1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/kfifo.h> 28 #include <linux/sched/vhost_task.h> 29 #include <linux/call_once.h> 30 #include <linux/atomic.h> 31 32 #include <asm/apic.h> 33 #include <asm/pvclock-abi.h> 34 #include <asm/debugreg.h> 35 #include <asm/desc.h> 36 #include <asm/mtrr.h> 37 #include <asm/msr-index.h> 38 #include <asm/msr.h> 39 #include <asm/asm.h> 40 #include <asm/irq_remapping.h> 41 #include <asm/kvm_page_track.h> 42 #include <asm/kvm_vcpu_regs.h> 43 #include <asm/reboot.h> 44 #include <hyperv/hvhdk.h> 45 46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 47 48 /* 49 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 50 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 51 */ 52 #ifdef CONFIG_KVM_MAX_NR_VCPUS 53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 54 #else 55 #define KVM_MAX_VCPUS 1024 56 #endif 57 58 /* 59 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 60 * might be larger than the actual number of VCPUs because the 61 * APIC ID encodes CPU topology information. 62 * 63 * In the worst case, we'll need less than one extra bit for the 64 * Core ID, and less than one extra bit for the Package (Die) ID, 65 * so ratio of 4 should be enough. 66 */ 67 #define KVM_VCPU_ID_RATIO 4 68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 69 70 /* memory slots that are not exposed to userspace */ 71 #define KVM_INTERNAL_MEM_SLOTS 3 72 73 #define KVM_HALT_POLL_NS_DEFAULT 200000 74 75 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 76 77 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 78 KVM_DIRTY_LOG_INITIALLY_SET) 79 80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 81 KVM_BUS_LOCK_DETECTION_EXIT) 82 83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 84 KVM_X86_NOTIFY_VMEXIT_USER) 85 86 /* x86-specific vcpu->requests bit members */ 87 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 88 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 89 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 90 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 91 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 92 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 93 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 94 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 95 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 96 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 97 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 98 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 99 #ifdef CONFIG_KVM_SMM 100 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 101 #endif 102 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 103 #define KVM_REQ_MCLOCK_INPROGRESS \ 104 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 105 #define KVM_REQ_SCAN_IOAPIC \ 106 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 108 #define KVM_REQ_APIC_PAGE_RELOAD \ 109 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 110 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 111 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 112 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 113 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 114 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 115 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 116 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 117 #define KVM_REQ_APICV_UPDATE \ 118 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 119 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 120 #define KVM_REQ_TLB_FLUSH_GUEST \ 121 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 123 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 125 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 127 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 128 #define KVM_REQ_HV_TLB_FLUSH \ 129 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \ 131 KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT) 132 133 #define CR0_RESERVED_BITS \ 134 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 135 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 136 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 137 138 #define CR4_RESERVED_BITS \ 139 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 140 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 141 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 142 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 143 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 144 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 145 | X86_CR4_LAM_SUP)) 146 147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 148 149 150 151 #define INVALID_PAGE (~(hpa_t)0) 152 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 153 154 /* KVM Hugepage definitions for x86 */ 155 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 156 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 157 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 158 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 159 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 160 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 161 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 162 163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 165 #define KVM_MMU_HASH_SHIFT 12 166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 167 #define KVM_MIN_FREE_MMU_PAGES 5 168 #define KVM_REFILL_PAGES 25 169 #define KVM_MAX_CPUID_ENTRIES 256 170 #define KVM_NR_VAR_MTRR 8 171 172 #define ASYNC_PF_PER_VCPU 64 173 174 enum kvm_reg { 175 VCPU_REGS_RAX = __VCPU_REGS_RAX, 176 VCPU_REGS_RCX = __VCPU_REGS_RCX, 177 VCPU_REGS_RDX = __VCPU_REGS_RDX, 178 VCPU_REGS_RBX = __VCPU_REGS_RBX, 179 VCPU_REGS_RSP = __VCPU_REGS_RSP, 180 VCPU_REGS_RBP = __VCPU_REGS_RBP, 181 VCPU_REGS_RSI = __VCPU_REGS_RSI, 182 VCPU_REGS_RDI = __VCPU_REGS_RDI, 183 #ifdef CONFIG_X86_64 184 VCPU_REGS_R8 = __VCPU_REGS_R8, 185 VCPU_REGS_R9 = __VCPU_REGS_R9, 186 VCPU_REGS_R10 = __VCPU_REGS_R10, 187 VCPU_REGS_R11 = __VCPU_REGS_R11, 188 VCPU_REGS_R12 = __VCPU_REGS_R12, 189 VCPU_REGS_R13 = __VCPU_REGS_R13, 190 VCPU_REGS_R14 = __VCPU_REGS_R14, 191 VCPU_REGS_R15 = __VCPU_REGS_R15, 192 #endif 193 VCPU_REGS_RIP, 194 NR_VCPU_REGS, 195 196 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 197 VCPU_EXREG_CR0, 198 VCPU_EXREG_CR3, 199 VCPU_EXREG_CR4, 200 VCPU_EXREG_RFLAGS, 201 VCPU_EXREG_SEGMENTS, 202 VCPU_EXREG_EXIT_INFO_1, 203 VCPU_EXREG_EXIT_INFO_2, 204 }; 205 206 enum { 207 VCPU_SREG_ES, 208 VCPU_SREG_CS, 209 VCPU_SREG_SS, 210 VCPU_SREG_DS, 211 VCPU_SREG_FS, 212 VCPU_SREG_GS, 213 VCPU_SREG_TR, 214 VCPU_SREG_LDTR, 215 }; 216 217 enum exit_fastpath_completion { 218 EXIT_FASTPATH_NONE, 219 EXIT_FASTPATH_REENTER_GUEST, 220 EXIT_FASTPATH_EXIT_HANDLED, 221 EXIT_FASTPATH_EXIT_USERSPACE, 222 }; 223 typedef enum exit_fastpath_completion fastpath_t; 224 225 struct x86_emulate_ctxt; 226 struct x86_exception; 227 union kvm_smram; 228 enum x86_intercept; 229 enum x86_intercept_stage; 230 231 #define KVM_NR_DB_REGS 4 232 233 #define DR6_BUS_LOCK (1 << 11) 234 #define DR6_BD (1 << 13) 235 #define DR6_BS (1 << 14) 236 #define DR6_BT (1 << 15) 237 #define DR6_RTM (1 << 16) 238 /* 239 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 240 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 241 * they will never be 0 for now, but when they are defined 242 * in the future it will require no code change. 243 * 244 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 245 */ 246 #define DR6_ACTIVE_LOW 0xffff0ff0 247 #define DR6_VOLATILE 0x0001e80f 248 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 249 250 #define DR7_BP_EN_MASK 0x000000ff 251 #define DR7_GE (1 << 9) 252 #define DR7_GD (1 << 13) 253 #define DR7_VOLATILE 0xffff2bff 254 255 #define KVM_GUESTDBG_VALID_MASK \ 256 (KVM_GUESTDBG_ENABLE | \ 257 KVM_GUESTDBG_SINGLESTEP | \ 258 KVM_GUESTDBG_USE_HW_BP | \ 259 KVM_GUESTDBG_USE_SW_BP | \ 260 KVM_GUESTDBG_INJECT_BP | \ 261 KVM_GUESTDBG_INJECT_DB | \ 262 KVM_GUESTDBG_BLOCKIRQ) 263 264 #define PFERR_PRESENT_MASK BIT(0) 265 #define PFERR_WRITE_MASK BIT(1) 266 #define PFERR_USER_MASK BIT(2) 267 #define PFERR_RSVD_MASK BIT(3) 268 #define PFERR_FETCH_MASK BIT(4) 269 #define PFERR_PK_MASK BIT(5) 270 #define PFERR_SGX_MASK BIT(15) 271 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 272 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 273 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 274 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 275 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 276 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 277 278 /* 279 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 280 * when emulating instructions that triggers implicit access. 281 */ 282 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 283 /* 284 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 285 * when the guest was accessing private memory. 286 */ 287 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 288 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 289 290 /* apic attention bits */ 291 #define KVM_APIC_CHECK_VAPIC 0 292 /* 293 * The following bit is set with PV-EOI, unset on EOI. 294 * We detect PV-EOI changes by guest by comparing 295 * this bit with PV-EOI in guest memory. 296 * See the implementation in apic_update_pv_eoi. 297 */ 298 #define KVM_APIC_PV_EOI_PENDING 1 299 300 struct kvm_kernel_irqfd; 301 struct kvm_kernel_irq_routing_entry; 302 303 /* 304 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 305 * also includes TDP pages) to determine whether or not a page can be used in 306 * the given MMU context. This is a subset of the overall kvm_cpu_role to 307 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 308 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 309 * 310 * Upper-level shadow pages having gptes are tracked for write-protection via 311 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 312 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 313 * otherwise gfn_write_track will overflow and explosions will ensue. 314 * 315 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 316 * cannot be reused. The ability to reuse a SP is tracked by its role, which 317 * incorporates various mode bits and properties of the SP. Roughly speaking, 318 * the number of unique SPs that can theoretically be created is 2^n, where n 319 * is the number of bits that are used to compute the role. 320 * 321 * But, even though there are 20 bits in the mask below, not all combinations 322 * of modes and flags are possible: 323 * 324 * - invalid shadow pages are not accounted, mirror pages are not shadowed, 325 * so the bits are effectively 18. 326 * 327 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 328 * execonly and ad_disabled are only used for nested EPT which has 329 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 330 * 331 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 332 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 333 * paging has exactly one upper level, making level completely redundant 334 * when has_4_byte_gpte=1. 335 * 336 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 337 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 338 * 339 * Therefore, the maximum number of possible upper-level shadow pages for a 340 * single gfn is a bit less than 2^13. 341 */ 342 union kvm_mmu_page_role { 343 u32 word; 344 struct { 345 unsigned level:4; 346 unsigned has_4_byte_gpte:1; 347 unsigned quadrant:2; 348 unsigned direct:1; 349 unsigned access:3; 350 unsigned invalid:1; 351 unsigned efer_nx:1; 352 unsigned cr0_wp:1; 353 unsigned smep_andnot_wp:1; 354 unsigned smap_andnot_wp:1; 355 unsigned ad_disabled:1; 356 unsigned guest_mode:1; 357 unsigned passthrough:1; 358 unsigned is_mirror:1; 359 unsigned :4; 360 361 /* 362 * This is left at the top of the word so that 363 * kvm_memslots_for_spte_role can extract it with a 364 * simple shift. While there is room, give it a whole 365 * byte so it is also faster to load it from memory. 366 */ 367 unsigned smm:8; 368 }; 369 }; 370 371 /* 372 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 373 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 374 * including on nested transitions, if nothing in the full role changes then 375 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 376 * don't treat all-zero structure as valid data. 377 * 378 * The properties that are tracked in the extended role but not the page role 379 * are for things that either (a) do not affect the validity of the shadow page 380 * or (b) are indirectly reflected in the shadow page's role. For example, 381 * CR4.PKE only affects permission checks for software walks of the guest page 382 * tables (because KVM doesn't support Protection Keys with shadow paging), and 383 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 384 * 385 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 386 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 387 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 388 * SMAP aware regardless of CR0.WP. 389 */ 390 union kvm_mmu_extended_role { 391 u32 word; 392 struct { 393 unsigned int valid:1; 394 unsigned int execonly:1; 395 unsigned int cr4_pse:1; 396 unsigned int cr4_pke:1; 397 unsigned int cr4_smap:1; 398 unsigned int cr4_smep:1; 399 unsigned int cr4_la57:1; 400 unsigned int efer_lma:1; 401 }; 402 }; 403 404 union kvm_cpu_role { 405 u64 as_u64; 406 struct { 407 union kvm_mmu_page_role base; 408 union kvm_mmu_extended_role ext; 409 }; 410 }; 411 412 struct kvm_rmap_head { 413 atomic_long_t val; 414 }; 415 416 struct kvm_pio_request { 417 unsigned long count; 418 int in; 419 int port; 420 int size; 421 }; 422 423 #define PT64_ROOT_MAX_LEVEL 5 424 425 struct rsvd_bits_validate { 426 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 427 u64 bad_mt_xwr; 428 }; 429 430 struct kvm_mmu_root_info { 431 gpa_t pgd; 432 hpa_t hpa; 433 }; 434 435 #define KVM_MMU_ROOT_INFO_INVALID \ 436 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 437 438 #define KVM_MMU_NUM_PREV_ROOTS 3 439 440 #define KVM_MMU_ROOT_CURRENT BIT(0) 441 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 442 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 443 444 #define KVM_HAVE_MMU_RWLOCK 445 446 struct kvm_mmu_page; 447 struct kvm_page_fault; 448 449 /* 450 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 451 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 452 * current mmu mode. 453 */ 454 struct kvm_mmu { 455 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 456 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 457 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 458 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 459 struct x86_exception *fault); 460 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 461 gpa_t gva_or_gpa, u64 access, 462 struct x86_exception *exception); 463 int (*sync_spte)(struct kvm_vcpu *vcpu, 464 struct kvm_mmu_page *sp, int i); 465 struct kvm_mmu_root_info root; 466 hpa_t mirror_root_hpa; 467 union kvm_cpu_role cpu_role; 468 union kvm_mmu_page_role root_role; 469 470 /* 471 * The pkru_mask indicates if protection key checks are needed. It 472 * consists of 16 domains indexed by page fault error code bits [4:1], 473 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 474 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 475 */ 476 u32 pkru_mask; 477 478 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 479 480 /* 481 * Bitmap; bit set = permission fault 482 * Byte index: page fault error code [4:1] 483 * Bit index: pte permissions in ACC_* format 484 */ 485 u8 permissions[16]; 486 487 u64 *pae_root; 488 u64 *pml4_root; 489 u64 *pml5_root; 490 491 /* 492 * check zero bits on shadow page table entries, these 493 * bits include not only hardware reserved bits but also 494 * the bits spte never used. 495 */ 496 struct rsvd_bits_validate shadow_zero_check; 497 498 struct rsvd_bits_validate guest_rsvd_check; 499 500 u64 pdptrs[4]; /* pae */ 501 }; 502 503 enum pmc_type { 504 KVM_PMC_GP = 0, 505 KVM_PMC_FIXED, 506 }; 507 508 struct kvm_pmc { 509 enum pmc_type type; 510 u8 idx; 511 bool is_paused; 512 bool intr; 513 /* 514 * Base value of the PMC counter, relative to the *consumed* count in 515 * the associated perf_event. This value includes counter updates from 516 * the perf_event and emulated_count since the last time the counter 517 * was reprogrammed, but it is *not* the current value as seen by the 518 * guest or userspace. 519 * 520 * The count is relative to the associated perf_event so that KVM 521 * doesn't need to reprogram the perf_event every time the guest writes 522 * to the counter. 523 */ 524 u64 counter; 525 /* 526 * PMC events triggered by KVM emulation that haven't been fully 527 * processed, i.e. haven't undergone overflow detection. 528 */ 529 u64 emulated_counter; 530 u64 eventsel; 531 struct perf_event *perf_event; 532 struct kvm_vcpu *vcpu; 533 /* 534 * only for creating or reusing perf_event, 535 * eventsel value for general purpose counters, 536 * ctrl value for fixed counters. 537 */ 538 u64 current_config; 539 }; 540 541 /* More counters may conflict with other existing Architectural MSRs */ 542 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 543 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 544 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 545 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 546 KVM_MAX_NR_AMD_GP_COUNTERS) 547 548 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3 549 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0 550 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \ 551 KVM_MAX_NR_AMD_FIXED_COUTNERS) 552 553 struct kvm_pmu { 554 u8 version; 555 unsigned nr_arch_gp_counters; 556 unsigned nr_arch_fixed_counters; 557 unsigned available_event_types; 558 u64 fixed_ctr_ctrl; 559 u64 fixed_ctr_ctrl_rsvd; 560 u64 global_ctrl; 561 u64 global_status; 562 u64 counter_bitmask[2]; 563 u64 global_ctrl_rsvd; 564 u64 global_status_rsvd; 565 u64 reserved_bits; 566 u64 raw_event_mask; 567 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 568 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 569 570 /* 571 * Overlay the bitmap with a 64-bit atomic so that all bits can be 572 * set in a single access, e.g. to reprogram all counters when the PMU 573 * filter changes. 574 */ 575 union { 576 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 577 atomic64_t __reprogram_pmi; 578 }; 579 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 580 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 581 582 u64 ds_area; 583 u64 pebs_enable; 584 u64 pebs_enable_rsvd; 585 u64 pebs_data_cfg; 586 u64 pebs_data_cfg_rsvd; 587 588 /* 589 * If a guest counter is cross-mapped to host counter with different 590 * index, its PEBS capability will be temporarily disabled. 591 * 592 * The user should make sure that this mask is updated 593 * after disabling interrupts and before perf_guest_get_msrs(); 594 */ 595 u64 host_cross_mapped_mask; 596 597 /* 598 * The gate to release perf_events not marked in 599 * pmc_in_use only once in a vcpu time slice. 600 */ 601 bool need_cleanup; 602 603 /* 604 * The total number of programmed perf_events and it helps to avoid 605 * redundant check before cleanup if guest don't use vPMU at all. 606 */ 607 u8 event_count; 608 }; 609 610 struct kvm_pmu_ops; 611 612 enum { 613 KVM_DEBUGREG_BP_ENABLED = BIT(0), 614 KVM_DEBUGREG_WONT_EXIT = BIT(1), 615 /* 616 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by 617 * hardware on exit from or enter to guest. KVM needn't switch them. 618 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM 619 * exit, host values need to be restored. 620 */ 621 KVM_DEBUGREG_AUTO_SWITCH = BIT(2), 622 }; 623 624 struct kvm_mtrr { 625 u64 var[KVM_NR_VAR_MTRR * 2]; 626 u64 fixed_64k; 627 u64 fixed_16k[2]; 628 u64 fixed_4k[8]; 629 u64 deftype; 630 }; 631 632 /* Hyper-V SynIC timer */ 633 struct kvm_vcpu_hv_stimer { 634 struct hrtimer timer; 635 int index; 636 union hv_stimer_config config; 637 u64 count; 638 u64 exp_time; 639 struct hv_message msg; 640 bool msg_pending; 641 }; 642 643 /* Hyper-V synthetic interrupt controller (SynIC)*/ 644 struct kvm_vcpu_hv_synic { 645 u64 version; 646 u64 control; 647 u64 msg_page; 648 u64 evt_page; 649 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 650 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 651 DECLARE_BITMAP(auto_eoi_bitmap, 256); 652 DECLARE_BITMAP(vec_bitmap, 256); 653 bool active; 654 bool dont_zero_synic_pages; 655 }; 656 657 /* The maximum number of entries on the TLB flush fifo. */ 658 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 659 /* 660 * Note: the following 'magic' entry is made up by KVM to avoid putting 661 * anything besides GVA on the TLB flush fifo. It is theoretically possible 662 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 663 * which will look identical. KVM's action to 'flush everything' instead of 664 * flushing these particular addresses is, however, fully legitimate as 665 * flushing more than requested is always OK. 666 */ 667 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 668 669 enum hv_tlb_flush_fifos { 670 HV_L1_TLB_FLUSH_FIFO, 671 HV_L2_TLB_FLUSH_FIFO, 672 HV_NR_TLB_FLUSH_FIFOS, 673 }; 674 675 struct kvm_vcpu_hv_tlb_flush_fifo { 676 spinlock_t write_lock; 677 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 678 }; 679 680 /* Hyper-V per vcpu emulation context */ 681 struct kvm_vcpu_hv { 682 struct kvm_vcpu *vcpu; 683 u32 vp_index; 684 u64 hv_vapic; 685 s64 runtime_offset; 686 struct kvm_vcpu_hv_synic synic; 687 struct kvm_hyperv_exit exit; 688 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 689 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 690 bool enforce_cpuid; 691 struct { 692 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 693 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 694 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 695 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 696 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 697 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 698 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 699 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 700 } cpuid_cache; 701 702 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 703 704 /* 705 * Preallocated buffers for handling hypercalls that pass sparse vCPU 706 * sets (for high vCPU counts, they're too large to comfortably fit on 707 * the stack). 708 */ 709 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 710 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS); 711 712 struct hv_vp_assist_page vp_assist_page; 713 714 struct { 715 u64 pa_page_gpa; 716 u64 vm_id; 717 u32 vp_id; 718 } nested; 719 }; 720 721 struct kvm_hypervisor_cpuid { 722 u32 base; 723 u32 limit; 724 }; 725 726 #ifdef CONFIG_KVM_XEN 727 /* Xen HVM per vcpu emulation context */ 728 struct kvm_vcpu_xen { 729 u64 hypercall_rip; 730 u32 current_runstate; 731 u8 upcall_vector; 732 struct gfn_to_pfn_cache vcpu_info_cache; 733 struct gfn_to_pfn_cache vcpu_time_info_cache; 734 struct gfn_to_pfn_cache runstate_cache; 735 struct gfn_to_pfn_cache runstate2_cache; 736 u64 last_steal; 737 u64 runstate_entry_time; 738 u64 runstate_times[4]; 739 unsigned long evtchn_pending_sel; 740 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 741 u32 timer_virq; 742 u64 timer_expires; /* In guest epoch */ 743 atomic_t timer_pending; 744 struct hrtimer timer; 745 int poll_evtchn; 746 struct timer_list poll_timer; 747 struct kvm_hypervisor_cpuid cpuid; 748 }; 749 #endif 750 751 struct kvm_queued_exception { 752 bool pending; 753 bool injected; 754 bool has_error_code; 755 u8 vector; 756 u32 error_code; 757 unsigned long payload; 758 bool has_payload; 759 }; 760 761 /* 762 * Hardware-defined CPUID leafs that are either scattered by the kernel or are 763 * unknown to the kernel, but need to be directly used by KVM. Note, these 764 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those. 765 */ 766 enum kvm_only_cpuid_leafs { 767 CPUID_12_EAX = NCAPINTS, 768 CPUID_7_1_EDX, 769 CPUID_8000_0007_EDX, 770 CPUID_8000_0022_EAX, 771 CPUID_7_2_EDX, 772 CPUID_24_0_EBX, 773 CPUID_8000_0021_ECX, 774 NR_KVM_CPU_CAPS, 775 776 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, 777 }; 778 779 struct kvm_vcpu_arch { 780 /* 781 * rip and regs accesses must go through 782 * kvm_{register,rip}_{read,write} functions. 783 */ 784 unsigned long regs[NR_VCPU_REGS]; 785 u32 regs_avail; 786 u32 regs_dirty; 787 788 unsigned long cr0; 789 unsigned long cr0_guest_owned_bits; 790 unsigned long cr2; 791 unsigned long cr3; 792 unsigned long cr4; 793 unsigned long cr4_guest_owned_bits; 794 unsigned long cr4_guest_rsvd_bits; 795 unsigned long cr8; 796 u32 host_pkru; 797 u32 pkru; 798 u32 hflags; 799 u64 efer; 800 u64 host_debugctl; 801 u64 apic_base; 802 struct kvm_lapic *apic; /* kernel irqchip context */ 803 bool load_eoi_exitmap_pending; 804 DECLARE_BITMAP(ioapic_handled_vectors, 256); 805 unsigned long apic_attention; 806 int32_t apic_arb_prio; 807 int mp_state; 808 u64 ia32_misc_enable_msr; 809 u64 smbase; 810 u64 smi_count; 811 bool at_instruction_boundary; 812 bool tpr_access_reporting; 813 bool xfd_no_write_intercept; 814 u64 ia32_xss; 815 u64 microcode_version; 816 u64 arch_capabilities; 817 u64 perf_capabilities; 818 819 /* 820 * Paging state of the vcpu 821 * 822 * If the vcpu runs in guest mode with two level paging this still saves 823 * the paging mode of the l1 guest. This context is always used to 824 * handle faults. 825 */ 826 struct kvm_mmu *mmu; 827 828 /* Non-nested MMU for L1 */ 829 struct kvm_mmu root_mmu; 830 831 /* L1 MMU when running nested */ 832 struct kvm_mmu guest_mmu; 833 834 /* 835 * Paging state of an L2 guest (used for nested npt) 836 * 837 * This context will save all necessary information to walk page tables 838 * of an L2 guest. This context is only initialized for page table 839 * walking and not for faulting since we never handle l2 page faults on 840 * the host. 841 */ 842 struct kvm_mmu nested_mmu; 843 844 /* 845 * Pointer to the mmu context currently used for 846 * gva_to_gpa translations. 847 */ 848 struct kvm_mmu *walk_mmu; 849 850 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 851 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 852 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 853 struct kvm_mmu_memory_cache mmu_page_header_cache; 854 /* 855 * This cache is to allocate external page table. E.g. private EPT used 856 * by the TDX module. 857 */ 858 struct kvm_mmu_memory_cache mmu_external_spt_cache; 859 860 /* 861 * QEMU userspace and the guest each have their own FPU state. 862 * In vcpu_run, we switch between the user and guest FPU contexts. 863 * While running a VCPU, the VCPU thread will have the guest FPU 864 * context. 865 * 866 * Note that while the PKRU state lives inside the fpu registers, 867 * it is switched out separately at VMENTER and VMEXIT time. The 868 * "guest_fpstate" state here contains the guest FPU context, with the 869 * host PRKU bits. 870 */ 871 struct fpu_guest guest_fpu; 872 873 u64 xcr0; 874 u64 guest_supported_xcr0; 875 876 struct kvm_pio_request pio; 877 void *pio_data; 878 void *sev_pio_data; 879 unsigned sev_pio_count; 880 881 u8 event_exit_inst_len; 882 883 bool exception_from_userspace; 884 885 /* Exceptions to be injected to the guest. */ 886 struct kvm_queued_exception exception; 887 /* Exception VM-Exits to be synthesized to L1. */ 888 struct kvm_queued_exception exception_vmexit; 889 890 struct kvm_queued_interrupt { 891 bool injected; 892 bool soft; 893 u8 nr; 894 } interrupt; 895 896 int halt_request; /* real mode on Intel only */ 897 898 int cpuid_nent; 899 struct kvm_cpuid_entry2 *cpuid_entries; 900 bool cpuid_dynamic_bits_dirty; 901 bool is_amd_compatible; 902 903 /* 904 * cpu_caps holds the effective guest capabilities, i.e. the features 905 * the vCPU is allowed to use. Typically, but not always, features can 906 * be used by the guest if and only if both KVM and userspace want to 907 * expose the feature to the guest. 908 * 909 * A common exception is for virtualization holes, i.e. when KVM can't 910 * prevent the guest from using a feature, in which case the vCPU "has" 911 * the feature regardless of what KVM or userspace desires. 912 * 913 * Note, features that don't require KVM involvement in any way are 914 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the 915 * guest CPUID provided by userspace. 916 */ 917 u32 cpu_caps[NR_KVM_CPU_CAPS]; 918 919 u64 reserved_gpa_bits; 920 int maxphyaddr; 921 922 /* emulate context */ 923 924 struct x86_emulate_ctxt *emulate_ctxt; 925 bool emulate_regs_need_sync_to_vcpu; 926 bool emulate_regs_need_sync_from_vcpu; 927 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 928 unsigned long cui_linear_rip; 929 930 gpa_t time; 931 s8 pvclock_tsc_shift; 932 u32 pvclock_tsc_mul; 933 unsigned int hw_tsc_khz; 934 struct gfn_to_pfn_cache pv_time; 935 /* set guest stopped flag in pvclock flags field */ 936 bool pvclock_set_guest_stopped_request; 937 938 struct { 939 u8 preempted; 940 u64 msr_val; 941 u64 last_steal; 942 struct gfn_to_hva_cache cache; 943 } st; 944 945 u64 l1_tsc_offset; 946 u64 tsc_offset; /* current tsc offset */ 947 u64 last_guest_tsc; 948 u64 last_host_tsc; 949 u64 tsc_offset_adjustment; 950 u64 this_tsc_nsec; 951 u64 this_tsc_write; 952 u64 this_tsc_generation; 953 bool tsc_catchup; 954 bool tsc_always_catchup; 955 s8 virtual_tsc_shift; 956 u32 virtual_tsc_mult; 957 u32 virtual_tsc_khz; 958 s64 ia32_tsc_adjust_msr; 959 u64 msr_ia32_power_ctl; 960 u64 l1_tsc_scaling_ratio; 961 u64 tsc_scaling_ratio; /* current scaling ratio */ 962 963 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 964 /* Number of NMIs pending injection, not including hardware vNMIs. */ 965 unsigned int nmi_pending; 966 bool nmi_injected; /* Trying to inject an NMI this entry */ 967 bool smi_pending; /* SMI queued after currently running handler */ 968 u8 handling_intr_from_guest; 969 970 struct kvm_mtrr mtrr_state; 971 u64 pat; 972 973 unsigned switch_db_regs; 974 unsigned long db[KVM_NR_DB_REGS]; 975 unsigned long dr6; 976 unsigned long dr7; 977 unsigned long eff_db[KVM_NR_DB_REGS]; 978 unsigned long guest_debug_dr7; 979 u64 msr_platform_info; 980 u64 msr_misc_features_enables; 981 982 u64 mcg_cap; 983 u64 mcg_status; 984 u64 mcg_ctl; 985 u64 mcg_ext_ctl; 986 u64 *mce_banks; 987 u64 *mci_ctl2_banks; 988 989 /* Cache MMIO info */ 990 u64 mmio_gva; 991 unsigned mmio_access; 992 gfn_t mmio_gfn; 993 u64 mmio_gen; 994 995 struct kvm_pmu pmu; 996 997 /* used for guest single stepping over the given code position */ 998 unsigned long singlestep_rip; 999 1000 #ifdef CONFIG_KVM_HYPERV 1001 bool hyperv_enabled; 1002 struct kvm_vcpu_hv *hyperv; 1003 #endif 1004 #ifdef CONFIG_KVM_XEN 1005 struct kvm_vcpu_xen xen; 1006 #endif 1007 cpumask_var_t wbinvd_dirty_mask; 1008 1009 unsigned long last_retry_eip; 1010 unsigned long last_retry_addr; 1011 1012 struct { 1013 bool halted; 1014 gfn_t gfns[ASYNC_PF_PER_VCPU]; 1015 struct gfn_to_hva_cache data; 1016 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 1017 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 1018 u16 vec; 1019 u32 id; 1020 u32 host_apf_flags; 1021 bool send_always; 1022 bool delivery_as_pf_vmexit; 1023 bool pageready_pending; 1024 } apf; 1025 1026 /* OSVW MSRs (AMD only) */ 1027 struct { 1028 u64 length; 1029 u64 status; 1030 } osvw; 1031 1032 struct { 1033 u64 msr_val; 1034 struct gfn_to_hva_cache data; 1035 } pv_eoi; 1036 1037 u64 msr_kvm_poll_control; 1038 1039 /* pv related host specific info */ 1040 struct { 1041 bool pv_unhalted; 1042 } pv; 1043 1044 int pending_ioapic_eoi; 1045 int pending_external_vector; 1046 int highest_stale_pending_ioapic_eoi; 1047 1048 /* be preempted when it's in kernel-mode(cpl=0) */ 1049 bool preempted_in_kernel; 1050 1051 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1052 bool l1tf_flush_l1d; 1053 1054 /* Host CPU on which VM-entry was most recently attempted */ 1055 int last_vmentry_cpu; 1056 1057 /* AMD MSRC001_0015 Hardware Configuration */ 1058 u64 msr_hwcr; 1059 1060 /* pv related cpuid info */ 1061 struct { 1062 /* 1063 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1064 * leaf. 1065 */ 1066 u32 features; 1067 1068 /* 1069 * indicates whether pv emulation should be disabled if features 1070 * are not present in the guest's cpuid 1071 */ 1072 bool enforce; 1073 } pv_cpuid; 1074 1075 /* Protected Guests */ 1076 bool guest_state_protected; 1077 bool guest_tsc_protected; 1078 1079 /* 1080 * Set when PDPTS were loaded directly by the userspace without 1081 * reading the guest memory 1082 */ 1083 bool pdptrs_from_userspace; 1084 1085 #if IS_ENABLED(CONFIG_HYPERV) 1086 hpa_t hv_root_tdp; 1087 #endif 1088 }; 1089 1090 struct kvm_lpage_info { 1091 int disallow_lpage; 1092 }; 1093 1094 struct kvm_arch_memory_slot { 1095 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1096 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1097 unsigned short *gfn_write_track; 1098 }; 1099 1100 /* 1101 * Track the mode of the optimized logical map, as the rules for decoding the 1102 * destination vary per mode. Enabling the optimized logical map requires all 1103 * software-enabled local APIs to be in the same mode, each addressable APIC to 1104 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1105 */ 1106 enum kvm_apic_logical_mode { 1107 /* All local APICs are software disabled. */ 1108 KVM_APIC_MODE_SW_DISABLED, 1109 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1110 KVM_APIC_MODE_XAPIC_CLUSTER, 1111 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1112 KVM_APIC_MODE_XAPIC_FLAT, 1113 /* All software enabled local APICs in x2APIC mode. */ 1114 KVM_APIC_MODE_X2APIC, 1115 /* 1116 * Optimized map disabled, e.g. not all local APICs in the same logical 1117 * mode, same logical ID assigned to multiple APICs, etc. 1118 */ 1119 KVM_APIC_MODE_MAP_DISABLED, 1120 }; 1121 1122 struct kvm_apic_map { 1123 struct rcu_head rcu; 1124 enum kvm_apic_logical_mode logical_mode; 1125 u32 max_apic_id; 1126 union { 1127 struct kvm_lapic *xapic_flat_map[8]; 1128 struct kvm_lapic *xapic_cluster_map[16][4]; 1129 }; 1130 struct kvm_lapic *phys_map[]; 1131 }; 1132 1133 /* Hyper-V synthetic debugger (SynDbg)*/ 1134 struct kvm_hv_syndbg { 1135 struct { 1136 u64 control; 1137 u64 status; 1138 u64 send_page; 1139 u64 recv_page; 1140 u64 pending_page; 1141 } control; 1142 u64 options; 1143 }; 1144 1145 /* Current state of Hyper-V TSC page clocksource */ 1146 enum hv_tsc_page_status { 1147 /* TSC page was not set up or disabled */ 1148 HV_TSC_PAGE_UNSET = 0, 1149 /* TSC page MSR was written by the guest, update pending */ 1150 HV_TSC_PAGE_GUEST_CHANGED, 1151 /* TSC page update was triggered from the host side */ 1152 HV_TSC_PAGE_HOST_CHANGED, 1153 /* TSC page was properly set up and is currently active */ 1154 HV_TSC_PAGE_SET, 1155 /* TSC page was set up with an inaccessible GPA */ 1156 HV_TSC_PAGE_BROKEN, 1157 }; 1158 1159 #ifdef CONFIG_KVM_HYPERV 1160 /* Hyper-V emulation context */ 1161 struct kvm_hv { 1162 struct mutex hv_lock; 1163 u64 hv_guest_os_id; 1164 u64 hv_hypercall; 1165 u64 hv_tsc_page; 1166 enum hv_tsc_page_status hv_tsc_page_status; 1167 1168 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1169 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1170 u64 hv_crash_ctl; 1171 1172 struct ms_hyperv_tsc_page tsc_ref; 1173 1174 struct idr conn_to_evt; 1175 1176 u64 hv_reenlightenment_control; 1177 u64 hv_tsc_emulation_control; 1178 u64 hv_tsc_emulation_status; 1179 u64 hv_invtsc_control; 1180 1181 /* How many vCPUs have VP index != vCPU index */ 1182 atomic_t num_mismatched_vp_indexes; 1183 1184 /* 1185 * How many SynICs use 'AutoEOI' feature 1186 * (protected by arch.apicv_update_lock) 1187 */ 1188 unsigned int synic_auto_eoi_used; 1189 1190 struct kvm_hv_syndbg hv_syndbg; 1191 1192 bool xsaves_xsavec_checked; 1193 }; 1194 #endif 1195 1196 struct msr_bitmap_range { 1197 u32 flags; 1198 u32 nmsrs; 1199 u32 base; 1200 unsigned long *bitmap; 1201 }; 1202 1203 #ifdef CONFIG_KVM_XEN 1204 /* Xen emulation context */ 1205 struct kvm_xen { 1206 struct mutex xen_lock; 1207 u32 xen_version; 1208 bool long_mode; 1209 bool runstate_update_flag; 1210 u8 upcall_vector; 1211 struct gfn_to_pfn_cache shinfo_cache; 1212 struct idr evtchn_ports; 1213 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1214 1215 struct kvm_xen_hvm_config hvm_config; 1216 }; 1217 #endif 1218 1219 enum kvm_irqchip_mode { 1220 KVM_IRQCHIP_NONE, 1221 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1222 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1223 }; 1224 1225 struct kvm_x86_msr_filter { 1226 u8 count; 1227 bool default_allow:1; 1228 struct msr_bitmap_range ranges[16]; 1229 }; 1230 1231 struct kvm_x86_pmu_event_filter { 1232 __u32 action; 1233 __u32 nevents; 1234 __u32 fixed_counter_bitmap; 1235 __u32 flags; 1236 __u32 nr_includes; 1237 __u32 nr_excludes; 1238 __u64 *includes; 1239 __u64 *excludes; 1240 __u64 events[]; 1241 }; 1242 1243 enum kvm_apicv_inhibit { 1244 1245 /********************************************************************/ 1246 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1247 /********************************************************************/ 1248 1249 /* 1250 * APIC acceleration is disabled by a module parameter 1251 * and/or not supported in hardware. 1252 */ 1253 APICV_INHIBIT_REASON_DISABLED, 1254 1255 /* 1256 * APIC acceleration is inhibited because AutoEOI feature is 1257 * being used by a HyperV guest. 1258 */ 1259 APICV_INHIBIT_REASON_HYPERV, 1260 1261 /* 1262 * APIC acceleration is inhibited because the userspace didn't yet 1263 * enable the kernel/split irqchip. 1264 */ 1265 APICV_INHIBIT_REASON_ABSENT, 1266 1267 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1268 * (out of band, debug measure of blocking all interrupts on this vCPU) 1269 * was enabled, to avoid AVIC/APICv bypassing it. 1270 */ 1271 APICV_INHIBIT_REASON_BLOCKIRQ, 1272 1273 /* 1274 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1275 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1276 */ 1277 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1278 1279 /* 1280 * For simplicity, the APIC acceleration is inhibited 1281 * first time either APIC ID or APIC base are changed by the guest 1282 * from their reset values. 1283 */ 1284 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1285 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1286 1287 /******************************************************/ 1288 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1289 /******************************************************/ 1290 1291 /* 1292 * AVIC is inhibited on a vCPU because it runs a nested guest. 1293 * 1294 * This is needed because unlike APICv, the peers of this vCPU 1295 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1296 * a vCPU runs nested. 1297 */ 1298 APICV_INHIBIT_REASON_NESTED, 1299 1300 /* 1301 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1302 * which cannot be injected when the AVIC is enabled, thus AVIC 1303 * is inhibited while KVM waits for IRQ window. 1304 */ 1305 APICV_INHIBIT_REASON_IRQWIN, 1306 1307 /* 1308 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1309 * which AVIC doesn't support for edge triggered interrupts. 1310 */ 1311 APICV_INHIBIT_REASON_PIT_REINJ, 1312 1313 /* 1314 * AVIC is disabled because SEV doesn't support it. 1315 */ 1316 APICV_INHIBIT_REASON_SEV, 1317 1318 /* 1319 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1320 * mapping between logical ID and vCPU. 1321 */ 1322 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1323 1324 /* 1325 * AVIC is disabled because the vCPU's APIC ID is beyond the max 1326 * supported by AVIC/x2AVIC, i.e. the vCPU is unaddressable. 1327 */ 1328 APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG, 1329 1330 NR_APICV_INHIBIT_REASONS, 1331 }; 1332 1333 #define __APICV_INHIBIT_REASON(reason) \ 1334 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1335 1336 #define APICV_INHIBIT_REASONS \ 1337 __APICV_INHIBIT_REASON(DISABLED), \ 1338 __APICV_INHIBIT_REASON(HYPERV), \ 1339 __APICV_INHIBIT_REASON(ABSENT), \ 1340 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1341 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1342 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1343 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1344 __APICV_INHIBIT_REASON(NESTED), \ 1345 __APICV_INHIBIT_REASON(IRQWIN), \ 1346 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1347 __APICV_INHIBIT_REASON(SEV), \ 1348 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED), \ 1349 __APICV_INHIBIT_REASON(PHYSICAL_ID_TOO_BIG) 1350 1351 struct kvm_arch { 1352 unsigned long n_used_mmu_pages; 1353 unsigned long n_requested_mmu_pages; 1354 unsigned long n_max_mmu_pages; 1355 unsigned int indirect_shadow_pages; 1356 u8 mmu_valid_gen; 1357 u8 vm_type; 1358 bool has_private_mem; 1359 bool has_protected_state; 1360 bool pre_fault_allowed; 1361 struct hlist_head *mmu_page_hash; 1362 struct list_head active_mmu_pages; 1363 /* 1364 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1365 * replaced by an NX huge page. A shadow page is on this list if its 1366 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1367 * and there are no other conditions that prevent a huge page, e.g. 1368 * the backing host page is huge, dirtly logging is not enabled for its 1369 * memslot, etc... Note, zapping shadow pages on this list doesn't 1370 * guarantee an NX huge page will be created in its stead, e.g. if the 1371 * guest attempts to execute from the region then KVM obviously can't 1372 * create an NX huge page (without hanging the guest). 1373 */ 1374 struct list_head possible_nx_huge_pages; 1375 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1376 struct kvm_page_track_notifier_head track_notifier_head; 1377 #endif 1378 /* 1379 * Protects marking pages unsync during page faults, as TDP MMU page 1380 * faults only take mmu_lock for read. For simplicity, the unsync 1381 * pages lock is always taken when marking pages unsync regardless of 1382 * whether mmu_lock is held for read or write. 1383 */ 1384 spinlock_t mmu_unsync_pages_lock; 1385 1386 u64 shadow_mmio_value; 1387 1388 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1389 atomic_t noncoherent_dma_count; 1390 unsigned long nr_possible_bypass_irqs; 1391 1392 #ifdef CONFIG_KVM_IOAPIC 1393 struct kvm_pic *vpic; 1394 struct kvm_ioapic *vioapic; 1395 struct kvm_pit *vpit; 1396 #endif 1397 atomic_t vapics_in_nmi_mode; 1398 struct mutex apic_map_lock; 1399 struct kvm_apic_map __rcu *apic_map; 1400 atomic_t apic_map_dirty; 1401 1402 bool apic_access_memslot_enabled; 1403 bool apic_access_memslot_inhibited; 1404 1405 /* Protects apicv_inhibit_reasons */ 1406 struct rw_semaphore apicv_update_lock; 1407 unsigned long apicv_inhibit_reasons; 1408 1409 gpa_t wall_clock; 1410 1411 u64 disabled_exits; 1412 1413 s64 kvmclock_offset; 1414 1415 /* 1416 * This also protects nr_vcpus_matched_tsc which is read from a 1417 * preemption-disabled region, so it must be a raw spinlock. 1418 */ 1419 raw_spinlock_t tsc_write_lock; 1420 u64 last_tsc_nsec; 1421 u64 last_tsc_write; 1422 u32 last_tsc_khz; 1423 u64 last_tsc_offset; 1424 u64 cur_tsc_nsec; 1425 u64 cur_tsc_write; 1426 u64 cur_tsc_offset; 1427 u64 cur_tsc_generation; 1428 int nr_vcpus_matched_tsc; 1429 1430 u32 default_tsc_khz; 1431 bool user_set_tsc; 1432 u64 apic_bus_cycle_ns; 1433 1434 seqcount_raw_spinlock_t pvclock_sc; 1435 bool use_master_clock; 1436 u64 master_kernel_ns; 1437 u64 master_cycle_now; 1438 struct delayed_work kvmclock_update_work; 1439 struct delayed_work kvmclock_sync_work; 1440 1441 #ifdef CONFIG_KVM_HYPERV 1442 struct kvm_hv hyperv; 1443 #endif 1444 1445 #ifdef CONFIG_KVM_XEN 1446 struct kvm_xen xen; 1447 #endif 1448 1449 bool backwards_tsc_observed; 1450 bool boot_vcpu_runs_old_kvmclock; 1451 u32 bsp_vcpu_id; 1452 1453 u64 disabled_quirks; 1454 1455 enum kvm_irqchip_mode irqchip_mode; 1456 u8 nr_reserved_ioapic_pins; 1457 1458 bool disabled_lapic_found; 1459 1460 bool x2apic_format; 1461 bool x2apic_broadcast_quirk_disabled; 1462 1463 bool has_mapped_host_mmio; 1464 bool guest_can_read_msr_platform_info; 1465 bool exception_payload_enabled; 1466 1467 bool triple_fault_event; 1468 1469 bool bus_lock_detection_enabled; 1470 bool enable_pmu; 1471 1472 u32 notify_window; 1473 u32 notify_vmexit_flags; 1474 /* 1475 * If exit_on_emulation_error is set, and the in-kernel instruction 1476 * emulator fails to emulate an instruction, allow userspace 1477 * the opportunity to look at it. 1478 */ 1479 bool exit_on_emulation_error; 1480 1481 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1482 u32 user_space_msr_mask; 1483 struct kvm_x86_msr_filter __rcu *msr_filter; 1484 1485 u32 hypercall_exit_enabled; 1486 1487 /* Guest can access the SGX PROVISIONKEY. */ 1488 bool sgx_provisioning_allowed; 1489 1490 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1491 struct vhost_task *nx_huge_page_recovery_thread; 1492 u64 nx_huge_page_last; 1493 struct once nx_once; 1494 1495 #ifdef CONFIG_X86_64 1496 #ifdef CONFIG_KVM_PROVE_MMU 1497 /* 1498 * The number of TDP MMU pages across all roots. Used only to sanity 1499 * check that KVM isn't leaking TDP MMU pages. 1500 */ 1501 atomic64_t tdp_mmu_pages; 1502 #endif 1503 1504 /* 1505 * List of struct kvm_mmu_pages being used as roots. 1506 * All struct kvm_mmu_pages in the list should have 1507 * tdp_mmu_page set. 1508 * 1509 * For reads, this list is protected by: 1510 * RCU alone or 1511 * the MMU lock in read mode + RCU or 1512 * the MMU lock in write mode 1513 * 1514 * For writes, this list is protected by tdp_mmu_pages_lock; see 1515 * below for the details. 1516 * 1517 * Roots will remain in the list until their tdp_mmu_root_count 1518 * drops to zero, at which point the thread that decremented the 1519 * count to zero should removed the root from the list and clean 1520 * it up, freeing the root after an RCU grace period. 1521 */ 1522 struct list_head tdp_mmu_roots; 1523 1524 /* 1525 * Protects accesses to the following fields when the MMU lock 1526 * is held in read mode: 1527 * - tdp_mmu_roots (above) 1528 * - the link field of kvm_mmu_page structs used by the TDP MMU 1529 * - possible_nx_huge_pages; 1530 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1531 * by the TDP MMU 1532 * Because the lock is only taken within the MMU lock, strictly 1533 * speaking it is redundant to acquire this lock when the thread 1534 * holds the MMU lock in write mode. However it often simplifies 1535 * the code to do so. 1536 */ 1537 spinlock_t tdp_mmu_pages_lock; 1538 #endif /* CONFIG_X86_64 */ 1539 1540 /* 1541 * If set, at least one shadow root has been allocated. This flag 1542 * is used as one input when determining whether certain memslot 1543 * related allocations are necessary. 1544 */ 1545 bool shadow_root_allocated; 1546 1547 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1548 /* 1549 * If set, the VM has (or had) an external write tracking user, and 1550 * thus all write tracking metadata has been allocated, even if KVM 1551 * itself isn't using write tracking. 1552 */ 1553 bool external_write_tracking_enabled; 1554 #endif 1555 1556 #if IS_ENABLED(CONFIG_HYPERV) 1557 hpa_t hv_root_tdp; 1558 spinlock_t hv_root_tdp_lock; 1559 struct hv_partition_assist_pg *hv_pa_pg; 1560 #endif 1561 /* 1562 * VM-scope maximum vCPU ID. Used to determine the size of structures 1563 * that increase along with the maximum vCPU ID, in which case, using 1564 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1565 */ 1566 u32 max_vcpu_ids; 1567 1568 bool disable_nx_huge_pages; 1569 1570 /* 1571 * Memory caches used to allocate shadow pages when performing eager 1572 * page splitting. No need for a shadowed_info_cache since eager page 1573 * splitting only allocates direct shadow pages. 1574 * 1575 * Protected by kvm->slots_lock. 1576 */ 1577 struct kvm_mmu_memory_cache split_shadow_page_cache; 1578 struct kvm_mmu_memory_cache split_page_header_cache; 1579 1580 /* 1581 * Memory cache used to allocate pte_list_desc structs while splitting 1582 * huge pages. In the worst case, to split one huge page, 512 1583 * pte_list_desc structs are needed to add each lower level leaf sptep 1584 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1585 * page table. 1586 * 1587 * Protected by kvm->slots_lock. 1588 */ 1589 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1590 struct kvm_mmu_memory_cache split_desc_cache; 1591 1592 gfn_t gfn_direct_bits; 1593 1594 /* 1595 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero 1596 * value indicates CPU dirty logging is unsupported or disabled in 1597 * current VM. 1598 */ 1599 int cpu_dirty_log_size; 1600 }; 1601 1602 struct kvm_vm_stat { 1603 struct kvm_vm_stat_generic generic; 1604 u64 mmu_shadow_zapped; 1605 u64 mmu_pte_write; 1606 u64 mmu_pde_zapped; 1607 u64 mmu_flooded; 1608 u64 mmu_recycled; 1609 u64 mmu_cache_miss; 1610 u64 mmu_unsync; 1611 union { 1612 struct { 1613 atomic64_t pages_4k; 1614 atomic64_t pages_2m; 1615 atomic64_t pages_1g; 1616 }; 1617 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1618 }; 1619 u64 nx_lpage_splits; 1620 u64 max_mmu_page_hash_collisions; 1621 u64 max_mmu_rmap_size; 1622 }; 1623 1624 struct kvm_vcpu_stat { 1625 struct kvm_vcpu_stat_generic generic; 1626 u64 pf_taken; 1627 u64 pf_fixed; 1628 u64 pf_emulate; 1629 u64 pf_spurious; 1630 u64 pf_fast; 1631 u64 pf_mmio_spte_created; 1632 u64 pf_guest; 1633 u64 tlb_flush; 1634 u64 invlpg; 1635 1636 u64 exits; 1637 u64 io_exits; 1638 u64 mmio_exits; 1639 u64 signal_exits; 1640 u64 irq_window_exits; 1641 u64 nmi_window_exits; 1642 u64 l1d_flush; 1643 u64 halt_exits; 1644 u64 request_irq_exits; 1645 u64 irq_exits; 1646 u64 host_state_reload; 1647 u64 fpu_reload; 1648 u64 insn_emulation; 1649 u64 insn_emulation_fail; 1650 u64 hypercalls; 1651 u64 irq_injections; 1652 u64 nmi_injections; 1653 u64 req_event; 1654 u64 nested_run; 1655 u64 directed_yield_attempted; 1656 u64 directed_yield_successful; 1657 u64 preemption_reported; 1658 u64 preemption_other; 1659 u64 guest_mode; 1660 u64 notify_window_exits; 1661 }; 1662 1663 struct x86_instruction_info; 1664 1665 struct msr_data { 1666 bool host_initiated; 1667 u32 index; 1668 u64 data; 1669 }; 1670 1671 struct kvm_lapic_irq { 1672 u32 vector; 1673 u16 delivery_mode; 1674 u16 dest_mode; 1675 bool level; 1676 u16 trig_mode; 1677 u32 shorthand; 1678 u32 dest_id; 1679 bool msi_redir_hint; 1680 }; 1681 1682 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1683 { 1684 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1685 } 1686 1687 enum kvm_x86_run_flags { 1688 KVM_RUN_FORCE_IMMEDIATE_EXIT = BIT(0), 1689 KVM_RUN_LOAD_GUEST_DR6 = BIT(1), 1690 KVM_RUN_LOAD_DEBUGCTL = BIT(2), 1691 }; 1692 1693 struct kvm_x86_ops { 1694 const char *name; 1695 1696 int (*check_processor_compatibility)(void); 1697 1698 int (*enable_virtualization_cpu)(void); 1699 void (*disable_virtualization_cpu)(void); 1700 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1701 1702 void (*hardware_unsetup)(void); 1703 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1704 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1705 1706 unsigned int vm_size; 1707 int (*vm_init)(struct kvm *kvm); 1708 void (*vm_destroy)(struct kvm *kvm); 1709 void (*vm_pre_destroy)(struct kvm *kvm); 1710 1711 /* Create, but do not attach this VCPU */ 1712 int (*vcpu_precreate)(struct kvm *kvm); 1713 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1714 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1715 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1716 1717 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1718 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1719 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1720 1721 /* 1722 * Mask of DEBUGCTL bits that are owned by the host, i.e. that need to 1723 * match the host's value even while the guest is active. 1724 */ 1725 const u64 HOST_OWNED_DEBUGCTL; 1726 1727 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1728 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1729 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1730 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1731 void (*get_segment)(struct kvm_vcpu *vcpu, 1732 struct kvm_segment *var, int seg); 1733 int (*get_cpl)(struct kvm_vcpu *vcpu); 1734 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu); 1735 void (*set_segment)(struct kvm_vcpu *vcpu, 1736 struct kvm_segment *var, int seg); 1737 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1738 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1739 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1740 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1741 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1742 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1743 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1744 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1745 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1746 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1747 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1748 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1749 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1750 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1751 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1752 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1753 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1754 1755 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1756 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1757 #if IS_ENABLED(CONFIG_HYPERV) 1758 int (*flush_remote_tlbs)(struct kvm *kvm); 1759 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1760 gfn_t nr_pages); 1761 #endif 1762 1763 /* 1764 * Flush any TLB entries associated with the given GVA. 1765 * Does not need to flush GPA->HPA mappings. 1766 * Can potentially get non-canonical addresses through INVLPGs, which 1767 * the implementation may choose to ignore if appropriate. 1768 */ 1769 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1770 1771 /* 1772 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1773 * does not need to flush GPA->HPA mappings. 1774 */ 1775 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1776 1777 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1778 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1779 u64 run_flags); 1780 int (*handle_exit)(struct kvm_vcpu *vcpu, 1781 enum exit_fastpath_completion exit_fastpath); 1782 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1783 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1784 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1785 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1786 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1787 unsigned char *hypercall_addr); 1788 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1789 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1790 void (*inject_exception)(struct kvm_vcpu *vcpu); 1791 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1792 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1793 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1794 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1795 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1796 /* Whether or not a virtual NMI is pending in hardware. */ 1797 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1798 /* 1799 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1800 * to allow using static_call_ret0 as the fallback. 1801 */ 1802 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1803 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1804 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1805 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1806 1807 const bool x2apic_icr_is_split; 1808 const unsigned long required_apicv_inhibits; 1809 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1810 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1811 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1812 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1813 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1814 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1815 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1816 int trig_mode, int vector); 1817 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1818 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1819 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1820 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1821 1822 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1823 int root_level); 1824 1825 /* Update external mapping with page table link. */ 1826 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1827 void *external_spt); 1828 /* Update the external page table from spte getting set. */ 1829 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1830 kvm_pfn_t pfn_for_gfn); 1831 1832 /* Update external page tables for page table about to be freed. */ 1833 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1834 void *external_spt); 1835 1836 /* Update external page table from spte getting removed, and flush TLB. */ 1837 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1838 kvm_pfn_t pfn_for_gfn); 1839 1840 bool (*has_wbinvd_exit)(void); 1841 1842 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1843 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1844 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1845 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1846 1847 /* 1848 * Retrieve somewhat arbitrary exit/entry information. Intended to 1849 * be used only from within tracepoints or error paths. 1850 */ 1851 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1852 u64 *info1, u64 *info2, 1853 u32 *intr_info, u32 *error_code); 1854 1855 void (*get_entry_info)(struct kvm_vcpu *vcpu, 1856 u32 *intr_info, u32 *error_code); 1857 1858 int (*check_intercept)(struct kvm_vcpu *vcpu, 1859 struct x86_instruction_info *info, 1860 enum x86_intercept_stage stage, 1861 struct x86_exception *exception); 1862 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1863 1864 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1865 1866 const struct kvm_x86_nested_ops *nested_ops; 1867 1868 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1869 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1870 1871 int (*pi_update_irte)(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm, 1872 unsigned int host_irq, uint32_t guest_irq, 1873 struct kvm_vcpu *vcpu, u32 vector); 1874 void (*pi_start_bypass)(struct kvm *kvm); 1875 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1876 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1877 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1878 bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1879 1880 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1881 bool *expired); 1882 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1883 1884 void (*setup_mce)(struct kvm_vcpu *vcpu); 1885 1886 #ifdef CONFIG_KVM_SMM 1887 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1888 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1889 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1890 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1891 #endif 1892 1893 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1894 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1895 int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp); 1896 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1897 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1898 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1899 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1900 void (*guest_memory_reclaimed)(struct kvm *kvm); 1901 1902 int (*get_feature_msr)(u32 msr, u64 *data); 1903 1904 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1905 void *insn, int insn_len); 1906 1907 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1908 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1909 1910 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1911 void (*recalc_msr_intercepts)(struct kvm_vcpu *vcpu); 1912 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1913 1914 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1915 1916 /* 1917 * Returns vCPU specific APICv inhibit reasons 1918 */ 1919 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1920 1921 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1922 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1923 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1924 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1925 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn); 1926 }; 1927 1928 struct kvm_x86_nested_ops { 1929 void (*leave_nested)(struct kvm_vcpu *vcpu); 1930 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1931 u32 error_code); 1932 int (*check_events)(struct kvm_vcpu *vcpu); 1933 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1934 void (*triple_fault)(struct kvm_vcpu *vcpu); 1935 int (*get_state)(struct kvm_vcpu *vcpu, 1936 struct kvm_nested_state __user *user_kvm_nested_state, 1937 unsigned user_data_size); 1938 int (*set_state)(struct kvm_vcpu *vcpu, 1939 struct kvm_nested_state __user *user_kvm_nested_state, 1940 struct kvm_nested_state *kvm_state); 1941 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1942 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1943 1944 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1945 uint16_t *vmcs_version); 1946 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1947 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1948 }; 1949 1950 struct kvm_x86_init_ops { 1951 int (*hardware_setup)(void); 1952 unsigned int (*handle_intel_pt_intr)(void); 1953 1954 struct kvm_x86_ops *runtime_ops; 1955 struct kvm_pmu_ops *pmu_ops; 1956 }; 1957 1958 struct kvm_arch_async_pf { 1959 u32 token; 1960 gfn_t gfn; 1961 unsigned long cr3; 1962 bool direct_map; 1963 u64 error_code; 1964 }; 1965 1966 extern u32 __read_mostly kvm_nr_uret_msrs; 1967 extern bool __read_mostly allow_smaller_maxphyaddr; 1968 extern bool __read_mostly enable_apicv; 1969 extern bool __read_mostly enable_ipiv; 1970 extern bool __read_mostly enable_device_posted_irqs; 1971 extern struct kvm_x86_ops kvm_x86_ops; 1972 1973 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1974 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1975 1976 #define KVM_X86_OP(func) \ 1977 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1978 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1979 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1980 #include <asm/kvm-x86-ops.h> 1981 1982 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1983 void kvm_x86_vendor_exit(void); 1984 1985 #define __KVM_HAVE_ARCH_VM_ALLOC 1986 static inline struct kvm *kvm_arch_alloc_vm(void) 1987 { 1988 return kvzalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT); 1989 } 1990 1991 #define __KVM_HAVE_ARCH_VM_FREE 1992 void kvm_arch_free_vm(struct kvm *kvm); 1993 1994 #if IS_ENABLED(CONFIG_HYPERV) 1995 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1996 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1997 { 1998 if (kvm_x86_ops.flush_remote_tlbs && 1999 !kvm_x86_call(flush_remote_tlbs)(kvm)) 2000 return 0; 2001 else 2002 return -ENOTSUPP; 2003 } 2004 2005 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 2006 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 2007 u64 nr_pages) 2008 { 2009 if (!kvm_x86_ops.flush_remote_tlbs_range) 2010 return -EOPNOTSUPP; 2011 2012 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 2013 } 2014 #endif /* CONFIG_HYPERV */ 2015 2016 enum kvm_intr_type { 2017 /* Values are arbitrary, but must be non-zero. */ 2018 KVM_HANDLING_IRQ = 1, 2019 KVM_HANDLING_NMI, 2020 }; 2021 2022 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 2023 #define kvm_arch_pmi_in_guest(vcpu) \ 2024 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 2025 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 2026 2027 void __init kvm_mmu_x86_module_init(void); 2028 int kvm_mmu_vendor_module_init(void); 2029 void kvm_mmu_vendor_module_exit(void); 2030 2031 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 2032 int kvm_mmu_create(struct kvm_vcpu *vcpu); 2033 int kvm_mmu_init_vm(struct kvm *kvm); 2034 void kvm_mmu_uninit_vm(struct kvm *kvm); 2035 2036 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 2037 struct kvm_memory_slot *slot); 2038 2039 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 2040 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 2041 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 2042 const struct kvm_memory_slot *memslot, 2043 int start_level); 2044 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 2045 const struct kvm_memory_slot *memslot, 2046 int target_level); 2047 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 2048 const struct kvm_memory_slot *memslot, 2049 u64 start, u64 end, 2050 int target_level); 2051 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 2052 const struct kvm_memory_slot *memslot); 2053 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 2054 const struct kvm_memory_slot *memslot); 2055 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 2056 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 2057 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 2058 2059 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 2060 2061 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 2062 const void *val, int bytes); 2063 2064 extern bool tdp_enabled; 2065 2066 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 2067 2068 /* 2069 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 2070 * userspace I/O) to indicate that the emulation context 2071 * should be reused as is, i.e. skip initialization of 2072 * emulation context, instruction fetch and decode. 2073 * 2074 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 2075 * Indicates that only select instructions (tagged with 2076 * EmulateOnUD) should be emulated (to minimize the emulator 2077 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 2078 * 2079 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2080 * decode the instruction length. For use *only* by 2081 * kvm_x86_ops.skip_emulated_instruction() implementations if 2082 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2083 * 2084 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2085 * retry native execution under certain conditions, 2086 * Can only be set in conjunction with EMULTYPE_PF. 2087 * 2088 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2089 * triggered by KVM's magic "force emulation" prefix, 2090 * which is opt in via module param (off by default). 2091 * Bypasses EmulateOnUD restriction despite emulating 2092 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2093 * Used to test the full emulator from userspace. 2094 * 2095 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2096 * backdoor emulation, which is opt in via module param. 2097 * VMware backdoor emulation handles select instructions 2098 * and reinjects the #GP for all other cases. 2099 * 2100 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case 2101 * the CR2/GPA value pass on the stack is valid. 2102 * 2103 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2104 * state and inject single-step #DBs after skipping 2105 * an instruction (after completing userspace I/O). 2106 * 2107 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2108 * is attempting to write a gfn that contains one or 2109 * more of the PTEs used to translate the write itself, 2110 * and the owning page table is being shadowed by KVM. 2111 * If emulation of the faulting instruction fails and 2112 * this flag is set, KVM will exit to userspace instead 2113 * of retrying emulation as KVM cannot make forward 2114 * progress. 2115 * 2116 * If emulation fails for a write to guest page tables, 2117 * KVM unprotects (zaps) the shadow page for the target 2118 * gfn and resumes the guest to retry the non-emulatable 2119 * instruction (on hardware). Unprotecting the gfn 2120 * doesn't allow forward progress for a self-changing 2121 * access because doing so also zaps the translation for 2122 * the gfn, i.e. retrying the instruction will hit a 2123 * !PRESENT fault, which results in a new shadow page 2124 * and sends KVM back to square one. 2125 */ 2126 #define EMULTYPE_NO_DECODE (1 << 0) 2127 #define EMULTYPE_TRAP_UD (1 << 1) 2128 #define EMULTYPE_SKIP (1 << 2) 2129 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2130 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2131 #define EMULTYPE_VMWARE_GP (1 << 5) 2132 #define EMULTYPE_PF (1 << 6) 2133 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2134 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2135 2136 static inline bool kvm_can_emulate_event_vectoring(int emul_type) 2137 { 2138 return !(emul_type & EMULTYPE_PF); 2139 } 2140 2141 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2142 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2143 void *insn, int insn_len); 2144 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2145 u64 *data, u8 ndata); 2146 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2147 2148 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa); 2149 2150 void kvm_enable_efer_bits(u64); 2151 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2152 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2153 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data); 2154 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2155 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2156 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2157 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2158 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2159 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2160 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2161 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2162 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2163 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2164 2165 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2166 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2167 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2168 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2169 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2170 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2171 2172 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2173 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2174 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2175 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2176 2177 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2178 int reason, bool has_error_code, u32 error_code); 2179 2180 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2181 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2182 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2183 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2184 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2185 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2186 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2187 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2188 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2189 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2190 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2191 2192 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2193 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2194 2195 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2196 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2197 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2198 2199 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2200 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2201 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2202 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 2203 bool has_error_code, u32 error_code); 2204 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2205 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2206 struct x86_exception *fault); 2207 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2208 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2209 2210 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2211 int irq_source_id, int level) 2212 { 2213 /* Logical OR for level trig interrupt */ 2214 if (level) 2215 __set_bit(irq_source_id, irq_state); 2216 else 2217 __clear_bit(irq_source_id, irq_state); 2218 2219 return !!(*irq_state); 2220 } 2221 2222 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2223 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2224 2225 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2226 2227 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2228 bool always_retry); 2229 2230 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2231 gpa_t cr2_or_gpa) 2232 { 2233 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2234 } 2235 2236 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2237 ulong roots_to_free); 2238 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2239 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2240 struct x86_exception *exception); 2241 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2242 struct x86_exception *exception); 2243 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2244 struct x86_exception *exception); 2245 2246 bool kvm_apicv_activated(struct kvm *kvm); 2247 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2248 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2249 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2250 enum kvm_apicv_inhibit reason, bool set); 2251 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2252 enum kvm_apicv_inhibit reason, bool set); 2253 2254 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2255 enum kvm_apicv_inhibit reason) 2256 { 2257 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2258 } 2259 2260 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2261 enum kvm_apicv_inhibit reason) 2262 { 2263 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2264 } 2265 2266 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2267 void *insn, int insn_len); 2268 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2269 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2270 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2271 u64 addr, unsigned long roots); 2272 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2273 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2274 2275 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2276 int tdp_max_root_level, int tdp_huge_page_level); 2277 2278 2279 #ifdef CONFIG_KVM_PRIVATE_MEM 2280 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2281 #else 2282 #define kvm_arch_has_private_mem(kvm) false 2283 #endif 2284 2285 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2286 2287 static inline u16 kvm_read_ldt(void) 2288 { 2289 u16 ldt; 2290 asm("sldt %0" : "=g"(ldt)); 2291 return ldt; 2292 } 2293 2294 static inline void kvm_load_ldt(u16 sel) 2295 { 2296 asm("lldt %0" : : "rm"(sel)); 2297 } 2298 2299 #ifdef CONFIG_X86_64 2300 static inline unsigned long read_msr(unsigned long msr) 2301 { 2302 u64 value; 2303 2304 rdmsrq(msr, value); 2305 return value; 2306 } 2307 #endif 2308 2309 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2310 { 2311 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2312 } 2313 2314 #define TSS_IOPB_BASE_OFFSET 0x66 2315 #define TSS_BASE_SIZE 0x68 2316 #define TSS_IOPB_SIZE (65536 / 8) 2317 #define TSS_REDIRECTION_SIZE (256 / 8) 2318 #define RMODE_TSS_SIZE \ 2319 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2320 2321 enum { 2322 TASK_SWITCH_CALL = 0, 2323 TASK_SWITCH_IRET = 1, 2324 TASK_SWITCH_JMP = 2, 2325 TASK_SWITCH_GATE = 3, 2326 }; 2327 2328 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2329 2330 #ifdef CONFIG_KVM_SMM 2331 #define HF_SMM_MASK (1 << 1) 2332 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2333 2334 # define KVM_MAX_NR_ADDRESS_SPACES 2 2335 /* SMM is currently unsupported for guests with private memory. */ 2336 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2337 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2338 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2339 #else 2340 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2341 #endif 2342 2343 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2344 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2345 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2346 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2347 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2348 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2349 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2350 2351 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2352 unsigned long ipi_bitmap_high, u32 min, 2353 unsigned long icr, int op_64_bit); 2354 2355 int kvm_add_user_return_msr(u32 msr); 2356 int kvm_find_user_return_msr(u32 msr); 2357 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2358 void kvm_user_return_msr_update_cache(unsigned int index, u64 val); 2359 2360 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2361 { 2362 return kvm_find_user_return_msr(msr) >= 0; 2363 } 2364 2365 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2366 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2367 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2368 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2369 2370 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2371 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2372 2373 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2374 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2375 unsigned long *vcpu_bitmap); 2376 2377 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2378 struct kvm_async_pf *work); 2379 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2380 struct kvm_async_pf *work); 2381 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2382 struct kvm_async_pf *work); 2383 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2384 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2385 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2386 2387 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2388 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2389 2390 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2391 u32 size); 2392 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2393 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2394 2395 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2396 struct kvm_vcpu **dest_vcpu); 2397 2398 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2399 { 2400 /* We can only post Fixed and LowPrio IRQs */ 2401 return (irq->delivery_mode == APIC_DM_FIXED || 2402 irq->delivery_mode == APIC_DM_LOWEST); 2403 } 2404 2405 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2406 { 2407 kvm_x86_call(vcpu_blocking)(vcpu); 2408 } 2409 2410 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2411 { 2412 kvm_x86_call(vcpu_unblocking)(vcpu); 2413 } 2414 2415 static inline int kvm_cpu_get_apicid(int mps_cpu) 2416 { 2417 #ifdef CONFIG_X86_LOCAL_APIC 2418 return default_cpu_present_to_apicid(mps_cpu); 2419 #else 2420 WARN_ON_ONCE(1); 2421 return BAD_APICID; 2422 #endif 2423 } 2424 2425 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2426 2427 #define KVM_CLOCK_VALID_FLAGS \ 2428 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2429 2430 #define KVM_X86_VALID_QUIRKS \ 2431 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2432 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2433 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2434 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2435 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2436 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2437 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2438 KVM_X86_QUIRK_SLOT_ZAP_ALL | \ 2439 KVM_X86_QUIRK_STUFF_FEATURE_MSRS | \ 2440 KVM_X86_QUIRK_IGNORE_GUEST_PAT) 2441 2442 #define KVM_X86_CONDITIONAL_QUIRKS \ 2443 (KVM_X86_QUIRK_CD_NW_CLEARED | \ 2444 KVM_X86_QUIRK_IGNORE_GUEST_PAT) 2445 2446 /* 2447 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2448 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2449 * remaining 31 lower bits must be 0 to preserve ABI. 2450 */ 2451 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2452 2453 static inline bool kvm_arch_has_irq_bypass(void) 2454 { 2455 return enable_device_posted_irqs; 2456 } 2457 2458 #endif /* _ASM_X86_KVM_HOST_H */ 2459