1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/hyperv.h> 28 #include <linux/kfifo.h> 29 30 #include <asm/apic.h> 31 #include <asm/pvclock-abi.h> 32 #include <asm/desc.h> 33 #include <asm/mtrr.h> 34 #include <asm/msr-index.h> 35 #include <asm/asm.h> 36 #include <asm/kvm_page_track.h> 37 #include <asm/kvm_vcpu_regs.h> 38 #include <asm/hyperv-tlfs.h> 39 40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 41 42 /* 43 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 44 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 45 */ 46 #ifdef CONFIG_KVM_MAX_NR_VCPUS 47 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 48 #else 49 #define KVM_MAX_VCPUS 1024 50 #endif 51 52 /* 53 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 54 * might be larger than the actual number of VCPUs because the 55 * APIC ID encodes CPU topology information. 56 * 57 * In the worst case, we'll need less than one extra bit for the 58 * Core ID, and less than one extra bit for the Package (Die) ID, 59 * so ratio of 4 should be enough. 60 */ 61 #define KVM_VCPU_ID_RATIO 4 62 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 63 64 /* memory slots that are not exposed to userspace */ 65 #define KVM_INTERNAL_MEM_SLOTS 3 66 67 #define KVM_HALT_POLL_NS_DEFAULT 200000 68 69 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 70 71 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 72 KVM_DIRTY_LOG_INITIALLY_SET) 73 74 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 75 KVM_BUS_LOCK_DETECTION_EXIT) 76 77 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 78 KVM_X86_NOTIFY_VMEXIT_USER) 79 80 /* x86-specific vcpu->requests bit members */ 81 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 82 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 83 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 84 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 85 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 86 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 87 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 88 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 89 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 90 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 91 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 92 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 93 #ifdef CONFIG_KVM_SMM 94 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 95 #endif 96 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 97 #define KVM_REQ_MCLOCK_INPROGRESS \ 98 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 99 #define KVM_REQ_SCAN_IOAPIC \ 100 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 101 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 102 #define KVM_REQ_APIC_PAGE_RELOAD \ 103 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 104 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 105 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 106 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 107 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 108 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 109 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 110 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 111 #define KVM_REQ_APICV_UPDATE \ 112 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 113 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 114 #define KVM_REQ_TLB_FLUSH_GUEST \ 115 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 116 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 117 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 118 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 119 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 120 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 121 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_HV_TLB_FLUSH \ 123 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 124 125 #define CR0_RESERVED_BITS \ 126 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 127 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 128 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 129 130 #define CR4_RESERVED_BITS \ 131 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 132 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 133 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 134 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 135 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 136 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 137 | X86_CR4_LAM_SUP)) 138 139 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 140 141 142 143 #define INVALID_PAGE (~(hpa_t)0) 144 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 145 146 /* KVM Hugepage definitions for x86 */ 147 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 148 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 149 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 150 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 151 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 152 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 153 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 154 155 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 156 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 157 #define KVM_MMU_HASH_SHIFT 12 158 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 159 #define KVM_MIN_FREE_MMU_PAGES 5 160 #define KVM_REFILL_PAGES 25 161 #define KVM_MAX_CPUID_ENTRIES 256 162 #define KVM_NR_FIXED_MTRR_REGION 88 163 #define KVM_NR_VAR_MTRR 8 164 165 #define ASYNC_PF_PER_VCPU 64 166 167 enum kvm_reg { 168 VCPU_REGS_RAX = __VCPU_REGS_RAX, 169 VCPU_REGS_RCX = __VCPU_REGS_RCX, 170 VCPU_REGS_RDX = __VCPU_REGS_RDX, 171 VCPU_REGS_RBX = __VCPU_REGS_RBX, 172 VCPU_REGS_RSP = __VCPU_REGS_RSP, 173 VCPU_REGS_RBP = __VCPU_REGS_RBP, 174 VCPU_REGS_RSI = __VCPU_REGS_RSI, 175 VCPU_REGS_RDI = __VCPU_REGS_RDI, 176 #ifdef CONFIG_X86_64 177 VCPU_REGS_R8 = __VCPU_REGS_R8, 178 VCPU_REGS_R9 = __VCPU_REGS_R9, 179 VCPU_REGS_R10 = __VCPU_REGS_R10, 180 VCPU_REGS_R11 = __VCPU_REGS_R11, 181 VCPU_REGS_R12 = __VCPU_REGS_R12, 182 VCPU_REGS_R13 = __VCPU_REGS_R13, 183 VCPU_REGS_R14 = __VCPU_REGS_R14, 184 VCPU_REGS_R15 = __VCPU_REGS_R15, 185 #endif 186 VCPU_REGS_RIP, 187 NR_VCPU_REGS, 188 189 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 190 VCPU_EXREG_CR0, 191 VCPU_EXREG_CR3, 192 VCPU_EXREG_CR4, 193 VCPU_EXREG_RFLAGS, 194 VCPU_EXREG_SEGMENTS, 195 VCPU_EXREG_EXIT_INFO_1, 196 VCPU_EXREG_EXIT_INFO_2, 197 }; 198 199 enum { 200 VCPU_SREG_ES, 201 VCPU_SREG_CS, 202 VCPU_SREG_SS, 203 VCPU_SREG_DS, 204 VCPU_SREG_FS, 205 VCPU_SREG_GS, 206 VCPU_SREG_TR, 207 VCPU_SREG_LDTR, 208 }; 209 210 enum exit_fastpath_completion { 211 EXIT_FASTPATH_NONE, 212 EXIT_FASTPATH_REENTER_GUEST, 213 EXIT_FASTPATH_EXIT_HANDLED, 214 }; 215 typedef enum exit_fastpath_completion fastpath_t; 216 217 struct x86_emulate_ctxt; 218 struct x86_exception; 219 union kvm_smram; 220 enum x86_intercept; 221 enum x86_intercept_stage; 222 223 #define KVM_NR_DB_REGS 4 224 225 #define DR6_BUS_LOCK (1 << 11) 226 #define DR6_BD (1 << 13) 227 #define DR6_BS (1 << 14) 228 #define DR6_BT (1 << 15) 229 #define DR6_RTM (1 << 16) 230 /* 231 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 232 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 233 * they will never be 0 for now, but when they are defined 234 * in the future it will require no code change. 235 * 236 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 237 */ 238 #define DR6_ACTIVE_LOW 0xffff0ff0 239 #define DR6_VOLATILE 0x0001e80f 240 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 241 242 #define DR7_BP_EN_MASK 0x000000ff 243 #define DR7_GE (1 << 9) 244 #define DR7_GD (1 << 13) 245 #define DR7_FIXED_1 0x00000400 246 #define DR7_VOLATILE 0xffff2bff 247 248 #define KVM_GUESTDBG_VALID_MASK \ 249 (KVM_GUESTDBG_ENABLE | \ 250 KVM_GUESTDBG_SINGLESTEP | \ 251 KVM_GUESTDBG_USE_HW_BP | \ 252 KVM_GUESTDBG_USE_SW_BP | \ 253 KVM_GUESTDBG_INJECT_BP | \ 254 KVM_GUESTDBG_INJECT_DB | \ 255 KVM_GUESTDBG_BLOCKIRQ) 256 257 258 #define PFERR_PRESENT_BIT 0 259 #define PFERR_WRITE_BIT 1 260 #define PFERR_USER_BIT 2 261 #define PFERR_RSVD_BIT 3 262 #define PFERR_FETCH_BIT 4 263 #define PFERR_PK_BIT 5 264 #define PFERR_SGX_BIT 15 265 #define PFERR_GUEST_FINAL_BIT 32 266 #define PFERR_GUEST_PAGE_BIT 33 267 #define PFERR_IMPLICIT_ACCESS_BIT 48 268 269 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 270 #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 271 #define PFERR_USER_MASK BIT(PFERR_USER_BIT) 272 #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 273 #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 274 #define PFERR_PK_MASK BIT(PFERR_PK_BIT) 275 #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 276 #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 277 #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 278 #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 279 280 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 281 PFERR_WRITE_MASK | \ 282 PFERR_PRESENT_MASK) 283 284 /* apic attention bits */ 285 #define KVM_APIC_CHECK_VAPIC 0 286 /* 287 * The following bit is set with PV-EOI, unset on EOI. 288 * We detect PV-EOI changes by guest by comparing 289 * this bit with PV-EOI in guest memory. 290 * See the implementation in apic_update_pv_eoi. 291 */ 292 #define KVM_APIC_PV_EOI_PENDING 1 293 294 struct kvm_kernel_irq_routing_entry; 295 296 /* 297 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 298 * also includes TDP pages) to determine whether or not a page can be used in 299 * the given MMU context. This is a subset of the overall kvm_cpu_role to 300 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 301 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 302 * 303 * Upper-level shadow pages having gptes are tracked for write-protection via 304 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 305 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 306 * otherwise gfn_write_track will overflow and explosions will ensue. 307 * 308 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 309 * cannot be reused. The ability to reuse a SP is tracked by its role, which 310 * incorporates various mode bits and properties of the SP. Roughly speaking, 311 * the number of unique SPs that can theoretically be created is 2^n, where n 312 * is the number of bits that are used to compute the role. 313 * 314 * But, even though there are 19 bits in the mask below, not all combinations 315 * of modes and flags are possible: 316 * 317 * - invalid shadow pages are not accounted, so the bits are effectively 18 318 * 319 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 320 * execonly and ad_disabled are only used for nested EPT which has 321 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 322 * 323 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 324 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 325 * paging has exactly one upper level, making level completely redundant 326 * when has_4_byte_gpte=1. 327 * 328 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 329 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 330 * 331 * Therefore, the maximum number of possible upper-level shadow pages for a 332 * single gfn is a bit less than 2^13. 333 */ 334 union kvm_mmu_page_role { 335 u32 word; 336 struct { 337 unsigned level:4; 338 unsigned has_4_byte_gpte:1; 339 unsigned quadrant:2; 340 unsigned direct:1; 341 unsigned access:3; 342 unsigned invalid:1; 343 unsigned efer_nx:1; 344 unsigned cr0_wp:1; 345 unsigned smep_andnot_wp:1; 346 unsigned smap_andnot_wp:1; 347 unsigned ad_disabled:1; 348 unsigned guest_mode:1; 349 unsigned passthrough:1; 350 unsigned :5; 351 352 /* 353 * This is left at the top of the word so that 354 * kvm_memslots_for_spte_role can extract it with a 355 * simple shift. While there is room, give it a whole 356 * byte so it is also faster to load it from memory. 357 */ 358 unsigned smm:8; 359 }; 360 }; 361 362 /* 363 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 364 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 365 * including on nested transitions, if nothing in the full role changes then 366 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 367 * don't treat all-zero structure as valid data. 368 * 369 * The properties that are tracked in the extended role but not the page role 370 * are for things that either (a) do not affect the validity of the shadow page 371 * or (b) are indirectly reflected in the shadow page's role. For example, 372 * CR4.PKE only affects permission checks for software walks of the guest page 373 * tables (because KVM doesn't support Protection Keys with shadow paging), and 374 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 375 * 376 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 377 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 378 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 379 * SMAP aware regardless of CR0.WP. 380 */ 381 union kvm_mmu_extended_role { 382 u32 word; 383 struct { 384 unsigned int valid:1; 385 unsigned int execonly:1; 386 unsigned int cr4_pse:1; 387 unsigned int cr4_pke:1; 388 unsigned int cr4_smap:1; 389 unsigned int cr4_smep:1; 390 unsigned int cr4_la57:1; 391 unsigned int efer_lma:1; 392 }; 393 }; 394 395 union kvm_cpu_role { 396 u64 as_u64; 397 struct { 398 union kvm_mmu_page_role base; 399 union kvm_mmu_extended_role ext; 400 }; 401 }; 402 403 struct kvm_rmap_head { 404 unsigned long val; 405 }; 406 407 struct kvm_pio_request { 408 unsigned long linear_rip; 409 unsigned long count; 410 int in; 411 int port; 412 int size; 413 }; 414 415 #define PT64_ROOT_MAX_LEVEL 5 416 417 struct rsvd_bits_validate { 418 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 419 u64 bad_mt_xwr; 420 }; 421 422 struct kvm_mmu_root_info { 423 gpa_t pgd; 424 hpa_t hpa; 425 }; 426 427 #define KVM_MMU_ROOT_INFO_INVALID \ 428 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 429 430 #define KVM_MMU_NUM_PREV_ROOTS 3 431 432 #define KVM_MMU_ROOT_CURRENT BIT(0) 433 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 434 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 435 436 #define KVM_HAVE_MMU_RWLOCK 437 438 struct kvm_mmu_page; 439 struct kvm_page_fault; 440 441 /* 442 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 443 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 444 * current mmu mode. 445 */ 446 struct kvm_mmu { 447 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 448 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 449 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 450 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 451 struct x86_exception *fault); 452 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 453 gpa_t gva_or_gpa, u64 access, 454 struct x86_exception *exception); 455 int (*sync_spte)(struct kvm_vcpu *vcpu, 456 struct kvm_mmu_page *sp, int i); 457 struct kvm_mmu_root_info root; 458 union kvm_cpu_role cpu_role; 459 union kvm_mmu_page_role root_role; 460 461 /* 462 * The pkru_mask indicates if protection key checks are needed. It 463 * consists of 16 domains indexed by page fault error code bits [4:1], 464 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 465 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 466 */ 467 u32 pkru_mask; 468 469 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 470 471 /* 472 * Bitmap; bit set = permission fault 473 * Byte index: page fault error code [4:1] 474 * Bit index: pte permissions in ACC_* format 475 */ 476 u8 permissions[16]; 477 478 u64 *pae_root; 479 u64 *pml4_root; 480 u64 *pml5_root; 481 482 /* 483 * check zero bits on shadow page table entries, these 484 * bits include not only hardware reserved bits but also 485 * the bits spte never used. 486 */ 487 struct rsvd_bits_validate shadow_zero_check; 488 489 struct rsvd_bits_validate guest_rsvd_check; 490 491 u64 pdptrs[4]; /* pae */ 492 }; 493 494 enum pmc_type { 495 KVM_PMC_GP = 0, 496 KVM_PMC_FIXED, 497 }; 498 499 struct kvm_pmc { 500 enum pmc_type type; 501 u8 idx; 502 bool is_paused; 503 bool intr; 504 /* 505 * Base value of the PMC counter, relative to the *consumed* count in 506 * the associated perf_event. This value includes counter updates from 507 * the perf_event and emulated_count since the last time the counter 508 * was reprogrammed, but it is *not* the current value as seen by the 509 * guest or userspace. 510 * 511 * The count is relative to the associated perf_event so that KVM 512 * doesn't need to reprogram the perf_event every time the guest writes 513 * to the counter. 514 */ 515 u64 counter; 516 /* 517 * PMC events triggered by KVM emulation that haven't been fully 518 * processed, i.e. haven't undergone overflow detection. 519 */ 520 u64 emulated_counter; 521 u64 eventsel; 522 struct perf_event *perf_event; 523 struct kvm_vcpu *vcpu; 524 /* 525 * only for creating or reusing perf_event, 526 * eventsel value for general purpose counters, 527 * ctrl value for fixed counters. 528 */ 529 u64 current_config; 530 }; 531 532 /* More counters may conflict with other existing Architectural MSRs */ 533 #define KVM_INTEL_PMC_MAX_GENERIC 8 534 #define MSR_ARCH_PERFMON_PERFCTR_MAX (MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 535 #define MSR_ARCH_PERFMON_EVENTSEL_MAX (MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 536 #define KVM_PMC_MAX_FIXED 3 537 #define MSR_ARCH_PERFMON_FIXED_CTR_MAX (MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1) 538 #define KVM_AMD_PMC_MAX_GENERIC 6 539 struct kvm_pmu { 540 u8 version; 541 unsigned nr_arch_gp_counters; 542 unsigned nr_arch_fixed_counters; 543 unsigned available_event_types; 544 u64 fixed_ctr_ctrl; 545 u64 fixed_ctr_ctrl_mask; 546 u64 global_ctrl; 547 u64 global_status; 548 u64 counter_bitmask[2]; 549 u64 global_ctrl_mask; 550 u64 global_status_mask; 551 u64 reserved_bits; 552 u64 raw_event_mask; 553 struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC]; 554 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED]; 555 556 /* 557 * Overlay the bitmap with a 64-bit atomic so that all bits can be 558 * set in a single access, e.g. to reprogram all counters when the PMU 559 * filter changes. 560 */ 561 union { 562 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 563 atomic64_t __reprogram_pmi; 564 }; 565 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 566 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 567 568 u64 ds_area; 569 u64 pebs_enable; 570 u64 pebs_enable_mask; 571 u64 pebs_data_cfg; 572 u64 pebs_data_cfg_mask; 573 574 /* 575 * If a guest counter is cross-mapped to host counter with different 576 * index, its PEBS capability will be temporarily disabled. 577 * 578 * The user should make sure that this mask is updated 579 * after disabling interrupts and before perf_guest_get_msrs(); 580 */ 581 u64 host_cross_mapped_mask; 582 583 /* 584 * The gate to release perf_events not marked in 585 * pmc_in_use only once in a vcpu time slice. 586 */ 587 bool need_cleanup; 588 589 /* 590 * The total number of programmed perf_events and it helps to avoid 591 * redundant check before cleanup if guest don't use vPMU at all. 592 */ 593 u8 event_count; 594 }; 595 596 struct kvm_pmu_ops; 597 598 enum { 599 KVM_DEBUGREG_BP_ENABLED = 1, 600 KVM_DEBUGREG_WONT_EXIT = 2, 601 }; 602 603 struct kvm_mtrr_range { 604 u64 base; 605 u64 mask; 606 struct list_head node; 607 }; 608 609 struct kvm_mtrr { 610 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 611 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 612 u64 deftype; 613 614 struct list_head head; 615 }; 616 617 /* Hyper-V SynIC timer */ 618 struct kvm_vcpu_hv_stimer { 619 struct hrtimer timer; 620 int index; 621 union hv_stimer_config config; 622 u64 count; 623 u64 exp_time; 624 struct hv_message msg; 625 bool msg_pending; 626 }; 627 628 /* Hyper-V synthetic interrupt controller (SynIC)*/ 629 struct kvm_vcpu_hv_synic { 630 u64 version; 631 u64 control; 632 u64 msg_page; 633 u64 evt_page; 634 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 635 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 636 DECLARE_BITMAP(auto_eoi_bitmap, 256); 637 DECLARE_BITMAP(vec_bitmap, 256); 638 bool active; 639 bool dont_zero_synic_pages; 640 }; 641 642 /* The maximum number of entries on the TLB flush fifo. */ 643 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 644 /* 645 * Note: the following 'magic' entry is made up by KVM to avoid putting 646 * anything besides GVA on the TLB flush fifo. It is theoretically possible 647 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 648 * which will look identical. KVM's action to 'flush everything' instead of 649 * flushing these particular addresses is, however, fully legitimate as 650 * flushing more than requested is always OK. 651 */ 652 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 653 654 enum hv_tlb_flush_fifos { 655 HV_L1_TLB_FLUSH_FIFO, 656 HV_L2_TLB_FLUSH_FIFO, 657 HV_NR_TLB_FLUSH_FIFOS, 658 }; 659 660 struct kvm_vcpu_hv_tlb_flush_fifo { 661 spinlock_t write_lock; 662 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 663 }; 664 665 /* Hyper-V per vcpu emulation context */ 666 struct kvm_vcpu_hv { 667 struct kvm_vcpu *vcpu; 668 u32 vp_index; 669 u64 hv_vapic; 670 s64 runtime_offset; 671 struct kvm_vcpu_hv_synic synic; 672 struct kvm_hyperv_exit exit; 673 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 674 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 675 bool enforce_cpuid; 676 struct { 677 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 678 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 679 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 680 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 681 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 682 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 683 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 684 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 685 } cpuid_cache; 686 687 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 688 689 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 690 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 691 692 struct hv_vp_assist_page vp_assist_page; 693 694 struct { 695 u64 pa_page_gpa; 696 u64 vm_id; 697 u32 vp_id; 698 } nested; 699 }; 700 701 struct kvm_hypervisor_cpuid { 702 u32 base; 703 u32 limit; 704 }; 705 706 #ifdef CONFIG_KVM_XEN 707 /* Xen HVM per vcpu emulation context */ 708 struct kvm_vcpu_xen { 709 u64 hypercall_rip; 710 u32 current_runstate; 711 u8 upcall_vector; 712 struct gfn_to_pfn_cache vcpu_info_cache; 713 struct gfn_to_pfn_cache vcpu_time_info_cache; 714 struct gfn_to_pfn_cache runstate_cache; 715 struct gfn_to_pfn_cache runstate2_cache; 716 u64 last_steal; 717 u64 runstate_entry_time; 718 u64 runstate_times[4]; 719 unsigned long evtchn_pending_sel; 720 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 721 u32 timer_virq; 722 u64 timer_expires; /* In guest epoch */ 723 atomic_t timer_pending; 724 struct hrtimer timer; 725 int poll_evtchn; 726 struct timer_list poll_timer; 727 struct kvm_hypervisor_cpuid cpuid; 728 }; 729 #endif 730 731 struct kvm_queued_exception { 732 bool pending; 733 bool injected; 734 bool has_error_code; 735 u8 vector; 736 u32 error_code; 737 unsigned long payload; 738 bool has_payload; 739 }; 740 741 struct kvm_vcpu_arch { 742 /* 743 * rip and regs accesses must go through 744 * kvm_{register,rip}_{read,write} functions. 745 */ 746 unsigned long regs[NR_VCPU_REGS]; 747 u32 regs_avail; 748 u32 regs_dirty; 749 750 unsigned long cr0; 751 unsigned long cr0_guest_owned_bits; 752 unsigned long cr2; 753 unsigned long cr3; 754 unsigned long cr4; 755 unsigned long cr4_guest_owned_bits; 756 unsigned long cr4_guest_rsvd_bits; 757 unsigned long cr8; 758 u32 host_pkru; 759 u32 pkru; 760 u32 hflags; 761 u64 efer; 762 u64 apic_base; 763 struct kvm_lapic *apic; /* kernel irqchip context */ 764 bool load_eoi_exitmap_pending; 765 DECLARE_BITMAP(ioapic_handled_vectors, 256); 766 unsigned long apic_attention; 767 int32_t apic_arb_prio; 768 int mp_state; 769 u64 ia32_misc_enable_msr; 770 u64 smbase; 771 u64 smi_count; 772 bool at_instruction_boundary; 773 bool tpr_access_reporting; 774 bool xfd_no_write_intercept; 775 u64 ia32_xss; 776 u64 microcode_version; 777 u64 arch_capabilities; 778 u64 perf_capabilities; 779 780 /* 781 * Paging state of the vcpu 782 * 783 * If the vcpu runs in guest mode with two level paging this still saves 784 * the paging mode of the l1 guest. This context is always used to 785 * handle faults. 786 */ 787 struct kvm_mmu *mmu; 788 789 /* Non-nested MMU for L1 */ 790 struct kvm_mmu root_mmu; 791 792 /* L1 MMU when running nested */ 793 struct kvm_mmu guest_mmu; 794 795 /* 796 * Paging state of an L2 guest (used for nested npt) 797 * 798 * This context will save all necessary information to walk page tables 799 * of an L2 guest. This context is only initialized for page table 800 * walking and not for faulting since we never handle l2 page faults on 801 * the host. 802 */ 803 struct kvm_mmu nested_mmu; 804 805 /* 806 * Pointer to the mmu context currently used for 807 * gva_to_gpa translations. 808 */ 809 struct kvm_mmu *walk_mmu; 810 811 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 812 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 813 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 814 struct kvm_mmu_memory_cache mmu_page_header_cache; 815 816 /* 817 * QEMU userspace and the guest each have their own FPU state. 818 * In vcpu_run, we switch between the user and guest FPU contexts. 819 * While running a VCPU, the VCPU thread will have the guest FPU 820 * context. 821 * 822 * Note that while the PKRU state lives inside the fpu registers, 823 * it is switched out separately at VMENTER and VMEXIT time. The 824 * "guest_fpstate" state here contains the guest FPU context, with the 825 * host PRKU bits. 826 */ 827 struct fpu_guest guest_fpu; 828 829 u64 xcr0; 830 u64 guest_supported_xcr0; 831 832 struct kvm_pio_request pio; 833 void *pio_data; 834 void *sev_pio_data; 835 unsigned sev_pio_count; 836 837 u8 event_exit_inst_len; 838 839 bool exception_from_userspace; 840 841 /* Exceptions to be injected to the guest. */ 842 struct kvm_queued_exception exception; 843 /* Exception VM-Exits to be synthesized to L1. */ 844 struct kvm_queued_exception exception_vmexit; 845 846 struct kvm_queued_interrupt { 847 bool injected; 848 bool soft; 849 u8 nr; 850 } interrupt; 851 852 int halt_request; /* real mode on Intel only */ 853 854 int cpuid_nent; 855 struct kvm_cpuid_entry2 *cpuid_entries; 856 struct kvm_hypervisor_cpuid kvm_cpuid; 857 858 /* 859 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly 860 * when "struct kvm_vcpu_arch" is no longer defined in an 861 * arch/x86/include/asm header. The max is mostly arbitrary, i.e. 862 * can be increased as necessary. 863 */ 864 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG 865 866 /* 867 * Track whether or not the guest is allowed to use features that are 868 * governed by KVM, where "governed" means KVM needs to manage state 869 * and/or explicitly enable the feature in hardware. Typically, but 870 * not always, governed features can be used by the guest if and only 871 * if both KVM and userspace want to expose the feature to the guest. 872 */ 873 struct { 874 DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES); 875 } governed_features; 876 877 u64 reserved_gpa_bits; 878 int maxphyaddr; 879 880 /* emulate context */ 881 882 struct x86_emulate_ctxt *emulate_ctxt; 883 bool emulate_regs_need_sync_to_vcpu; 884 bool emulate_regs_need_sync_from_vcpu; 885 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 886 887 gpa_t time; 888 struct pvclock_vcpu_time_info hv_clock; 889 unsigned int hw_tsc_khz; 890 struct gfn_to_pfn_cache pv_time; 891 /* set guest stopped flag in pvclock flags field */ 892 bool pvclock_set_guest_stopped_request; 893 894 struct { 895 u8 preempted; 896 u64 msr_val; 897 u64 last_steal; 898 struct gfn_to_hva_cache cache; 899 } st; 900 901 u64 l1_tsc_offset; 902 u64 tsc_offset; /* current tsc offset */ 903 u64 last_guest_tsc; 904 u64 last_host_tsc; 905 u64 tsc_offset_adjustment; 906 u64 this_tsc_nsec; 907 u64 this_tsc_write; 908 u64 this_tsc_generation; 909 bool tsc_catchup; 910 bool tsc_always_catchup; 911 s8 virtual_tsc_shift; 912 u32 virtual_tsc_mult; 913 u32 virtual_tsc_khz; 914 s64 ia32_tsc_adjust_msr; 915 u64 msr_ia32_power_ctl; 916 u64 l1_tsc_scaling_ratio; 917 u64 tsc_scaling_ratio; /* current scaling ratio */ 918 919 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 920 /* Number of NMIs pending injection, not including hardware vNMIs. */ 921 unsigned int nmi_pending; 922 bool nmi_injected; /* Trying to inject an NMI this entry */ 923 bool smi_pending; /* SMI queued after currently running handler */ 924 u8 handling_intr_from_guest; 925 926 struct kvm_mtrr mtrr_state; 927 u64 pat; 928 929 unsigned switch_db_regs; 930 unsigned long db[KVM_NR_DB_REGS]; 931 unsigned long dr6; 932 unsigned long dr7; 933 unsigned long eff_db[KVM_NR_DB_REGS]; 934 unsigned long guest_debug_dr7; 935 u64 msr_platform_info; 936 u64 msr_misc_features_enables; 937 938 u64 mcg_cap; 939 u64 mcg_status; 940 u64 mcg_ctl; 941 u64 mcg_ext_ctl; 942 u64 *mce_banks; 943 u64 *mci_ctl2_banks; 944 945 /* Cache MMIO info */ 946 u64 mmio_gva; 947 unsigned mmio_access; 948 gfn_t mmio_gfn; 949 u64 mmio_gen; 950 951 struct kvm_pmu pmu; 952 953 /* used for guest single stepping over the given code position */ 954 unsigned long singlestep_rip; 955 956 #ifdef CONFIG_KVM_HYPERV 957 bool hyperv_enabled; 958 struct kvm_vcpu_hv *hyperv; 959 #endif 960 #ifdef CONFIG_KVM_XEN 961 struct kvm_vcpu_xen xen; 962 #endif 963 cpumask_var_t wbinvd_dirty_mask; 964 965 unsigned long last_retry_eip; 966 unsigned long last_retry_addr; 967 968 struct { 969 bool halted; 970 gfn_t gfns[ASYNC_PF_PER_VCPU]; 971 struct gfn_to_hva_cache data; 972 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 973 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 974 u16 vec; 975 u32 id; 976 bool send_user_only; 977 u32 host_apf_flags; 978 bool delivery_as_pf_vmexit; 979 bool pageready_pending; 980 } apf; 981 982 /* OSVW MSRs (AMD only) */ 983 struct { 984 u64 length; 985 u64 status; 986 } osvw; 987 988 struct { 989 u64 msr_val; 990 struct gfn_to_hva_cache data; 991 } pv_eoi; 992 993 u64 msr_kvm_poll_control; 994 995 /* set at EPT violation at this point */ 996 unsigned long exit_qualification; 997 998 /* pv related host specific info */ 999 struct { 1000 bool pv_unhalted; 1001 } pv; 1002 1003 int pending_ioapic_eoi; 1004 int pending_external_vector; 1005 1006 /* be preempted when it's in kernel-mode(cpl=0) */ 1007 bool preempted_in_kernel; 1008 1009 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1010 bool l1tf_flush_l1d; 1011 1012 /* Host CPU on which VM-entry was most recently attempted */ 1013 int last_vmentry_cpu; 1014 1015 /* AMD MSRC001_0015 Hardware Configuration */ 1016 u64 msr_hwcr; 1017 1018 /* pv related cpuid info */ 1019 struct { 1020 /* 1021 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1022 * leaf. 1023 */ 1024 u32 features; 1025 1026 /* 1027 * indicates whether pv emulation should be disabled if features 1028 * are not present in the guest's cpuid 1029 */ 1030 bool enforce; 1031 } pv_cpuid; 1032 1033 /* Protected Guests */ 1034 bool guest_state_protected; 1035 1036 /* 1037 * Set when PDPTS were loaded directly by the userspace without 1038 * reading the guest memory 1039 */ 1040 bool pdptrs_from_userspace; 1041 1042 #if IS_ENABLED(CONFIG_HYPERV) 1043 hpa_t hv_root_tdp; 1044 #endif 1045 }; 1046 1047 struct kvm_lpage_info { 1048 int disallow_lpage; 1049 }; 1050 1051 struct kvm_arch_memory_slot { 1052 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1053 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1054 unsigned short *gfn_write_track; 1055 }; 1056 1057 /* 1058 * Track the mode of the optimized logical map, as the rules for decoding the 1059 * destination vary per mode. Enabling the optimized logical map requires all 1060 * software-enabled local APIs to be in the same mode, each addressable APIC to 1061 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1062 */ 1063 enum kvm_apic_logical_mode { 1064 /* All local APICs are software disabled. */ 1065 KVM_APIC_MODE_SW_DISABLED, 1066 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1067 KVM_APIC_MODE_XAPIC_CLUSTER, 1068 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1069 KVM_APIC_MODE_XAPIC_FLAT, 1070 /* All software enabled local APICs in x2APIC mode. */ 1071 KVM_APIC_MODE_X2APIC, 1072 /* 1073 * Optimized map disabled, e.g. not all local APICs in the same logical 1074 * mode, same logical ID assigned to multiple APICs, etc. 1075 */ 1076 KVM_APIC_MODE_MAP_DISABLED, 1077 }; 1078 1079 struct kvm_apic_map { 1080 struct rcu_head rcu; 1081 enum kvm_apic_logical_mode logical_mode; 1082 u32 max_apic_id; 1083 union { 1084 struct kvm_lapic *xapic_flat_map[8]; 1085 struct kvm_lapic *xapic_cluster_map[16][4]; 1086 }; 1087 struct kvm_lapic *phys_map[]; 1088 }; 1089 1090 /* Hyper-V synthetic debugger (SynDbg)*/ 1091 struct kvm_hv_syndbg { 1092 struct { 1093 u64 control; 1094 u64 status; 1095 u64 send_page; 1096 u64 recv_page; 1097 u64 pending_page; 1098 } control; 1099 u64 options; 1100 }; 1101 1102 /* Current state of Hyper-V TSC page clocksource */ 1103 enum hv_tsc_page_status { 1104 /* TSC page was not set up or disabled */ 1105 HV_TSC_PAGE_UNSET = 0, 1106 /* TSC page MSR was written by the guest, update pending */ 1107 HV_TSC_PAGE_GUEST_CHANGED, 1108 /* TSC page update was triggered from the host side */ 1109 HV_TSC_PAGE_HOST_CHANGED, 1110 /* TSC page was properly set up and is currently active */ 1111 HV_TSC_PAGE_SET, 1112 /* TSC page was set up with an inaccessible GPA */ 1113 HV_TSC_PAGE_BROKEN, 1114 }; 1115 1116 #ifdef CONFIG_KVM_HYPERV 1117 /* Hyper-V emulation context */ 1118 struct kvm_hv { 1119 struct mutex hv_lock; 1120 u64 hv_guest_os_id; 1121 u64 hv_hypercall; 1122 u64 hv_tsc_page; 1123 enum hv_tsc_page_status hv_tsc_page_status; 1124 1125 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1126 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1127 u64 hv_crash_ctl; 1128 1129 struct ms_hyperv_tsc_page tsc_ref; 1130 1131 struct idr conn_to_evt; 1132 1133 u64 hv_reenlightenment_control; 1134 u64 hv_tsc_emulation_control; 1135 u64 hv_tsc_emulation_status; 1136 u64 hv_invtsc_control; 1137 1138 /* How many vCPUs have VP index != vCPU index */ 1139 atomic_t num_mismatched_vp_indexes; 1140 1141 /* 1142 * How many SynICs use 'AutoEOI' feature 1143 * (protected by arch.apicv_update_lock) 1144 */ 1145 unsigned int synic_auto_eoi_used; 1146 1147 struct kvm_hv_syndbg hv_syndbg; 1148 1149 bool xsaves_xsavec_checked; 1150 }; 1151 #endif 1152 1153 struct msr_bitmap_range { 1154 u32 flags; 1155 u32 nmsrs; 1156 u32 base; 1157 unsigned long *bitmap; 1158 }; 1159 1160 #ifdef CONFIG_KVM_XEN 1161 /* Xen emulation context */ 1162 struct kvm_xen { 1163 struct mutex xen_lock; 1164 u32 xen_version; 1165 bool long_mode; 1166 bool runstate_update_flag; 1167 u8 upcall_vector; 1168 struct gfn_to_pfn_cache shinfo_cache; 1169 struct idr evtchn_ports; 1170 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1171 }; 1172 #endif 1173 1174 enum kvm_irqchip_mode { 1175 KVM_IRQCHIP_NONE, 1176 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1177 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1178 }; 1179 1180 struct kvm_x86_msr_filter { 1181 u8 count; 1182 bool default_allow:1; 1183 struct msr_bitmap_range ranges[16]; 1184 }; 1185 1186 struct kvm_x86_pmu_event_filter { 1187 __u32 action; 1188 __u32 nevents; 1189 __u32 fixed_counter_bitmap; 1190 __u32 flags; 1191 __u32 nr_includes; 1192 __u32 nr_excludes; 1193 __u64 *includes; 1194 __u64 *excludes; 1195 __u64 events[]; 1196 }; 1197 1198 enum kvm_apicv_inhibit { 1199 1200 /********************************************************************/ 1201 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1202 /********************************************************************/ 1203 1204 /* 1205 * APIC acceleration is disabled by a module parameter 1206 * and/or not supported in hardware. 1207 */ 1208 APICV_INHIBIT_REASON_DISABLE, 1209 1210 /* 1211 * APIC acceleration is inhibited because AutoEOI feature is 1212 * being used by a HyperV guest. 1213 */ 1214 APICV_INHIBIT_REASON_HYPERV, 1215 1216 /* 1217 * APIC acceleration is inhibited because the userspace didn't yet 1218 * enable the kernel/split irqchip. 1219 */ 1220 APICV_INHIBIT_REASON_ABSENT, 1221 1222 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1223 * (out of band, debug measure of blocking all interrupts on this vCPU) 1224 * was enabled, to avoid AVIC/APICv bypassing it. 1225 */ 1226 APICV_INHIBIT_REASON_BLOCKIRQ, 1227 1228 /* 1229 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1230 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1231 */ 1232 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1233 1234 /* 1235 * For simplicity, the APIC acceleration is inhibited 1236 * first time either APIC ID or APIC base are changed by the guest 1237 * from their reset values. 1238 */ 1239 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1240 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1241 1242 /******************************************************/ 1243 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1244 /******************************************************/ 1245 1246 /* 1247 * AVIC is inhibited on a vCPU because it runs a nested guest. 1248 * 1249 * This is needed because unlike APICv, the peers of this vCPU 1250 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1251 * a vCPU runs nested. 1252 */ 1253 APICV_INHIBIT_REASON_NESTED, 1254 1255 /* 1256 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1257 * which cannot be injected when the AVIC is enabled, thus AVIC 1258 * is inhibited while KVM waits for IRQ window. 1259 */ 1260 APICV_INHIBIT_REASON_IRQWIN, 1261 1262 /* 1263 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1264 * which AVIC doesn't support for edge triggered interrupts. 1265 */ 1266 APICV_INHIBIT_REASON_PIT_REINJ, 1267 1268 /* 1269 * AVIC is disabled because SEV doesn't support it. 1270 */ 1271 APICV_INHIBIT_REASON_SEV, 1272 1273 /* 1274 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1275 * mapping between logical ID and vCPU. 1276 */ 1277 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1278 }; 1279 1280 struct kvm_arch { 1281 unsigned long vm_type; 1282 unsigned long n_used_mmu_pages; 1283 unsigned long n_requested_mmu_pages; 1284 unsigned long n_max_mmu_pages; 1285 unsigned int indirect_shadow_pages; 1286 u8 mmu_valid_gen; 1287 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1288 struct list_head active_mmu_pages; 1289 struct list_head zapped_obsolete_pages; 1290 /* 1291 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1292 * replaced by an NX huge page. A shadow page is on this list if its 1293 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1294 * and there are no other conditions that prevent a huge page, e.g. 1295 * the backing host page is huge, dirtly logging is not enabled for its 1296 * memslot, etc... Note, zapping shadow pages on this list doesn't 1297 * guarantee an NX huge page will be created in its stead, e.g. if the 1298 * guest attempts to execute from the region then KVM obviously can't 1299 * create an NX huge page (without hanging the guest). 1300 */ 1301 struct list_head possible_nx_huge_pages; 1302 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1303 struct kvm_page_track_notifier_head track_notifier_head; 1304 #endif 1305 /* 1306 * Protects marking pages unsync during page faults, as TDP MMU page 1307 * faults only take mmu_lock for read. For simplicity, the unsync 1308 * pages lock is always taken when marking pages unsync regardless of 1309 * whether mmu_lock is held for read or write. 1310 */ 1311 spinlock_t mmu_unsync_pages_lock; 1312 1313 struct iommu_domain *iommu_domain; 1314 bool iommu_noncoherent; 1315 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1316 atomic_t noncoherent_dma_count; 1317 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1318 atomic_t assigned_device_count; 1319 struct kvm_pic *vpic; 1320 struct kvm_ioapic *vioapic; 1321 struct kvm_pit *vpit; 1322 atomic_t vapics_in_nmi_mode; 1323 struct mutex apic_map_lock; 1324 struct kvm_apic_map __rcu *apic_map; 1325 atomic_t apic_map_dirty; 1326 1327 bool apic_access_memslot_enabled; 1328 bool apic_access_memslot_inhibited; 1329 1330 /* Protects apicv_inhibit_reasons */ 1331 struct rw_semaphore apicv_update_lock; 1332 unsigned long apicv_inhibit_reasons; 1333 1334 gpa_t wall_clock; 1335 1336 bool mwait_in_guest; 1337 bool hlt_in_guest; 1338 bool pause_in_guest; 1339 bool cstate_in_guest; 1340 1341 unsigned long irq_sources_bitmap; 1342 s64 kvmclock_offset; 1343 1344 /* 1345 * This also protects nr_vcpus_matched_tsc which is read from a 1346 * preemption-disabled region, so it must be a raw spinlock. 1347 */ 1348 raw_spinlock_t tsc_write_lock; 1349 u64 last_tsc_nsec; 1350 u64 last_tsc_write; 1351 u32 last_tsc_khz; 1352 u64 last_tsc_offset; 1353 u64 cur_tsc_nsec; 1354 u64 cur_tsc_write; 1355 u64 cur_tsc_offset; 1356 u64 cur_tsc_generation; 1357 int nr_vcpus_matched_tsc; 1358 1359 u32 default_tsc_khz; 1360 bool user_set_tsc; 1361 1362 seqcount_raw_spinlock_t pvclock_sc; 1363 bool use_master_clock; 1364 u64 master_kernel_ns; 1365 u64 master_cycle_now; 1366 struct delayed_work kvmclock_update_work; 1367 struct delayed_work kvmclock_sync_work; 1368 1369 struct kvm_xen_hvm_config xen_hvm_config; 1370 1371 /* reads protected by irq_srcu, writes by irq_lock */ 1372 struct hlist_head mask_notifier_list; 1373 1374 #ifdef CONFIG_KVM_HYPERV 1375 struct kvm_hv hyperv; 1376 #endif 1377 1378 #ifdef CONFIG_KVM_XEN 1379 struct kvm_xen xen; 1380 #endif 1381 1382 bool backwards_tsc_observed; 1383 bool boot_vcpu_runs_old_kvmclock; 1384 u32 bsp_vcpu_id; 1385 1386 u64 disabled_quirks; 1387 1388 enum kvm_irqchip_mode irqchip_mode; 1389 u8 nr_reserved_ioapic_pins; 1390 1391 bool disabled_lapic_found; 1392 1393 bool x2apic_format; 1394 bool x2apic_broadcast_quirk_disabled; 1395 1396 bool guest_can_read_msr_platform_info; 1397 bool exception_payload_enabled; 1398 1399 bool triple_fault_event; 1400 1401 bool bus_lock_detection_enabled; 1402 bool enable_pmu; 1403 1404 u32 notify_window; 1405 u32 notify_vmexit_flags; 1406 /* 1407 * If exit_on_emulation_error is set, and the in-kernel instruction 1408 * emulator fails to emulate an instruction, allow userspace 1409 * the opportunity to look at it. 1410 */ 1411 bool exit_on_emulation_error; 1412 1413 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1414 u32 user_space_msr_mask; 1415 struct kvm_x86_msr_filter __rcu *msr_filter; 1416 1417 u32 hypercall_exit_enabled; 1418 1419 /* Guest can access the SGX PROVISIONKEY. */ 1420 bool sgx_provisioning_allowed; 1421 1422 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1423 struct task_struct *nx_huge_page_recovery_thread; 1424 1425 #ifdef CONFIG_X86_64 1426 /* The number of TDP MMU pages across all roots. */ 1427 atomic64_t tdp_mmu_pages; 1428 1429 /* 1430 * List of struct kvm_mmu_pages being used as roots. 1431 * All struct kvm_mmu_pages in the list should have 1432 * tdp_mmu_page set. 1433 * 1434 * For reads, this list is protected by: 1435 * the MMU lock in read mode + RCU or 1436 * the MMU lock in write mode 1437 * 1438 * For writes, this list is protected by tdp_mmu_pages_lock; see 1439 * below for the details. 1440 * 1441 * Roots will remain in the list until their tdp_mmu_root_count 1442 * drops to zero, at which point the thread that decremented the 1443 * count to zero should removed the root from the list and clean 1444 * it up, freeing the root after an RCU grace period. 1445 */ 1446 struct list_head tdp_mmu_roots; 1447 1448 /* 1449 * Protects accesses to the following fields when the MMU lock 1450 * is held in read mode: 1451 * - tdp_mmu_roots (above) 1452 * - the link field of kvm_mmu_page structs used by the TDP MMU 1453 * - possible_nx_huge_pages; 1454 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1455 * by the TDP MMU 1456 * Because the lock is only taken within the MMU lock, strictly 1457 * speaking it is redundant to acquire this lock when the thread 1458 * holds the MMU lock in write mode. However it often simplifies 1459 * the code to do so. 1460 */ 1461 spinlock_t tdp_mmu_pages_lock; 1462 #endif /* CONFIG_X86_64 */ 1463 1464 /* 1465 * If set, at least one shadow root has been allocated. This flag 1466 * is used as one input when determining whether certain memslot 1467 * related allocations are necessary. 1468 */ 1469 bool shadow_root_allocated; 1470 1471 #if IS_ENABLED(CONFIG_HYPERV) 1472 hpa_t hv_root_tdp; 1473 spinlock_t hv_root_tdp_lock; 1474 struct hv_partition_assist_pg *hv_pa_pg; 1475 #endif 1476 /* 1477 * VM-scope maximum vCPU ID. Used to determine the size of structures 1478 * that increase along with the maximum vCPU ID, in which case, using 1479 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1480 */ 1481 u32 max_vcpu_ids; 1482 1483 bool disable_nx_huge_pages; 1484 1485 /* 1486 * Memory caches used to allocate shadow pages when performing eager 1487 * page splitting. No need for a shadowed_info_cache since eager page 1488 * splitting only allocates direct shadow pages. 1489 * 1490 * Protected by kvm->slots_lock. 1491 */ 1492 struct kvm_mmu_memory_cache split_shadow_page_cache; 1493 struct kvm_mmu_memory_cache split_page_header_cache; 1494 1495 /* 1496 * Memory cache used to allocate pte_list_desc structs while splitting 1497 * huge pages. In the worst case, to split one huge page, 512 1498 * pte_list_desc structs are needed to add each lower level leaf sptep 1499 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1500 * page table. 1501 * 1502 * Protected by kvm->slots_lock. 1503 */ 1504 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1505 struct kvm_mmu_memory_cache split_desc_cache; 1506 }; 1507 1508 struct kvm_vm_stat { 1509 struct kvm_vm_stat_generic generic; 1510 u64 mmu_shadow_zapped; 1511 u64 mmu_pte_write; 1512 u64 mmu_pde_zapped; 1513 u64 mmu_flooded; 1514 u64 mmu_recycled; 1515 u64 mmu_cache_miss; 1516 u64 mmu_unsync; 1517 union { 1518 struct { 1519 atomic64_t pages_4k; 1520 atomic64_t pages_2m; 1521 atomic64_t pages_1g; 1522 }; 1523 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1524 }; 1525 u64 nx_lpage_splits; 1526 u64 max_mmu_page_hash_collisions; 1527 u64 max_mmu_rmap_size; 1528 }; 1529 1530 struct kvm_vcpu_stat { 1531 struct kvm_vcpu_stat_generic generic; 1532 u64 pf_taken; 1533 u64 pf_fixed; 1534 u64 pf_emulate; 1535 u64 pf_spurious; 1536 u64 pf_fast; 1537 u64 pf_mmio_spte_created; 1538 u64 pf_guest; 1539 u64 tlb_flush; 1540 u64 invlpg; 1541 1542 u64 exits; 1543 u64 io_exits; 1544 u64 mmio_exits; 1545 u64 signal_exits; 1546 u64 irq_window_exits; 1547 u64 nmi_window_exits; 1548 u64 l1d_flush; 1549 u64 halt_exits; 1550 u64 request_irq_exits; 1551 u64 irq_exits; 1552 u64 host_state_reload; 1553 u64 fpu_reload; 1554 u64 insn_emulation; 1555 u64 insn_emulation_fail; 1556 u64 hypercalls; 1557 u64 irq_injections; 1558 u64 nmi_injections; 1559 u64 req_event; 1560 u64 nested_run; 1561 u64 directed_yield_attempted; 1562 u64 directed_yield_successful; 1563 u64 preemption_reported; 1564 u64 preemption_other; 1565 u64 guest_mode; 1566 u64 notify_window_exits; 1567 }; 1568 1569 struct x86_instruction_info; 1570 1571 struct msr_data { 1572 bool host_initiated; 1573 u32 index; 1574 u64 data; 1575 }; 1576 1577 struct kvm_lapic_irq { 1578 u32 vector; 1579 u16 delivery_mode; 1580 u16 dest_mode; 1581 bool level; 1582 u16 trig_mode; 1583 u32 shorthand; 1584 u32 dest_id; 1585 bool msi_redir_hint; 1586 }; 1587 1588 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1589 { 1590 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1591 } 1592 1593 struct kvm_x86_ops { 1594 const char *name; 1595 1596 int (*check_processor_compatibility)(void); 1597 1598 int (*hardware_enable)(void); 1599 void (*hardware_disable)(void); 1600 void (*hardware_unsetup)(void); 1601 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1602 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1603 1604 unsigned int vm_size; 1605 int (*vm_init)(struct kvm *kvm); 1606 void (*vm_destroy)(struct kvm *kvm); 1607 1608 /* Create, but do not attach this VCPU */ 1609 int (*vcpu_precreate)(struct kvm *kvm); 1610 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1611 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1612 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1613 1614 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1615 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1616 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1617 1618 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1619 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1620 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1621 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1622 void (*get_segment)(struct kvm_vcpu *vcpu, 1623 struct kvm_segment *var, int seg); 1624 int (*get_cpl)(struct kvm_vcpu *vcpu); 1625 void (*set_segment)(struct kvm_vcpu *vcpu, 1626 struct kvm_segment *var, int seg); 1627 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1628 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1629 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1630 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1631 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1632 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1633 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1634 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1635 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1636 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1637 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1638 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1639 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1640 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1641 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1642 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1643 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1644 1645 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1646 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1647 #if IS_ENABLED(CONFIG_HYPERV) 1648 int (*flush_remote_tlbs)(struct kvm *kvm); 1649 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1650 gfn_t nr_pages); 1651 #endif 1652 1653 /* 1654 * Flush any TLB entries associated with the given GVA. 1655 * Does not need to flush GPA->HPA mappings. 1656 * Can potentially get non-canonical addresses through INVLPGs, which 1657 * the implementation may choose to ignore if appropriate. 1658 */ 1659 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1660 1661 /* 1662 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1663 * does not need to flush GPA->HPA mappings. 1664 */ 1665 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1666 1667 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1668 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu); 1669 int (*handle_exit)(struct kvm_vcpu *vcpu, 1670 enum exit_fastpath_completion exit_fastpath); 1671 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1672 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1673 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1674 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1675 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1676 unsigned char *hypercall_addr); 1677 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1678 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1679 void (*inject_exception)(struct kvm_vcpu *vcpu); 1680 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1681 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1682 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1683 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1684 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1685 /* Whether or not a virtual NMI is pending in hardware. */ 1686 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1687 /* 1688 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1689 * to allow using static_call_ret0 as the fallback. 1690 */ 1691 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1692 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1693 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1694 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1695 bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason); 1696 const unsigned long required_apicv_inhibits; 1697 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1698 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1699 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1700 void (*hwapic_isr_update)(int isr); 1701 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1702 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1703 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1704 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1705 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1706 int trig_mode, int vector); 1707 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1708 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1709 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1710 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1711 1712 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1713 int root_level); 1714 1715 bool (*has_wbinvd_exit)(void); 1716 1717 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1718 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1719 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1720 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1721 1722 /* 1723 * Retrieve somewhat arbitrary exit information. Intended to 1724 * be used only from within tracepoints or error paths. 1725 */ 1726 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1727 u64 *info1, u64 *info2, 1728 u32 *exit_int_info, u32 *exit_int_info_err_code); 1729 1730 int (*check_intercept)(struct kvm_vcpu *vcpu, 1731 struct x86_instruction_info *info, 1732 enum x86_intercept_stage stage, 1733 struct x86_exception *exception); 1734 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1735 1736 void (*request_immediate_exit)(struct kvm_vcpu *vcpu); 1737 1738 void (*sched_in)(struct kvm_vcpu *vcpu, int cpu); 1739 1740 /* 1741 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1742 * value indicates CPU dirty logging is unsupported or disabled. 1743 */ 1744 int cpu_dirty_log_size; 1745 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1746 1747 const struct kvm_x86_nested_ops *nested_ops; 1748 1749 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1750 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1751 1752 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1753 uint32_t guest_irq, bool set); 1754 void (*pi_start_assignment)(struct kvm *kvm); 1755 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1756 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1757 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1758 1759 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1760 bool *expired); 1761 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1762 1763 void (*setup_mce)(struct kvm_vcpu *vcpu); 1764 1765 #ifdef CONFIG_KVM_SMM 1766 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1767 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1768 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1769 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1770 #endif 1771 1772 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1773 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1774 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1775 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1776 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1777 void (*guest_memory_reclaimed)(struct kvm *kvm); 1778 1779 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1780 1781 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1782 void *insn, int insn_len); 1783 1784 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1785 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1786 1787 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1788 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1789 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1790 1791 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1792 1793 /* 1794 * Returns vCPU specific APICv inhibit reasons 1795 */ 1796 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1797 1798 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1799 }; 1800 1801 struct kvm_x86_nested_ops { 1802 void (*leave_nested)(struct kvm_vcpu *vcpu); 1803 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1804 u32 error_code); 1805 int (*check_events)(struct kvm_vcpu *vcpu); 1806 bool (*has_events)(struct kvm_vcpu *vcpu); 1807 void (*triple_fault)(struct kvm_vcpu *vcpu); 1808 int (*get_state)(struct kvm_vcpu *vcpu, 1809 struct kvm_nested_state __user *user_kvm_nested_state, 1810 unsigned user_data_size); 1811 int (*set_state)(struct kvm_vcpu *vcpu, 1812 struct kvm_nested_state __user *user_kvm_nested_state, 1813 struct kvm_nested_state *kvm_state); 1814 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1815 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1816 1817 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1818 uint16_t *vmcs_version); 1819 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1820 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1821 }; 1822 1823 struct kvm_x86_init_ops { 1824 int (*hardware_setup)(void); 1825 unsigned int (*handle_intel_pt_intr)(void); 1826 1827 struct kvm_x86_ops *runtime_ops; 1828 struct kvm_pmu_ops *pmu_ops; 1829 }; 1830 1831 struct kvm_arch_async_pf { 1832 u32 token; 1833 gfn_t gfn; 1834 unsigned long cr3; 1835 bool direct_map; 1836 }; 1837 1838 extern u32 __read_mostly kvm_nr_uret_msrs; 1839 extern u64 __read_mostly host_efer; 1840 extern bool __read_mostly allow_smaller_maxphyaddr; 1841 extern bool __read_mostly enable_apicv; 1842 extern struct kvm_x86_ops kvm_x86_ops; 1843 1844 #define KVM_X86_OP(func) \ 1845 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1846 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1847 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1848 #include <asm/kvm-x86-ops.h> 1849 1850 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1851 void kvm_x86_vendor_exit(void); 1852 1853 #define __KVM_HAVE_ARCH_VM_ALLOC 1854 static inline struct kvm *kvm_arch_alloc_vm(void) 1855 { 1856 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1857 } 1858 1859 #define __KVM_HAVE_ARCH_VM_FREE 1860 void kvm_arch_free_vm(struct kvm *kvm); 1861 1862 #if IS_ENABLED(CONFIG_HYPERV) 1863 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1864 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1865 { 1866 if (kvm_x86_ops.flush_remote_tlbs && 1867 !static_call(kvm_x86_flush_remote_tlbs)(kvm)) 1868 return 0; 1869 else 1870 return -ENOTSUPP; 1871 } 1872 1873 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1874 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1875 u64 nr_pages) 1876 { 1877 if (!kvm_x86_ops.flush_remote_tlbs_range) 1878 return -EOPNOTSUPP; 1879 1880 return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1881 } 1882 #endif /* CONFIG_HYPERV */ 1883 1884 #define kvm_arch_pmi_in_guest(vcpu) \ 1885 ((vcpu) && (vcpu)->arch.handling_intr_from_guest) 1886 1887 void __init kvm_mmu_x86_module_init(void); 1888 int kvm_mmu_vendor_module_init(void); 1889 void kvm_mmu_vendor_module_exit(void); 1890 1891 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1892 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1893 void kvm_mmu_init_vm(struct kvm *kvm); 1894 void kvm_mmu_uninit_vm(struct kvm *kvm); 1895 1896 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 1897 struct kvm_memory_slot *slot); 1898 1899 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1900 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1901 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1902 const struct kvm_memory_slot *memslot, 1903 int start_level); 1904 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1905 const struct kvm_memory_slot *memslot, 1906 int target_level); 1907 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1908 const struct kvm_memory_slot *memslot, 1909 u64 start, u64 end, 1910 int target_level); 1911 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1912 const struct kvm_memory_slot *memslot); 1913 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1914 const struct kvm_memory_slot *memslot); 1915 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1916 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1917 1918 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 1919 1920 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1921 const void *val, int bytes); 1922 1923 struct kvm_irq_mask_notifier { 1924 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1925 int irq; 1926 struct hlist_node link; 1927 }; 1928 1929 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1930 struct kvm_irq_mask_notifier *kimn); 1931 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1932 struct kvm_irq_mask_notifier *kimn); 1933 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1934 bool mask); 1935 1936 extern bool tdp_enabled; 1937 1938 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1939 1940 /* 1941 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1942 * userspace I/O) to indicate that the emulation context 1943 * should be reused as is, i.e. skip initialization of 1944 * emulation context, instruction fetch and decode. 1945 * 1946 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1947 * Indicates that only select instructions (tagged with 1948 * EmulateOnUD) should be emulated (to minimize the emulator 1949 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 1950 * 1951 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 1952 * decode the instruction length. For use *only* by 1953 * kvm_x86_ops.skip_emulated_instruction() implementations if 1954 * EMULTYPE_COMPLETE_USER_EXIT is not set. 1955 * 1956 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 1957 * retry native execution under certain conditions, 1958 * Can only be set in conjunction with EMULTYPE_PF. 1959 * 1960 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 1961 * triggered by KVM's magic "force emulation" prefix, 1962 * which is opt in via module param (off by default). 1963 * Bypasses EmulateOnUD restriction despite emulating 1964 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 1965 * Used to test the full emulator from userspace. 1966 * 1967 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 1968 * backdoor emulation, which is opt in via module param. 1969 * VMware backdoor emulation handles select instructions 1970 * and reinjects the #GP for all other cases. 1971 * 1972 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 1973 * case the CR2/GPA value pass on the stack is valid. 1974 * 1975 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 1976 * state and inject single-step #DBs after skipping 1977 * an instruction (after completing userspace I/O). 1978 * 1979 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 1980 * is attempting to write a gfn that contains one or 1981 * more of the PTEs used to translate the write itself, 1982 * and the owning page table is being shadowed by KVM. 1983 * If emulation of the faulting instruction fails and 1984 * this flag is set, KVM will exit to userspace instead 1985 * of retrying emulation as KVM cannot make forward 1986 * progress. 1987 * 1988 * If emulation fails for a write to guest page tables, 1989 * KVM unprotects (zaps) the shadow page for the target 1990 * gfn and resumes the guest to retry the non-emulatable 1991 * instruction (on hardware). Unprotecting the gfn 1992 * doesn't allow forward progress for a self-changing 1993 * access because doing so also zaps the translation for 1994 * the gfn, i.e. retrying the instruction will hit a 1995 * !PRESENT fault, which results in a new shadow page 1996 * and sends KVM back to square one. 1997 */ 1998 #define EMULTYPE_NO_DECODE (1 << 0) 1999 #define EMULTYPE_TRAP_UD (1 << 1) 2000 #define EMULTYPE_SKIP (1 << 2) 2001 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2002 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2003 #define EMULTYPE_VMWARE_GP (1 << 5) 2004 #define EMULTYPE_PF (1 << 6) 2005 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2006 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2007 2008 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2009 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2010 void *insn, int insn_len); 2011 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2012 u64 *data, u8 ndata); 2013 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2014 2015 void kvm_enable_efer_bits(u64); 2016 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2017 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2018 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2019 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2020 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2021 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2022 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2023 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2024 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2025 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2026 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2027 2028 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2029 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2030 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2031 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2032 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2033 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2034 2035 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2036 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2037 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2038 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2039 2040 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2041 int reason, bool has_error_code, u32 error_code); 2042 2043 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2044 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2045 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2046 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2047 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2048 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2049 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2050 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val); 2051 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2052 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2053 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2054 2055 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2056 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2057 2058 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2059 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2060 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2061 2062 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2063 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2064 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2065 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2066 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2067 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2068 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2069 struct x86_exception *fault); 2070 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2071 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2072 2073 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2074 int irq_source_id, int level) 2075 { 2076 /* Logical OR for level trig interrupt */ 2077 if (level) 2078 __set_bit(irq_source_id, irq_state); 2079 else 2080 __clear_bit(irq_source_id, irq_state); 2081 2082 return !!(*irq_state); 2083 } 2084 2085 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2086 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2087 2088 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2089 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2090 2091 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2092 2093 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 2094 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2095 ulong roots_to_free); 2096 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2097 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2098 struct x86_exception *exception); 2099 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2100 struct x86_exception *exception); 2101 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2102 struct x86_exception *exception); 2103 2104 bool kvm_apicv_activated(struct kvm *kvm); 2105 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2106 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2107 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2108 enum kvm_apicv_inhibit reason, bool set); 2109 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2110 enum kvm_apicv_inhibit reason, bool set); 2111 2112 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2113 enum kvm_apicv_inhibit reason) 2114 { 2115 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2116 } 2117 2118 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2119 enum kvm_apicv_inhibit reason) 2120 { 2121 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2122 } 2123 2124 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 2125 2126 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2127 void *insn, int insn_len); 2128 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2129 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2130 u64 addr, unsigned long roots); 2131 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2132 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2133 2134 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2135 int tdp_max_root_level, int tdp_huge_page_level); 2136 2137 #ifdef CONFIG_KVM_PRIVATE_MEM 2138 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.vm_type != KVM_X86_DEFAULT_VM) 2139 #else 2140 #define kvm_arch_has_private_mem(kvm) false 2141 #endif 2142 2143 static inline u16 kvm_read_ldt(void) 2144 { 2145 u16 ldt; 2146 asm("sldt %0" : "=g"(ldt)); 2147 return ldt; 2148 } 2149 2150 static inline void kvm_load_ldt(u16 sel) 2151 { 2152 asm("lldt %0" : : "rm"(sel)); 2153 } 2154 2155 #ifdef CONFIG_X86_64 2156 static inline unsigned long read_msr(unsigned long msr) 2157 { 2158 u64 value; 2159 2160 rdmsrl(msr, value); 2161 return value; 2162 } 2163 #endif 2164 2165 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2166 { 2167 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2168 } 2169 2170 #define TSS_IOPB_BASE_OFFSET 0x66 2171 #define TSS_BASE_SIZE 0x68 2172 #define TSS_IOPB_SIZE (65536 / 8) 2173 #define TSS_REDIRECTION_SIZE (256 / 8) 2174 #define RMODE_TSS_SIZE \ 2175 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2176 2177 enum { 2178 TASK_SWITCH_CALL = 0, 2179 TASK_SWITCH_IRET = 1, 2180 TASK_SWITCH_JMP = 2, 2181 TASK_SWITCH_GATE = 3, 2182 }; 2183 2184 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2185 2186 #ifdef CONFIG_KVM_SMM 2187 #define HF_SMM_MASK (1 << 1) 2188 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2189 2190 # define KVM_MAX_NR_ADDRESS_SPACES 2 2191 /* SMM is currently unsupported for guests with private memory. */ 2192 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2193 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2194 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2195 #else 2196 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2197 #endif 2198 2199 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2200 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2201 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2202 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2203 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2204 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2205 2206 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2207 unsigned long ipi_bitmap_high, u32 min, 2208 unsigned long icr, int op_64_bit); 2209 2210 int kvm_add_user_return_msr(u32 msr); 2211 int kvm_find_user_return_msr(u32 msr); 2212 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2213 2214 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2215 { 2216 return kvm_find_user_return_msr(msr) >= 0; 2217 } 2218 2219 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2220 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2221 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2222 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2223 2224 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2225 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2226 2227 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2228 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2229 unsigned long *vcpu_bitmap); 2230 2231 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2232 struct kvm_async_pf *work); 2233 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2234 struct kvm_async_pf *work); 2235 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2236 struct kvm_async_pf *work); 2237 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2238 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2239 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2240 2241 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2242 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2243 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu); 2244 2245 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2246 u32 size); 2247 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2248 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2249 2250 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2251 struct kvm_vcpu **dest_vcpu); 2252 2253 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2254 struct kvm_lapic_irq *irq); 2255 2256 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2257 { 2258 /* We can only post Fixed and LowPrio IRQs */ 2259 return (irq->delivery_mode == APIC_DM_FIXED || 2260 irq->delivery_mode == APIC_DM_LOWEST); 2261 } 2262 2263 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2264 { 2265 static_call_cond(kvm_x86_vcpu_blocking)(vcpu); 2266 } 2267 2268 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2269 { 2270 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu); 2271 } 2272 2273 static inline int kvm_cpu_get_apicid(int mps_cpu) 2274 { 2275 #ifdef CONFIG_X86_LOCAL_APIC 2276 return default_cpu_present_to_apicid(mps_cpu); 2277 #else 2278 WARN_ON_ONCE(1); 2279 return BAD_APICID; 2280 #endif 2281 } 2282 2283 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2284 2285 #define KVM_CLOCK_VALID_FLAGS \ 2286 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2287 2288 #define KVM_X86_VALID_QUIRKS \ 2289 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2290 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2291 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2292 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2293 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2294 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2295 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) 2296 2297 /* 2298 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2299 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2300 * remaining 31 lower bits must be 0 to preserve ABI. 2301 */ 2302 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2303 2304 #endif /* _ASM_X86_KVM_HOST_H */ 2305