1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/kfifo.h> 28 #include <linux/sched/vhost_task.h> 29 #include <linux/call_once.h> 30 #include <linux/atomic.h> 31 32 #include <asm/apic.h> 33 #include <asm/pvclock-abi.h> 34 #include <asm/desc.h> 35 #include <asm/mtrr.h> 36 #include <asm/msr-index.h> 37 #include <asm/asm.h> 38 #include <asm/kvm_page_track.h> 39 #include <asm/kvm_vcpu_regs.h> 40 #include <asm/reboot.h> 41 #include <hyperv/hvhdk.h> 42 43 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 44 45 /* 46 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 47 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 48 */ 49 #ifdef CONFIG_KVM_MAX_NR_VCPUS 50 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 51 #else 52 #define KVM_MAX_VCPUS 1024 53 #endif 54 55 /* 56 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 57 * might be larger than the actual number of VCPUs because the 58 * APIC ID encodes CPU topology information. 59 * 60 * In the worst case, we'll need less than one extra bit for the 61 * Core ID, and less than one extra bit for the Package (Die) ID, 62 * so ratio of 4 should be enough. 63 */ 64 #define KVM_VCPU_ID_RATIO 4 65 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 66 67 /* memory slots that are not exposed to userspace */ 68 #define KVM_INTERNAL_MEM_SLOTS 3 69 70 #define KVM_HALT_POLL_NS_DEFAULT 200000 71 72 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 73 74 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 75 KVM_DIRTY_LOG_INITIALLY_SET) 76 77 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 78 KVM_BUS_LOCK_DETECTION_EXIT) 79 80 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 81 KVM_X86_NOTIFY_VMEXIT_USER) 82 83 /* x86-specific vcpu->requests bit members */ 84 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 85 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 86 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 87 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 88 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 89 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 90 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 91 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 92 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 93 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 94 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 95 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 96 #ifdef CONFIG_KVM_SMM 97 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 98 #endif 99 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 100 #define KVM_REQ_MCLOCK_INPROGRESS \ 101 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 102 #define KVM_REQ_SCAN_IOAPIC \ 103 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 104 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 105 #define KVM_REQ_APIC_PAGE_RELOAD \ 106 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 107 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 108 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 109 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 110 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 111 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 112 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 113 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 114 #define KVM_REQ_APICV_UPDATE \ 115 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 116 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 117 #define KVM_REQ_TLB_FLUSH_GUEST \ 118 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 119 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 120 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 121 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 122 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 123 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 124 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 125 #define KVM_REQ_HV_TLB_FLUSH \ 126 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 127 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE KVM_ARCH_REQ(34) 128 129 #define CR0_RESERVED_BITS \ 130 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 131 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 132 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 133 134 #define CR4_RESERVED_BITS \ 135 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 136 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 137 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 138 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 139 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 140 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 141 | X86_CR4_LAM_SUP)) 142 143 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 144 145 146 147 #define INVALID_PAGE (~(hpa_t)0) 148 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 149 150 /* KVM Hugepage definitions for x86 */ 151 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 152 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 153 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 154 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 155 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 156 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 157 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 158 159 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 160 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 161 #define KVM_MMU_HASH_SHIFT 12 162 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 163 #define KVM_MIN_FREE_MMU_PAGES 5 164 #define KVM_REFILL_PAGES 25 165 #define KVM_MAX_CPUID_ENTRIES 256 166 #define KVM_NR_VAR_MTRR 8 167 168 #define ASYNC_PF_PER_VCPU 64 169 170 enum kvm_reg { 171 VCPU_REGS_RAX = __VCPU_REGS_RAX, 172 VCPU_REGS_RCX = __VCPU_REGS_RCX, 173 VCPU_REGS_RDX = __VCPU_REGS_RDX, 174 VCPU_REGS_RBX = __VCPU_REGS_RBX, 175 VCPU_REGS_RSP = __VCPU_REGS_RSP, 176 VCPU_REGS_RBP = __VCPU_REGS_RBP, 177 VCPU_REGS_RSI = __VCPU_REGS_RSI, 178 VCPU_REGS_RDI = __VCPU_REGS_RDI, 179 #ifdef CONFIG_X86_64 180 VCPU_REGS_R8 = __VCPU_REGS_R8, 181 VCPU_REGS_R9 = __VCPU_REGS_R9, 182 VCPU_REGS_R10 = __VCPU_REGS_R10, 183 VCPU_REGS_R11 = __VCPU_REGS_R11, 184 VCPU_REGS_R12 = __VCPU_REGS_R12, 185 VCPU_REGS_R13 = __VCPU_REGS_R13, 186 VCPU_REGS_R14 = __VCPU_REGS_R14, 187 VCPU_REGS_R15 = __VCPU_REGS_R15, 188 #endif 189 VCPU_REGS_RIP, 190 NR_VCPU_REGS, 191 192 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 193 VCPU_EXREG_CR0, 194 VCPU_EXREG_CR3, 195 VCPU_EXREG_CR4, 196 VCPU_EXREG_RFLAGS, 197 VCPU_EXREG_SEGMENTS, 198 VCPU_EXREG_EXIT_INFO_1, 199 VCPU_EXREG_EXIT_INFO_2, 200 }; 201 202 enum { 203 VCPU_SREG_ES, 204 VCPU_SREG_CS, 205 VCPU_SREG_SS, 206 VCPU_SREG_DS, 207 VCPU_SREG_FS, 208 VCPU_SREG_GS, 209 VCPU_SREG_TR, 210 VCPU_SREG_LDTR, 211 }; 212 213 enum exit_fastpath_completion { 214 EXIT_FASTPATH_NONE, 215 EXIT_FASTPATH_REENTER_GUEST, 216 EXIT_FASTPATH_EXIT_HANDLED, 217 EXIT_FASTPATH_EXIT_USERSPACE, 218 }; 219 typedef enum exit_fastpath_completion fastpath_t; 220 221 struct x86_emulate_ctxt; 222 struct x86_exception; 223 union kvm_smram; 224 enum x86_intercept; 225 enum x86_intercept_stage; 226 227 #define KVM_NR_DB_REGS 4 228 229 #define DR6_BUS_LOCK (1 << 11) 230 #define DR6_BD (1 << 13) 231 #define DR6_BS (1 << 14) 232 #define DR6_BT (1 << 15) 233 #define DR6_RTM (1 << 16) 234 /* 235 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 236 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 237 * they will never be 0 for now, but when they are defined 238 * in the future it will require no code change. 239 * 240 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 241 */ 242 #define DR6_ACTIVE_LOW 0xffff0ff0 243 #define DR6_VOLATILE 0x0001e80f 244 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 245 246 #define DR7_BP_EN_MASK 0x000000ff 247 #define DR7_GE (1 << 9) 248 #define DR7_GD (1 << 13) 249 #define DR7_FIXED_1 0x00000400 250 #define DR7_VOLATILE 0xffff2bff 251 252 #define KVM_GUESTDBG_VALID_MASK \ 253 (KVM_GUESTDBG_ENABLE | \ 254 KVM_GUESTDBG_SINGLESTEP | \ 255 KVM_GUESTDBG_USE_HW_BP | \ 256 KVM_GUESTDBG_USE_SW_BP | \ 257 KVM_GUESTDBG_INJECT_BP | \ 258 KVM_GUESTDBG_INJECT_DB | \ 259 KVM_GUESTDBG_BLOCKIRQ) 260 261 #define PFERR_PRESENT_MASK BIT(0) 262 #define PFERR_WRITE_MASK BIT(1) 263 #define PFERR_USER_MASK BIT(2) 264 #define PFERR_RSVD_MASK BIT(3) 265 #define PFERR_FETCH_MASK BIT(4) 266 #define PFERR_PK_MASK BIT(5) 267 #define PFERR_SGX_MASK BIT(15) 268 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 269 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 270 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 271 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 272 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 273 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 274 275 /* 276 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 277 * when emulating instructions that triggers implicit access. 278 */ 279 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 280 /* 281 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 282 * when the guest was accessing private memory. 283 */ 284 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 285 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 286 287 /* apic attention bits */ 288 #define KVM_APIC_CHECK_VAPIC 0 289 /* 290 * The following bit is set with PV-EOI, unset on EOI. 291 * We detect PV-EOI changes by guest by comparing 292 * this bit with PV-EOI in guest memory. 293 * See the implementation in apic_update_pv_eoi. 294 */ 295 #define KVM_APIC_PV_EOI_PENDING 1 296 297 struct kvm_kernel_irq_routing_entry; 298 299 /* 300 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 301 * also includes TDP pages) to determine whether or not a page can be used in 302 * the given MMU context. This is a subset of the overall kvm_cpu_role to 303 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 304 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 305 * 306 * Upper-level shadow pages having gptes are tracked for write-protection via 307 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 308 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 309 * otherwise gfn_write_track will overflow and explosions will ensue. 310 * 311 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 312 * cannot be reused. The ability to reuse a SP is tracked by its role, which 313 * incorporates various mode bits and properties of the SP. Roughly speaking, 314 * the number of unique SPs that can theoretically be created is 2^n, where n 315 * is the number of bits that are used to compute the role. 316 * 317 * But, even though there are 20 bits in the mask below, not all combinations 318 * of modes and flags are possible: 319 * 320 * - invalid shadow pages are not accounted, mirror pages are not shadowed, 321 * so the bits are effectively 18. 322 * 323 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 324 * execonly and ad_disabled are only used for nested EPT which has 325 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 326 * 327 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 328 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 329 * paging has exactly one upper level, making level completely redundant 330 * when has_4_byte_gpte=1. 331 * 332 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 333 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 334 * 335 * Therefore, the maximum number of possible upper-level shadow pages for a 336 * single gfn is a bit less than 2^13. 337 */ 338 union kvm_mmu_page_role { 339 u32 word; 340 struct { 341 unsigned level:4; 342 unsigned has_4_byte_gpte:1; 343 unsigned quadrant:2; 344 unsigned direct:1; 345 unsigned access:3; 346 unsigned invalid:1; 347 unsigned efer_nx:1; 348 unsigned cr0_wp:1; 349 unsigned smep_andnot_wp:1; 350 unsigned smap_andnot_wp:1; 351 unsigned ad_disabled:1; 352 unsigned guest_mode:1; 353 unsigned passthrough:1; 354 unsigned is_mirror:1; 355 unsigned :4; 356 357 /* 358 * This is left at the top of the word so that 359 * kvm_memslots_for_spte_role can extract it with a 360 * simple shift. While there is room, give it a whole 361 * byte so it is also faster to load it from memory. 362 */ 363 unsigned smm:8; 364 }; 365 }; 366 367 /* 368 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 369 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 370 * including on nested transitions, if nothing in the full role changes then 371 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 372 * don't treat all-zero structure as valid data. 373 * 374 * The properties that are tracked in the extended role but not the page role 375 * are for things that either (a) do not affect the validity of the shadow page 376 * or (b) are indirectly reflected in the shadow page's role. For example, 377 * CR4.PKE only affects permission checks for software walks of the guest page 378 * tables (because KVM doesn't support Protection Keys with shadow paging), and 379 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 380 * 381 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 382 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 383 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 384 * SMAP aware regardless of CR0.WP. 385 */ 386 union kvm_mmu_extended_role { 387 u32 word; 388 struct { 389 unsigned int valid:1; 390 unsigned int execonly:1; 391 unsigned int cr4_pse:1; 392 unsigned int cr4_pke:1; 393 unsigned int cr4_smap:1; 394 unsigned int cr4_smep:1; 395 unsigned int cr4_la57:1; 396 unsigned int efer_lma:1; 397 }; 398 }; 399 400 union kvm_cpu_role { 401 u64 as_u64; 402 struct { 403 union kvm_mmu_page_role base; 404 union kvm_mmu_extended_role ext; 405 }; 406 }; 407 408 struct kvm_rmap_head { 409 atomic_long_t val; 410 }; 411 412 struct kvm_pio_request { 413 unsigned long linear_rip; 414 unsigned long count; 415 int in; 416 int port; 417 int size; 418 }; 419 420 #define PT64_ROOT_MAX_LEVEL 5 421 422 struct rsvd_bits_validate { 423 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 424 u64 bad_mt_xwr; 425 }; 426 427 struct kvm_mmu_root_info { 428 gpa_t pgd; 429 hpa_t hpa; 430 }; 431 432 #define KVM_MMU_ROOT_INFO_INVALID \ 433 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 434 435 #define KVM_MMU_NUM_PREV_ROOTS 3 436 437 #define KVM_MMU_ROOT_CURRENT BIT(0) 438 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 439 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 440 441 #define KVM_HAVE_MMU_RWLOCK 442 443 struct kvm_mmu_page; 444 struct kvm_page_fault; 445 446 /* 447 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 448 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 449 * current mmu mode. 450 */ 451 struct kvm_mmu { 452 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 453 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 454 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 455 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 456 struct x86_exception *fault); 457 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 458 gpa_t gva_or_gpa, u64 access, 459 struct x86_exception *exception); 460 int (*sync_spte)(struct kvm_vcpu *vcpu, 461 struct kvm_mmu_page *sp, int i); 462 struct kvm_mmu_root_info root; 463 hpa_t mirror_root_hpa; 464 union kvm_cpu_role cpu_role; 465 union kvm_mmu_page_role root_role; 466 467 /* 468 * The pkru_mask indicates if protection key checks are needed. It 469 * consists of 16 domains indexed by page fault error code bits [4:1], 470 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 471 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 472 */ 473 u32 pkru_mask; 474 475 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 476 477 /* 478 * Bitmap; bit set = permission fault 479 * Byte index: page fault error code [4:1] 480 * Bit index: pte permissions in ACC_* format 481 */ 482 u8 permissions[16]; 483 484 u64 *pae_root; 485 u64 *pml4_root; 486 u64 *pml5_root; 487 488 /* 489 * check zero bits on shadow page table entries, these 490 * bits include not only hardware reserved bits but also 491 * the bits spte never used. 492 */ 493 struct rsvd_bits_validate shadow_zero_check; 494 495 struct rsvd_bits_validate guest_rsvd_check; 496 497 u64 pdptrs[4]; /* pae */ 498 }; 499 500 enum pmc_type { 501 KVM_PMC_GP = 0, 502 KVM_PMC_FIXED, 503 }; 504 505 struct kvm_pmc { 506 enum pmc_type type; 507 u8 idx; 508 bool is_paused; 509 bool intr; 510 /* 511 * Base value of the PMC counter, relative to the *consumed* count in 512 * the associated perf_event. This value includes counter updates from 513 * the perf_event and emulated_count since the last time the counter 514 * was reprogrammed, but it is *not* the current value as seen by the 515 * guest or userspace. 516 * 517 * The count is relative to the associated perf_event so that KVM 518 * doesn't need to reprogram the perf_event every time the guest writes 519 * to the counter. 520 */ 521 u64 counter; 522 /* 523 * PMC events triggered by KVM emulation that haven't been fully 524 * processed, i.e. haven't undergone overflow detection. 525 */ 526 u64 emulated_counter; 527 u64 eventsel; 528 struct perf_event *perf_event; 529 struct kvm_vcpu *vcpu; 530 /* 531 * only for creating or reusing perf_event, 532 * eventsel value for general purpose counters, 533 * ctrl value for fixed counters. 534 */ 535 u64 current_config; 536 }; 537 538 /* More counters may conflict with other existing Architectural MSRs */ 539 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 540 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 541 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 542 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 543 KVM_MAX_NR_AMD_GP_COUNTERS) 544 545 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3 546 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0 547 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \ 548 KVM_MAX_NR_AMD_FIXED_COUTNERS) 549 550 struct kvm_pmu { 551 u8 version; 552 unsigned nr_arch_gp_counters; 553 unsigned nr_arch_fixed_counters; 554 unsigned available_event_types; 555 u64 fixed_ctr_ctrl; 556 u64 fixed_ctr_ctrl_rsvd; 557 u64 global_ctrl; 558 u64 global_status; 559 u64 counter_bitmask[2]; 560 u64 global_ctrl_rsvd; 561 u64 global_status_rsvd; 562 u64 reserved_bits; 563 u64 raw_event_mask; 564 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 565 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 566 567 /* 568 * Overlay the bitmap with a 64-bit atomic so that all bits can be 569 * set in a single access, e.g. to reprogram all counters when the PMU 570 * filter changes. 571 */ 572 union { 573 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 574 atomic64_t __reprogram_pmi; 575 }; 576 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 577 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 578 579 u64 ds_area; 580 u64 pebs_enable; 581 u64 pebs_enable_rsvd; 582 u64 pebs_data_cfg; 583 u64 pebs_data_cfg_rsvd; 584 585 /* 586 * If a guest counter is cross-mapped to host counter with different 587 * index, its PEBS capability will be temporarily disabled. 588 * 589 * The user should make sure that this mask is updated 590 * after disabling interrupts and before perf_guest_get_msrs(); 591 */ 592 u64 host_cross_mapped_mask; 593 594 /* 595 * The gate to release perf_events not marked in 596 * pmc_in_use only once in a vcpu time slice. 597 */ 598 bool need_cleanup; 599 600 /* 601 * The total number of programmed perf_events and it helps to avoid 602 * redundant check before cleanup if guest don't use vPMU at all. 603 */ 604 u8 event_count; 605 }; 606 607 struct kvm_pmu_ops; 608 609 enum { 610 KVM_DEBUGREG_BP_ENABLED = 1, 611 KVM_DEBUGREG_WONT_EXIT = 2, 612 }; 613 614 struct kvm_mtrr { 615 u64 var[KVM_NR_VAR_MTRR * 2]; 616 u64 fixed_64k; 617 u64 fixed_16k[2]; 618 u64 fixed_4k[8]; 619 u64 deftype; 620 }; 621 622 /* Hyper-V SynIC timer */ 623 struct kvm_vcpu_hv_stimer { 624 struct hrtimer timer; 625 int index; 626 union hv_stimer_config config; 627 u64 count; 628 u64 exp_time; 629 struct hv_message msg; 630 bool msg_pending; 631 }; 632 633 /* Hyper-V synthetic interrupt controller (SynIC)*/ 634 struct kvm_vcpu_hv_synic { 635 u64 version; 636 u64 control; 637 u64 msg_page; 638 u64 evt_page; 639 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 640 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 641 DECLARE_BITMAP(auto_eoi_bitmap, 256); 642 DECLARE_BITMAP(vec_bitmap, 256); 643 bool active; 644 bool dont_zero_synic_pages; 645 }; 646 647 /* The maximum number of entries on the TLB flush fifo. */ 648 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 649 /* 650 * Note: the following 'magic' entry is made up by KVM to avoid putting 651 * anything besides GVA on the TLB flush fifo. It is theoretically possible 652 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 653 * which will look identical. KVM's action to 'flush everything' instead of 654 * flushing these particular addresses is, however, fully legitimate as 655 * flushing more than requested is always OK. 656 */ 657 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 658 659 enum hv_tlb_flush_fifos { 660 HV_L1_TLB_FLUSH_FIFO, 661 HV_L2_TLB_FLUSH_FIFO, 662 HV_NR_TLB_FLUSH_FIFOS, 663 }; 664 665 struct kvm_vcpu_hv_tlb_flush_fifo { 666 spinlock_t write_lock; 667 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 668 }; 669 670 /* Hyper-V per vcpu emulation context */ 671 struct kvm_vcpu_hv { 672 struct kvm_vcpu *vcpu; 673 u32 vp_index; 674 u64 hv_vapic; 675 s64 runtime_offset; 676 struct kvm_vcpu_hv_synic synic; 677 struct kvm_hyperv_exit exit; 678 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 679 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 680 bool enforce_cpuid; 681 struct { 682 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 683 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 684 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 685 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 686 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 687 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 688 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 689 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 690 } cpuid_cache; 691 692 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 693 694 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 695 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 696 697 struct hv_vp_assist_page vp_assist_page; 698 699 struct { 700 u64 pa_page_gpa; 701 u64 vm_id; 702 u32 vp_id; 703 } nested; 704 }; 705 706 struct kvm_hypervisor_cpuid { 707 u32 base; 708 u32 limit; 709 }; 710 711 #ifdef CONFIG_KVM_XEN 712 /* Xen HVM per vcpu emulation context */ 713 struct kvm_vcpu_xen { 714 u64 hypercall_rip; 715 u32 current_runstate; 716 u8 upcall_vector; 717 struct gfn_to_pfn_cache vcpu_info_cache; 718 struct gfn_to_pfn_cache vcpu_time_info_cache; 719 struct gfn_to_pfn_cache runstate_cache; 720 struct gfn_to_pfn_cache runstate2_cache; 721 u64 last_steal; 722 u64 runstate_entry_time; 723 u64 runstate_times[4]; 724 unsigned long evtchn_pending_sel; 725 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 726 u32 timer_virq; 727 u64 timer_expires; /* In guest epoch */ 728 atomic_t timer_pending; 729 struct hrtimer timer; 730 int poll_evtchn; 731 struct timer_list poll_timer; 732 struct kvm_hypervisor_cpuid cpuid; 733 }; 734 #endif 735 736 struct kvm_queued_exception { 737 bool pending; 738 bool injected; 739 bool has_error_code; 740 u8 vector; 741 u32 error_code; 742 unsigned long payload; 743 bool has_payload; 744 }; 745 746 /* 747 * Hardware-defined CPUID leafs that are either scattered by the kernel or are 748 * unknown to the kernel, but need to be directly used by KVM. Note, these 749 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those. 750 */ 751 enum kvm_only_cpuid_leafs { 752 CPUID_12_EAX = NCAPINTS, 753 CPUID_7_1_EDX, 754 CPUID_8000_0007_EDX, 755 CPUID_8000_0022_EAX, 756 CPUID_7_2_EDX, 757 CPUID_24_0_EBX, 758 NR_KVM_CPU_CAPS, 759 760 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, 761 }; 762 763 struct kvm_vcpu_arch { 764 /* 765 * rip and regs accesses must go through 766 * kvm_{register,rip}_{read,write} functions. 767 */ 768 unsigned long regs[NR_VCPU_REGS]; 769 u32 regs_avail; 770 u32 regs_dirty; 771 772 unsigned long cr0; 773 unsigned long cr0_guest_owned_bits; 774 unsigned long cr2; 775 unsigned long cr3; 776 unsigned long cr4; 777 unsigned long cr4_guest_owned_bits; 778 unsigned long cr4_guest_rsvd_bits; 779 unsigned long cr8; 780 u32 host_pkru; 781 u32 pkru; 782 u32 hflags; 783 u64 efer; 784 u64 host_debugctl; 785 u64 apic_base; 786 struct kvm_lapic *apic; /* kernel irqchip context */ 787 bool load_eoi_exitmap_pending; 788 DECLARE_BITMAP(ioapic_handled_vectors, 256); 789 unsigned long apic_attention; 790 int32_t apic_arb_prio; 791 int mp_state; 792 u64 ia32_misc_enable_msr; 793 u64 smbase; 794 u64 smi_count; 795 bool at_instruction_boundary; 796 bool tpr_access_reporting; 797 bool xfd_no_write_intercept; 798 u64 ia32_xss; 799 u64 microcode_version; 800 u64 arch_capabilities; 801 u64 perf_capabilities; 802 803 /* 804 * Paging state of the vcpu 805 * 806 * If the vcpu runs in guest mode with two level paging this still saves 807 * the paging mode of the l1 guest. This context is always used to 808 * handle faults. 809 */ 810 struct kvm_mmu *mmu; 811 812 /* Non-nested MMU for L1 */ 813 struct kvm_mmu root_mmu; 814 815 /* L1 MMU when running nested */ 816 struct kvm_mmu guest_mmu; 817 818 /* 819 * Paging state of an L2 guest (used for nested npt) 820 * 821 * This context will save all necessary information to walk page tables 822 * of an L2 guest. This context is only initialized for page table 823 * walking and not for faulting since we never handle l2 page faults on 824 * the host. 825 */ 826 struct kvm_mmu nested_mmu; 827 828 /* 829 * Pointer to the mmu context currently used for 830 * gva_to_gpa translations. 831 */ 832 struct kvm_mmu *walk_mmu; 833 834 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 835 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 836 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 837 struct kvm_mmu_memory_cache mmu_page_header_cache; 838 /* 839 * This cache is to allocate external page table. E.g. private EPT used 840 * by the TDX module. 841 */ 842 struct kvm_mmu_memory_cache mmu_external_spt_cache; 843 844 /* 845 * QEMU userspace and the guest each have their own FPU state. 846 * In vcpu_run, we switch between the user and guest FPU contexts. 847 * While running a VCPU, the VCPU thread will have the guest FPU 848 * context. 849 * 850 * Note that while the PKRU state lives inside the fpu registers, 851 * it is switched out separately at VMENTER and VMEXIT time. The 852 * "guest_fpstate" state here contains the guest FPU context, with the 853 * host PRKU bits. 854 */ 855 struct fpu_guest guest_fpu; 856 857 u64 xcr0; 858 u64 guest_supported_xcr0; 859 860 struct kvm_pio_request pio; 861 void *pio_data; 862 void *sev_pio_data; 863 unsigned sev_pio_count; 864 865 u8 event_exit_inst_len; 866 867 bool exception_from_userspace; 868 869 /* Exceptions to be injected to the guest. */ 870 struct kvm_queued_exception exception; 871 /* Exception VM-Exits to be synthesized to L1. */ 872 struct kvm_queued_exception exception_vmexit; 873 874 struct kvm_queued_interrupt { 875 bool injected; 876 bool soft; 877 u8 nr; 878 } interrupt; 879 880 int halt_request; /* real mode on Intel only */ 881 882 int cpuid_nent; 883 struct kvm_cpuid_entry2 *cpuid_entries; 884 bool cpuid_dynamic_bits_dirty; 885 bool is_amd_compatible; 886 887 /* 888 * cpu_caps holds the effective guest capabilities, i.e. the features 889 * the vCPU is allowed to use. Typically, but not always, features can 890 * be used by the guest if and only if both KVM and userspace want to 891 * expose the feature to the guest. 892 * 893 * A common exception is for virtualization holes, i.e. when KVM can't 894 * prevent the guest from using a feature, in which case the vCPU "has" 895 * the feature regardless of what KVM or userspace desires. 896 * 897 * Note, features that don't require KVM involvement in any way are 898 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the 899 * guest CPUID provided by userspace. 900 */ 901 u32 cpu_caps[NR_KVM_CPU_CAPS]; 902 903 u64 reserved_gpa_bits; 904 int maxphyaddr; 905 906 /* emulate context */ 907 908 struct x86_emulate_ctxt *emulate_ctxt; 909 bool emulate_regs_need_sync_to_vcpu; 910 bool emulate_regs_need_sync_from_vcpu; 911 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 912 913 gpa_t time; 914 s8 pvclock_tsc_shift; 915 u32 pvclock_tsc_mul; 916 unsigned int hw_tsc_khz; 917 struct gfn_to_pfn_cache pv_time; 918 /* set guest stopped flag in pvclock flags field */ 919 bool pvclock_set_guest_stopped_request; 920 921 struct { 922 u8 preempted; 923 u64 msr_val; 924 u64 last_steal; 925 struct gfn_to_hva_cache cache; 926 } st; 927 928 u64 l1_tsc_offset; 929 u64 tsc_offset; /* current tsc offset */ 930 u64 last_guest_tsc; 931 u64 last_host_tsc; 932 u64 tsc_offset_adjustment; 933 u64 this_tsc_nsec; 934 u64 this_tsc_write; 935 u64 this_tsc_generation; 936 bool tsc_catchup; 937 bool tsc_always_catchup; 938 s8 virtual_tsc_shift; 939 u32 virtual_tsc_mult; 940 u32 virtual_tsc_khz; 941 s64 ia32_tsc_adjust_msr; 942 u64 msr_ia32_power_ctl; 943 u64 l1_tsc_scaling_ratio; 944 u64 tsc_scaling_ratio; /* current scaling ratio */ 945 946 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 947 /* Number of NMIs pending injection, not including hardware vNMIs. */ 948 unsigned int nmi_pending; 949 bool nmi_injected; /* Trying to inject an NMI this entry */ 950 bool smi_pending; /* SMI queued after currently running handler */ 951 u8 handling_intr_from_guest; 952 953 struct kvm_mtrr mtrr_state; 954 u64 pat; 955 956 unsigned switch_db_regs; 957 unsigned long db[KVM_NR_DB_REGS]; 958 unsigned long dr6; 959 unsigned long dr7; 960 unsigned long eff_db[KVM_NR_DB_REGS]; 961 unsigned long guest_debug_dr7; 962 u64 msr_platform_info; 963 u64 msr_misc_features_enables; 964 965 u64 mcg_cap; 966 u64 mcg_status; 967 u64 mcg_ctl; 968 u64 mcg_ext_ctl; 969 u64 *mce_banks; 970 u64 *mci_ctl2_banks; 971 972 /* Cache MMIO info */ 973 u64 mmio_gva; 974 unsigned mmio_access; 975 gfn_t mmio_gfn; 976 u64 mmio_gen; 977 978 struct kvm_pmu pmu; 979 980 /* used for guest single stepping over the given code position */ 981 unsigned long singlestep_rip; 982 983 #ifdef CONFIG_KVM_HYPERV 984 bool hyperv_enabled; 985 struct kvm_vcpu_hv *hyperv; 986 #endif 987 #ifdef CONFIG_KVM_XEN 988 struct kvm_vcpu_xen xen; 989 #endif 990 cpumask_var_t wbinvd_dirty_mask; 991 992 unsigned long last_retry_eip; 993 unsigned long last_retry_addr; 994 995 struct { 996 bool halted; 997 gfn_t gfns[ASYNC_PF_PER_VCPU]; 998 struct gfn_to_hva_cache data; 999 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 1000 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 1001 u16 vec; 1002 u32 id; 1003 u32 host_apf_flags; 1004 bool send_always; 1005 bool delivery_as_pf_vmexit; 1006 bool pageready_pending; 1007 } apf; 1008 1009 /* OSVW MSRs (AMD only) */ 1010 struct { 1011 u64 length; 1012 u64 status; 1013 } osvw; 1014 1015 struct { 1016 u64 msr_val; 1017 struct gfn_to_hva_cache data; 1018 } pv_eoi; 1019 1020 u64 msr_kvm_poll_control; 1021 1022 /* pv related host specific info */ 1023 struct { 1024 bool pv_unhalted; 1025 } pv; 1026 1027 int pending_ioapic_eoi; 1028 int pending_external_vector; 1029 1030 /* be preempted when it's in kernel-mode(cpl=0) */ 1031 bool preempted_in_kernel; 1032 1033 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1034 bool l1tf_flush_l1d; 1035 1036 /* Host CPU on which VM-entry was most recently attempted */ 1037 int last_vmentry_cpu; 1038 1039 /* AMD MSRC001_0015 Hardware Configuration */ 1040 u64 msr_hwcr; 1041 1042 /* pv related cpuid info */ 1043 struct { 1044 /* 1045 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1046 * leaf. 1047 */ 1048 u32 features; 1049 1050 /* 1051 * indicates whether pv emulation should be disabled if features 1052 * are not present in the guest's cpuid 1053 */ 1054 bool enforce; 1055 } pv_cpuid; 1056 1057 /* Protected Guests */ 1058 bool guest_state_protected; 1059 bool guest_tsc_protected; 1060 1061 /* 1062 * Set when PDPTS were loaded directly by the userspace without 1063 * reading the guest memory 1064 */ 1065 bool pdptrs_from_userspace; 1066 1067 #if IS_ENABLED(CONFIG_HYPERV) 1068 hpa_t hv_root_tdp; 1069 #endif 1070 }; 1071 1072 struct kvm_lpage_info { 1073 int disallow_lpage; 1074 }; 1075 1076 struct kvm_arch_memory_slot { 1077 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1078 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1079 unsigned short *gfn_write_track; 1080 }; 1081 1082 /* 1083 * Track the mode of the optimized logical map, as the rules for decoding the 1084 * destination vary per mode. Enabling the optimized logical map requires all 1085 * software-enabled local APIs to be in the same mode, each addressable APIC to 1086 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1087 */ 1088 enum kvm_apic_logical_mode { 1089 /* All local APICs are software disabled. */ 1090 KVM_APIC_MODE_SW_DISABLED, 1091 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1092 KVM_APIC_MODE_XAPIC_CLUSTER, 1093 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1094 KVM_APIC_MODE_XAPIC_FLAT, 1095 /* All software enabled local APICs in x2APIC mode. */ 1096 KVM_APIC_MODE_X2APIC, 1097 /* 1098 * Optimized map disabled, e.g. not all local APICs in the same logical 1099 * mode, same logical ID assigned to multiple APICs, etc. 1100 */ 1101 KVM_APIC_MODE_MAP_DISABLED, 1102 }; 1103 1104 struct kvm_apic_map { 1105 struct rcu_head rcu; 1106 enum kvm_apic_logical_mode logical_mode; 1107 u32 max_apic_id; 1108 union { 1109 struct kvm_lapic *xapic_flat_map[8]; 1110 struct kvm_lapic *xapic_cluster_map[16][4]; 1111 }; 1112 struct kvm_lapic *phys_map[]; 1113 }; 1114 1115 /* Hyper-V synthetic debugger (SynDbg)*/ 1116 struct kvm_hv_syndbg { 1117 struct { 1118 u64 control; 1119 u64 status; 1120 u64 send_page; 1121 u64 recv_page; 1122 u64 pending_page; 1123 } control; 1124 u64 options; 1125 }; 1126 1127 /* Current state of Hyper-V TSC page clocksource */ 1128 enum hv_tsc_page_status { 1129 /* TSC page was not set up or disabled */ 1130 HV_TSC_PAGE_UNSET = 0, 1131 /* TSC page MSR was written by the guest, update pending */ 1132 HV_TSC_PAGE_GUEST_CHANGED, 1133 /* TSC page update was triggered from the host side */ 1134 HV_TSC_PAGE_HOST_CHANGED, 1135 /* TSC page was properly set up and is currently active */ 1136 HV_TSC_PAGE_SET, 1137 /* TSC page was set up with an inaccessible GPA */ 1138 HV_TSC_PAGE_BROKEN, 1139 }; 1140 1141 #ifdef CONFIG_KVM_HYPERV 1142 /* Hyper-V emulation context */ 1143 struct kvm_hv { 1144 struct mutex hv_lock; 1145 u64 hv_guest_os_id; 1146 u64 hv_hypercall; 1147 u64 hv_tsc_page; 1148 enum hv_tsc_page_status hv_tsc_page_status; 1149 1150 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1151 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1152 u64 hv_crash_ctl; 1153 1154 struct ms_hyperv_tsc_page tsc_ref; 1155 1156 struct idr conn_to_evt; 1157 1158 u64 hv_reenlightenment_control; 1159 u64 hv_tsc_emulation_control; 1160 u64 hv_tsc_emulation_status; 1161 u64 hv_invtsc_control; 1162 1163 /* How many vCPUs have VP index != vCPU index */ 1164 atomic_t num_mismatched_vp_indexes; 1165 1166 /* 1167 * How many SynICs use 'AutoEOI' feature 1168 * (protected by arch.apicv_update_lock) 1169 */ 1170 unsigned int synic_auto_eoi_used; 1171 1172 struct kvm_hv_syndbg hv_syndbg; 1173 1174 bool xsaves_xsavec_checked; 1175 }; 1176 #endif 1177 1178 struct msr_bitmap_range { 1179 u32 flags; 1180 u32 nmsrs; 1181 u32 base; 1182 unsigned long *bitmap; 1183 }; 1184 1185 #ifdef CONFIG_KVM_XEN 1186 /* Xen emulation context */ 1187 struct kvm_xen { 1188 struct mutex xen_lock; 1189 u32 xen_version; 1190 bool long_mode; 1191 bool runstate_update_flag; 1192 u8 upcall_vector; 1193 struct gfn_to_pfn_cache shinfo_cache; 1194 struct idr evtchn_ports; 1195 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1196 1197 struct kvm_xen_hvm_config hvm_config; 1198 }; 1199 #endif 1200 1201 enum kvm_irqchip_mode { 1202 KVM_IRQCHIP_NONE, 1203 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1204 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1205 }; 1206 1207 struct kvm_x86_msr_filter { 1208 u8 count; 1209 bool default_allow:1; 1210 struct msr_bitmap_range ranges[16]; 1211 }; 1212 1213 struct kvm_x86_pmu_event_filter { 1214 __u32 action; 1215 __u32 nevents; 1216 __u32 fixed_counter_bitmap; 1217 __u32 flags; 1218 __u32 nr_includes; 1219 __u32 nr_excludes; 1220 __u64 *includes; 1221 __u64 *excludes; 1222 __u64 events[]; 1223 }; 1224 1225 enum kvm_apicv_inhibit { 1226 1227 /********************************************************************/ 1228 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1229 /********************************************************************/ 1230 1231 /* 1232 * APIC acceleration is disabled by a module parameter 1233 * and/or not supported in hardware. 1234 */ 1235 APICV_INHIBIT_REASON_DISABLED, 1236 1237 /* 1238 * APIC acceleration is inhibited because AutoEOI feature is 1239 * being used by a HyperV guest. 1240 */ 1241 APICV_INHIBIT_REASON_HYPERV, 1242 1243 /* 1244 * APIC acceleration is inhibited because the userspace didn't yet 1245 * enable the kernel/split irqchip. 1246 */ 1247 APICV_INHIBIT_REASON_ABSENT, 1248 1249 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1250 * (out of band, debug measure of blocking all interrupts on this vCPU) 1251 * was enabled, to avoid AVIC/APICv bypassing it. 1252 */ 1253 APICV_INHIBIT_REASON_BLOCKIRQ, 1254 1255 /* 1256 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1257 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1258 */ 1259 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1260 1261 /* 1262 * For simplicity, the APIC acceleration is inhibited 1263 * first time either APIC ID or APIC base are changed by the guest 1264 * from their reset values. 1265 */ 1266 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1267 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1268 1269 /******************************************************/ 1270 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1271 /******************************************************/ 1272 1273 /* 1274 * AVIC is inhibited on a vCPU because it runs a nested guest. 1275 * 1276 * This is needed because unlike APICv, the peers of this vCPU 1277 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1278 * a vCPU runs nested. 1279 */ 1280 APICV_INHIBIT_REASON_NESTED, 1281 1282 /* 1283 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1284 * which cannot be injected when the AVIC is enabled, thus AVIC 1285 * is inhibited while KVM waits for IRQ window. 1286 */ 1287 APICV_INHIBIT_REASON_IRQWIN, 1288 1289 /* 1290 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1291 * which AVIC doesn't support for edge triggered interrupts. 1292 */ 1293 APICV_INHIBIT_REASON_PIT_REINJ, 1294 1295 /* 1296 * AVIC is disabled because SEV doesn't support it. 1297 */ 1298 APICV_INHIBIT_REASON_SEV, 1299 1300 /* 1301 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1302 * mapping between logical ID and vCPU. 1303 */ 1304 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1305 1306 NR_APICV_INHIBIT_REASONS, 1307 }; 1308 1309 #define __APICV_INHIBIT_REASON(reason) \ 1310 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1311 1312 #define APICV_INHIBIT_REASONS \ 1313 __APICV_INHIBIT_REASON(DISABLED), \ 1314 __APICV_INHIBIT_REASON(HYPERV), \ 1315 __APICV_INHIBIT_REASON(ABSENT), \ 1316 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1317 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1318 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1319 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1320 __APICV_INHIBIT_REASON(NESTED), \ 1321 __APICV_INHIBIT_REASON(IRQWIN), \ 1322 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1323 __APICV_INHIBIT_REASON(SEV), \ 1324 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED) 1325 1326 struct kvm_arch { 1327 unsigned long n_used_mmu_pages; 1328 unsigned long n_requested_mmu_pages; 1329 unsigned long n_max_mmu_pages; 1330 unsigned int indirect_shadow_pages; 1331 u8 mmu_valid_gen; 1332 u8 vm_type; 1333 bool has_private_mem; 1334 bool has_protected_state; 1335 bool pre_fault_allowed; 1336 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1337 struct list_head active_mmu_pages; 1338 /* 1339 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1340 * replaced by an NX huge page. A shadow page is on this list if its 1341 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1342 * and there are no other conditions that prevent a huge page, e.g. 1343 * the backing host page is huge, dirtly logging is not enabled for its 1344 * memslot, etc... Note, zapping shadow pages on this list doesn't 1345 * guarantee an NX huge page will be created in its stead, e.g. if the 1346 * guest attempts to execute from the region then KVM obviously can't 1347 * create an NX huge page (without hanging the guest). 1348 */ 1349 struct list_head possible_nx_huge_pages; 1350 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1351 struct kvm_page_track_notifier_head track_notifier_head; 1352 #endif 1353 /* 1354 * Protects marking pages unsync during page faults, as TDP MMU page 1355 * faults only take mmu_lock for read. For simplicity, the unsync 1356 * pages lock is always taken when marking pages unsync regardless of 1357 * whether mmu_lock is held for read or write. 1358 */ 1359 spinlock_t mmu_unsync_pages_lock; 1360 1361 u64 shadow_mmio_value; 1362 1363 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1364 atomic_t noncoherent_dma_count; 1365 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1366 atomic_t assigned_device_count; 1367 struct kvm_pic *vpic; 1368 struct kvm_ioapic *vioapic; 1369 struct kvm_pit *vpit; 1370 atomic_t vapics_in_nmi_mode; 1371 struct mutex apic_map_lock; 1372 struct kvm_apic_map __rcu *apic_map; 1373 atomic_t apic_map_dirty; 1374 1375 bool apic_access_memslot_enabled; 1376 bool apic_access_memslot_inhibited; 1377 1378 /* Protects apicv_inhibit_reasons */ 1379 struct rw_semaphore apicv_update_lock; 1380 unsigned long apicv_inhibit_reasons; 1381 1382 gpa_t wall_clock; 1383 1384 bool mwait_in_guest; 1385 bool hlt_in_guest; 1386 bool pause_in_guest; 1387 bool cstate_in_guest; 1388 1389 unsigned long irq_sources_bitmap; 1390 s64 kvmclock_offset; 1391 1392 /* 1393 * This also protects nr_vcpus_matched_tsc which is read from a 1394 * preemption-disabled region, so it must be a raw spinlock. 1395 */ 1396 raw_spinlock_t tsc_write_lock; 1397 u64 last_tsc_nsec; 1398 u64 last_tsc_write; 1399 u32 last_tsc_khz; 1400 u64 last_tsc_offset; 1401 u64 cur_tsc_nsec; 1402 u64 cur_tsc_write; 1403 u64 cur_tsc_offset; 1404 u64 cur_tsc_generation; 1405 int nr_vcpus_matched_tsc; 1406 1407 u32 default_tsc_khz; 1408 bool user_set_tsc; 1409 u64 apic_bus_cycle_ns; 1410 1411 seqcount_raw_spinlock_t pvclock_sc; 1412 bool use_master_clock; 1413 u64 master_kernel_ns; 1414 u64 master_cycle_now; 1415 struct delayed_work kvmclock_update_work; 1416 struct delayed_work kvmclock_sync_work; 1417 1418 /* reads protected by irq_srcu, writes by irq_lock */ 1419 struct hlist_head mask_notifier_list; 1420 1421 #ifdef CONFIG_KVM_HYPERV 1422 struct kvm_hv hyperv; 1423 #endif 1424 1425 #ifdef CONFIG_KVM_XEN 1426 struct kvm_xen xen; 1427 #endif 1428 1429 bool backwards_tsc_observed; 1430 bool boot_vcpu_runs_old_kvmclock; 1431 u32 bsp_vcpu_id; 1432 1433 u64 disabled_quirks; 1434 1435 enum kvm_irqchip_mode irqchip_mode; 1436 u8 nr_reserved_ioapic_pins; 1437 1438 bool disabled_lapic_found; 1439 1440 bool x2apic_format; 1441 bool x2apic_broadcast_quirk_disabled; 1442 1443 bool guest_can_read_msr_platform_info; 1444 bool exception_payload_enabled; 1445 1446 bool triple_fault_event; 1447 1448 bool bus_lock_detection_enabled; 1449 bool enable_pmu; 1450 1451 u32 notify_window; 1452 u32 notify_vmexit_flags; 1453 /* 1454 * If exit_on_emulation_error is set, and the in-kernel instruction 1455 * emulator fails to emulate an instruction, allow userspace 1456 * the opportunity to look at it. 1457 */ 1458 bool exit_on_emulation_error; 1459 1460 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1461 u32 user_space_msr_mask; 1462 struct kvm_x86_msr_filter __rcu *msr_filter; 1463 1464 u32 hypercall_exit_enabled; 1465 1466 /* Guest can access the SGX PROVISIONKEY. */ 1467 bool sgx_provisioning_allowed; 1468 1469 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1470 struct vhost_task *nx_huge_page_recovery_thread; 1471 u64 nx_huge_page_last; 1472 struct once nx_once; 1473 1474 #ifdef CONFIG_X86_64 1475 /* The number of TDP MMU pages across all roots. */ 1476 atomic64_t tdp_mmu_pages; 1477 1478 /* 1479 * List of struct kvm_mmu_pages being used as roots. 1480 * All struct kvm_mmu_pages in the list should have 1481 * tdp_mmu_page set. 1482 * 1483 * For reads, this list is protected by: 1484 * RCU alone or 1485 * the MMU lock in read mode + RCU or 1486 * the MMU lock in write mode 1487 * 1488 * For writes, this list is protected by tdp_mmu_pages_lock; see 1489 * below for the details. 1490 * 1491 * Roots will remain in the list until their tdp_mmu_root_count 1492 * drops to zero, at which point the thread that decremented the 1493 * count to zero should removed the root from the list and clean 1494 * it up, freeing the root after an RCU grace period. 1495 */ 1496 struct list_head tdp_mmu_roots; 1497 1498 /* 1499 * Protects accesses to the following fields when the MMU lock 1500 * is held in read mode: 1501 * - tdp_mmu_roots (above) 1502 * - the link field of kvm_mmu_page structs used by the TDP MMU 1503 * - possible_nx_huge_pages; 1504 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1505 * by the TDP MMU 1506 * Because the lock is only taken within the MMU lock, strictly 1507 * speaking it is redundant to acquire this lock when the thread 1508 * holds the MMU lock in write mode. However it often simplifies 1509 * the code to do so. 1510 */ 1511 spinlock_t tdp_mmu_pages_lock; 1512 #endif /* CONFIG_X86_64 */ 1513 1514 /* 1515 * If set, at least one shadow root has been allocated. This flag 1516 * is used as one input when determining whether certain memslot 1517 * related allocations are necessary. 1518 */ 1519 bool shadow_root_allocated; 1520 1521 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1522 /* 1523 * If set, the VM has (or had) an external write tracking user, and 1524 * thus all write tracking metadata has been allocated, even if KVM 1525 * itself isn't using write tracking. 1526 */ 1527 bool external_write_tracking_enabled; 1528 #endif 1529 1530 #if IS_ENABLED(CONFIG_HYPERV) 1531 hpa_t hv_root_tdp; 1532 spinlock_t hv_root_tdp_lock; 1533 struct hv_partition_assist_pg *hv_pa_pg; 1534 #endif 1535 /* 1536 * VM-scope maximum vCPU ID. Used to determine the size of structures 1537 * that increase along with the maximum vCPU ID, in which case, using 1538 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1539 */ 1540 u32 max_vcpu_ids; 1541 1542 bool disable_nx_huge_pages; 1543 1544 /* 1545 * Memory caches used to allocate shadow pages when performing eager 1546 * page splitting. No need for a shadowed_info_cache since eager page 1547 * splitting only allocates direct shadow pages. 1548 * 1549 * Protected by kvm->slots_lock. 1550 */ 1551 struct kvm_mmu_memory_cache split_shadow_page_cache; 1552 struct kvm_mmu_memory_cache split_page_header_cache; 1553 1554 /* 1555 * Memory cache used to allocate pte_list_desc structs while splitting 1556 * huge pages. In the worst case, to split one huge page, 512 1557 * pte_list_desc structs are needed to add each lower level leaf sptep 1558 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1559 * page table. 1560 * 1561 * Protected by kvm->slots_lock. 1562 */ 1563 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1564 struct kvm_mmu_memory_cache split_desc_cache; 1565 1566 gfn_t gfn_direct_bits; 1567 }; 1568 1569 struct kvm_vm_stat { 1570 struct kvm_vm_stat_generic generic; 1571 u64 mmu_shadow_zapped; 1572 u64 mmu_pte_write; 1573 u64 mmu_pde_zapped; 1574 u64 mmu_flooded; 1575 u64 mmu_recycled; 1576 u64 mmu_cache_miss; 1577 u64 mmu_unsync; 1578 union { 1579 struct { 1580 atomic64_t pages_4k; 1581 atomic64_t pages_2m; 1582 atomic64_t pages_1g; 1583 }; 1584 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1585 }; 1586 u64 nx_lpage_splits; 1587 u64 max_mmu_page_hash_collisions; 1588 u64 max_mmu_rmap_size; 1589 }; 1590 1591 struct kvm_vcpu_stat { 1592 struct kvm_vcpu_stat_generic generic; 1593 u64 pf_taken; 1594 u64 pf_fixed; 1595 u64 pf_emulate; 1596 u64 pf_spurious; 1597 u64 pf_fast; 1598 u64 pf_mmio_spte_created; 1599 u64 pf_guest; 1600 u64 tlb_flush; 1601 u64 invlpg; 1602 1603 u64 exits; 1604 u64 io_exits; 1605 u64 mmio_exits; 1606 u64 signal_exits; 1607 u64 irq_window_exits; 1608 u64 nmi_window_exits; 1609 u64 l1d_flush; 1610 u64 halt_exits; 1611 u64 request_irq_exits; 1612 u64 irq_exits; 1613 u64 host_state_reload; 1614 u64 fpu_reload; 1615 u64 insn_emulation; 1616 u64 insn_emulation_fail; 1617 u64 hypercalls; 1618 u64 irq_injections; 1619 u64 nmi_injections; 1620 u64 req_event; 1621 u64 nested_run; 1622 u64 directed_yield_attempted; 1623 u64 directed_yield_successful; 1624 u64 preemption_reported; 1625 u64 preemption_other; 1626 u64 guest_mode; 1627 u64 notify_window_exits; 1628 }; 1629 1630 struct x86_instruction_info; 1631 1632 struct msr_data { 1633 bool host_initiated; 1634 u32 index; 1635 u64 data; 1636 }; 1637 1638 struct kvm_lapic_irq { 1639 u32 vector; 1640 u16 delivery_mode; 1641 u16 dest_mode; 1642 bool level; 1643 u16 trig_mode; 1644 u32 shorthand; 1645 u32 dest_id; 1646 bool msi_redir_hint; 1647 }; 1648 1649 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1650 { 1651 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1652 } 1653 1654 struct kvm_x86_ops { 1655 const char *name; 1656 1657 int (*check_processor_compatibility)(void); 1658 1659 int (*enable_virtualization_cpu)(void); 1660 void (*disable_virtualization_cpu)(void); 1661 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1662 1663 void (*hardware_unsetup)(void); 1664 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1665 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1666 1667 unsigned int vm_size; 1668 int (*vm_init)(struct kvm *kvm); 1669 void (*vm_destroy)(struct kvm *kvm); 1670 1671 /* Create, but do not attach this VCPU */ 1672 int (*vcpu_precreate)(struct kvm *kvm); 1673 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1674 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1675 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1676 1677 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1678 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1679 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1680 1681 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1682 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1683 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1684 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1685 void (*get_segment)(struct kvm_vcpu *vcpu, 1686 struct kvm_segment *var, int seg); 1687 int (*get_cpl)(struct kvm_vcpu *vcpu); 1688 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu); 1689 void (*set_segment)(struct kvm_vcpu *vcpu, 1690 struct kvm_segment *var, int seg); 1691 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1692 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1693 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1694 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1695 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1696 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1697 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1698 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1699 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1700 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1701 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1702 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1703 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value); 1704 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1705 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1706 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1707 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1708 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1709 1710 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1711 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1712 #if IS_ENABLED(CONFIG_HYPERV) 1713 int (*flush_remote_tlbs)(struct kvm *kvm); 1714 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1715 gfn_t nr_pages); 1716 #endif 1717 1718 /* 1719 * Flush any TLB entries associated with the given GVA. 1720 * Does not need to flush GPA->HPA mappings. 1721 * Can potentially get non-canonical addresses through INVLPGs, which 1722 * the implementation may choose to ignore if appropriate. 1723 */ 1724 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1725 1726 /* 1727 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1728 * does not need to flush GPA->HPA mappings. 1729 */ 1730 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1731 1732 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1733 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1734 bool force_immediate_exit); 1735 int (*handle_exit)(struct kvm_vcpu *vcpu, 1736 enum exit_fastpath_completion exit_fastpath); 1737 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1738 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1739 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1740 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1741 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1742 unsigned char *hypercall_addr); 1743 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1744 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1745 void (*inject_exception)(struct kvm_vcpu *vcpu); 1746 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1747 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1748 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1749 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1750 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1751 /* Whether or not a virtual NMI is pending in hardware. */ 1752 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1753 /* 1754 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1755 * to allow using static_call_ret0 as the fallback. 1756 */ 1757 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1758 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1759 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1760 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1761 1762 const bool x2apic_icr_is_split; 1763 const unsigned long required_apicv_inhibits; 1764 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1765 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1766 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1767 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1768 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1769 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1770 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1771 int trig_mode, int vector); 1772 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1773 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1774 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1775 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1776 1777 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1778 int root_level); 1779 1780 /* Update external mapping with page table link. */ 1781 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1782 void *external_spt); 1783 /* Update the external page table from spte getting set. */ 1784 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1785 kvm_pfn_t pfn_for_gfn); 1786 1787 /* Update external page tables for page table about to be freed. */ 1788 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1789 void *external_spt); 1790 1791 /* Update external page table from spte getting removed, and flush TLB. */ 1792 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1793 kvm_pfn_t pfn_for_gfn); 1794 1795 bool (*has_wbinvd_exit)(void); 1796 1797 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1798 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1799 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1800 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1801 1802 /* 1803 * Retrieve somewhat arbitrary exit/entry information. Intended to 1804 * be used only from within tracepoints or error paths. 1805 */ 1806 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1807 u64 *info1, u64 *info2, 1808 u32 *intr_info, u32 *error_code); 1809 1810 void (*get_entry_info)(struct kvm_vcpu *vcpu, 1811 u32 *intr_info, u32 *error_code); 1812 1813 int (*check_intercept)(struct kvm_vcpu *vcpu, 1814 struct x86_instruction_info *info, 1815 enum x86_intercept_stage stage, 1816 struct x86_exception *exception); 1817 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1818 1819 /* 1820 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1821 * value indicates CPU dirty logging is unsupported or disabled. 1822 */ 1823 int cpu_dirty_log_size; 1824 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1825 1826 const struct kvm_x86_nested_ops *nested_ops; 1827 1828 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1829 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1830 1831 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1832 uint32_t guest_irq, bool set); 1833 void (*pi_start_assignment)(struct kvm *kvm); 1834 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1835 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1836 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1837 1838 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1839 bool *expired); 1840 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1841 1842 void (*setup_mce)(struct kvm_vcpu *vcpu); 1843 1844 #ifdef CONFIG_KVM_SMM 1845 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1846 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1847 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1848 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1849 #endif 1850 1851 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1852 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1853 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1854 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1855 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1856 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1857 void (*guest_memory_reclaimed)(struct kvm *kvm); 1858 1859 int (*get_feature_msr)(u32 msr, u64 *data); 1860 1861 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1862 void *insn, int insn_len); 1863 1864 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1865 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1866 1867 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1868 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1869 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1870 1871 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1872 1873 /* 1874 * Returns vCPU specific APICv inhibit reasons 1875 */ 1876 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1877 1878 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1879 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1880 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1881 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1882 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn); 1883 }; 1884 1885 struct kvm_x86_nested_ops { 1886 void (*leave_nested)(struct kvm_vcpu *vcpu); 1887 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1888 u32 error_code); 1889 int (*check_events)(struct kvm_vcpu *vcpu); 1890 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1891 void (*triple_fault)(struct kvm_vcpu *vcpu); 1892 int (*get_state)(struct kvm_vcpu *vcpu, 1893 struct kvm_nested_state __user *user_kvm_nested_state, 1894 unsigned user_data_size); 1895 int (*set_state)(struct kvm_vcpu *vcpu, 1896 struct kvm_nested_state __user *user_kvm_nested_state, 1897 struct kvm_nested_state *kvm_state); 1898 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1899 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1900 1901 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1902 uint16_t *vmcs_version); 1903 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1904 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1905 }; 1906 1907 struct kvm_x86_init_ops { 1908 int (*hardware_setup)(void); 1909 unsigned int (*handle_intel_pt_intr)(void); 1910 1911 struct kvm_x86_ops *runtime_ops; 1912 struct kvm_pmu_ops *pmu_ops; 1913 }; 1914 1915 struct kvm_arch_async_pf { 1916 u32 token; 1917 gfn_t gfn; 1918 unsigned long cr3; 1919 bool direct_map; 1920 u64 error_code; 1921 }; 1922 1923 extern u32 __read_mostly kvm_nr_uret_msrs; 1924 extern bool __read_mostly allow_smaller_maxphyaddr; 1925 extern bool __read_mostly enable_apicv; 1926 extern struct kvm_x86_ops kvm_x86_ops; 1927 1928 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1929 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1930 1931 #define KVM_X86_OP(func) \ 1932 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1933 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1934 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1935 #include <asm/kvm-x86-ops.h> 1936 1937 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1938 void kvm_x86_vendor_exit(void); 1939 1940 #define __KVM_HAVE_ARCH_VM_ALLOC 1941 static inline struct kvm *kvm_arch_alloc_vm(void) 1942 { 1943 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1944 } 1945 1946 #define __KVM_HAVE_ARCH_VM_FREE 1947 void kvm_arch_free_vm(struct kvm *kvm); 1948 1949 #if IS_ENABLED(CONFIG_HYPERV) 1950 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1951 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1952 { 1953 if (kvm_x86_ops.flush_remote_tlbs && 1954 !kvm_x86_call(flush_remote_tlbs)(kvm)) 1955 return 0; 1956 else 1957 return -ENOTSUPP; 1958 } 1959 1960 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1961 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1962 u64 nr_pages) 1963 { 1964 if (!kvm_x86_ops.flush_remote_tlbs_range) 1965 return -EOPNOTSUPP; 1966 1967 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1968 } 1969 #endif /* CONFIG_HYPERV */ 1970 1971 enum kvm_intr_type { 1972 /* Values are arbitrary, but must be non-zero. */ 1973 KVM_HANDLING_IRQ = 1, 1974 KVM_HANDLING_NMI, 1975 }; 1976 1977 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 1978 #define kvm_arch_pmi_in_guest(vcpu) \ 1979 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 1980 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 1981 1982 void __init kvm_mmu_x86_module_init(void); 1983 int kvm_mmu_vendor_module_init(void); 1984 void kvm_mmu_vendor_module_exit(void); 1985 1986 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1987 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1988 void kvm_mmu_init_vm(struct kvm *kvm); 1989 void kvm_mmu_uninit_vm(struct kvm *kvm); 1990 1991 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 1992 struct kvm_memory_slot *slot); 1993 1994 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1995 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1996 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1997 const struct kvm_memory_slot *memslot, 1998 int start_level); 1999 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 2000 const struct kvm_memory_slot *memslot, 2001 int target_level); 2002 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 2003 const struct kvm_memory_slot *memslot, 2004 u64 start, u64 end, 2005 int target_level); 2006 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 2007 const struct kvm_memory_slot *memslot); 2008 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 2009 const struct kvm_memory_slot *memslot); 2010 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 2011 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 2012 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 2013 2014 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 2015 2016 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 2017 const void *val, int bytes); 2018 2019 struct kvm_irq_mask_notifier { 2020 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 2021 int irq; 2022 struct hlist_node link; 2023 }; 2024 2025 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 2026 struct kvm_irq_mask_notifier *kimn); 2027 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 2028 struct kvm_irq_mask_notifier *kimn); 2029 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 2030 bool mask); 2031 2032 extern bool tdp_enabled; 2033 2034 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 2035 2036 /* 2037 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 2038 * userspace I/O) to indicate that the emulation context 2039 * should be reused as is, i.e. skip initialization of 2040 * emulation context, instruction fetch and decode. 2041 * 2042 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 2043 * Indicates that only select instructions (tagged with 2044 * EmulateOnUD) should be emulated (to minimize the emulator 2045 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 2046 * 2047 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2048 * decode the instruction length. For use *only* by 2049 * kvm_x86_ops.skip_emulated_instruction() implementations if 2050 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2051 * 2052 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2053 * retry native execution under certain conditions, 2054 * Can only be set in conjunction with EMULTYPE_PF. 2055 * 2056 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2057 * triggered by KVM's magic "force emulation" prefix, 2058 * which is opt in via module param (off by default). 2059 * Bypasses EmulateOnUD restriction despite emulating 2060 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2061 * Used to test the full emulator from userspace. 2062 * 2063 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2064 * backdoor emulation, which is opt in via module param. 2065 * VMware backdoor emulation handles select instructions 2066 * and reinjects the #GP for all other cases. 2067 * 2068 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case 2069 * the CR2/GPA value pass on the stack is valid. 2070 * 2071 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2072 * state and inject single-step #DBs after skipping 2073 * an instruction (after completing userspace I/O). 2074 * 2075 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2076 * is attempting to write a gfn that contains one or 2077 * more of the PTEs used to translate the write itself, 2078 * and the owning page table is being shadowed by KVM. 2079 * If emulation of the faulting instruction fails and 2080 * this flag is set, KVM will exit to userspace instead 2081 * of retrying emulation as KVM cannot make forward 2082 * progress. 2083 * 2084 * If emulation fails for a write to guest page tables, 2085 * KVM unprotects (zaps) the shadow page for the target 2086 * gfn and resumes the guest to retry the non-emulatable 2087 * instruction (on hardware). Unprotecting the gfn 2088 * doesn't allow forward progress for a self-changing 2089 * access because doing so also zaps the translation for 2090 * the gfn, i.e. retrying the instruction will hit a 2091 * !PRESENT fault, which results in a new shadow page 2092 * and sends KVM back to square one. 2093 */ 2094 #define EMULTYPE_NO_DECODE (1 << 0) 2095 #define EMULTYPE_TRAP_UD (1 << 1) 2096 #define EMULTYPE_SKIP (1 << 2) 2097 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2098 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2099 #define EMULTYPE_VMWARE_GP (1 << 5) 2100 #define EMULTYPE_PF (1 << 6) 2101 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2102 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2103 2104 static inline bool kvm_can_emulate_event_vectoring(int emul_type) 2105 { 2106 return !(emul_type & EMULTYPE_PF); 2107 } 2108 2109 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2110 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2111 void *insn, int insn_len); 2112 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2113 u64 *data, u8 ndata); 2114 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2115 2116 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa); 2117 2118 void kvm_enable_efer_bits(u64); 2119 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2120 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2121 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data); 2122 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2123 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2124 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2125 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2126 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2127 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2128 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2129 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2130 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2131 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2132 2133 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2134 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2135 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2136 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2137 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2138 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2139 2140 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2141 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2142 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2143 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2144 2145 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2146 int reason, bool has_error_code, u32 error_code); 2147 2148 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2149 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2150 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2151 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2152 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2153 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2154 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2155 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2156 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2157 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2158 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2159 2160 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2161 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2162 2163 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2164 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2165 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2166 2167 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2168 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2169 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2170 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 2171 bool has_error_code, u32 error_code); 2172 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2173 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2174 struct x86_exception *fault); 2175 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2176 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2177 2178 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2179 int irq_source_id, int level) 2180 { 2181 /* Logical OR for level trig interrupt */ 2182 if (level) 2183 __set_bit(irq_source_id, irq_state); 2184 else 2185 __clear_bit(irq_source_id, irq_state); 2186 2187 return !!(*irq_state); 2188 } 2189 2190 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2191 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2192 2193 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2194 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2195 2196 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2197 2198 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2199 bool always_retry); 2200 2201 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2202 gpa_t cr2_or_gpa) 2203 { 2204 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2205 } 2206 2207 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2208 ulong roots_to_free); 2209 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2210 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2211 struct x86_exception *exception); 2212 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2213 struct x86_exception *exception); 2214 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2215 struct x86_exception *exception); 2216 2217 bool kvm_apicv_activated(struct kvm *kvm); 2218 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2219 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2220 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2221 enum kvm_apicv_inhibit reason, bool set); 2222 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2223 enum kvm_apicv_inhibit reason, bool set); 2224 2225 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2226 enum kvm_apicv_inhibit reason) 2227 { 2228 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2229 } 2230 2231 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2232 enum kvm_apicv_inhibit reason) 2233 { 2234 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2235 } 2236 2237 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2238 void *insn, int insn_len); 2239 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2240 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2241 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2242 u64 addr, unsigned long roots); 2243 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2244 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2245 2246 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2247 int tdp_max_root_level, int tdp_huge_page_level); 2248 2249 2250 #ifdef CONFIG_KVM_PRIVATE_MEM 2251 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2252 #else 2253 #define kvm_arch_has_private_mem(kvm) false 2254 #endif 2255 2256 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2257 2258 static inline u16 kvm_read_ldt(void) 2259 { 2260 u16 ldt; 2261 asm("sldt %0" : "=g"(ldt)); 2262 return ldt; 2263 } 2264 2265 static inline void kvm_load_ldt(u16 sel) 2266 { 2267 asm("lldt %0" : : "rm"(sel)); 2268 } 2269 2270 #ifdef CONFIG_X86_64 2271 static inline unsigned long read_msr(unsigned long msr) 2272 { 2273 u64 value; 2274 2275 rdmsrq(msr, value); 2276 return value; 2277 } 2278 #endif 2279 2280 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2281 { 2282 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2283 } 2284 2285 #define TSS_IOPB_BASE_OFFSET 0x66 2286 #define TSS_BASE_SIZE 0x68 2287 #define TSS_IOPB_SIZE (65536 / 8) 2288 #define TSS_REDIRECTION_SIZE (256 / 8) 2289 #define RMODE_TSS_SIZE \ 2290 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2291 2292 enum { 2293 TASK_SWITCH_CALL = 0, 2294 TASK_SWITCH_IRET = 1, 2295 TASK_SWITCH_JMP = 2, 2296 TASK_SWITCH_GATE = 3, 2297 }; 2298 2299 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2300 2301 #ifdef CONFIG_KVM_SMM 2302 #define HF_SMM_MASK (1 << 1) 2303 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2304 2305 # define KVM_MAX_NR_ADDRESS_SPACES 2 2306 /* SMM is currently unsupported for guests with private memory. */ 2307 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2308 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2309 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2310 #else 2311 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2312 #endif 2313 2314 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2315 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2316 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2317 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2318 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2319 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2320 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2321 2322 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2323 unsigned long ipi_bitmap_high, u32 min, 2324 unsigned long icr, int op_64_bit); 2325 2326 int kvm_add_user_return_msr(u32 msr); 2327 int kvm_find_user_return_msr(u32 msr); 2328 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2329 2330 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2331 { 2332 return kvm_find_user_return_msr(msr) >= 0; 2333 } 2334 2335 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2336 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2337 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2338 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2339 2340 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2341 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2342 2343 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2344 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2345 unsigned long *vcpu_bitmap); 2346 2347 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2348 struct kvm_async_pf *work); 2349 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2350 struct kvm_async_pf *work); 2351 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2352 struct kvm_async_pf *work); 2353 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2354 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2355 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2356 2357 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2358 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2359 2360 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2361 u32 size); 2362 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2363 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2364 2365 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2366 struct kvm_vcpu **dest_vcpu); 2367 2368 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2369 struct kvm_lapic_irq *irq); 2370 2371 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2372 { 2373 /* We can only post Fixed and LowPrio IRQs */ 2374 return (irq->delivery_mode == APIC_DM_FIXED || 2375 irq->delivery_mode == APIC_DM_LOWEST); 2376 } 2377 2378 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2379 { 2380 kvm_x86_call(vcpu_blocking)(vcpu); 2381 } 2382 2383 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2384 { 2385 kvm_x86_call(vcpu_unblocking)(vcpu); 2386 } 2387 2388 static inline int kvm_cpu_get_apicid(int mps_cpu) 2389 { 2390 #ifdef CONFIG_X86_LOCAL_APIC 2391 return default_cpu_present_to_apicid(mps_cpu); 2392 #else 2393 WARN_ON_ONCE(1); 2394 return BAD_APICID; 2395 #endif 2396 } 2397 2398 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2399 2400 #define KVM_CLOCK_VALID_FLAGS \ 2401 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2402 2403 #define KVM_X86_VALID_QUIRKS \ 2404 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2405 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2406 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2407 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2408 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2409 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2410 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2411 KVM_X86_QUIRK_SLOT_ZAP_ALL | \ 2412 KVM_X86_QUIRK_STUFF_FEATURE_MSRS) 2413 2414 /* 2415 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2416 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2417 * remaining 31 lower bits must be 0 to preserve ABI. 2418 */ 2419 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2420 2421 #endif /* _ASM_X86_KVM_HOST_H */ 2422