1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 19 #include <linux/kvm.h> 20 #include <linux/kvm_para.h> 21 #include <linux/kvm_types.h> 22 #include <linux/perf_event.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/clocksource.h> 25 #include <linux/irqbypass.h> 26 #include <linux/hyperv.h> 27 28 #include <asm/apic.h> 29 #include <asm/pvclock-abi.h> 30 #include <asm/desc.h> 31 #include <asm/mtrr.h> 32 #include <asm/msr-index.h> 33 #include <asm/asm.h> 34 #include <asm/kvm_page_track.h> 35 #include <asm/kvm_vcpu_regs.h> 36 #include <asm/hyperv-tlfs.h> 37 38 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 39 40 #define KVM_MAX_VCPUS 288 41 #define KVM_SOFT_MAX_VCPUS 240 42 #define KVM_MAX_VCPU_ID 1023 43 #define KVM_USER_MEM_SLOTS 509 44 /* memory slots that are not exposed to userspace */ 45 #define KVM_PRIVATE_MEM_SLOTS 3 46 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 47 48 #define KVM_HALT_POLL_NS_DEFAULT 200000 49 50 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 51 52 /* x86-specific vcpu->requests bit members */ 53 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 54 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 55 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 56 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 57 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 58 #define KVM_REQ_LOAD_CR3 KVM_ARCH_REQ(5) 59 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 60 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 61 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 62 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 63 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 64 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 65 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 66 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 67 #define KVM_REQ_MCLOCK_INPROGRESS \ 68 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 69 #define KVM_REQ_SCAN_IOAPIC \ 70 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 71 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 72 #define KVM_REQ_APIC_PAGE_RELOAD \ 73 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 74 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 75 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 76 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 77 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 78 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 79 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 80 #define KVM_REQ_GET_VMCS12_PAGES KVM_ARCH_REQ(24) 81 82 #define CR0_RESERVED_BITS \ 83 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 84 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 85 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 86 87 #define CR4_RESERVED_BITS \ 88 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 89 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 90 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 91 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 92 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 93 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP)) 94 95 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 96 97 98 99 #define INVALID_PAGE (~(hpa_t)0) 100 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 101 102 #define UNMAPPED_GVA (~(gpa_t)0) 103 104 /* KVM Hugepage definitions for x86 */ 105 enum { 106 PT_PAGE_TABLE_LEVEL = 1, 107 PT_DIRECTORY_LEVEL = 2, 108 PT_PDPE_LEVEL = 3, 109 /* set max level to the biggest one */ 110 PT_MAX_HUGEPAGE_LEVEL = PT_PDPE_LEVEL, 111 }; 112 #define KVM_NR_PAGE_SIZES (PT_MAX_HUGEPAGE_LEVEL - \ 113 PT_PAGE_TABLE_LEVEL + 1) 114 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 115 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 116 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 117 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 118 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 119 120 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level) 121 { 122 /* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */ 123 return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - 124 (base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); 125 } 126 127 #define KVM_PERMILLE_MMU_PAGES 20 128 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 129 #define KVM_MMU_HASH_SHIFT 12 130 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 131 #define KVM_MIN_FREE_MMU_PAGES 5 132 #define KVM_REFILL_PAGES 25 133 #define KVM_MAX_CPUID_ENTRIES 80 134 #define KVM_NR_FIXED_MTRR_REGION 88 135 #define KVM_NR_VAR_MTRR 8 136 137 #define ASYNC_PF_PER_VCPU 64 138 139 enum kvm_reg { 140 VCPU_REGS_RAX = __VCPU_REGS_RAX, 141 VCPU_REGS_RCX = __VCPU_REGS_RCX, 142 VCPU_REGS_RDX = __VCPU_REGS_RDX, 143 VCPU_REGS_RBX = __VCPU_REGS_RBX, 144 VCPU_REGS_RSP = __VCPU_REGS_RSP, 145 VCPU_REGS_RBP = __VCPU_REGS_RBP, 146 VCPU_REGS_RSI = __VCPU_REGS_RSI, 147 VCPU_REGS_RDI = __VCPU_REGS_RDI, 148 #ifdef CONFIG_X86_64 149 VCPU_REGS_R8 = __VCPU_REGS_R8, 150 VCPU_REGS_R9 = __VCPU_REGS_R9, 151 VCPU_REGS_R10 = __VCPU_REGS_R10, 152 VCPU_REGS_R11 = __VCPU_REGS_R11, 153 VCPU_REGS_R12 = __VCPU_REGS_R12, 154 VCPU_REGS_R13 = __VCPU_REGS_R13, 155 VCPU_REGS_R14 = __VCPU_REGS_R14, 156 VCPU_REGS_R15 = __VCPU_REGS_R15, 157 #endif 158 VCPU_REGS_RIP, 159 NR_VCPU_REGS 160 }; 161 162 enum kvm_reg_ex { 163 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 164 VCPU_EXREG_CR3, 165 VCPU_EXREG_RFLAGS, 166 VCPU_EXREG_SEGMENTS, 167 }; 168 169 enum { 170 VCPU_SREG_ES, 171 VCPU_SREG_CS, 172 VCPU_SREG_SS, 173 VCPU_SREG_DS, 174 VCPU_SREG_FS, 175 VCPU_SREG_GS, 176 VCPU_SREG_TR, 177 VCPU_SREG_LDTR, 178 }; 179 180 #include <asm/kvm_emulate.h> 181 182 #define KVM_NR_MEM_OBJS 40 183 184 #define KVM_NR_DB_REGS 4 185 186 #define DR6_BD (1 << 13) 187 #define DR6_BS (1 << 14) 188 #define DR6_BT (1 << 15) 189 #define DR6_RTM (1 << 16) 190 #define DR6_FIXED_1 0xfffe0ff0 191 #define DR6_INIT 0xffff0ff0 192 #define DR6_VOLATILE 0x0001e00f 193 194 #define DR7_BP_EN_MASK 0x000000ff 195 #define DR7_GE (1 << 9) 196 #define DR7_GD (1 << 13) 197 #define DR7_FIXED_1 0x00000400 198 #define DR7_VOLATILE 0xffff2bff 199 200 #define PFERR_PRESENT_BIT 0 201 #define PFERR_WRITE_BIT 1 202 #define PFERR_USER_BIT 2 203 #define PFERR_RSVD_BIT 3 204 #define PFERR_FETCH_BIT 4 205 #define PFERR_PK_BIT 5 206 #define PFERR_GUEST_FINAL_BIT 32 207 #define PFERR_GUEST_PAGE_BIT 33 208 209 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT) 210 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT) 211 #define PFERR_USER_MASK (1U << PFERR_USER_BIT) 212 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT) 213 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT) 214 #define PFERR_PK_MASK (1U << PFERR_PK_BIT) 215 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT) 216 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT) 217 218 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 219 PFERR_WRITE_MASK | \ 220 PFERR_PRESENT_MASK) 221 222 /* 223 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or 224 * Access Tracking SPTEs. We use bit 62 instead of bit 63 to avoid conflicting 225 * with the SVE bit in EPT PTEs. 226 */ 227 #define SPTE_SPECIAL_MASK (1ULL << 62) 228 229 /* apic attention bits */ 230 #define KVM_APIC_CHECK_VAPIC 0 231 /* 232 * The following bit is set with PV-EOI, unset on EOI. 233 * We detect PV-EOI changes by guest by comparing 234 * this bit with PV-EOI in guest memory. 235 * See the implementation in apic_update_pv_eoi. 236 */ 237 #define KVM_APIC_PV_EOI_PENDING 1 238 239 struct kvm_kernel_irq_routing_entry; 240 241 /* 242 * We don't want allocation failures within the mmu code, so we preallocate 243 * enough memory for a single page fault in a cache. 244 */ 245 struct kvm_mmu_memory_cache { 246 int nobjs; 247 void *objects[KVM_NR_MEM_OBJS]; 248 }; 249 250 /* 251 * the pages used as guest page table on soft mmu are tracked by 252 * kvm_memory_slot.arch.gfn_track which is 16 bits, so the role bits used 253 * by indirect shadow page can not be more than 15 bits. 254 * 255 * Currently, we used 14 bits that are @level, @gpte_is_8_bytes, @quadrant, @access, 256 * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp. 257 */ 258 union kvm_mmu_page_role { 259 u32 word; 260 struct { 261 unsigned level:4; 262 unsigned gpte_is_8_bytes:1; 263 unsigned quadrant:2; 264 unsigned direct:1; 265 unsigned access:3; 266 unsigned invalid:1; 267 unsigned nxe:1; 268 unsigned cr0_wp:1; 269 unsigned smep_andnot_wp:1; 270 unsigned smap_andnot_wp:1; 271 unsigned ad_disabled:1; 272 unsigned guest_mode:1; 273 unsigned :6; 274 275 /* 276 * This is left at the top of the word so that 277 * kvm_memslots_for_spte_role can extract it with a 278 * simple shift. While there is room, give it a whole 279 * byte so it is also faster to load it from memory. 280 */ 281 unsigned smm:8; 282 }; 283 }; 284 285 union kvm_mmu_extended_role { 286 /* 287 * This structure complements kvm_mmu_page_role caching everything needed for 288 * MMU configuration. If nothing in both these structures changed, MMU 289 * re-configuration can be skipped. @valid bit is set on first usage so we don't 290 * treat all-zero structure as valid data. 291 */ 292 u32 word; 293 struct { 294 unsigned int valid:1; 295 unsigned int execonly:1; 296 unsigned int cr0_pg:1; 297 unsigned int cr4_pae:1; 298 unsigned int cr4_pse:1; 299 unsigned int cr4_pke:1; 300 unsigned int cr4_smap:1; 301 unsigned int cr4_smep:1; 302 unsigned int cr4_la57:1; 303 unsigned int maxphyaddr:6; 304 }; 305 }; 306 307 union kvm_mmu_role { 308 u64 as_u64; 309 struct { 310 union kvm_mmu_page_role base; 311 union kvm_mmu_extended_role ext; 312 }; 313 }; 314 315 struct kvm_rmap_head { 316 unsigned long val; 317 }; 318 319 struct kvm_mmu_page { 320 struct list_head link; 321 struct hlist_node hash_link; 322 bool unsync; 323 bool mmio_cached; 324 325 /* 326 * The following two entries are used to key the shadow page in the 327 * hash table. 328 */ 329 union kvm_mmu_page_role role; 330 gfn_t gfn; 331 332 u64 *spt; 333 /* hold the gfn of each spte inside spt */ 334 gfn_t *gfns; 335 int root_count; /* Currently serving as active root */ 336 unsigned int unsync_children; 337 struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */ 338 unsigned long mmu_valid_gen; 339 DECLARE_BITMAP(unsync_child_bitmap, 512); 340 341 #ifdef CONFIG_X86_32 342 /* 343 * Used out of the mmu-lock to avoid reading spte values while an 344 * update is in progress; see the comments in __get_spte_lockless(). 345 */ 346 int clear_spte_count; 347 #endif 348 349 /* Number of writes since the last time traversal visited this page. */ 350 atomic_t write_flooding_count; 351 }; 352 353 struct kvm_pio_request { 354 unsigned long linear_rip; 355 unsigned long count; 356 int in; 357 int port; 358 int size; 359 }; 360 361 #define PT64_ROOT_MAX_LEVEL 5 362 363 struct rsvd_bits_validate { 364 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 365 u64 bad_mt_xwr; 366 }; 367 368 struct kvm_mmu_root_info { 369 gpa_t cr3; 370 hpa_t hpa; 371 }; 372 373 #define KVM_MMU_ROOT_INFO_INVALID \ 374 ((struct kvm_mmu_root_info) { .cr3 = INVALID_PAGE, .hpa = INVALID_PAGE }) 375 376 #define KVM_MMU_NUM_PREV_ROOTS 3 377 378 /* 379 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 380 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 381 * current mmu mode. 382 */ 383 struct kvm_mmu { 384 void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root); 385 unsigned long (*get_cr3)(struct kvm_vcpu *vcpu); 386 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 387 int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err, 388 bool prefault); 389 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 390 struct x86_exception *fault); 391 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access, 392 struct x86_exception *exception); 393 gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 394 struct x86_exception *exception); 395 int (*sync_page)(struct kvm_vcpu *vcpu, 396 struct kvm_mmu_page *sp); 397 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa); 398 void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 399 u64 *spte, const void *pte); 400 hpa_t root_hpa; 401 gpa_t root_cr3; 402 union kvm_mmu_role mmu_role; 403 u8 root_level; 404 u8 shadow_root_level; 405 u8 ept_ad; 406 bool direct_map; 407 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 408 409 /* 410 * Bitmap; bit set = permission fault 411 * Byte index: page fault error code [4:1] 412 * Bit index: pte permissions in ACC_* format 413 */ 414 u8 permissions[16]; 415 416 /* 417 * The pkru_mask indicates if protection key checks are needed. It 418 * consists of 16 domains indexed by page fault error code bits [4:1], 419 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 420 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 421 */ 422 u32 pkru_mask; 423 424 u64 *pae_root; 425 u64 *lm_root; 426 427 /* 428 * check zero bits on shadow page table entries, these 429 * bits include not only hardware reserved bits but also 430 * the bits spte never used. 431 */ 432 struct rsvd_bits_validate shadow_zero_check; 433 434 struct rsvd_bits_validate guest_rsvd_check; 435 436 /* Can have large pages at levels 2..last_nonleaf_level-1. */ 437 u8 last_nonleaf_level; 438 439 bool nx; 440 441 u64 pdptrs[4]; /* pae */ 442 }; 443 444 struct kvm_tlb_range { 445 u64 start_gfn; 446 u64 pages; 447 }; 448 449 enum pmc_type { 450 KVM_PMC_GP = 0, 451 KVM_PMC_FIXED, 452 }; 453 454 struct kvm_pmc { 455 enum pmc_type type; 456 u8 idx; 457 u64 counter; 458 u64 eventsel; 459 struct perf_event *perf_event; 460 struct kvm_vcpu *vcpu; 461 }; 462 463 struct kvm_pmu { 464 unsigned nr_arch_gp_counters; 465 unsigned nr_arch_fixed_counters; 466 unsigned available_event_types; 467 u64 fixed_ctr_ctrl; 468 u64 global_ctrl; 469 u64 global_status; 470 u64 global_ovf_ctrl; 471 u64 counter_bitmask[2]; 472 u64 global_ctrl_mask; 473 u64 global_ovf_ctrl_mask; 474 u64 reserved_bits; 475 u8 version; 476 struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC]; 477 struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED]; 478 struct irq_work irq_work; 479 u64 reprogram_pmi; 480 }; 481 482 struct kvm_pmu_ops; 483 484 enum { 485 KVM_DEBUGREG_BP_ENABLED = 1, 486 KVM_DEBUGREG_WONT_EXIT = 2, 487 KVM_DEBUGREG_RELOAD = 4, 488 }; 489 490 struct kvm_mtrr_range { 491 u64 base; 492 u64 mask; 493 struct list_head node; 494 }; 495 496 struct kvm_mtrr { 497 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 498 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 499 u64 deftype; 500 501 struct list_head head; 502 }; 503 504 /* Hyper-V SynIC timer */ 505 struct kvm_vcpu_hv_stimer { 506 struct hrtimer timer; 507 int index; 508 union hv_stimer_config config; 509 u64 count; 510 u64 exp_time; 511 struct hv_message msg; 512 bool msg_pending; 513 }; 514 515 /* Hyper-V synthetic interrupt controller (SynIC)*/ 516 struct kvm_vcpu_hv_synic { 517 u64 version; 518 u64 control; 519 u64 msg_page; 520 u64 evt_page; 521 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 522 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 523 DECLARE_BITMAP(auto_eoi_bitmap, 256); 524 DECLARE_BITMAP(vec_bitmap, 256); 525 bool active; 526 bool dont_zero_synic_pages; 527 }; 528 529 /* Hyper-V per vcpu emulation context */ 530 struct kvm_vcpu_hv { 531 u32 vp_index; 532 u64 hv_vapic; 533 s64 runtime_offset; 534 struct kvm_vcpu_hv_synic synic; 535 struct kvm_hyperv_exit exit; 536 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 537 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 538 cpumask_t tlb_flush; 539 }; 540 541 struct kvm_vcpu_arch { 542 /* 543 * rip and regs accesses must go through 544 * kvm_{register,rip}_{read,write} functions. 545 */ 546 unsigned long regs[NR_VCPU_REGS]; 547 u32 regs_avail; 548 u32 regs_dirty; 549 550 unsigned long cr0; 551 unsigned long cr0_guest_owned_bits; 552 unsigned long cr2; 553 unsigned long cr3; 554 unsigned long cr4; 555 unsigned long cr4_guest_owned_bits; 556 unsigned long cr8; 557 u32 pkru; 558 u32 hflags; 559 u64 efer; 560 u64 apic_base; 561 struct kvm_lapic *apic; /* kernel irqchip context */ 562 bool apicv_active; 563 bool load_eoi_exitmap_pending; 564 DECLARE_BITMAP(ioapic_handled_vectors, 256); 565 unsigned long apic_attention; 566 int32_t apic_arb_prio; 567 int mp_state; 568 u64 ia32_misc_enable_msr; 569 u64 smbase; 570 u64 smi_count; 571 bool tpr_access_reporting; 572 u64 ia32_xss; 573 u64 microcode_version; 574 u64 arch_capabilities; 575 576 /* 577 * Paging state of the vcpu 578 * 579 * If the vcpu runs in guest mode with two level paging this still saves 580 * the paging mode of the l1 guest. This context is always used to 581 * handle faults. 582 */ 583 struct kvm_mmu *mmu; 584 585 /* Non-nested MMU for L1 */ 586 struct kvm_mmu root_mmu; 587 588 /* L1 MMU when running nested */ 589 struct kvm_mmu guest_mmu; 590 591 /* 592 * Paging state of an L2 guest (used for nested npt) 593 * 594 * This context will save all necessary information to walk page tables 595 * of the an L2 guest. This context is only initialized for page table 596 * walking and not for faulting since we never handle l2 page faults on 597 * the host. 598 */ 599 struct kvm_mmu nested_mmu; 600 601 /* 602 * Pointer to the mmu context currently used for 603 * gva_to_gpa translations. 604 */ 605 struct kvm_mmu *walk_mmu; 606 607 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 608 struct kvm_mmu_memory_cache mmu_page_cache; 609 struct kvm_mmu_memory_cache mmu_page_header_cache; 610 611 /* 612 * QEMU userspace and the guest each have their own FPU state. 613 * In vcpu_run, we switch between the user and guest FPU contexts. 614 * While running a VCPU, the VCPU thread will have the guest FPU 615 * context. 616 * 617 * Note that while the PKRU state lives inside the fpu registers, 618 * it is switched out separately at VMENTER and VMEXIT time. The 619 * "guest_fpu" state here contains the guest FPU context, with the 620 * host PRKU bits. 621 */ 622 struct fpu *user_fpu; 623 struct fpu *guest_fpu; 624 625 u64 xcr0; 626 u64 guest_supported_xcr0; 627 u32 guest_xstate_size; 628 629 struct kvm_pio_request pio; 630 void *pio_data; 631 632 u8 event_exit_inst_len; 633 634 struct kvm_queued_exception { 635 bool pending; 636 bool injected; 637 bool has_error_code; 638 u8 nr; 639 u32 error_code; 640 unsigned long payload; 641 bool has_payload; 642 u8 nested_apf; 643 } exception; 644 645 struct kvm_queued_interrupt { 646 bool injected; 647 bool soft; 648 u8 nr; 649 } interrupt; 650 651 int halt_request; /* real mode on Intel only */ 652 653 int cpuid_nent; 654 struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES]; 655 656 int maxphyaddr; 657 658 /* emulate context */ 659 660 struct x86_emulate_ctxt emulate_ctxt; 661 bool emulate_regs_need_sync_to_vcpu; 662 bool emulate_regs_need_sync_from_vcpu; 663 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 664 665 gpa_t time; 666 struct pvclock_vcpu_time_info hv_clock; 667 unsigned int hw_tsc_khz; 668 struct gfn_to_hva_cache pv_time; 669 bool pv_time_enabled; 670 /* set guest stopped flag in pvclock flags field */ 671 bool pvclock_set_guest_stopped_request; 672 673 struct { 674 u64 msr_val; 675 u64 last_steal; 676 struct gfn_to_hva_cache stime; 677 struct kvm_steal_time steal; 678 } st; 679 680 u64 tsc_offset; 681 u64 last_guest_tsc; 682 u64 last_host_tsc; 683 u64 tsc_offset_adjustment; 684 u64 this_tsc_nsec; 685 u64 this_tsc_write; 686 u64 this_tsc_generation; 687 bool tsc_catchup; 688 bool tsc_always_catchup; 689 s8 virtual_tsc_shift; 690 u32 virtual_tsc_mult; 691 u32 virtual_tsc_khz; 692 s64 ia32_tsc_adjust_msr; 693 u64 msr_ia32_power_ctl; 694 u64 tsc_scaling_ratio; 695 696 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 697 unsigned nmi_pending; /* NMI queued after currently running handler */ 698 bool nmi_injected; /* Trying to inject an NMI this entry */ 699 bool smi_pending; /* SMI queued after currently running handler */ 700 701 struct kvm_mtrr mtrr_state; 702 u64 pat; 703 704 unsigned switch_db_regs; 705 unsigned long db[KVM_NR_DB_REGS]; 706 unsigned long dr6; 707 unsigned long dr7; 708 unsigned long eff_db[KVM_NR_DB_REGS]; 709 unsigned long guest_debug_dr7; 710 u64 msr_platform_info; 711 u64 msr_misc_features_enables; 712 713 u64 mcg_cap; 714 u64 mcg_status; 715 u64 mcg_ctl; 716 u64 mcg_ext_ctl; 717 u64 *mce_banks; 718 719 /* Cache MMIO info */ 720 u64 mmio_gva; 721 unsigned mmio_access; 722 gfn_t mmio_gfn; 723 u64 mmio_gen; 724 725 struct kvm_pmu pmu; 726 727 /* used for guest single stepping over the given code position */ 728 unsigned long singlestep_rip; 729 730 struct kvm_vcpu_hv hyperv; 731 732 cpumask_var_t wbinvd_dirty_mask; 733 734 unsigned long last_retry_eip; 735 unsigned long last_retry_addr; 736 737 struct { 738 bool halted; 739 gfn_t gfns[roundup_pow_of_two(ASYNC_PF_PER_VCPU)]; 740 struct gfn_to_hva_cache data; 741 u64 msr_val; 742 u32 id; 743 bool send_user_only; 744 u32 host_apf_reason; 745 unsigned long nested_apf_token; 746 bool delivery_as_pf_vmexit; 747 } apf; 748 749 /* OSVW MSRs (AMD only) */ 750 struct { 751 u64 length; 752 u64 status; 753 } osvw; 754 755 struct { 756 u64 msr_val; 757 struct gfn_to_hva_cache data; 758 } pv_eoi; 759 760 u64 msr_kvm_poll_control; 761 762 /* 763 * Indicate whether the access faults on its page table in guest 764 * which is set when fix page fault and used to detect unhandeable 765 * instruction. 766 */ 767 bool write_fault_to_shadow_pgtable; 768 769 /* set at EPT violation at this point */ 770 unsigned long exit_qualification; 771 772 /* pv related host specific info */ 773 struct { 774 bool pv_unhalted; 775 } pv; 776 777 int pending_ioapic_eoi; 778 int pending_external_vector; 779 780 /* GPA available */ 781 bool gpa_available; 782 gpa_t gpa_val; 783 784 /* be preempted when it's in kernel-mode(cpl=0) */ 785 bool preempted_in_kernel; 786 787 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 788 bool l1tf_flush_l1d; 789 790 /* AMD MSRC001_0015 Hardware Configuration */ 791 u64 msr_hwcr; 792 }; 793 794 struct kvm_lpage_info { 795 int disallow_lpage; 796 }; 797 798 struct kvm_arch_memory_slot { 799 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 800 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 801 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX]; 802 }; 803 804 /* 805 * We use as the mode the number of bits allocated in the LDR for the 806 * logical processor ID. It happens that these are all powers of two. 807 * This makes it is very easy to detect cases where the APICs are 808 * configured for multiple modes; in that case, we cannot use the map and 809 * hence cannot use kvm_irq_delivery_to_apic_fast either. 810 */ 811 #define KVM_APIC_MODE_XAPIC_CLUSTER 4 812 #define KVM_APIC_MODE_XAPIC_FLAT 8 813 #define KVM_APIC_MODE_X2APIC 16 814 815 struct kvm_apic_map { 816 struct rcu_head rcu; 817 u8 mode; 818 u32 max_apic_id; 819 union { 820 struct kvm_lapic *xapic_flat_map[8]; 821 struct kvm_lapic *xapic_cluster_map[16][4]; 822 }; 823 struct kvm_lapic *phys_map[]; 824 }; 825 826 /* Hyper-V emulation context */ 827 struct kvm_hv { 828 struct mutex hv_lock; 829 u64 hv_guest_os_id; 830 u64 hv_hypercall; 831 u64 hv_tsc_page; 832 833 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 834 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 835 u64 hv_crash_ctl; 836 837 HV_REFERENCE_TSC_PAGE tsc_ref; 838 839 struct idr conn_to_evt; 840 841 u64 hv_reenlightenment_control; 842 u64 hv_tsc_emulation_control; 843 u64 hv_tsc_emulation_status; 844 845 /* How many vCPUs have VP index != vCPU index */ 846 atomic_t num_mismatched_vp_indexes; 847 }; 848 849 enum kvm_irqchip_mode { 850 KVM_IRQCHIP_NONE, 851 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 852 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 853 }; 854 855 struct kvm_arch { 856 unsigned long n_used_mmu_pages; 857 unsigned long n_requested_mmu_pages; 858 unsigned long n_max_mmu_pages; 859 unsigned int indirect_shadow_pages; 860 unsigned long mmu_valid_gen; 861 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 862 /* 863 * Hash table of struct kvm_mmu_page. 864 */ 865 struct list_head active_mmu_pages; 866 struct kvm_page_track_notifier_node mmu_sp_tracker; 867 struct kvm_page_track_notifier_head track_notifier_head; 868 869 struct list_head assigned_dev_head; 870 struct iommu_domain *iommu_domain; 871 bool iommu_noncoherent; 872 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 873 atomic_t noncoherent_dma_count; 874 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 875 atomic_t assigned_device_count; 876 struct kvm_pic *vpic; 877 struct kvm_ioapic *vioapic; 878 struct kvm_pit *vpit; 879 atomic_t vapics_in_nmi_mode; 880 struct mutex apic_map_lock; 881 struct kvm_apic_map *apic_map; 882 883 bool apic_access_page_done; 884 885 gpa_t wall_clock; 886 887 bool mwait_in_guest; 888 bool hlt_in_guest; 889 bool pause_in_guest; 890 bool cstate_in_guest; 891 892 unsigned long irq_sources_bitmap; 893 s64 kvmclock_offset; 894 raw_spinlock_t tsc_write_lock; 895 u64 last_tsc_nsec; 896 u64 last_tsc_write; 897 u32 last_tsc_khz; 898 u64 cur_tsc_nsec; 899 u64 cur_tsc_write; 900 u64 cur_tsc_offset; 901 u64 cur_tsc_generation; 902 int nr_vcpus_matched_tsc; 903 904 spinlock_t pvclock_gtod_sync_lock; 905 bool use_master_clock; 906 u64 master_kernel_ns; 907 u64 master_cycle_now; 908 struct delayed_work kvmclock_update_work; 909 struct delayed_work kvmclock_sync_work; 910 911 struct kvm_xen_hvm_config xen_hvm_config; 912 913 /* reads protected by irq_srcu, writes by irq_lock */ 914 struct hlist_head mask_notifier_list; 915 916 struct kvm_hv hyperv; 917 918 #ifdef CONFIG_KVM_MMU_AUDIT 919 int audit_point; 920 #endif 921 922 bool backwards_tsc_observed; 923 bool boot_vcpu_runs_old_kvmclock; 924 u32 bsp_vcpu_id; 925 926 u64 disabled_quirks; 927 928 enum kvm_irqchip_mode irqchip_mode; 929 u8 nr_reserved_ioapic_pins; 930 931 bool disabled_lapic_found; 932 933 bool x2apic_format; 934 bool x2apic_broadcast_quirk_disabled; 935 936 bool guest_can_read_msr_platform_info; 937 bool exception_payload_enabled; 938 939 struct kvm_pmu_event_filter *pmu_event_filter; 940 }; 941 942 struct kvm_vm_stat { 943 ulong mmu_shadow_zapped; 944 ulong mmu_pte_write; 945 ulong mmu_pte_updated; 946 ulong mmu_pde_zapped; 947 ulong mmu_flooded; 948 ulong mmu_recycled; 949 ulong mmu_cache_miss; 950 ulong mmu_unsync; 951 ulong remote_tlb_flush; 952 ulong lpages; 953 ulong max_mmu_page_hash_collisions; 954 }; 955 956 struct kvm_vcpu_stat { 957 u64 pf_fixed; 958 u64 pf_guest; 959 u64 tlb_flush; 960 u64 invlpg; 961 962 u64 exits; 963 u64 io_exits; 964 u64 mmio_exits; 965 u64 signal_exits; 966 u64 irq_window_exits; 967 u64 nmi_window_exits; 968 u64 l1d_flush; 969 u64 halt_exits; 970 u64 halt_successful_poll; 971 u64 halt_attempted_poll; 972 u64 halt_poll_invalid; 973 u64 halt_wakeup; 974 u64 request_irq_exits; 975 u64 irq_exits; 976 u64 host_state_reload; 977 u64 fpu_reload; 978 u64 insn_emulation; 979 u64 insn_emulation_fail; 980 u64 hypercalls; 981 u64 irq_injections; 982 u64 nmi_injections; 983 u64 req_event; 984 }; 985 986 struct x86_instruction_info; 987 988 struct msr_data { 989 bool host_initiated; 990 u32 index; 991 u64 data; 992 }; 993 994 struct kvm_lapic_irq { 995 u32 vector; 996 u16 delivery_mode; 997 u16 dest_mode; 998 bool level; 999 u16 trig_mode; 1000 u32 shorthand; 1001 u32 dest_id; 1002 bool msi_redir_hint; 1003 }; 1004 1005 struct kvm_x86_ops { 1006 int (*cpu_has_kvm_support)(void); /* __init */ 1007 int (*disabled_by_bios)(void); /* __init */ 1008 int (*hardware_enable)(void); 1009 void (*hardware_disable)(void); 1010 int (*check_processor_compatibility)(void);/* __init */ 1011 int (*hardware_setup)(void); /* __init */ 1012 void (*hardware_unsetup)(void); /* __exit */ 1013 bool (*cpu_has_accelerated_tpr)(void); 1014 bool (*has_emulated_msr)(int index); 1015 void (*cpuid_update)(struct kvm_vcpu *vcpu); 1016 1017 struct kvm *(*vm_alloc)(void); 1018 void (*vm_free)(struct kvm *); 1019 int (*vm_init)(struct kvm *kvm); 1020 void (*vm_destroy)(struct kvm *kvm); 1021 1022 /* Create, but do not attach this VCPU */ 1023 struct kvm_vcpu *(*vcpu_create)(struct kvm *kvm, unsigned id); 1024 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1025 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1026 1027 void (*prepare_guest_switch)(struct kvm_vcpu *vcpu); 1028 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1029 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1030 1031 void (*update_bp_intercept)(struct kvm_vcpu *vcpu); 1032 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1033 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1034 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1035 void (*get_segment)(struct kvm_vcpu *vcpu, 1036 struct kvm_segment *var, int seg); 1037 int (*get_cpl)(struct kvm_vcpu *vcpu); 1038 void (*set_segment)(struct kvm_vcpu *vcpu, 1039 struct kvm_segment *var, int seg); 1040 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1041 void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu); 1042 void (*decache_cr3)(struct kvm_vcpu *vcpu); 1043 void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu); 1044 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1045 void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1046 int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1047 void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1048 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1049 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1050 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1051 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1052 u64 (*get_dr6)(struct kvm_vcpu *vcpu); 1053 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value); 1054 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1055 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1056 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1057 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1058 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1059 1060 void (*tlb_flush)(struct kvm_vcpu *vcpu, bool invalidate_gpa); 1061 int (*tlb_remote_flush)(struct kvm *kvm); 1062 int (*tlb_remote_flush_with_range)(struct kvm *kvm, 1063 struct kvm_tlb_range *range); 1064 1065 /* 1066 * Flush any TLB entries associated with the given GVA. 1067 * Does not need to flush GPA->HPA mappings. 1068 * Can potentially get non-canonical addresses through INVLPGs, which 1069 * the implementation may choose to ignore if appropriate. 1070 */ 1071 void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1072 1073 void (*run)(struct kvm_vcpu *vcpu); 1074 int (*handle_exit)(struct kvm_vcpu *vcpu); 1075 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1076 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1077 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1078 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1079 unsigned char *hypercall_addr); 1080 void (*set_irq)(struct kvm_vcpu *vcpu); 1081 void (*set_nmi)(struct kvm_vcpu *vcpu); 1082 void (*queue_exception)(struct kvm_vcpu *vcpu); 1083 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1084 int (*interrupt_allowed)(struct kvm_vcpu *vcpu); 1085 int (*nmi_allowed)(struct kvm_vcpu *vcpu); 1086 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1087 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1088 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1089 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1090 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1091 bool (*get_enable_apicv)(struct kvm_vcpu *vcpu); 1092 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1093 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1094 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1095 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1096 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1097 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1098 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu, hpa_t hpa); 1099 void (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector); 1100 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1101 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1102 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1103 int (*get_tdp_level)(struct kvm_vcpu *vcpu); 1104 u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1105 int (*get_lpage_level)(void); 1106 bool (*rdtscp_supported)(void); 1107 bool (*invpcid_supported)(void); 1108 1109 void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1110 1111 void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry); 1112 1113 bool (*has_wbinvd_exit)(void); 1114 1115 u64 (*read_l1_tsc_offset)(struct kvm_vcpu *vcpu); 1116 /* Returns actual tsc_offset set in active VMCS */ 1117 u64 (*write_l1_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset); 1118 1119 void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2); 1120 1121 int (*check_intercept)(struct kvm_vcpu *vcpu, 1122 struct x86_instruction_info *info, 1123 enum x86_intercept_stage stage); 1124 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1125 bool (*mpx_supported)(void); 1126 bool (*xsaves_supported)(void); 1127 bool (*umip_emulated)(void); 1128 bool (*pt_supported)(void); 1129 1130 int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr); 1131 void (*request_immediate_exit)(struct kvm_vcpu *vcpu); 1132 1133 void (*sched_in)(struct kvm_vcpu *kvm, int cpu); 1134 1135 /* 1136 * Arch-specific dirty logging hooks. These hooks are only supposed to 1137 * be valid if the specific arch has hardware-accelerated dirty logging 1138 * mechanism. Currently only for PML on VMX. 1139 * 1140 * - slot_enable_log_dirty: 1141 * called when enabling log dirty mode for the slot. 1142 * - slot_disable_log_dirty: 1143 * called when disabling log dirty mode for the slot. 1144 * also called when slot is created with log dirty disabled. 1145 * - flush_log_dirty: 1146 * called before reporting dirty_bitmap to userspace. 1147 * - enable_log_dirty_pt_masked: 1148 * called when reenabling log dirty for the GFNs in the mask after 1149 * corresponding bits are cleared in slot->dirty_bitmap. 1150 */ 1151 void (*slot_enable_log_dirty)(struct kvm *kvm, 1152 struct kvm_memory_slot *slot); 1153 void (*slot_disable_log_dirty)(struct kvm *kvm, 1154 struct kvm_memory_slot *slot); 1155 void (*flush_log_dirty)(struct kvm *kvm); 1156 void (*enable_log_dirty_pt_masked)(struct kvm *kvm, 1157 struct kvm_memory_slot *slot, 1158 gfn_t offset, unsigned long mask); 1159 int (*write_log_dirty)(struct kvm_vcpu *vcpu); 1160 1161 /* pmu operations of sub-arch */ 1162 const struct kvm_pmu_ops *pmu_ops; 1163 1164 /* 1165 * Architecture specific hooks for vCPU blocking due to 1166 * HLT instruction. 1167 * Returns for .pre_block(): 1168 * - 0 means continue to block the vCPU. 1169 * - 1 means we cannot block the vCPU since some event 1170 * happens during this period, such as, 'ON' bit in 1171 * posted-interrupts descriptor is set. 1172 */ 1173 int (*pre_block)(struct kvm_vcpu *vcpu); 1174 void (*post_block)(struct kvm_vcpu *vcpu); 1175 1176 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1177 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1178 1179 int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq, 1180 uint32_t guest_irq, bool set); 1181 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1182 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1183 1184 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1185 bool *expired); 1186 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1187 1188 void (*setup_mce)(struct kvm_vcpu *vcpu); 1189 1190 int (*get_nested_state)(struct kvm_vcpu *vcpu, 1191 struct kvm_nested_state __user *user_kvm_nested_state, 1192 unsigned user_data_size); 1193 int (*set_nested_state)(struct kvm_vcpu *vcpu, 1194 struct kvm_nested_state __user *user_kvm_nested_state, 1195 struct kvm_nested_state *kvm_state); 1196 void (*get_vmcs12_pages)(struct kvm_vcpu *vcpu); 1197 1198 int (*smi_allowed)(struct kvm_vcpu *vcpu); 1199 int (*pre_enter_smm)(struct kvm_vcpu *vcpu, char *smstate); 1200 int (*pre_leave_smm)(struct kvm_vcpu *vcpu, const char *smstate); 1201 int (*enable_smi_window)(struct kvm_vcpu *vcpu); 1202 1203 int (*mem_enc_op)(struct kvm *kvm, void __user *argp); 1204 int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1205 int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1206 1207 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1208 1209 int (*nested_enable_evmcs)(struct kvm_vcpu *vcpu, 1210 uint16_t *vmcs_version); 1211 uint16_t (*nested_get_evmcs_version)(struct kvm_vcpu *vcpu); 1212 1213 bool (*need_emulation_on_page_fault)(struct kvm_vcpu *vcpu); 1214 1215 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1216 }; 1217 1218 struct kvm_arch_async_pf { 1219 u32 token; 1220 gfn_t gfn; 1221 unsigned long cr3; 1222 bool direct_map; 1223 }; 1224 1225 extern struct kvm_x86_ops *kvm_x86_ops; 1226 extern struct kmem_cache *x86_fpu_cache; 1227 1228 #define __KVM_HAVE_ARCH_VM_ALLOC 1229 static inline struct kvm *kvm_arch_alloc_vm(void) 1230 { 1231 return kvm_x86_ops->vm_alloc(); 1232 } 1233 1234 static inline void kvm_arch_free_vm(struct kvm *kvm) 1235 { 1236 return kvm_x86_ops->vm_free(kvm); 1237 } 1238 1239 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1240 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1241 { 1242 if (kvm_x86_ops->tlb_remote_flush && 1243 !kvm_x86_ops->tlb_remote_flush(kvm)) 1244 return 0; 1245 else 1246 return -ENOTSUPP; 1247 } 1248 1249 int kvm_mmu_module_init(void); 1250 void kvm_mmu_module_exit(void); 1251 1252 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1253 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1254 void kvm_mmu_init_vm(struct kvm *kvm); 1255 void kvm_mmu_uninit_vm(struct kvm *kvm); 1256 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, 1257 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, 1258 u64 acc_track_mask, u64 me_mask); 1259 1260 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1261 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1262 struct kvm_memory_slot *memslot); 1263 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1264 const struct kvm_memory_slot *memslot); 1265 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1266 struct kvm_memory_slot *memslot); 1267 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, 1268 struct kvm_memory_slot *memslot); 1269 void kvm_mmu_slot_set_dirty(struct kvm *kvm, 1270 struct kvm_memory_slot *memslot); 1271 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1272 struct kvm_memory_slot *slot, 1273 gfn_t gfn_offset, unsigned long mask); 1274 void kvm_mmu_zap_all(struct kvm *kvm); 1275 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1276 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm); 1277 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1278 1279 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3); 1280 bool pdptrs_changed(struct kvm_vcpu *vcpu); 1281 1282 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1283 const void *val, int bytes); 1284 1285 struct kvm_irq_mask_notifier { 1286 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1287 int irq; 1288 struct hlist_node link; 1289 }; 1290 1291 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1292 struct kvm_irq_mask_notifier *kimn); 1293 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1294 struct kvm_irq_mask_notifier *kimn); 1295 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1296 bool mask); 1297 1298 extern bool tdp_enabled; 1299 1300 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1301 1302 /* control of guest tsc rate supported? */ 1303 extern bool kvm_has_tsc_control; 1304 /* maximum supported tsc_khz for guests */ 1305 extern u32 kvm_max_guest_tsc_khz; 1306 /* number of bits of the fractional part of the TSC scaling ratio */ 1307 extern u8 kvm_tsc_scaling_ratio_frac_bits; 1308 /* maximum allowed value of TSC scaling ratio */ 1309 extern u64 kvm_max_tsc_scaling_ratio; 1310 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */ 1311 extern u64 kvm_default_tsc_scaling_ratio; 1312 1313 extern u64 kvm_mce_cap_supported; 1314 1315 enum emulation_result { 1316 EMULATE_DONE, /* no further processing */ 1317 EMULATE_USER_EXIT, /* kvm_run ready for userspace exit */ 1318 EMULATE_FAIL, /* can't emulate this instruction */ 1319 }; 1320 1321 #define EMULTYPE_NO_DECODE (1 << 0) 1322 #define EMULTYPE_TRAP_UD (1 << 1) 1323 #define EMULTYPE_SKIP (1 << 2) 1324 #define EMULTYPE_ALLOW_RETRY (1 << 3) 1325 #define EMULTYPE_NO_UD_ON_FAIL (1 << 4) 1326 #define EMULTYPE_VMWARE (1 << 5) 1327 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 1328 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 1329 void *insn, int insn_len); 1330 1331 void kvm_enable_efer_bits(u64); 1332 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 1333 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 1334 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 1335 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 1336 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 1337 1338 struct x86_emulate_ctxt; 1339 1340 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 1341 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 1342 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 1343 int kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1344 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 1345 1346 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1347 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 1348 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 1349 1350 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 1351 int reason, bool has_error_code, u32 error_code); 1352 1353 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 1354 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 1355 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 1356 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 1357 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 1358 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val); 1359 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 1360 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 1361 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l); 1362 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr); 1363 1364 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1365 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1366 1367 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 1368 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 1369 bool kvm_rdpmc(struct kvm_vcpu *vcpu); 1370 1371 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1372 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1373 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 1374 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 1375 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 1376 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 1377 gfn_t gfn, void *data, int offset, int len, 1378 u32 access); 1379 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 1380 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 1381 1382 static inline int __kvm_irq_line_state(unsigned long *irq_state, 1383 int irq_source_id, int level) 1384 { 1385 /* Logical OR for level trig interrupt */ 1386 if (level) 1387 __set_bit(irq_source_id, irq_state); 1388 else 1389 __clear_bit(irq_source_id, irq_state); 1390 1391 return !!(*irq_state); 1392 } 1393 1394 #define KVM_MMU_ROOT_CURRENT BIT(0) 1395 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 1396 #define KVM_MMU_ROOTS_ALL (~0UL) 1397 1398 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 1399 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 1400 1401 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 1402 1403 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 1404 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva); 1405 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu); 1406 int kvm_mmu_load(struct kvm_vcpu *vcpu); 1407 void kvm_mmu_unload(struct kvm_vcpu *vcpu); 1408 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu); 1409 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 1410 ulong roots_to_free); 1411 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 1412 struct x86_exception *exception); 1413 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 1414 struct x86_exception *exception); 1415 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 1416 struct x86_exception *exception); 1417 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 1418 struct x86_exception *exception); 1419 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 1420 struct x86_exception *exception); 1421 1422 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu); 1423 1424 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 1425 1426 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u64 error_code, 1427 void *insn, int insn_len); 1428 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 1429 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 1430 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush); 1431 1432 void kvm_enable_tdp(void); 1433 void kvm_disable_tdp(void); 1434 1435 static inline gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 1436 struct x86_exception *exception) 1437 { 1438 return gpa; 1439 } 1440 1441 static inline struct kvm_mmu_page *page_header(hpa_t shadow_page) 1442 { 1443 struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT); 1444 1445 return (struct kvm_mmu_page *)page_private(page); 1446 } 1447 1448 static inline u16 kvm_read_ldt(void) 1449 { 1450 u16 ldt; 1451 asm("sldt %0" : "=g"(ldt)); 1452 return ldt; 1453 } 1454 1455 static inline void kvm_load_ldt(u16 sel) 1456 { 1457 asm("lldt %0" : : "rm"(sel)); 1458 } 1459 1460 #ifdef CONFIG_X86_64 1461 static inline unsigned long read_msr(unsigned long msr) 1462 { 1463 u64 value; 1464 1465 rdmsrl(msr, value); 1466 return value; 1467 } 1468 #endif 1469 1470 static inline u32 get_rdx_init_val(void) 1471 { 1472 return 0x600; /* P6 family */ 1473 } 1474 1475 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 1476 { 1477 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 1478 } 1479 1480 #define TSS_IOPB_BASE_OFFSET 0x66 1481 #define TSS_BASE_SIZE 0x68 1482 #define TSS_IOPB_SIZE (65536 / 8) 1483 #define TSS_REDIRECTION_SIZE (256 / 8) 1484 #define RMODE_TSS_SIZE \ 1485 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 1486 1487 enum { 1488 TASK_SWITCH_CALL = 0, 1489 TASK_SWITCH_IRET = 1, 1490 TASK_SWITCH_JMP = 2, 1491 TASK_SWITCH_GATE = 3, 1492 }; 1493 1494 #define HF_GIF_MASK (1 << 0) 1495 #define HF_HIF_MASK (1 << 1) 1496 #define HF_VINTR_MASK (1 << 2) 1497 #define HF_NMI_MASK (1 << 3) 1498 #define HF_IRET_MASK (1 << 4) 1499 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */ 1500 #define HF_SMM_MASK (1 << 6) 1501 #define HF_SMM_INSIDE_NMI_MASK (1 << 7) 1502 1503 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 1504 #define KVM_ADDRESS_SPACE_NUM 2 1505 1506 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 1507 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 1508 1509 asmlinkage void __noreturn kvm_spurious_fault(void); 1510 1511 /* 1512 * Hardware virtualization extension instructions may fault if a 1513 * reboot turns off virtualization while processes are running. 1514 * Usually after catching the fault we just panic; during reboot 1515 * instead the instruction is ignored. 1516 */ 1517 #define ____kvm_handle_fault_on_reboot(insn, cleanup_insn) \ 1518 "666: \n\t" \ 1519 insn "\n\t" \ 1520 "jmp 668f \n\t" \ 1521 "667: \n\t" \ 1522 "call kvm_spurious_fault \n\t" \ 1523 "668: \n\t" \ 1524 ".pushsection .fixup, \"ax\" \n\t" \ 1525 "700: \n\t" \ 1526 cleanup_insn "\n\t" \ 1527 "cmpb $0, kvm_rebooting\n\t" \ 1528 "je 667b \n\t" \ 1529 "jmp 668b \n\t" \ 1530 ".popsection \n\t" \ 1531 _ASM_EXTABLE(666b, 700b) 1532 1533 #define __kvm_handle_fault_on_reboot(insn) \ 1534 ____kvm_handle_fault_on_reboot(insn, "") 1535 1536 #define KVM_ARCH_WANT_MMU_NOTIFIER 1537 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end); 1538 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); 1539 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); 1540 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); 1541 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 1542 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 1543 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 1544 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 1545 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 1546 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu); 1547 1548 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 1549 unsigned long ipi_bitmap_high, u32 min, 1550 unsigned long icr, int op_64_bit); 1551 1552 void kvm_define_shared_msr(unsigned index, u32 msr); 1553 int kvm_set_shared_msr(unsigned index, u64 val, u64 mask); 1554 1555 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc); 1556 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 1557 1558 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 1559 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 1560 1561 void kvm_make_mclock_inprogress_request(struct kvm *kvm); 1562 void kvm_make_scan_ioapic_request(struct kvm *kvm); 1563 1564 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 1565 struct kvm_async_pf *work); 1566 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 1567 struct kvm_async_pf *work); 1568 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 1569 struct kvm_async_pf *work); 1570 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu); 1571 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1572 1573 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 1574 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 1575 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu); 1576 1577 int kvm_is_in_guest(void); 1578 1579 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size); 1580 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size); 1581 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 1582 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 1583 1584 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 1585 struct kvm_vcpu **dest_vcpu); 1586 1587 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 1588 struct kvm_lapic_irq *irq); 1589 1590 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 1591 { 1592 /* We can only post Fixed and LowPrio IRQs */ 1593 return (irq->delivery_mode == dest_Fixed || 1594 irq->delivery_mode == dest_LowestPrio); 1595 } 1596 1597 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 1598 { 1599 if (kvm_x86_ops->vcpu_blocking) 1600 kvm_x86_ops->vcpu_blocking(vcpu); 1601 } 1602 1603 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 1604 { 1605 if (kvm_x86_ops->vcpu_unblocking) 1606 kvm_x86_ops->vcpu_unblocking(vcpu); 1607 } 1608 1609 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} 1610 1611 static inline int kvm_cpu_get_apicid(int mps_cpu) 1612 { 1613 #ifdef CONFIG_X86_LOCAL_APIC 1614 return default_cpu_present_to_apicid(mps_cpu); 1615 #else 1616 WARN_ON_ONCE(1); 1617 return BAD_APICID; 1618 #endif 1619 } 1620 1621 #define put_smstate(type, buf, offset, val) \ 1622 *(type *)((buf) + (offset) - 0x7e00) = val 1623 1624 #define GET_SMSTATE(type, buf, offset) \ 1625 (*(type *)((buf) + (offset) - 0x7e00)) 1626 1627 #endif /* _ASM_X86_KVM_HOST_H */ 1628