1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/hyperv.h> 28 #include <linux/kfifo.h> 29 30 #include <asm/apic.h> 31 #include <asm/pvclock-abi.h> 32 #include <asm/desc.h> 33 #include <asm/mtrr.h> 34 #include <asm/msr-index.h> 35 #include <asm/asm.h> 36 #include <asm/kvm_page_track.h> 37 #include <asm/kvm_vcpu_regs.h> 38 #include <asm/hyperv-tlfs.h> 39 #include <asm/reboot.h> 40 41 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 42 43 /* 44 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 45 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 46 */ 47 #ifdef CONFIG_KVM_MAX_NR_VCPUS 48 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 49 #else 50 #define KVM_MAX_VCPUS 1024 51 #endif 52 53 /* 54 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 55 * might be larger than the actual number of VCPUs because the 56 * APIC ID encodes CPU topology information. 57 * 58 * In the worst case, we'll need less than one extra bit for the 59 * Core ID, and less than one extra bit for the Package (Die) ID, 60 * so ratio of 4 should be enough. 61 */ 62 #define KVM_VCPU_ID_RATIO 4 63 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 64 65 /* memory slots that are not exposed to userspace */ 66 #define KVM_INTERNAL_MEM_SLOTS 3 67 68 #define KVM_HALT_POLL_NS_DEFAULT 200000 69 70 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 71 72 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 73 KVM_DIRTY_LOG_INITIALLY_SET) 74 75 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 76 KVM_BUS_LOCK_DETECTION_EXIT) 77 78 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 79 KVM_X86_NOTIFY_VMEXIT_USER) 80 81 /* x86-specific vcpu->requests bit members */ 82 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 83 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 84 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 85 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 86 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 87 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 88 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 89 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 90 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 91 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 92 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 93 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 94 #ifdef CONFIG_KVM_SMM 95 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 96 #endif 97 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 98 #define KVM_REQ_MCLOCK_INPROGRESS \ 99 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 100 #define KVM_REQ_SCAN_IOAPIC \ 101 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 102 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 103 #define KVM_REQ_APIC_PAGE_RELOAD \ 104 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 105 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 106 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 107 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 108 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 109 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 110 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 111 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 112 #define KVM_REQ_APICV_UPDATE \ 113 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 114 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 115 #define KVM_REQ_TLB_FLUSH_GUEST \ 116 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 117 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 118 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 119 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 120 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 121 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 122 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 123 #define KVM_REQ_HV_TLB_FLUSH \ 124 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 125 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE KVM_ARCH_REQ(34) 126 127 #define CR0_RESERVED_BITS \ 128 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 129 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 130 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 131 132 #define CR4_RESERVED_BITS \ 133 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 134 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 135 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 136 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 137 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 138 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 139 | X86_CR4_LAM_SUP)) 140 141 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 142 143 144 145 #define INVALID_PAGE (~(hpa_t)0) 146 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 147 148 /* KVM Hugepage definitions for x86 */ 149 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 150 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 151 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 152 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 153 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 154 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 155 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 156 157 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 158 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 159 #define KVM_MMU_HASH_SHIFT 12 160 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 161 #define KVM_MIN_FREE_MMU_PAGES 5 162 #define KVM_REFILL_PAGES 25 163 #define KVM_MAX_CPUID_ENTRIES 256 164 #define KVM_NR_VAR_MTRR 8 165 166 #define ASYNC_PF_PER_VCPU 64 167 168 enum kvm_reg { 169 VCPU_REGS_RAX = __VCPU_REGS_RAX, 170 VCPU_REGS_RCX = __VCPU_REGS_RCX, 171 VCPU_REGS_RDX = __VCPU_REGS_RDX, 172 VCPU_REGS_RBX = __VCPU_REGS_RBX, 173 VCPU_REGS_RSP = __VCPU_REGS_RSP, 174 VCPU_REGS_RBP = __VCPU_REGS_RBP, 175 VCPU_REGS_RSI = __VCPU_REGS_RSI, 176 VCPU_REGS_RDI = __VCPU_REGS_RDI, 177 #ifdef CONFIG_X86_64 178 VCPU_REGS_R8 = __VCPU_REGS_R8, 179 VCPU_REGS_R9 = __VCPU_REGS_R9, 180 VCPU_REGS_R10 = __VCPU_REGS_R10, 181 VCPU_REGS_R11 = __VCPU_REGS_R11, 182 VCPU_REGS_R12 = __VCPU_REGS_R12, 183 VCPU_REGS_R13 = __VCPU_REGS_R13, 184 VCPU_REGS_R14 = __VCPU_REGS_R14, 185 VCPU_REGS_R15 = __VCPU_REGS_R15, 186 #endif 187 VCPU_REGS_RIP, 188 NR_VCPU_REGS, 189 190 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 191 VCPU_EXREG_CR0, 192 VCPU_EXREG_CR3, 193 VCPU_EXREG_CR4, 194 VCPU_EXREG_RFLAGS, 195 VCPU_EXREG_SEGMENTS, 196 VCPU_EXREG_EXIT_INFO_1, 197 VCPU_EXREG_EXIT_INFO_2, 198 }; 199 200 enum { 201 VCPU_SREG_ES, 202 VCPU_SREG_CS, 203 VCPU_SREG_SS, 204 VCPU_SREG_DS, 205 VCPU_SREG_FS, 206 VCPU_SREG_GS, 207 VCPU_SREG_TR, 208 VCPU_SREG_LDTR, 209 }; 210 211 enum exit_fastpath_completion { 212 EXIT_FASTPATH_NONE, 213 EXIT_FASTPATH_REENTER_GUEST, 214 EXIT_FASTPATH_EXIT_HANDLED, 215 EXIT_FASTPATH_EXIT_USERSPACE, 216 }; 217 typedef enum exit_fastpath_completion fastpath_t; 218 219 struct x86_emulate_ctxt; 220 struct x86_exception; 221 union kvm_smram; 222 enum x86_intercept; 223 enum x86_intercept_stage; 224 225 #define KVM_NR_DB_REGS 4 226 227 #define DR6_BUS_LOCK (1 << 11) 228 #define DR6_BD (1 << 13) 229 #define DR6_BS (1 << 14) 230 #define DR6_BT (1 << 15) 231 #define DR6_RTM (1 << 16) 232 /* 233 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 234 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 235 * they will never be 0 for now, but when they are defined 236 * in the future it will require no code change. 237 * 238 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 239 */ 240 #define DR6_ACTIVE_LOW 0xffff0ff0 241 #define DR6_VOLATILE 0x0001e80f 242 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 243 244 #define DR7_BP_EN_MASK 0x000000ff 245 #define DR7_GE (1 << 9) 246 #define DR7_GD (1 << 13) 247 #define DR7_FIXED_1 0x00000400 248 #define DR7_VOLATILE 0xffff2bff 249 250 #define KVM_GUESTDBG_VALID_MASK \ 251 (KVM_GUESTDBG_ENABLE | \ 252 KVM_GUESTDBG_SINGLESTEP | \ 253 KVM_GUESTDBG_USE_HW_BP | \ 254 KVM_GUESTDBG_USE_SW_BP | \ 255 KVM_GUESTDBG_INJECT_BP | \ 256 KVM_GUESTDBG_INJECT_DB | \ 257 KVM_GUESTDBG_BLOCKIRQ) 258 259 #define PFERR_PRESENT_MASK BIT(0) 260 #define PFERR_WRITE_MASK BIT(1) 261 #define PFERR_USER_MASK BIT(2) 262 #define PFERR_RSVD_MASK BIT(3) 263 #define PFERR_FETCH_MASK BIT(4) 264 #define PFERR_PK_MASK BIT(5) 265 #define PFERR_SGX_MASK BIT(15) 266 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 267 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 268 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 269 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 270 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 271 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 272 273 /* 274 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 275 * when emulating instructions that triggers implicit access. 276 */ 277 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 278 /* 279 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 280 * when the guest was accessing private memory. 281 */ 282 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 283 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 284 285 /* apic attention bits */ 286 #define KVM_APIC_CHECK_VAPIC 0 287 /* 288 * The following bit is set with PV-EOI, unset on EOI. 289 * We detect PV-EOI changes by guest by comparing 290 * this bit with PV-EOI in guest memory. 291 * See the implementation in apic_update_pv_eoi. 292 */ 293 #define KVM_APIC_PV_EOI_PENDING 1 294 295 struct kvm_kernel_irq_routing_entry; 296 297 /* 298 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 299 * also includes TDP pages) to determine whether or not a page can be used in 300 * the given MMU context. This is a subset of the overall kvm_cpu_role to 301 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 302 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 303 * 304 * Upper-level shadow pages having gptes are tracked for write-protection via 305 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 306 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 307 * otherwise gfn_write_track will overflow and explosions will ensue. 308 * 309 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 310 * cannot be reused. The ability to reuse a SP is tracked by its role, which 311 * incorporates various mode bits and properties of the SP. Roughly speaking, 312 * the number of unique SPs that can theoretically be created is 2^n, where n 313 * is the number of bits that are used to compute the role. 314 * 315 * But, even though there are 19 bits in the mask below, not all combinations 316 * of modes and flags are possible: 317 * 318 * - invalid shadow pages are not accounted, so the bits are effectively 18 319 * 320 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 321 * execonly and ad_disabled are only used for nested EPT which has 322 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 323 * 324 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 325 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 326 * paging has exactly one upper level, making level completely redundant 327 * when has_4_byte_gpte=1. 328 * 329 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 330 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 331 * 332 * Therefore, the maximum number of possible upper-level shadow pages for a 333 * single gfn is a bit less than 2^13. 334 */ 335 union kvm_mmu_page_role { 336 u32 word; 337 struct { 338 unsigned level:4; 339 unsigned has_4_byte_gpte:1; 340 unsigned quadrant:2; 341 unsigned direct:1; 342 unsigned access:3; 343 unsigned invalid:1; 344 unsigned efer_nx:1; 345 unsigned cr0_wp:1; 346 unsigned smep_andnot_wp:1; 347 unsigned smap_andnot_wp:1; 348 unsigned ad_disabled:1; 349 unsigned guest_mode:1; 350 unsigned passthrough:1; 351 unsigned :5; 352 353 /* 354 * This is left at the top of the word so that 355 * kvm_memslots_for_spte_role can extract it with a 356 * simple shift. While there is room, give it a whole 357 * byte so it is also faster to load it from memory. 358 */ 359 unsigned smm:8; 360 }; 361 }; 362 363 /* 364 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 365 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 366 * including on nested transitions, if nothing in the full role changes then 367 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 368 * don't treat all-zero structure as valid data. 369 * 370 * The properties that are tracked in the extended role but not the page role 371 * are for things that either (a) do not affect the validity of the shadow page 372 * or (b) are indirectly reflected in the shadow page's role. For example, 373 * CR4.PKE only affects permission checks for software walks of the guest page 374 * tables (because KVM doesn't support Protection Keys with shadow paging), and 375 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 376 * 377 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 378 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 379 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 380 * SMAP aware regardless of CR0.WP. 381 */ 382 union kvm_mmu_extended_role { 383 u32 word; 384 struct { 385 unsigned int valid:1; 386 unsigned int execonly:1; 387 unsigned int cr4_pse:1; 388 unsigned int cr4_pke:1; 389 unsigned int cr4_smap:1; 390 unsigned int cr4_smep:1; 391 unsigned int cr4_la57:1; 392 unsigned int efer_lma:1; 393 }; 394 }; 395 396 union kvm_cpu_role { 397 u64 as_u64; 398 struct { 399 union kvm_mmu_page_role base; 400 union kvm_mmu_extended_role ext; 401 }; 402 }; 403 404 struct kvm_rmap_head { 405 unsigned long val; 406 }; 407 408 struct kvm_pio_request { 409 unsigned long linear_rip; 410 unsigned long count; 411 int in; 412 int port; 413 int size; 414 }; 415 416 #define PT64_ROOT_MAX_LEVEL 5 417 418 struct rsvd_bits_validate { 419 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 420 u64 bad_mt_xwr; 421 }; 422 423 struct kvm_mmu_root_info { 424 gpa_t pgd; 425 hpa_t hpa; 426 }; 427 428 #define KVM_MMU_ROOT_INFO_INVALID \ 429 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 430 431 #define KVM_MMU_NUM_PREV_ROOTS 3 432 433 #define KVM_MMU_ROOT_CURRENT BIT(0) 434 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 435 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 436 437 #define KVM_HAVE_MMU_RWLOCK 438 439 struct kvm_mmu_page; 440 struct kvm_page_fault; 441 442 /* 443 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 444 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 445 * current mmu mode. 446 */ 447 struct kvm_mmu { 448 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 449 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 450 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 451 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 452 struct x86_exception *fault); 453 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 454 gpa_t gva_or_gpa, u64 access, 455 struct x86_exception *exception); 456 int (*sync_spte)(struct kvm_vcpu *vcpu, 457 struct kvm_mmu_page *sp, int i); 458 struct kvm_mmu_root_info root; 459 union kvm_cpu_role cpu_role; 460 union kvm_mmu_page_role root_role; 461 462 /* 463 * The pkru_mask indicates if protection key checks are needed. It 464 * consists of 16 domains indexed by page fault error code bits [4:1], 465 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 466 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 467 */ 468 u32 pkru_mask; 469 470 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 471 472 /* 473 * Bitmap; bit set = permission fault 474 * Byte index: page fault error code [4:1] 475 * Bit index: pte permissions in ACC_* format 476 */ 477 u8 permissions[16]; 478 479 u64 *pae_root; 480 u64 *pml4_root; 481 u64 *pml5_root; 482 483 /* 484 * check zero bits on shadow page table entries, these 485 * bits include not only hardware reserved bits but also 486 * the bits spte never used. 487 */ 488 struct rsvd_bits_validate shadow_zero_check; 489 490 struct rsvd_bits_validate guest_rsvd_check; 491 492 u64 pdptrs[4]; /* pae */ 493 }; 494 495 enum pmc_type { 496 KVM_PMC_GP = 0, 497 KVM_PMC_FIXED, 498 }; 499 500 struct kvm_pmc { 501 enum pmc_type type; 502 u8 idx; 503 bool is_paused; 504 bool intr; 505 /* 506 * Base value of the PMC counter, relative to the *consumed* count in 507 * the associated perf_event. This value includes counter updates from 508 * the perf_event and emulated_count since the last time the counter 509 * was reprogrammed, but it is *not* the current value as seen by the 510 * guest or userspace. 511 * 512 * The count is relative to the associated perf_event so that KVM 513 * doesn't need to reprogram the perf_event every time the guest writes 514 * to the counter. 515 */ 516 u64 counter; 517 /* 518 * PMC events triggered by KVM emulation that haven't been fully 519 * processed, i.e. haven't undergone overflow detection. 520 */ 521 u64 emulated_counter; 522 u64 eventsel; 523 struct perf_event *perf_event; 524 struct kvm_vcpu *vcpu; 525 /* 526 * only for creating or reusing perf_event, 527 * eventsel value for general purpose counters, 528 * ctrl value for fixed counters. 529 */ 530 u64 current_config; 531 }; 532 533 /* More counters may conflict with other existing Architectural MSRs */ 534 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 535 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 536 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 537 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 538 KVM_MAX_NR_AMD_GP_COUNTERS) 539 540 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3 541 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0 542 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \ 543 KVM_MAX_NR_AMD_FIXED_COUTNERS) 544 545 struct kvm_pmu { 546 u8 version; 547 unsigned nr_arch_gp_counters; 548 unsigned nr_arch_fixed_counters; 549 unsigned available_event_types; 550 u64 fixed_ctr_ctrl; 551 u64 fixed_ctr_ctrl_rsvd; 552 u64 global_ctrl; 553 u64 global_status; 554 u64 counter_bitmask[2]; 555 u64 global_ctrl_rsvd; 556 u64 global_status_rsvd; 557 u64 reserved_bits; 558 u64 raw_event_mask; 559 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 560 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 561 562 /* 563 * Overlay the bitmap with a 64-bit atomic so that all bits can be 564 * set in a single access, e.g. to reprogram all counters when the PMU 565 * filter changes. 566 */ 567 union { 568 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 569 atomic64_t __reprogram_pmi; 570 }; 571 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 572 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 573 574 u64 ds_area; 575 u64 pebs_enable; 576 u64 pebs_enable_rsvd; 577 u64 pebs_data_cfg; 578 u64 pebs_data_cfg_rsvd; 579 580 /* 581 * If a guest counter is cross-mapped to host counter with different 582 * index, its PEBS capability will be temporarily disabled. 583 * 584 * The user should make sure that this mask is updated 585 * after disabling interrupts and before perf_guest_get_msrs(); 586 */ 587 u64 host_cross_mapped_mask; 588 589 /* 590 * The gate to release perf_events not marked in 591 * pmc_in_use only once in a vcpu time slice. 592 */ 593 bool need_cleanup; 594 595 /* 596 * The total number of programmed perf_events and it helps to avoid 597 * redundant check before cleanup if guest don't use vPMU at all. 598 */ 599 u8 event_count; 600 }; 601 602 struct kvm_pmu_ops; 603 604 enum { 605 KVM_DEBUGREG_BP_ENABLED = 1, 606 KVM_DEBUGREG_WONT_EXIT = 2, 607 }; 608 609 struct kvm_mtrr { 610 u64 var[KVM_NR_VAR_MTRR * 2]; 611 u64 fixed_64k; 612 u64 fixed_16k[2]; 613 u64 fixed_4k[8]; 614 u64 deftype; 615 }; 616 617 /* Hyper-V SynIC timer */ 618 struct kvm_vcpu_hv_stimer { 619 struct hrtimer timer; 620 int index; 621 union hv_stimer_config config; 622 u64 count; 623 u64 exp_time; 624 struct hv_message msg; 625 bool msg_pending; 626 }; 627 628 /* Hyper-V synthetic interrupt controller (SynIC)*/ 629 struct kvm_vcpu_hv_synic { 630 u64 version; 631 u64 control; 632 u64 msg_page; 633 u64 evt_page; 634 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 635 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 636 DECLARE_BITMAP(auto_eoi_bitmap, 256); 637 DECLARE_BITMAP(vec_bitmap, 256); 638 bool active; 639 bool dont_zero_synic_pages; 640 }; 641 642 /* The maximum number of entries on the TLB flush fifo. */ 643 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 644 /* 645 * Note: the following 'magic' entry is made up by KVM to avoid putting 646 * anything besides GVA on the TLB flush fifo. It is theoretically possible 647 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 648 * which will look identical. KVM's action to 'flush everything' instead of 649 * flushing these particular addresses is, however, fully legitimate as 650 * flushing more than requested is always OK. 651 */ 652 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 653 654 enum hv_tlb_flush_fifos { 655 HV_L1_TLB_FLUSH_FIFO, 656 HV_L2_TLB_FLUSH_FIFO, 657 HV_NR_TLB_FLUSH_FIFOS, 658 }; 659 660 struct kvm_vcpu_hv_tlb_flush_fifo { 661 spinlock_t write_lock; 662 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 663 }; 664 665 /* Hyper-V per vcpu emulation context */ 666 struct kvm_vcpu_hv { 667 struct kvm_vcpu *vcpu; 668 u32 vp_index; 669 u64 hv_vapic; 670 s64 runtime_offset; 671 struct kvm_vcpu_hv_synic synic; 672 struct kvm_hyperv_exit exit; 673 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 674 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 675 bool enforce_cpuid; 676 struct { 677 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 678 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 679 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 680 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 681 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 682 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 683 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 684 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 685 } cpuid_cache; 686 687 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 688 689 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 690 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 691 692 struct hv_vp_assist_page vp_assist_page; 693 694 struct { 695 u64 pa_page_gpa; 696 u64 vm_id; 697 u32 vp_id; 698 } nested; 699 }; 700 701 struct kvm_hypervisor_cpuid { 702 u32 base; 703 u32 limit; 704 }; 705 706 #ifdef CONFIG_KVM_XEN 707 /* Xen HVM per vcpu emulation context */ 708 struct kvm_vcpu_xen { 709 u64 hypercall_rip; 710 u32 current_runstate; 711 u8 upcall_vector; 712 struct gfn_to_pfn_cache vcpu_info_cache; 713 struct gfn_to_pfn_cache vcpu_time_info_cache; 714 struct gfn_to_pfn_cache runstate_cache; 715 struct gfn_to_pfn_cache runstate2_cache; 716 u64 last_steal; 717 u64 runstate_entry_time; 718 u64 runstate_times[4]; 719 unsigned long evtchn_pending_sel; 720 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 721 u32 timer_virq; 722 u64 timer_expires; /* In guest epoch */ 723 atomic_t timer_pending; 724 struct hrtimer timer; 725 int poll_evtchn; 726 struct timer_list poll_timer; 727 struct kvm_hypervisor_cpuid cpuid; 728 }; 729 #endif 730 731 struct kvm_queued_exception { 732 bool pending; 733 bool injected; 734 bool has_error_code; 735 u8 vector; 736 u32 error_code; 737 unsigned long payload; 738 bool has_payload; 739 }; 740 741 struct kvm_vcpu_arch { 742 /* 743 * rip and regs accesses must go through 744 * kvm_{register,rip}_{read,write} functions. 745 */ 746 unsigned long regs[NR_VCPU_REGS]; 747 u32 regs_avail; 748 u32 regs_dirty; 749 750 unsigned long cr0; 751 unsigned long cr0_guest_owned_bits; 752 unsigned long cr2; 753 unsigned long cr3; 754 unsigned long cr4; 755 unsigned long cr4_guest_owned_bits; 756 unsigned long cr4_guest_rsvd_bits; 757 unsigned long cr8; 758 u32 host_pkru; 759 u32 pkru; 760 u32 hflags; 761 u64 efer; 762 u64 apic_base; 763 struct kvm_lapic *apic; /* kernel irqchip context */ 764 bool load_eoi_exitmap_pending; 765 DECLARE_BITMAP(ioapic_handled_vectors, 256); 766 unsigned long apic_attention; 767 int32_t apic_arb_prio; 768 int mp_state; 769 u64 ia32_misc_enable_msr; 770 u64 smbase; 771 u64 smi_count; 772 bool at_instruction_boundary; 773 bool tpr_access_reporting; 774 bool xfd_no_write_intercept; 775 u64 ia32_xss; 776 u64 microcode_version; 777 u64 arch_capabilities; 778 u64 perf_capabilities; 779 780 /* 781 * Paging state of the vcpu 782 * 783 * If the vcpu runs in guest mode with two level paging this still saves 784 * the paging mode of the l1 guest. This context is always used to 785 * handle faults. 786 */ 787 struct kvm_mmu *mmu; 788 789 /* Non-nested MMU for L1 */ 790 struct kvm_mmu root_mmu; 791 792 /* L1 MMU when running nested */ 793 struct kvm_mmu guest_mmu; 794 795 /* 796 * Paging state of an L2 guest (used for nested npt) 797 * 798 * This context will save all necessary information to walk page tables 799 * of an L2 guest. This context is only initialized for page table 800 * walking and not for faulting since we never handle l2 page faults on 801 * the host. 802 */ 803 struct kvm_mmu nested_mmu; 804 805 /* 806 * Pointer to the mmu context currently used for 807 * gva_to_gpa translations. 808 */ 809 struct kvm_mmu *walk_mmu; 810 811 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 812 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 813 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 814 struct kvm_mmu_memory_cache mmu_page_header_cache; 815 816 /* 817 * QEMU userspace and the guest each have their own FPU state. 818 * In vcpu_run, we switch between the user and guest FPU contexts. 819 * While running a VCPU, the VCPU thread will have the guest FPU 820 * context. 821 * 822 * Note that while the PKRU state lives inside the fpu registers, 823 * it is switched out separately at VMENTER and VMEXIT time. The 824 * "guest_fpstate" state here contains the guest FPU context, with the 825 * host PRKU bits. 826 */ 827 struct fpu_guest guest_fpu; 828 829 u64 xcr0; 830 u64 guest_supported_xcr0; 831 832 struct kvm_pio_request pio; 833 void *pio_data; 834 void *sev_pio_data; 835 unsigned sev_pio_count; 836 837 u8 event_exit_inst_len; 838 839 bool exception_from_userspace; 840 841 /* Exceptions to be injected to the guest. */ 842 struct kvm_queued_exception exception; 843 /* Exception VM-Exits to be synthesized to L1. */ 844 struct kvm_queued_exception exception_vmexit; 845 846 struct kvm_queued_interrupt { 847 bool injected; 848 bool soft; 849 u8 nr; 850 } interrupt; 851 852 int halt_request; /* real mode on Intel only */ 853 854 int cpuid_nent; 855 struct kvm_cpuid_entry2 *cpuid_entries; 856 struct kvm_hypervisor_cpuid kvm_cpuid; 857 bool is_amd_compatible; 858 859 /* 860 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly 861 * when "struct kvm_vcpu_arch" is no longer defined in an 862 * arch/x86/include/asm header. The max is mostly arbitrary, i.e. 863 * can be increased as necessary. 864 */ 865 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG 866 867 /* 868 * Track whether or not the guest is allowed to use features that are 869 * governed by KVM, where "governed" means KVM needs to manage state 870 * and/or explicitly enable the feature in hardware. Typically, but 871 * not always, governed features can be used by the guest if and only 872 * if both KVM and userspace want to expose the feature to the guest. 873 */ 874 struct { 875 DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES); 876 } governed_features; 877 878 u64 reserved_gpa_bits; 879 int maxphyaddr; 880 881 /* emulate context */ 882 883 struct x86_emulate_ctxt *emulate_ctxt; 884 bool emulate_regs_need_sync_to_vcpu; 885 bool emulate_regs_need_sync_from_vcpu; 886 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 887 888 gpa_t time; 889 struct pvclock_vcpu_time_info hv_clock; 890 unsigned int hw_tsc_khz; 891 struct gfn_to_pfn_cache pv_time; 892 /* set guest stopped flag in pvclock flags field */ 893 bool pvclock_set_guest_stopped_request; 894 895 struct { 896 u8 preempted; 897 u64 msr_val; 898 u64 last_steal; 899 struct gfn_to_hva_cache cache; 900 } st; 901 902 u64 l1_tsc_offset; 903 u64 tsc_offset; /* current tsc offset */ 904 u64 last_guest_tsc; 905 u64 last_host_tsc; 906 u64 tsc_offset_adjustment; 907 u64 this_tsc_nsec; 908 u64 this_tsc_write; 909 u64 this_tsc_generation; 910 bool tsc_catchup; 911 bool tsc_always_catchup; 912 s8 virtual_tsc_shift; 913 u32 virtual_tsc_mult; 914 u32 virtual_tsc_khz; 915 s64 ia32_tsc_adjust_msr; 916 u64 msr_ia32_power_ctl; 917 u64 l1_tsc_scaling_ratio; 918 u64 tsc_scaling_ratio; /* current scaling ratio */ 919 920 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 921 /* Number of NMIs pending injection, not including hardware vNMIs. */ 922 unsigned int nmi_pending; 923 bool nmi_injected; /* Trying to inject an NMI this entry */ 924 bool smi_pending; /* SMI queued after currently running handler */ 925 u8 handling_intr_from_guest; 926 927 struct kvm_mtrr mtrr_state; 928 u64 pat; 929 930 unsigned switch_db_regs; 931 unsigned long db[KVM_NR_DB_REGS]; 932 unsigned long dr6; 933 unsigned long dr7; 934 unsigned long eff_db[KVM_NR_DB_REGS]; 935 unsigned long guest_debug_dr7; 936 u64 msr_platform_info; 937 u64 msr_misc_features_enables; 938 939 u64 mcg_cap; 940 u64 mcg_status; 941 u64 mcg_ctl; 942 u64 mcg_ext_ctl; 943 u64 *mce_banks; 944 u64 *mci_ctl2_banks; 945 946 /* Cache MMIO info */ 947 u64 mmio_gva; 948 unsigned mmio_access; 949 gfn_t mmio_gfn; 950 u64 mmio_gen; 951 952 struct kvm_pmu pmu; 953 954 /* used for guest single stepping over the given code position */ 955 unsigned long singlestep_rip; 956 957 #ifdef CONFIG_KVM_HYPERV 958 bool hyperv_enabled; 959 struct kvm_vcpu_hv *hyperv; 960 #endif 961 #ifdef CONFIG_KVM_XEN 962 struct kvm_vcpu_xen xen; 963 #endif 964 cpumask_var_t wbinvd_dirty_mask; 965 966 unsigned long last_retry_eip; 967 unsigned long last_retry_addr; 968 969 struct { 970 bool halted; 971 gfn_t gfns[ASYNC_PF_PER_VCPU]; 972 struct gfn_to_hva_cache data; 973 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 974 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 975 u16 vec; 976 u32 id; 977 bool send_user_only; 978 u32 host_apf_flags; 979 bool delivery_as_pf_vmexit; 980 bool pageready_pending; 981 } apf; 982 983 /* OSVW MSRs (AMD only) */ 984 struct { 985 u64 length; 986 u64 status; 987 } osvw; 988 989 struct { 990 u64 msr_val; 991 struct gfn_to_hva_cache data; 992 } pv_eoi; 993 994 u64 msr_kvm_poll_control; 995 996 /* pv related host specific info */ 997 struct { 998 bool pv_unhalted; 999 } pv; 1000 1001 int pending_ioapic_eoi; 1002 int pending_external_vector; 1003 1004 /* be preempted when it's in kernel-mode(cpl=0) */ 1005 bool preempted_in_kernel; 1006 1007 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1008 bool l1tf_flush_l1d; 1009 1010 /* Host CPU on which VM-entry was most recently attempted */ 1011 int last_vmentry_cpu; 1012 1013 /* AMD MSRC001_0015 Hardware Configuration */ 1014 u64 msr_hwcr; 1015 1016 /* pv related cpuid info */ 1017 struct { 1018 /* 1019 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1020 * leaf. 1021 */ 1022 u32 features; 1023 1024 /* 1025 * indicates whether pv emulation should be disabled if features 1026 * are not present in the guest's cpuid 1027 */ 1028 bool enforce; 1029 } pv_cpuid; 1030 1031 /* Protected Guests */ 1032 bool guest_state_protected; 1033 1034 /* 1035 * Set when PDPTS were loaded directly by the userspace without 1036 * reading the guest memory 1037 */ 1038 bool pdptrs_from_userspace; 1039 1040 #if IS_ENABLED(CONFIG_HYPERV) 1041 hpa_t hv_root_tdp; 1042 #endif 1043 }; 1044 1045 struct kvm_lpage_info { 1046 int disallow_lpage; 1047 }; 1048 1049 struct kvm_arch_memory_slot { 1050 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1051 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1052 unsigned short *gfn_write_track; 1053 }; 1054 1055 /* 1056 * Track the mode of the optimized logical map, as the rules for decoding the 1057 * destination vary per mode. Enabling the optimized logical map requires all 1058 * software-enabled local APIs to be in the same mode, each addressable APIC to 1059 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1060 */ 1061 enum kvm_apic_logical_mode { 1062 /* All local APICs are software disabled. */ 1063 KVM_APIC_MODE_SW_DISABLED, 1064 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1065 KVM_APIC_MODE_XAPIC_CLUSTER, 1066 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1067 KVM_APIC_MODE_XAPIC_FLAT, 1068 /* All software enabled local APICs in x2APIC mode. */ 1069 KVM_APIC_MODE_X2APIC, 1070 /* 1071 * Optimized map disabled, e.g. not all local APICs in the same logical 1072 * mode, same logical ID assigned to multiple APICs, etc. 1073 */ 1074 KVM_APIC_MODE_MAP_DISABLED, 1075 }; 1076 1077 struct kvm_apic_map { 1078 struct rcu_head rcu; 1079 enum kvm_apic_logical_mode logical_mode; 1080 u32 max_apic_id; 1081 union { 1082 struct kvm_lapic *xapic_flat_map[8]; 1083 struct kvm_lapic *xapic_cluster_map[16][4]; 1084 }; 1085 struct kvm_lapic *phys_map[]; 1086 }; 1087 1088 /* Hyper-V synthetic debugger (SynDbg)*/ 1089 struct kvm_hv_syndbg { 1090 struct { 1091 u64 control; 1092 u64 status; 1093 u64 send_page; 1094 u64 recv_page; 1095 u64 pending_page; 1096 } control; 1097 u64 options; 1098 }; 1099 1100 /* Current state of Hyper-V TSC page clocksource */ 1101 enum hv_tsc_page_status { 1102 /* TSC page was not set up or disabled */ 1103 HV_TSC_PAGE_UNSET = 0, 1104 /* TSC page MSR was written by the guest, update pending */ 1105 HV_TSC_PAGE_GUEST_CHANGED, 1106 /* TSC page update was triggered from the host side */ 1107 HV_TSC_PAGE_HOST_CHANGED, 1108 /* TSC page was properly set up and is currently active */ 1109 HV_TSC_PAGE_SET, 1110 /* TSC page was set up with an inaccessible GPA */ 1111 HV_TSC_PAGE_BROKEN, 1112 }; 1113 1114 #ifdef CONFIG_KVM_HYPERV 1115 /* Hyper-V emulation context */ 1116 struct kvm_hv { 1117 struct mutex hv_lock; 1118 u64 hv_guest_os_id; 1119 u64 hv_hypercall; 1120 u64 hv_tsc_page; 1121 enum hv_tsc_page_status hv_tsc_page_status; 1122 1123 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1124 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1125 u64 hv_crash_ctl; 1126 1127 struct ms_hyperv_tsc_page tsc_ref; 1128 1129 struct idr conn_to_evt; 1130 1131 u64 hv_reenlightenment_control; 1132 u64 hv_tsc_emulation_control; 1133 u64 hv_tsc_emulation_status; 1134 u64 hv_invtsc_control; 1135 1136 /* How many vCPUs have VP index != vCPU index */ 1137 atomic_t num_mismatched_vp_indexes; 1138 1139 /* 1140 * How many SynICs use 'AutoEOI' feature 1141 * (protected by arch.apicv_update_lock) 1142 */ 1143 unsigned int synic_auto_eoi_used; 1144 1145 struct kvm_hv_syndbg hv_syndbg; 1146 1147 bool xsaves_xsavec_checked; 1148 }; 1149 #endif 1150 1151 struct msr_bitmap_range { 1152 u32 flags; 1153 u32 nmsrs; 1154 u32 base; 1155 unsigned long *bitmap; 1156 }; 1157 1158 #ifdef CONFIG_KVM_XEN 1159 /* Xen emulation context */ 1160 struct kvm_xen { 1161 struct mutex xen_lock; 1162 u32 xen_version; 1163 bool long_mode; 1164 bool runstate_update_flag; 1165 u8 upcall_vector; 1166 struct gfn_to_pfn_cache shinfo_cache; 1167 struct idr evtchn_ports; 1168 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1169 }; 1170 #endif 1171 1172 enum kvm_irqchip_mode { 1173 KVM_IRQCHIP_NONE, 1174 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1175 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1176 }; 1177 1178 struct kvm_x86_msr_filter { 1179 u8 count; 1180 bool default_allow:1; 1181 struct msr_bitmap_range ranges[16]; 1182 }; 1183 1184 struct kvm_x86_pmu_event_filter { 1185 __u32 action; 1186 __u32 nevents; 1187 __u32 fixed_counter_bitmap; 1188 __u32 flags; 1189 __u32 nr_includes; 1190 __u32 nr_excludes; 1191 __u64 *includes; 1192 __u64 *excludes; 1193 __u64 events[]; 1194 }; 1195 1196 enum kvm_apicv_inhibit { 1197 1198 /********************************************************************/ 1199 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1200 /********************************************************************/ 1201 1202 /* 1203 * APIC acceleration is disabled by a module parameter 1204 * and/or not supported in hardware. 1205 */ 1206 APICV_INHIBIT_REASON_DISABLED, 1207 1208 /* 1209 * APIC acceleration is inhibited because AutoEOI feature is 1210 * being used by a HyperV guest. 1211 */ 1212 APICV_INHIBIT_REASON_HYPERV, 1213 1214 /* 1215 * APIC acceleration is inhibited because the userspace didn't yet 1216 * enable the kernel/split irqchip. 1217 */ 1218 APICV_INHIBIT_REASON_ABSENT, 1219 1220 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1221 * (out of band, debug measure of blocking all interrupts on this vCPU) 1222 * was enabled, to avoid AVIC/APICv bypassing it. 1223 */ 1224 APICV_INHIBIT_REASON_BLOCKIRQ, 1225 1226 /* 1227 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1228 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1229 */ 1230 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1231 1232 /* 1233 * For simplicity, the APIC acceleration is inhibited 1234 * first time either APIC ID or APIC base are changed by the guest 1235 * from their reset values. 1236 */ 1237 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1238 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1239 1240 /******************************************************/ 1241 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1242 /******************************************************/ 1243 1244 /* 1245 * AVIC is inhibited on a vCPU because it runs a nested guest. 1246 * 1247 * This is needed because unlike APICv, the peers of this vCPU 1248 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1249 * a vCPU runs nested. 1250 */ 1251 APICV_INHIBIT_REASON_NESTED, 1252 1253 /* 1254 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1255 * which cannot be injected when the AVIC is enabled, thus AVIC 1256 * is inhibited while KVM waits for IRQ window. 1257 */ 1258 APICV_INHIBIT_REASON_IRQWIN, 1259 1260 /* 1261 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1262 * which AVIC doesn't support for edge triggered interrupts. 1263 */ 1264 APICV_INHIBIT_REASON_PIT_REINJ, 1265 1266 /* 1267 * AVIC is disabled because SEV doesn't support it. 1268 */ 1269 APICV_INHIBIT_REASON_SEV, 1270 1271 /* 1272 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1273 * mapping between logical ID and vCPU. 1274 */ 1275 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1276 1277 NR_APICV_INHIBIT_REASONS, 1278 }; 1279 1280 #define __APICV_INHIBIT_REASON(reason) \ 1281 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1282 1283 #define APICV_INHIBIT_REASONS \ 1284 __APICV_INHIBIT_REASON(DISABLED), \ 1285 __APICV_INHIBIT_REASON(HYPERV), \ 1286 __APICV_INHIBIT_REASON(ABSENT), \ 1287 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1288 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1289 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1290 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1291 __APICV_INHIBIT_REASON(NESTED), \ 1292 __APICV_INHIBIT_REASON(IRQWIN), \ 1293 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1294 __APICV_INHIBIT_REASON(SEV), \ 1295 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED) 1296 1297 struct kvm_arch { 1298 unsigned long n_used_mmu_pages; 1299 unsigned long n_requested_mmu_pages; 1300 unsigned long n_max_mmu_pages; 1301 unsigned int indirect_shadow_pages; 1302 u8 mmu_valid_gen; 1303 u8 vm_type; 1304 bool has_private_mem; 1305 bool has_protected_state; 1306 bool pre_fault_allowed; 1307 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1308 struct list_head active_mmu_pages; 1309 struct list_head zapped_obsolete_pages; 1310 /* 1311 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1312 * replaced by an NX huge page. A shadow page is on this list if its 1313 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1314 * and there are no other conditions that prevent a huge page, e.g. 1315 * the backing host page is huge, dirtly logging is not enabled for its 1316 * memslot, etc... Note, zapping shadow pages on this list doesn't 1317 * guarantee an NX huge page will be created in its stead, e.g. if the 1318 * guest attempts to execute from the region then KVM obviously can't 1319 * create an NX huge page (without hanging the guest). 1320 */ 1321 struct list_head possible_nx_huge_pages; 1322 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1323 struct kvm_page_track_notifier_head track_notifier_head; 1324 #endif 1325 /* 1326 * Protects marking pages unsync during page faults, as TDP MMU page 1327 * faults only take mmu_lock for read. For simplicity, the unsync 1328 * pages lock is always taken when marking pages unsync regardless of 1329 * whether mmu_lock is held for read or write. 1330 */ 1331 spinlock_t mmu_unsync_pages_lock; 1332 1333 u64 shadow_mmio_value; 1334 1335 struct iommu_domain *iommu_domain; 1336 bool iommu_noncoherent; 1337 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1338 atomic_t noncoherent_dma_count; 1339 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1340 atomic_t assigned_device_count; 1341 struct kvm_pic *vpic; 1342 struct kvm_ioapic *vioapic; 1343 struct kvm_pit *vpit; 1344 atomic_t vapics_in_nmi_mode; 1345 struct mutex apic_map_lock; 1346 struct kvm_apic_map __rcu *apic_map; 1347 atomic_t apic_map_dirty; 1348 1349 bool apic_access_memslot_enabled; 1350 bool apic_access_memslot_inhibited; 1351 1352 /* Protects apicv_inhibit_reasons */ 1353 struct rw_semaphore apicv_update_lock; 1354 unsigned long apicv_inhibit_reasons; 1355 1356 gpa_t wall_clock; 1357 1358 bool mwait_in_guest; 1359 bool hlt_in_guest; 1360 bool pause_in_guest; 1361 bool cstate_in_guest; 1362 1363 unsigned long irq_sources_bitmap; 1364 s64 kvmclock_offset; 1365 1366 /* 1367 * This also protects nr_vcpus_matched_tsc which is read from a 1368 * preemption-disabled region, so it must be a raw spinlock. 1369 */ 1370 raw_spinlock_t tsc_write_lock; 1371 u64 last_tsc_nsec; 1372 u64 last_tsc_write; 1373 u32 last_tsc_khz; 1374 u64 last_tsc_offset; 1375 u64 cur_tsc_nsec; 1376 u64 cur_tsc_write; 1377 u64 cur_tsc_offset; 1378 u64 cur_tsc_generation; 1379 int nr_vcpus_matched_tsc; 1380 1381 u32 default_tsc_khz; 1382 bool user_set_tsc; 1383 u64 apic_bus_cycle_ns; 1384 1385 seqcount_raw_spinlock_t pvclock_sc; 1386 bool use_master_clock; 1387 u64 master_kernel_ns; 1388 u64 master_cycle_now; 1389 struct delayed_work kvmclock_update_work; 1390 struct delayed_work kvmclock_sync_work; 1391 1392 struct kvm_xen_hvm_config xen_hvm_config; 1393 1394 /* reads protected by irq_srcu, writes by irq_lock */ 1395 struct hlist_head mask_notifier_list; 1396 1397 #ifdef CONFIG_KVM_HYPERV 1398 struct kvm_hv hyperv; 1399 #endif 1400 1401 #ifdef CONFIG_KVM_XEN 1402 struct kvm_xen xen; 1403 #endif 1404 1405 bool backwards_tsc_observed; 1406 bool boot_vcpu_runs_old_kvmclock; 1407 u32 bsp_vcpu_id; 1408 1409 u64 disabled_quirks; 1410 1411 enum kvm_irqchip_mode irqchip_mode; 1412 u8 nr_reserved_ioapic_pins; 1413 1414 bool disabled_lapic_found; 1415 1416 bool x2apic_format; 1417 bool x2apic_broadcast_quirk_disabled; 1418 1419 bool guest_can_read_msr_platform_info; 1420 bool exception_payload_enabled; 1421 1422 bool triple_fault_event; 1423 1424 bool bus_lock_detection_enabled; 1425 bool enable_pmu; 1426 1427 u32 notify_window; 1428 u32 notify_vmexit_flags; 1429 /* 1430 * If exit_on_emulation_error is set, and the in-kernel instruction 1431 * emulator fails to emulate an instruction, allow userspace 1432 * the opportunity to look at it. 1433 */ 1434 bool exit_on_emulation_error; 1435 1436 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1437 u32 user_space_msr_mask; 1438 struct kvm_x86_msr_filter __rcu *msr_filter; 1439 1440 u32 hypercall_exit_enabled; 1441 1442 /* Guest can access the SGX PROVISIONKEY. */ 1443 bool sgx_provisioning_allowed; 1444 1445 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1446 struct task_struct *nx_huge_page_recovery_thread; 1447 1448 #ifdef CONFIG_X86_64 1449 /* The number of TDP MMU pages across all roots. */ 1450 atomic64_t tdp_mmu_pages; 1451 1452 /* 1453 * List of struct kvm_mmu_pages being used as roots. 1454 * All struct kvm_mmu_pages in the list should have 1455 * tdp_mmu_page set. 1456 * 1457 * For reads, this list is protected by: 1458 * the MMU lock in read mode + RCU or 1459 * the MMU lock in write mode 1460 * 1461 * For writes, this list is protected by tdp_mmu_pages_lock; see 1462 * below for the details. 1463 * 1464 * Roots will remain in the list until their tdp_mmu_root_count 1465 * drops to zero, at which point the thread that decremented the 1466 * count to zero should removed the root from the list and clean 1467 * it up, freeing the root after an RCU grace period. 1468 */ 1469 struct list_head tdp_mmu_roots; 1470 1471 /* 1472 * Protects accesses to the following fields when the MMU lock 1473 * is held in read mode: 1474 * - tdp_mmu_roots (above) 1475 * - the link field of kvm_mmu_page structs used by the TDP MMU 1476 * - possible_nx_huge_pages; 1477 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1478 * by the TDP MMU 1479 * Because the lock is only taken within the MMU lock, strictly 1480 * speaking it is redundant to acquire this lock when the thread 1481 * holds the MMU lock in write mode. However it often simplifies 1482 * the code to do so. 1483 */ 1484 spinlock_t tdp_mmu_pages_lock; 1485 #endif /* CONFIG_X86_64 */ 1486 1487 /* 1488 * If set, at least one shadow root has been allocated. This flag 1489 * is used as one input when determining whether certain memslot 1490 * related allocations are necessary. 1491 */ 1492 bool shadow_root_allocated; 1493 1494 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1495 /* 1496 * If set, the VM has (or had) an external write tracking user, and 1497 * thus all write tracking metadata has been allocated, even if KVM 1498 * itself isn't using write tracking. 1499 */ 1500 bool external_write_tracking_enabled; 1501 #endif 1502 1503 #if IS_ENABLED(CONFIG_HYPERV) 1504 hpa_t hv_root_tdp; 1505 spinlock_t hv_root_tdp_lock; 1506 struct hv_partition_assist_pg *hv_pa_pg; 1507 #endif 1508 /* 1509 * VM-scope maximum vCPU ID. Used to determine the size of structures 1510 * that increase along with the maximum vCPU ID, in which case, using 1511 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1512 */ 1513 u32 max_vcpu_ids; 1514 1515 bool disable_nx_huge_pages; 1516 1517 /* 1518 * Memory caches used to allocate shadow pages when performing eager 1519 * page splitting. No need for a shadowed_info_cache since eager page 1520 * splitting only allocates direct shadow pages. 1521 * 1522 * Protected by kvm->slots_lock. 1523 */ 1524 struct kvm_mmu_memory_cache split_shadow_page_cache; 1525 struct kvm_mmu_memory_cache split_page_header_cache; 1526 1527 /* 1528 * Memory cache used to allocate pte_list_desc structs while splitting 1529 * huge pages. In the worst case, to split one huge page, 512 1530 * pte_list_desc structs are needed to add each lower level leaf sptep 1531 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1532 * page table. 1533 * 1534 * Protected by kvm->slots_lock. 1535 */ 1536 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1537 struct kvm_mmu_memory_cache split_desc_cache; 1538 }; 1539 1540 struct kvm_vm_stat { 1541 struct kvm_vm_stat_generic generic; 1542 u64 mmu_shadow_zapped; 1543 u64 mmu_pte_write; 1544 u64 mmu_pde_zapped; 1545 u64 mmu_flooded; 1546 u64 mmu_recycled; 1547 u64 mmu_cache_miss; 1548 u64 mmu_unsync; 1549 union { 1550 struct { 1551 atomic64_t pages_4k; 1552 atomic64_t pages_2m; 1553 atomic64_t pages_1g; 1554 }; 1555 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1556 }; 1557 u64 nx_lpage_splits; 1558 u64 max_mmu_page_hash_collisions; 1559 u64 max_mmu_rmap_size; 1560 }; 1561 1562 struct kvm_vcpu_stat { 1563 struct kvm_vcpu_stat_generic generic; 1564 u64 pf_taken; 1565 u64 pf_fixed; 1566 u64 pf_emulate; 1567 u64 pf_spurious; 1568 u64 pf_fast; 1569 u64 pf_mmio_spte_created; 1570 u64 pf_guest; 1571 u64 tlb_flush; 1572 u64 invlpg; 1573 1574 u64 exits; 1575 u64 io_exits; 1576 u64 mmio_exits; 1577 u64 signal_exits; 1578 u64 irq_window_exits; 1579 u64 nmi_window_exits; 1580 u64 l1d_flush; 1581 u64 halt_exits; 1582 u64 request_irq_exits; 1583 u64 irq_exits; 1584 u64 host_state_reload; 1585 u64 fpu_reload; 1586 u64 insn_emulation; 1587 u64 insn_emulation_fail; 1588 u64 hypercalls; 1589 u64 irq_injections; 1590 u64 nmi_injections; 1591 u64 req_event; 1592 u64 nested_run; 1593 u64 directed_yield_attempted; 1594 u64 directed_yield_successful; 1595 u64 preemption_reported; 1596 u64 preemption_other; 1597 u64 guest_mode; 1598 u64 notify_window_exits; 1599 }; 1600 1601 struct x86_instruction_info; 1602 1603 struct msr_data { 1604 bool host_initiated; 1605 u32 index; 1606 u64 data; 1607 }; 1608 1609 struct kvm_lapic_irq { 1610 u32 vector; 1611 u16 delivery_mode; 1612 u16 dest_mode; 1613 bool level; 1614 u16 trig_mode; 1615 u32 shorthand; 1616 u32 dest_id; 1617 bool msi_redir_hint; 1618 }; 1619 1620 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1621 { 1622 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1623 } 1624 1625 struct kvm_x86_ops { 1626 const char *name; 1627 1628 int (*check_processor_compatibility)(void); 1629 1630 int (*enable_virtualization_cpu)(void); 1631 void (*disable_virtualization_cpu)(void); 1632 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1633 1634 void (*hardware_unsetup)(void); 1635 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1636 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1637 1638 unsigned int vm_size; 1639 int (*vm_init)(struct kvm *kvm); 1640 void (*vm_destroy)(struct kvm *kvm); 1641 1642 /* Create, but do not attach this VCPU */ 1643 int (*vcpu_precreate)(struct kvm *kvm); 1644 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1645 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1646 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1647 1648 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1649 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1650 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1651 1652 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1653 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1654 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1655 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1656 void (*get_segment)(struct kvm_vcpu *vcpu, 1657 struct kvm_segment *var, int seg); 1658 int (*get_cpl)(struct kvm_vcpu *vcpu); 1659 void (*set_segment)(struct kvm_vcpu *vcpu, 1660 struct kvm_segment *var, int seg); 1661 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1662 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1663 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1664 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1665 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1666 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1667 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1668 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1669 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1670 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1671 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1672 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1673 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1674 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1675 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1676 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1677 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1678 1679 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1680 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1681 #if IS_ENABLED(CONFIG_HYPERV) 1682 int (*flush_remote_tlbs)(struct kvm *kvm); 1683 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1684 gfn_t nr_pages); 1685 #endif 1686 1687 /* 1688 * Flush any TLB entries associated with the given GVA. 1689 * Does not need to flush GPA->HPA mappings. 1690 * Can potentially get non-canonical addresses through INVLPGs, which 1691 * the implementation may choose to ignore if appropriate. 1692 */ 1693 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1694 1695 /* 1696 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1697 * does not need to flush GPA->HPA mappings. 1698 */ 1699 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1700 1701 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1702 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1703 bool force_immediate_exit); 1704 int (*handle_exit)(struct kvm_vcpu *vcpu, 1705 enum exit_fastpath_completion exit_fastpath); 1706 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1707 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1708 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1709 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1710 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1711 unsigned char *hypercall_addr); 1712 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1713 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1714 void (*inject_exception)(struct kvm_vcpu *vcpu); 1715 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1716 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1717 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1718 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1719 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1720 /* Whether or not a virtual NMI is pending in hardware. */ 1721 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1722 /* 1723 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1724 * to allow using static_call_ret0 as the fallback. 1725 */ 1726 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1727 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1728 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1729 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1730 1731 const bool x2apic_icr_is_split; 1732 const unsigned long required_apicv_inhibits; 1733 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1734 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1735 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1736 void (*hwapic_isr_update)(int isr); 1737 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1738 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1739 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1740 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1741 int trig_mode, int vector); 1742 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1743 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1744 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1745 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1746 1747 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1748 int root_level); 1749 1750 bool (*has_wbinvd_exit)(void); 1751 1752 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1753 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1754 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1755 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1756 1757 /* 1758 * Retrieve somewhat arbitrary exit information. Intended to 1759 * be used only from within tracepoints or error paths. 1760 */ 1761 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1762 u64 *info1, u64 *info2, 1763 u32 *exit_int_info, u32 *exit_int_info_err_code); 1764 1765 int (*check_intercept)(struct kvm_vcpu *vcpu, 1766 struct x86_instruction_info *info, 1767 enum x86_intercept_stage stage, 1768 struct x86_exception *exception); 1769 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1770 1771 /* 1772 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1773 * value indicates CPU dirty logging is unsupported or disabled. 1774 */ 1775 int cpu_dirty_log_size; 1776 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1777 1778 const struct kvm_x86_nested_ops *nested_ops; 1779 1780 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1781 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1782 1783 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1784 uint32_t guest_irq, bool set); 1785 void (*pi_start_assignment)(struct kvm *kvm); 1786 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1787 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1788 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1789 1790 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1791 bool *expired); 1792 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1793 1794 void (*setup_mce)(struct kvm_vcpu *vcpu); 1795 1796 #ifdef CONFIG_KVM_SMM 1797 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1798 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1799 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1800 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1801 #endif 1802 1803 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1804 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1805 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1806 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1807 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1808 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1809 void (*guest_memory_reclaimed)(struct kvm *kvm); 1810 1811 int (*get_feature_msr)(u32 msr, u64 *data); 1812 1813 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1814 void *insn, int insn_len); 1815 1816 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1817 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1818 1819 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1820 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1821 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1822 1823 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1824 1825 /* 1826 * Returns vCPU specific APICv inhibit reasons 1827 */ 1828 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1829 1830 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1831 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1832 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1833 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1834 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn); 1835 }; 1836 1837 struct kvm_x86_nested_ops { 1838 void (*leave_nested)(struct kvm_vcpu *vcpu); 1839 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1840 u32 error_code); 1841 int (*check_events)(struct kvm_vcpu *vcpu); 1842 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1843 void (*triple_fault)(struct kvm_vcpu *vcpu); 1844 int (*get_state)(struct kvm_vcpu *vcpu, 1845 struct kvm_nested_state __user *user_kvm_nested_state, 1846 unsigned user_data_size); 1847 int (*set_state)(struct kvm_vcpu *vcpu, 1848 struct kvm_nested_state __user *user_kvm_nested_state, 1849 struct kvm_nested_state *kvm_state); 1850 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1851 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1852 1853 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1854 uint16_t *vmcs_version); 1855 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1856 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1857 }; 1858 1859 struct kvm_x86_init_ops { 1860 int (*hardware_setup)(void); 1861 unsigned int (*handle_intel_pt_intr)(void); 1862 1863 struct kvm_x86_ops *runtime_ops; 1864 struct kvm_pmu_ops *pmu_ops; 1865 }; 1866 1867 struct kvm_arch_async_pf { 1868 u32 token; 1869 gfn_t gfn; 1870 unsigned long cr3; 1871 bool direct_map; 1872 u64 error_code; 1873 }; 1874 1875 extern u32 __read_mostly kvm_nr_uret_msrs; 1876 extern bool __read_mostly allow_smaller_maxphyaddr; 1877 extern bool __read_mostly enable_apicv; 1878 extern struct kvm_x86_ops kvm_x86_ops; 1879 1880 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1881 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1882 1883 #define KVM_X86_OP(func) \ 1884 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1885 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1886 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1887 #include <asm/kvm-x86-ops.h> 1888 1889 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1890 void kvm_x86_vendor_exit(void); 1891 1892 #define __KVM_HAVE_ARCH_VM_ALLOC 1893 static inline struct kvm *kvm_arch_alloc_vm(void) 1894 { 1895 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1896 } 1897 1898 #define __KVM_HAVE_ARCH_VM_FREE 1899 void kvm_arch_free_vm(struct kvm *kvm); 1900 1901 #if IS_ENABLED(CONFIG_HYPERV) 1902 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1903 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1904 { 1905 if (kvm_x86_ops.flush_remote_tlbs && 1906 !kvm_x86_call(flush_remote_tlbs)(kvm)) 1907 return 0; 1908 else 1909 return -ENOTSUPP; 1910 } 1911 1912 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1913 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1914 u64 nr_pages) 1915 { 1916 if (!kvm_x86_ops.flush_remote_tlbs_range) 1917 return -EOPNOTSUPP; 1918 1919 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1920 } 1921 #endif /* CONFIG_HYPERV */ 1922 1923 enum kvm_intr_type { 1924 /* Values are arbitrary, but must be non-zero. */ 1925 KVM_HANDLING_IRQ = 1, 1926 KVM_HANDLING_NMI, 1927 }; 1928 1929 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 1930 #define kvm_arch_pmi_in_guest(vcpu) \ 1931 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 1932 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 1933 1934 void __init kvm_mmu_x86_module_init(void); 1935 int kvm_mmu_vendor_module_init(void); 1936 void kvm_mmu_vendor_module_exit(void); 1937 1938 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1939 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1940 void kvm_mmu_init_vm(struct kvm *kvm); 1941 void kvm_mmu_uninit_vm(struct kvm *kvm); 1942 1943 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 1944 struct kvm_memory_slot *slot); 1945 1946 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1947 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1948 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1949 const struct kvm_memory_slot *memslot, 1950 int start_level); 1951 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1952 const struct kvm_memory_slot *memslot, 1953 int target_level); 1954 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1955 const struct kvm_memory_slot *memslot, 1956 u64 start, u64 end, 1957 int target_level); 1958 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1959 const struct kvm_memory_slot *memslot); 1960 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1961 const struct kvm_memory_slot *memslot); 1962 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1963 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1964 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 1965 1966 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 1967 1968 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1969 const void *val, int bytes); 1970 1971 struct kvm_irq_mask_notifier { 1972 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1973 int irq; 1974 struct hlist_node link; 1975 }; 1976 1977 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1978 struct kvm_irq_mask_notifier *kimn); 1979 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1980 struct kvm_irq_mask_notifier *kimn); 1981 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1982 bool mask); 1983 1984 extern bool tdp_enabled; 1985 1986 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1987 1988 /* 1989 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1990 * userspace I/O) to indicate that the emulation context 1991 * should be reused as is, i.e. skip initialization of 1992 * emulation context, instruction fetch and decode. 1993 * 1994 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1995 * Indicates that only select instructions (tagged with 1996 * EmulateOnUD) should be emulated (to minimize the emulator 1997 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 1998 * 1999 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2000 * decode the instruction length. For use *only* by 2001 * kvm_x86_ops.skip_emulated_instruction() implementations if 2002 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2003 * 2004 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2005 * retry native execution under certain conditions, 2006 * Can only be set in conjunction with EMULTYPE_PF. 2007 * 2008 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2009 * triggered by KVM's magic "force emulation" prefix, 2010 * which is opt in via module param (off by default). 2011 * Bypasses EmulateOnUD restriction despite emulating 2012 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2013 * Used to test the full emulator from userspace. 2014 * 2015 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2016 * backdoor emulation, which is opt in via module param. 2017 * VMware backdoor emulation handles select instructions 2018 * and reinjects the #GP for all other cases. 2019 * 2020 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 2021 * case the CR2/GPA value pass on the stack is valid. 2022 * 2023 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2024 * state and inject single-step #DBs after skipping 2025 * an instruction (after completing userspace I/O). 2026 * 2027 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2028 * is attempting to write a gfn that contains one or 2029 * more of the PTEs used to translate the write itself, 2030 * and the owning page table is being shadowed by KVM. 2031 * If emulation of the faulting instruction fails and 2032 * this flag is set, KVM will exit to userspace instead 2033 * of retrying emulation as KVM cannot make forward 2034 * progress. 2035 * 2036 * If emulation fails for a write to guest page tables, 2037 * KVM unprotects (zaps) the shadow page for the target 2038 * gfn and resumes the guest to retry the non-emulatable 2039 * instruction (on hardware). Unprotecting the gfn 2040 * doesn't allow forward progress for a self-changing 2041 * access because doing so also zaps the translation for 2042 * the gfn, i.e. retrying the instruction will hit a 2043 * !PRESENT fault, which results in a new shadow page 2044 * and sends KVM back to square one. 2045 */ 2046 #define EMULTYPE_NO_DECODE (1 << 0) 2047 #define EMULTYPE_TRAP_UD (1 << 1) 2048 #define EMULTYPE_SKIP (1 << 2) 2049 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2050 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2051 #define EMULTYPE_VMWARE_GP (1 << 5) 2052 #define EMULTYPE_PF (1 << 6) 2053 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2054 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2055 2056 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2057 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2058 void *insn, int insn_len); 2059 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2060 u64 *data, u8 ndata); 2061 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2062 2063 void kvm_enable_efer_bits(u64); 2064 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2065 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2066 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data); 2067 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2068 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2069 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2070 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2071 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2072 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2073 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2074 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2075 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2076 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2077 2078 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2079 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2080 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2081 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2082 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2083 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2084 2085 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2086 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2087 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2088 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2089 2090 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2091 int reason, bool has_error_code, u32 error_code); 2092 2093 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2094 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2095 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2096 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2097 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2098 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2099 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2100 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2101 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2102 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2103 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2104 2105 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2106 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2107 2108 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2109 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2110 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2111 2112 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2113 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2114 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2115 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2116 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2117 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2118 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2119 struct x86_exception *fault); 2120 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2121 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2122 2123 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2124 int irq_source_id, int level) 2125 { 2126 /* Logical OR for level trig interrupt */ 2127 if (level) 2128 __set_bit(irq_source_id, irq_state); 2129 else 2130 __clear_bit(irq_source_id, irq_state); 2131 2132 return !!(*irq_state); 2133 } 2134 2135 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2136 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2137 2138 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2139 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2140 2141 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2142 2143 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2144 bool always_retry); 2145 2146 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2147 gpa_t cr2_or_gpa) 2148 { 2149 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2150 } 2151 2152 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2153 ulong roots_to_free); 2154 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2155 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2156 struct x86_exception *exception); 2157 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2158 struct x86_exception *exception); 2159 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2160 struct x86_exception *exception); 2161 2162 bool kvm_apicv_activated(struct kvm *kvm); 2163 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2164 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2165 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2166 enum kvm_apicv_inhibit reason, bool set); 2167 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2168 enum kvm_apicv_inhibit reason, bool set); 2169 2170 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2171 enum kvm_apicv_inhibit reason) 2172 { 2173 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2174 } 2175 2176 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2177 enum kvm_apicv_inhibit reason) 2178 { 2179 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2180 } 2181 2182 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr, 2183 unsigned long a0, unsigned long a1, 2184 unsigned long a2, unsigned long a3, 2185 int op_64_bit, int cpl); 2186 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 2187 2188 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2189 void *insn, int insn_len); 2190 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2191 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2192 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2193 u64 addr, unsigned long roots); 2194 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2195 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2196 2197 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2198 int tdp_max_root_level, int tdp_huge_page_level); 2199 2200 2201 #ifdef CONFIG_KVM_PRIVATE_MEM 2202 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2203 #else 2204 #define kvm_arch_has_private_mem(kvm) false 2205 #endif 2206 2207 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2208 2209 static inline u16 kvm_read_ldt(void) 2210 { 2211 u16 ldt; 2212 asm("sldt %0" : "=g"(ldt)); 2213 return ldt; 2214 } 2215 2216 static inline void kvm_load_ldt(u16 sel) 2217 { 2218 asm("lldt %0" : : "rm"(sel)); 2219 } 2220 2221 #ifdef CONFIG_X86_64 2222 static inline unsigned long read_msr(unsigned long msr) 2223 { 2224 u64 value; 2225 2226 rdmsrl(msr, value); 2227 return value; 2228 } 2229 #endif 2230 2231 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2232 { 2233 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2234 } 2235 2236 #define TSS_IOPB_BASE_OFFSET 0x66 2237 #define TSS_BASE_SIZE 0x68 2238 #define TSS_IOPB_SIZE (65536 / 8) 2239 #define TSS_REDIRECTION_SIZE (256 / 8) 2240 #define RMODE_TSS_SIZE \ 2241 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2242 2243 enum { 2244 TASK_SWITCH_CALL = 0, 2245 TASK_SWITCH_IRET = 1, 2246 TASK_SWITCH_JMP = 2, 2247 TASK_SWITCH_GATE = 3, 2248 }; 2249 2250 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2251 2252 #ifdef CONFIG_KVM_SMM 2253 #define HF_SMM_MASK (1 << 1) 2254 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2255 2256 # define KVM_MAX_NR_ADDRESS_SPACES 2 2257 /* SMM is currently unsupported for guests with private memory. */ 2258 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2259 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2260 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2261 #else 2262 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2263 #endif 2264 2265 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2266 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2267 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2268 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2269 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2270 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2271 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2272 2273 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2274 unsigned long ipi_bitmap_high, u32 min, 2275 unsigned long icr, int op_64_bit); 2276 2277 int kvm_add_user_return_msr(u32 msr); 2278 int kvm_find_user_return_msr(u32 msr); 2279 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2280 2281 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2282 { 2283 return kvm_find_user_return_msr(msr) >= 0; 2284 } 2285 2286 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2287 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2288 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2289 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2290 2291 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2292 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2293 2294 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2295 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2296 unsigned long *vcpu_bitmap); 2297 2298 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2299 struct kvm_async_pf *work); 2300 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2301 struct kvm_async_pf *work); 2302 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2303 struct kvm_async_pf *work); 2304 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2305 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2306 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2307 2308 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2309 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2310 2311 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2312 u32 size); 2313 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2314 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2315 2316 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2317 struct kvm_vcpu **dest_vcpu); 2318 2319 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2320 struct kvm_lapic_irq *irq); 2321 2322 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2323 { 2324 /* We can only post Fixed and LowPrio IRQs */ 2325 return (irq->delivery_mode == APIC_DM_FIXED || 2326 irq->delivery_mode == APIC_DM_LOWEST); 2327 } 2328 2329 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2330 { 2331 kvm_x86_call(vcpu_blocking)(vcpu); 2332 } 2333 2334 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2335 { 2336 kvm_x86_call(vcpu_unblocking)(vcpu); 2337 } 2338 2339 static inline int kvm_cpu_get_apicid(int mps_cpu) 2340 { 2341 #ifdef CONFIG_X86_LOCAL_APIC 2342 return default_cpu_present_to_apicid(mps_cpu); 2343 #else 2344 WARN_ON_ONCE(1); 2345 return BAD_APICID; 2346 #endif 2347 } 2348 2349 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2350 2351 #define KVM_CLOCK_VALID_FLAGS \ 2352 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2353 2354 #define KVM_X86_VALID_QUIRKS \ 2355 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2356 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2357 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2358 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2359 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2360 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2361 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2362 KVM_X86_QUIRK_SLOT_ZAP_ALL) 2363 2364 /* 2365 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2366 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2367 * remaining 31 lower bits must be 0 to preserve ABI. 2368 */ 2369 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2370 2371 #endif /* _ASM_X86_KVM_HOST_H */ 2372