zero should removed the root from the list and clean 1510 * it up, freeing the root after an RCU grace period. 1511 */ 1512 struct list_head tdp_mmu_roots; 1513 1514 /* 1515 * Protects accesses to the following fields when the MMU lock 1516 * is held in read mode: 1517 * - tdp_mmu_roots (above) 1518 * - the link field of kvm_mmu_page structs used by the TDP MMU 1519 * - possible_nx_huge_pages; 1520 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1521 * by the TDP MMU 1522 * Because the lock is only taken within the MMU lock, strictly 1523 * speaking it is redundant to acquire this lock when the thread 1524 * holds the MMU lock in write mode. However it often simplifies 1525 * the code to do so. 1526 */ 1527 spinlock_t tdp_mmu_pages_lock; 1528 #endif /* CONFIG_X86_64 */ 1529 1530 /* 1531 * If set, at least one shadow root has been allocated. This flag 1532 * is used as one input when determining whether certain memslot 1533 * related allocations are necessary. 1534 */ 1535 bool shadow_root_allocated; 1536 1537 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1538 /* 1539 * If set, the VM has (or had) an external write tracking user, and 1540 * thus all write tracking metadata has been allocated, even if KVM 1541 * itself isn't using write tracking. 1542 */ 1543 bool external_write_tracking_enabled; 1544 #endif 1545 1546 #if IS_ENABLED(CONFIG_HYPERV) 1547 hpa_t hv_root_tdp; 1548 spinlock_t hv_root_tdp_lock; 1549 struct hv_partition_assist_pg *hv_pa_pg; 1550 #endif 1551 /* 1552 * VM-scope maximum vCPU ID. Used to determine the size of structures 1553 * that increase along with the maximum vCPU ID, in which case, using 1554 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1555 */ 1556 u32 max_vcpu_ids; 1557 1558 bool disable_nx_huge_pages; 1559 1560 /* 1561 * Memory caches used to allocate shadow pages when performing eager 1562 * page splitting. No need for a shadowed_info_cache since eager page 1563 * splitting only allocates direct shadow pages. 1564 * 1565 * Protected by kvm->slots_lock. 1566 */ 1567 struct kvm_mmu_memory_cache split_shadow_page_cache; 1568 struct kvm_mmu_memory_cache split_page_header_cache; 1569 1570 /* 1571 * Memory cache used to allocate pte_list_desc structs while splitting 1572 * huge pages. In the worst case, to split one huge page, 512 1573 * pte_list_desc structs are needed to add each lower level leaf sptep 1574 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1575 * page table. 1576 * 1577 * Protected by kvm->slots_lock. 1578 */ 1579 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1580 struct kvm_mmu_memory_cache split_desc_cache; 1581 1582 gfn_t gfn_direct_bits; 1583 1584 /* 1585 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero 1586 * value indicates CPU dirty logging is unsupported or disabled in 1587 * current VM. 1588 */ 1589 int cpu_dirty_log_size; 1590 }; 1591 1592 struct kvm_vm_stat { 1593 struct kvm_vm_stat_generic generic; 1594 u64 mmu_shadow_zapped; 1595 u64 mmu_pte_write; 1596 u64 mmu_pde_zapped; 1597 u64 mmu_flooded; 1598 u64 mmu_recycled; 1599 u64 mmu_cache_miss; 1600 u64 mmu_unsync; 1601 union { 1602 struct { 1603 atomic64_t pages_4k; 1604 atomic64_t pages_2m; 1605 atomic64_t pages_1g; 1606 }; 1607 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1608 }; 1609 u64 nx_lpage_splits; 1610 u64 max_mmu_page_hash_collisions; 1611 u64 max_mmu_rmap_size; 1612 }; 1613 1614 struct kvm_vcpu_stat { 1615 struct kvm_vcpu_stat_generic generic; 1616 u64 pf_taken; 1617 u64 pf_fixed; 1618 u64 pf_emulate; 1619 u64 pf_spurious; 1620 u64 pf_fast; 1621 u64 pf_mmio_spte_created; 1622 u64 pf_guest; 1623 u64 tlb_flush; 1624 u64 invlpg; 1625 1626 u64 exits; 1627 u64 io_exits; 1628 u64 mmio_exits; 1629 u64 signal_exits; 1630 u64 irq_window_exits; 1631 u64 nmi_window_exits; 1632 u64 l1d_flush; 1633 u64 halt_exits; 1634 u64 request_irq_exits; 1635 u64 irq_exits; 1636 u64 host_state_reload; 1637 u64 fpu_reload; 1638 u64 insn_emulation; 1639 u64 insn_emulation_fail; 1640 u64 hypercalls; 1641 u64 irq_injections; 1642 u64 nmi_injections; 1643 u64 req_event; 1644 u64 nested_run; 1645 u64 directed_yield_attempted; 1646 u64 directed_yield_successful; 1647 u64 preemption_reported; 1648 u64 preemption_other; 1649 u64 guest_mode; 1650 u64 notify_window_exits; 1651 }; 1652 1653 struct x86_instruction_info; 1654 1655 struct msr_data { 1656 bool host_initiated; 1657 u32 index; 1658 u64 data; 1659 }; 1660 1661 struct kvm_lapic_irq { 1662 u32 vector; 1663 u16 delivery_mode; 1664 u16 dest_mode; 1665 bool level; 1666 u16 trig_mode; 1667 u32 shorthand; 1668 u32 dest_id; 1669 bool msi_redir_hint; 1670 }; 1671 1672 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1673 { 1674 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1675 } 1676 1677 struct kvm_x86_ops { 1678 const char *name; 1679 1680 int (*check_processor_compatibility)(void); 1681 1682 int (*enable_virtualization_cpu)(void); 1683 void (*disable_virtualization_cpu)(void); 1684 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1685 1686 void (*hardware_unsetup)(void); 1687 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1688 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1689 1690 unsigned int vm_size; 1691 int (*vm_init)(struct kvm *kvm); 1692 void (*vm_destroy)(struct kvm *kvm); 1693 void (*vm_pre_destroy)(struct kvm *kvm); 1694 1695 /* Create, but do not attach this VCPU */ 1696 int (*vcpu_precreate)(struct kvm *kvm); 1697 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1698 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1699 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1700 1701 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1702 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1703 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1704 1705 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1706 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1707 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1708 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1709 void (*get_segment)(struct kvm_vcpu *vcpu, 1710 struct kvm_segment *var, int seg); 1711 int (*get_cpl)(struct kvm_vcpu *vcpu); 1712 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu); 1713 void (*set_segment)(struct kvm_vcpu *vcpu, 1714 struct kvm_segment *var, int seg); 1715 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1716 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1717 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1718 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1719 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1720 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1721 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1722 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1723 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1724 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1725 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1726 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1727 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value); 1728 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1729 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1730 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1731 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1732 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1733 1734 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1735 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1736 #if IS_ENABLED(CONFIG_HYPERV) 1737 int (*flush_remote_tlbs)(struct kvm *kvm); 1738 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1739 gfn_t nr_pages); 1740 #endif 1741 1742 /* 1743 * Flush any TLB entries associated with the given GVA. 1744 * Does not need to flush GPA->HPA mappings. 1745 * Can potentially get non-canonical addresses through INVLPGs, which 1746 * the implementation may choose to ignore if appropriate. 1747 */ 1748 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1749 1750 /* 1751 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1752 * does not need to flush GPA->HPA mappings. 1753 */ 1754 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1755 1756 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1757 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1758 bool force_immediate_exit); 1759 int (*handle_exit)(struct kvm_vcpu *vcpu, 1760 enum exit_fastpath_completion exit_fastpath); 1761 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1762 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1763 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1764 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1765 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1766 unsigned char *hypercall_addr); 1767 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1768 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1769 void (*inject_exception)(struct kvm_vcpu *vcpu); 1770 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1771 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1772 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1773 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1774 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1775 /* Whether or not a virtual NMI is pending in hardware. */ 1776 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1777 /* 1778 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1779 * to allow using static_call_ret0 as the fallback. 1780 */ 1781 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1782 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1783 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1784 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1785 1786 const bool x2apic_icr_is_split; 1787 const unsigned long required_apicv_inhibits; 1788 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1789 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1790 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1791 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1792 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1793 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1794 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1795 int trig_mode, int vector); 1796 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1797 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1798 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1799 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1800 1801 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1802 int root_level); 1803 1804 /* Update external mapping with page table link. */ 1805 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1806 void *external_spt); 1807 /* Update the external page table from spte getting set. */ 1808 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1809 kvm_pfn_t pfn_for_gfn); 1810 1811 /* Update external page tables for page table about to be freed. */ 1812 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1813 void *external_spt); 1814 1815 /* Update external page table from spte getting removed, and flush TLB. */ 1816 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1817 kvm_pfn_t pfn_for_gfn); 1818 1819 bool (*has_wbinvd_exit)(void); 1820 1821 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1822 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1823 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1824 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1825 1826 /* 1827 * Retrieve somewhat arbitrary exit/entry information. Intended to 1828 * be used only from within tracepoints or error paths. 1829 */ 1830 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1831 u64 *info1, u64 *info2, 1832 u32 *intr_info, u32 *error_code); 1833 1834 void (*get_entry_info)(struct kvm_vcpu *vcpu, 1835 u32 *intr_info, u32 *error_code); 1836 1837 int (*check_intercept)(struct kvm_vcpu *vcpu, 1838 struct x86_instruction_info *info, 1839 enum x86_intercept_stage stage, 1840 struct x86_exception *exception); 1841 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1842 1843 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1844 1845 const struct kvm_x86_nested_ops *nested_ops; 1846 1847 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1848 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1849 1850 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1851 uint32_t guest_irq, bool set); 1852 void (*pi_start_assignment)(struct kvm *kvm); 1853 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1854 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1855 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1856 bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1857 1858 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1859 bool *expired); 1860 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1861 1862 void (*setup_mce)(struct kvm_vcpu *vcpu); 1863 1864 #ifdef CONFIG_KVM_SMM 1865 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1866 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1867 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1868 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1869 #endif 1870 1871 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1872 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1873 int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp); 1874 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1875 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1876 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1877 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1878 void (*guest_memory_reclaimed)(struct kvm *kvm); 1879 1880 int (*get_feature_msr)(u32 msr, u64 *data); 1881 1882 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1883 void *insn, int insn_len); 1884 1885 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1886 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1887 1888 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1889 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1890 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1891 1892 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1893 1894 /* 1895 * Returns vCPU specific APICv inhibit reasons 1896 */ 1897 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1898 1899 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1900 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1901 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1902 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1903 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn); 1904 }; 1905 1906 struct kvm_x86_nested_ops { 1907 void (*leave_nested)(struct kvm_vcpu *vcpu); 1908 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1909 u32 error_code); 1910 int (*check_events)(struct kvm_vcpu *vcpu); 1911 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1912 void (*triple_fault)(struct kvm_vcpu *vcpu); 1913 int (*get_state)(struct kvm_vcpu *vcpu, 1914 struct kvm_nested_state __user *user_kvm_nested_state, 1915 unsigned user_data_size); 1916 int (*set_state)(struct kvm_vcpu *vcpu, 1917 struct kvm_nested_state __user *user_kvm_nested_state, 1918 struct kvm_nested_state *kvm_state); 1919 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1920 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1921 1922 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1923 uint16_t *vmcs_version); 1924 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1925 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1926 }; 1927 1928 struct kvm_x86_init_ops { 1929 int (*hardware_setup)(void); 1930 unsigned int (*handle_intel_pt_intr)(void); 1931 1932 struct kvm_x86_ops *runtime_ops; 1933 struct kvm_pmu_ops *pmu_ops; 1934 }; 1935 1936 struct kvm_arch_async_pf { 1937 u32 token; 1938 gfn_t gfn; 1939 unsigned long cr3; 1940 bool direct_map; 1941 u64 error_code; 1942 }; 1943 1944 extern u32 __read_mostly kvm_nr_uret_msrs; 1945 extern bool __read_mostly allow_smaller_maxphyaddr; 1946 extern bool __read_mostly enable_apicv; 1947 extern bool __read_mostly enable_device_posted_irqs; 1948 extern struct kvm_x86_ops kvm_x86_ops; 1949 1950 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1951 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1952 1953 #define KVM_X86_OP(func) \ 1954 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1955 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1956 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1957 #include <asm/kvm-x86-ops.h> 1958 1959 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1960 void kvm_x86_vendor_exit(void); 1961 1962 #define __KVM_HAVE_ARCH_VM_ALLOC 1963 static inline struct kvm *kvm_arch_alloc_vm(void) 1964 { 1965 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1966 } 1967 1968 #define __KVM_HAVE_ARCH_VM_FREE 1969 void kvm_arch_free_vm(struct kvm *kvm); 1970 1971 #if IS_ENABLED(CONFIG_HYPERV) 1972 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1973 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1974 { 1975 if (kvm_x86_ops.flush_remote_tlbs && 1976 !kvm_x86_call(flush_remote_tlbs)(kvm)) 1977 return 0; 1978 else 1979 return -ENOTSUPP; 1980 } 1981 1982 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1983 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1984 u64 nr_pages) 1985 { 1986 if (!kvm_x86_ops.flush_remote_tlbs_range) 1987 return -EOPNOTSUPP; 1988 1989 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1990 } 1991 #endif /* CONFIG_HYPERV */ 1992 1993 enum kvm_intr_type { 1994 /* Values are arbitrary, but must be non-zero. */ 1995 KVM_HANDLING_IRQ = 1, 1996 KVM_HANDLING_NMI, 1997 }; 1998 1999 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 2000 #define kvm_arch_pmi_in_guest(vcpu) \ 2001 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 2002 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 2003 2004 void __init kvm_mmu_x86_module_init(void); 2005 int kvm_mmu_vendor_module_init(void); 2006 void kvm_mmu_vendor_module_exit(void); 2007 2008 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 2009 int kvm_mmu_create(struct kvm_vcpu *vcpu); 2010 void kvm_mmu_init_vm(struct kvm *kvm); 2011 void kvm_mmu_uninit_vm(struct kvm *kvm); 2012 2013 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 2014 struct kvm_memory_slot *slot); 2015 2016 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 2017 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 2018 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 2019 const struct kvm_memory_slot *memslot, 2020 int start_level); 2021 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 2022 const struct kvm_memory_slot *memslot, 2023 int target_level); 2024 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 2025 const struct kvm_memory_slot *memslot, 2026 u64 start, u64 end, 2027 int target_level); 2028 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 2029 const struct kvm_memory_slot *memslot); 2030 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 2031 const struct kvm_memory_slot *memslot); 2032 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 2033 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 2034 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 2035 2036 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 2037 2038 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 2039 const void *val, int bytes); 2040 2041 struct kvm_irq_mask_notifier { 2042 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 2043 int irq; 2044 struct hlist_node link; 2045 }; 2046 2047 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 2048 struct kvm_irq_mask_notifier *kimn); 2049 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 2050 struct kvm_irq_mask_notifier *kimn); 2051 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 2052 bool mask); 2053 2054 extern bool tdp_enabled; 2055 2056 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 2057 2058 /* 2059 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 2060 * userspace I/O) to indicate that the emulation context 2061 * should be reused as is, i.e. skip initialization of 2062 * emulation context, instruction fetch and decode. 2063 * 2064 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 2065 * Indicates that only select instructions (tagged with 2066 * EmulateOnUD) should be emulated (to minimize the emulator 2067 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 2068 * 2069 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2070 * decode the instruction length. For use *only* by 2071 * kvm_x86_ops.skip_emulated_instruction() implementations if 2072 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2073 * 2074 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2075 * retry native execution under certain conditions, 2076 * Can only be set in conjunction with EMULTYPE_PF. 2077 * 2078 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2079 * triggered by KVM's magic "force emulation" prefix, 2080 * which is opt in via module param (off by default). 2081 * Bypasses EmulateOnUD restriction despite emulating 2082 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2083 * Used to test the full emulator from userspace. 2084 * 2085 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2086 * backdoor emulation, which is opt in via module param. 2087 * VMware backdoor emulation handles select instructions 2088 * and reinjects the #GP for all other cases. 2089 * 2090 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case 2091 * the CR2/GPA value pass on the stack is valid. 2092 * 2093 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2094 * state and inject single-step #DBs after skipping 2095 * an instruction (after completing userspace I/O). 2096 * 2097 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2098 * is attempting to write a gfn that contains one or 2099 * more of the PTEs used to translate the write itself, 2100 * and the owning page table is being shadowed by KVM. 2101 * If emulation of the faulting instruction fails and 2102 * this flag is set, KVM will exit to userspace instead 2103 * of retrying emulation as KVM cannot make forward 2104 * progress. 2105 * 2106 * If emulation fails for a write to guest page tables, 2107 * KVM unprotects (zaps) the shadow page for the target 2108 * gfn and resumes the guest to retry the non-emulatable 2109 * instruction (on hardware). Unprotecting the gfn 2110 * doesn't allow forward progress for a self-changing 2111 * access because doing so also zaps the translation for 2112 * the gfn, i.e. retrying the instruction will hit a 2113 * !PRESENT fault, which results in a new shadow page 2114 * and sends KVM back to square one. 2115 */ 2116 #define EMULTYPE_NO_DECODE (1 << 0) 2117 #define EMULTYPE_TRAP_UD (1 << 1) 2118 #define EMULTYPE_SKIP (1 << 2) 2119 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2120 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2121 #define EMULTYPE_VMWARE_GP (1 << 5) 2122 #define EMULTYPE_PF (1 << 6) 2123 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2124 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2125 2126 static inline bool kvm_can_emulate_event_vectoring(int emul_type) 2127 { 2128 return !(emul_type & EMULTYPE_PF); 2129 } 2130 2131 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2132 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2133 void *insn, int insn_len); 2134 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2135 u64 *data, u8 ndata); 2136 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2137 2138 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa); 2139 2140 void kvm_enable_efer_bits(u64); 2141 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2142 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2143 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data); 2144 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2145 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2146 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2147 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2148 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2149 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2150 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2151 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2152 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2153 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2154 2155 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2156 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2157 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2158 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2159 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2160 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2161 2162 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2163 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2164 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2165 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2166 2167 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2168 int reason, bool has_error_code, u32 error_code); 2169 2170 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2171 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2172 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2173 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2174 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2175 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2176 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2177 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2178 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2179 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2180 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2181 2182 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2183 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2184 2185 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2186 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2187 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2188 2189 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2190 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2191 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2192 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 2193 bool has_error_code, u32 error_code); 2194 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2195 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2196 struct x86_exception *fault); 2197 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2198 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2199 2200 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2201 int irq_source_id, int level) 2202 { 2203 /* Logical OR for level trig interrupt */ 2204 if (level) 2205 __set_bit(irq_source_id, irq_state); 2206 else 2207 __clear_bit(irq_source_id, irq_state); 2208 2209 return !!(*irq_state); 2210 } 2211 2212 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2213 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2214 2215 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2216 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2217 2218 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2219 2220 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2221 bool always_retry); 2222 2223 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2224 gpa_t cr2_or_gpa) 2225 { 2226 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2227 } 2228 2229 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2230 ulong roots_to_free); 2231 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2232 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2233 struct x86_exception *exception); 2234 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2235 struct x86_exception *exception); 2236 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2237 struct x86_exception *exception); 2238 2239 bool kvm_apicv_activated(struct kvm *kvm); 2240 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2241 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2242 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2243 enum kvm_apicv_inhibit reason, bool set); 2244 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2245 enum kvm_apicv_inhibit reason, bool set); 2246 2247 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2248 enum kvm_apicv_inhibit reason) 2249 { 2250 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2251 } 2252 2253 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2254 enum kvm_apicv_inhibit reason) 2255 { 2256 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2257 } 2258 2259 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2260 void *insn, int insn_len); 2261 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2262 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2263 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2264 u64 addr, unsigned long roots); 2265 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2266 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2267 2268 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2269 int tdp_max_root_level, int tdp_huge_page_level); 2270 2271 2272 #ifdef CONFIG_KVM_PRIVATE_MEM 2273 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2274 #else 2275 #define kvm_arch_has_private_mem(kvm) false 2276 #endif 2277 2278 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2279 2280 static inline u16 kvm_read_ldt(void) 2281 { 2282 u16 ldt; 2283 asm("sldt %0" : "=g"(ldt)); 2284 return ldt; 2285 } 2286 2287 static inline void kvm_load_ldt(u16 sel) 2288 { 2289 asm("lldt %0" : : "rm"(sel)); 2290 } 2291 2292 #ifdef CONFIG_X86_64 2293 static inline unsigned long read_msr(unsigned long msr) 2294 { 2295 u64 value; 2296 2297 rdmsrq(msr, value); 2298 return value; 2299 } 2300 #endif 2301 2302 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2303 { 2304 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2305 } 2306 2307 #define TSS_IOPB_BASE_OFFSET 0x66 2308 #define TSS_BASE_SIZE 0x68 2309 #define TSS_IOPB_SIZE (65536 / 8) 2310 #define TSS_REDIRECTION_SIZE (256 / 8) 2311 #define RMODE_TSS_SIZE \ 2312 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2313 2314 enum { 2315 TASK_SWITCH_CALL = 0, 2316 TASK_SWITCH_IRET = 1, 2317 TASK_SWITCH_JMP = 2, 2318 TASK_SWITCH_GATE = 3, 2319 }; 2320 2321 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2322 2323 #ifdef CONFIG_KVM_SMM 2324 #define HF_SMM_MASK (1 << 1) 2325 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2326 2327 # define KVM_MAX_NR_ADDRESS_SPACES 2 2328 /* SMM is currently unsupported for guests with private memory. */ 2329 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2330 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2331 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2332 #else 2333 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2334 #endif 2335 2336 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2337 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2338 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2339 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2340 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2341 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2342 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2343 2344 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2345 unsigned long ipi_bitmap_high, u32 min, 2346 unsigned long icr, int op_64_bit); 2347 2348 int kvm_add_user_return_msr(u32 msr); 2349 int kvm_find_user_return_msr(u32 msr); 2350 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2351 void kvm_user_return_msr_update_cache(unsigned int index, u64 val); 2352 2353 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2354 { 2355 return kvm_find_user_return_msr(msr) >= 0; 2356 } 2357 2358 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2359 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2360 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2361 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2362 2363 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2364 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2365 2366 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2367 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2368 unsigned long *vcpu_bitmap); 2369 2370 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2371 struct kvm_async_pf *work); 2372 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2373 struct kvm_async_pf *work); 2374 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2375 struct kvm_async_pf *work); 2376 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2377 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2378 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2379 2380 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2381 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2382 2383 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2384 u32 size); 2385 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2386 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2387 2388 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2389 struct kvm_vcpu **dest_vcpu); 2390 2391 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2392 struct kvm_lapic_irq *irq); 2393 2394 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2395 { 2396 /* We can only post Fixed and LowPrio IRQs */ 2397 return (irq->delivery_mode == APIC_DM_FIXED || 2398 irq->delivery_mode == APIC_DM_LOWEST); 2399 } 2400 2401 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2402 { 2403 kvm_x86_call(vcpu_blocking)(vcpu); 2404 } 2405 2406 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2407 { 2408 kvm_x86_call(vcpu_unblocking)(vcpu); 2409 } 2410 2411 static inline int kvm_cpu_get_apicid(int mps_cpu) 2412 { 2413 #ifdef CONFIG_X86_LOCAL_APIC 2414 return default_cpu_present_to_apicid(mps_cpu); 2415 #else 2416 WARN_ON_ONCE(1); 2417 return BAD_APICID; 2418 #endif 2419 } 2420 2421 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2422 2423 #define KVM_CLOCK_VALID_FLAGS \ 2424 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2425 2426 #define KVM_X86_VALID_QUIRKS \ 2427 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2428 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2429 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2430 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2431 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2432 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2433 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2434 KVM_X86_QUIRK_SLOT_ZAP_ALL | \ 2435 KVM_X86_QUIRK_STUFF_FEATURE_MSRS | \ 2436 KVM_X86_QUIRK_IGNORE_GUEST_PAT) 2437 2438 #define KVM_X86_CONDITIONAL_QUIRKS \ 2439 (KVM_X86_QUIRK_CD_NW_CLEARED | \ 2440 KVM_X86_QUIRK_IGNORE_GUEST_PAT) 2441 2442 /* 2443 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2444 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2445 * remaining 31 lower bits must be 0 to preserve ABI. 2446 */ 2447 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2448 2449 static inline bool kvm_arch_has_irq_bypass(void) 2450 { 2451 return enable_device_posted_irqs; 2452 } 2453 2454 #endif /* _ASM_X86_KVM_HOST_H */ 2455