1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/kfifo.h> 28 #include <linux/sched/vhost_task.h> 29 #include <linux/call_once.h> 30 #include <linux/atomic.h> 31 32 #include <asm/apic.h> 33 #include <asm/pvclock-abi.h> 34 #include <asm/debugreg.h> 35 #include <asm/desc.h> 36 #include <asm/mtrr.h> 37 #include <asm/msr-index.h> 38 #include <asm/msr.h> 39 #include <asm/asm.h> 40 #include <asm/irq_remapping.h> 41 #include <asm/kvm_page_track.h> 42 #include <asm/kvm_vcpu_regs.h> 43 #include <asm/reboot.h> 44 #include <hyperv/hvhdk.h> 45 46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 47 48 /* 49 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 50 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 51 */ 52 #ifdef CONFIG_KVM_MAX_NR_VCPUS 53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 54 #else 55 #define KVM_MAX_VCPUS 1024 56 #endif 57 58 /* 59 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 60 * might be larger than the actual number of VCPUs because the 61 * APIC ID encodes CPU topology information. 62 * 63 * In the worst case, we'll need less than one extra bit for the 64 * Core ID, and less than one extra bit for the Package (Die) ID, 65 * so ratio of 4 should be enough. 66 */ 67 #define KVM_VCPU_ID_RATIO 4 68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 69 70 /* memory slots that are not exposed to userspace */ 71 #define KVM_INTERNAL_MEM_SLOTS 3 72 73 #define KVM_HALT_POLL_NS_DEFAULT 200000 74 75 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 76 77 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 78 KVM_DIRTY_LOG_INITIALLY_SET) 79 80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 81 KVM_BUS_LOCK_DETECTION_EXIT) 82 83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 84 KVM_X86_NOTIFY_VMEXIT_USER) 85 86 /* x86-specific vcpu->requests bit members */ 87 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 88 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 89 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 90 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 91 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 92 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 93 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 94 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 95 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 96 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 97 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 98 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 99 #ifdef CONFIG_KVM_SMM 100 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 101 #endif 102 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 103 #define KVM_REQ_MCLOCK_INPROGRESS \ 104 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 105 #define KVM_REQ_SCAN_IOAPIC \ 106 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 108 #define KVM_REQ_APIC_PAGE_RELOAD \ 109 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 110 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 111 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 112 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 113 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 114 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 115 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 116 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 117 #define KVM_REQ_APICV_UPDATE \ 118 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 119 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 120 #define KVM_REQ_TLB_FLUSH_GUEST \ 121 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 123 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 125 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 127 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 128 #define KVM_REQ_HV_TLB_FLUSH \ 129 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \ 131 KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT) 132 133 #define CR0_RESERVED_BITS \ 134 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 135 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 136 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 137 138 #define CR4_RESERVED_BITS \ 139 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 140 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 141 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 142 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 143 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 144 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 145 | X86_CR4_LAM_SUP)) 146 147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 148 149 150 151 #define INVALID_PAGE (~(hpa_t)0) 152 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 153 154 /* KVM Hugepage definitions for x86 */ 155 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 156 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 157 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 158 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 159 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 160 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 161 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 162 163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 165 #define KVM_MMU_HASH_SHIFT 12 166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 167 #define KVM_MIN_FREE_MMU_PAGES 5 168 #define KVM_REFILL_PAGES 25 169 #define KVM_MAX_CPUID_ENTRIES 256 170 #define KVM_NR_VAR_MTRR 8 171 172 #define ASYNC_PF_PER_VCPU 64 173 174 enum kvm_reg { 175 VCPU_REGS_RAX = __VCPU_REGS_RAX, 176 VCPU_REGS_RCX = __VCPU_REGS_RCX, 177 VCPU_REGS_RDX = __VCPU_REGS_RDX, 178 VCPU_REGS_RBX = __VCPU_REGS_RBX, 179 VCPU_REGS_RSP = __VCPU_REGS_RSP, 180 VCPU_REGS_RBP = __VCPU_REGS_RBP, 181 VCPU_REGS_RSI = __VCPU_REGS_RSI, 182 VCPU_REGS_RDI = __VCPU_REGS_RDI, 183 #ifdef CONFIG_X86_64 184 VCPU_REGS_R8 = __VCPU_REGS_R8, 185 VCPU_REGS_R9 = __VCPU_REGS_R9, 186 VCPU_REGS_R10 = __VCPU_REGS_R10, 187 VCPU_REGS_R11 = __VCPU_REGS_R11, 188 VCPU_REGS_R12 = __VCPU_REGS_R12, 189 VCPU_REGS_R13 = __VCPU_REGS_R13, 190 VCPU_REGS_R14 = __VCPU_REGS_R14, 191 VCPU_REGS_R15 = __VCPU_REGS_R15, 192 #endif 193 VCPU_REGS_RIP, 194 NR_VCPU_REGS, 195 196 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 197 VCPU_EXREG_CR0, 198 VCPU_EXREG_CR3, 199 VCPU_EXREG_CR4, 200 VCPU_EXREG_RFLAGS, 201 VCPU_EXREG_SEGMENTS, 202 VCPU_EXREG_EXIT_INFO_1, 203 VCPU_EXREG_EXIT_INFO_2, 204 }; 205 206 enum { 207 VCPU_SREG_ES, 208 VCPU_SREG_CS, 209 VCPU_SREG_SS, 210 VCPU_SREG_DS, 211 VCPU_SREG_FS, 212 VCPU_SREG_GS, 213 VCPU_SREG_TR, 214 VCPU_SREG_LDTR, 215 }; 216 217 enum exit_fastpath_completion { 218 EXIT_FASTPATH_NONE, 219 EXIT_FASTPATH_REENTER_GUEST, 220 EXIT_FASTPATH_EXIT_HANDLED, 221 EXIT_FASTPATH_EXIT_USERSPACE, 222 }; 223 typedef enum exit_fastpath_completion fastpath_t; 224 225 struct x86_emulate_ctxt; 226 struct x86_exception; 227 union kvm_smram; 228 enum x86_intercept; 229 enum x86_intercept_stage; 230 231 #define KVM_NR_DB_REGS 4 232 233 #define DR6_BUS_LOCK (1 << 11) 234 #define DR6_BD (1 << 13) 235 #define DR6_BS (1 << 14) 236 #define DR6_BT (1 << 15) 237 #define DR6_RTM (1 << 16) 238 /* 239 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 240 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 241 * they will never be 0 for now, but when they are defined 242 * in the future it will require no code change. 243 * 244 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 245 */ 246 #define DR6_ACTIVE_LOW 0xffff0ff0 247 #define DR6_VOLATILE 0x0001e80f 248 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 249 250 #define DR7_BP_EN_MASK 0x000000ff 251 #define DR7_GE (1 << 9) 252 #define DR7_GD (1 << 13) 253 #define DR7_VOLATILE 0xffff2bff 254 255 #define KVM_GUESTDBG_VALID_MASK \ 256 (KVM_GUESTDBG_ENABLE | \ 257 KVM_GUESTDBG_SINGLESTEP | \ 258 KVM_GUESTDBG_USE_HW_BP | \ 259 KVM_GUESTDBG_USE_SW_BP | \ 260 KVM_GUESTDBG_INJECT_BP | \ 261 KVM_GUESTDBG_INJECT_DB | \ 262 KVM_GUESTDBG_BLOCKIRQ) 263 264 #define PFERR_PRESENT_MASK BIT(0) 265 #define PFERR_WRITE_MASK BIT(1) 266 #define PFERR_USER_MASK BIT(2) 267 #define PFERR_RSVD_MASK BIT(3) 268 #define PFERR_FETCH_MASK BIT(4) 269 #define PFERR_PK_MASK BIT(5) 270 #define PFERR_SGX_MASK BIT(15) 271 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 272 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 273 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 274 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 275 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 276 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 277 278 /* 279 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 280 * when emulating instructions that triggers implicit access. 281 */ 282 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 283 /* 284 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 285 * when the guest was accessing private memory. 286 */ 287 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 288 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 289 290 /* apic attention bits */ 291 #define KVM_APIC_CHECK_VAPIC 0 292 /* 293 * The following bit is set with PV-EOI, unset on EOI. 294 * We detect PV-EOI changes by guest by comparing 295 * this bit with PV-EOI in guest memory. 296 * See the implementation in apic_update_pv_eoi. 297 */ 298 #define KVM_APIC_PV_EOI_PENDING 1 299 300 struct kvm_kernel_irq_routing_entry; 301 302 /* 303 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 304 * also includes TDP pages) to determine whether or not a page can be used in 305 * the given MMU context. This is a subset of the overall kvm_cpu_role to 306 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 307 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 308 * 309 * Upper-level shadow pages having gptes are tracked for write-protection via 310 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 311 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 312 * otherwise gfn_write_track will overflow and explosions will ensue. 313 * 314 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 315 * cannot be reused. The ability to reuse a SP is tracked by its role, which 316 * incorporates various mode bits and properties of the SP. Roughly speaking, 317 * the number of unique SPs that can theoretically be created is 2^n, where n 318 * is the number of bits that are used to compute the role. 319 * 320 * But, even though there are 20 bits in the mask below, not all combinations 321 * of modes and flags are possible: 322 * 323 * - invalid shadow pages are not accounted, mirror pages are not shadowed, 324 * so the bits are effectively 18. 325 * 326 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 327 * execonly and ad_disabled are only used for nested EPT which has 328 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 329 * 330 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 331 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 332 * paging has exactly one upper level, making level completely redundant 333 * when has_4_byte_gpte=1. 334 * 335 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 336 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 337 * 338 * Therefore, the maximum number of possible upper-level shadow pages for a 339 * single gfn is a bit less than 2^13. 340 */ 341 union kvm_mmu_page_role { 342 u32 word; 343 struct { 344 unsigned level:4; 345 unsigned has_4_byte_gpte:1; 346 unsigned quadrant:2; 347 unsigned direct:1; 348 unsigned access:3; 349 unsigned invalid:1; 350 unsigned efer_nx:1; 351 unsigned cr0_wp:1; 352 unsigned smep_andnot_wp:1; 353 unsigned smap_andnot_wp:1; 354 unsigned ad_disabled:1; 355 unsigned guest_mode:1; 356 unsigned passthrough:1; 357 unsigned is_mirror:1; 358 unsigned :4; 359 360 /* 361 * This is left at the top of the word so that 362 * kvm_memslots_for_spte_role can extract it with a 363 * simple shift. While there is room, give it a whole 364 * byte so it is also faster to load it from memory. 365 */ 366 unsigned smm:8; 367 }; 368 }; 369 370 /* 371 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 372 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 373 * including on nested transitions, if nothing in the full role changes then 374 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 375 * don't treat all-zero structure as valid data. 376 * 377 * The properties that are tracked in the extended role but not the page role 378 * are for things that either (a) do not affect the validity of the shadow page 379 * or (b) are indirectly reflected in the shadow page's role. For example, 380 * CR4.PKE only affects permission checks for software walks of the guest page 381 * tables (because KVM doesn't support Protection Keys with shadow paging), and 382 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 383 * 384 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 385 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 386 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 387 * SMAP aware regardless of CR0.WP. 388 */ 389 union kvm_mmu_extended_role { 390 u32 word; 391 struct { 392 unsigned int valid:1; 393 unsigned int execonly:1; 394 unsigned int cr4_pse:1; 395 unsigned int cr4_pke:1; 396 unsigned int cr4_smap:1; 397 unsigned int cr4_smep:1; 398 unsigned int cr4_la57:1; 399 unsigned int efer_lma:1; 400 }; 401 }; 402 403 union kvm_cpu_role { 404 u64 as_u64; 405 struct { 406 union kvm_mmu_page_role base; 407 union kvm_mmu_extended_role ext; 408 }; 409 }; 410 411 struct kvm_rmap_head { 412 atomic_long_t val; 413 }; 414 415 struct kvm_pio_request { 416 unsigned long count; 417 int in; 418 int port; 419 int size; 420 }; 421 422 #define PT64_ROOT_MAX_LEVEL 5 423 424 struct rsvd_bits_validate { 425 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 426 u64 bad_mt_xwr; 427 }; 428 429 struct kvm_mmu_root_info { 430 gpa_t pgd; 431 hpa_t hpa; 432 }; 433 434 #define KVM_MMU_ROOT_INFO_INVALID \ 435 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 436 437 #define KVM_MMU_NUM_PREV_ROOTS 3 438 439 #define KVM_MMU_ROOT_CURRENT BIT(0) 440 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 441 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 442 443 #define KVM_HAVE_MMU_RWLOCK 444 445 struct kvm_mmu_page; 446 struct kvm_page_fault; 447 448 /* 449 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 450 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 451 * current mmu mode. 452 */ 453 struct kvm_mmu { 454 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 455 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 456 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 457 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 458 struct x86_exception *fault); 459 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 460 gpa_t gva_or_gpa, u64 access, 461 struct x86_exception *exception); 462 int (*sync_spte)(struct kvm_vcpu *vcpu, 463 struct kvm_mmu_page *sp, int i); 464 struct kvm_mmu_root_info root; 465 hpa_t mirror_root_hpa; 466 union kvm_cpu_role cpu_role; 467 union kvm_mmu_page_role root_role; 468 469 /* 470 * The pkru_mask indicates if protection key checks are needed. It 471 * consists of 16 domains indexed by page fault error code bits [4:1], 472 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 473 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 474 */ 475 u32 pkru_mask; 476 477 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 478 479 /* 480 * Bitmap; bit set = permission fault 481 * Byte index: page fault error code [4:1] 482 * Bit index: pte permissions in ACC_* format 483 */ 484 u8 permissions[16]; 485 486 u64 *pae_root; 487 u64 *pml4_root; 488 u64 *pml5_root; 489 490 /* 491 * check zero bits on shadow page table entries, these 492 * bits include not only hardware reserved bits but also 493 * the bits spte never used. 494 */ 495 struct rsvd_bits_validate shadow_zero_check; 496 497 struct rsvd_bits_validate guest_rsvd_check; 498 499 u64 pdptrs[4]; /* pae */ 500 }; 501 502 enum pmc_type { 503 KVM_PMC_GP = 0, 504 KVM_PMC_FIXED, 505 }; 506 507 struct kvm_pmc { 508 enum pmc_type type; 509 u8 idx; 510 bool is_paused; 511 bool intr; 512 /* 513 * Base value of the PMC counter, relative to the *consumed* count in 514 * the associated perf_event. This value includes counter updates from 515 * the perf_event and emulated_count since the last time the counter 516 * was reprogrammed, but it is *not* the current value as seen by the 517 * guest or userspace. 518 * 519 * The count is relative to the associated perf_event so that KVM 520 * doesn't need to reprogram the perf_event every time the guest writes 521 * to the counter. 522 */ 523 u64 counter; 524 /* 525 * PMC events triggered by KVM emulation that haven't been fully 526 * processed, i.e. haven't undergone overflow detection. 527 */ 528 u64 emulated_counter; 529 u64 eventsel; 530 struct perf_event *perf_event; 531 struct kvm_vcpu *vcpu; 532 /* 533 * only for creating or reusing perf_event, 534 * eventsel value for general purpose counters, 535 * ctrl value for fixed counters. 536 */ 537 u64 current_config; 538 }; 539 540 /* More counters may conflict with other existing Architectural MSRs */ 541 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 542 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 543 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 544 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 545 KVM_MAX_NR_AMD_GP_COUNTERS) 546 547 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3 548 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0 549 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \ 550 KVM_MAX_NR_AMD_FIXED_COUTNERS) 551 552 struct kvm_pmu { 553 u8 version; 554 unsigned nr_arch_gp_counters; 555 unsigned nr_arch_fixed_counters; 556 unsigned available_event_types; 557 u64 fixed_ctr_ctrl; 558 u64 fixed_ctr_ctrl_rsvd; 559 u64 global_ctrl; 560 u64 global_status; 561 u64 counter_bitmask[2]; 562 u64 global_ctrl_rsvd; 563 u64 global_status_rsvd; 564 u64 reserved_bits; 565 u64 raw_event_mask; 566 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 567 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 568 569 /* 570 * Overlay the bitmap with a 64-bit atomic so that all bits can be 571 * set in a single access, e.g. to reprogram all counters when the PMU 572 * filter changes. 573 */ 574 union { 575 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 576 atomic64_t __reprogram_pmi; 577 }; 578 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 579 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 580 581 u64 ds_area; 582 u64 pebs_enable; 583 u64 pebs_enable_rsvd; 584 u64 pebs_data_cfg; 585 u64 pebs_data_cfg_rsvd; 586 587 /* 588 * If a guest counter is cross-mapped to host counter with different 589 * index, its PEBS capability will be temporarily disabled. 590 * 591 * The user should make sure that this mask is updated 592 * after disabling interrupts and before perf_guest_get_msrs(); 593 */ 594 u64 host_cross_mapped_mask; 595 596 /* 597 * The gate to release perf_events not marked in 598 * pmc_in_use only once in a vcpu time slice. 599 */ 600 bool need_cleanup; 601 602 /* 603 * The total number of programmed perf_events and it helps to avoid 604 * redundant check before cleanup if guest don't use vPMU at all. 605 */ 606 u8 event_count; 607 }; 608 609 struct kvm_pmu_ops; 610 611 enum { 612 KVM_DEBUGREG_BP_ENABLED = BIT(0), 613 KVM_DEBUGREG_WONT_EXIT = BIT(1), 614 /* 615 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by 616 * hardware on exit from or enter to guest. KVM needn't switch them. 617 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM 618 * exit, host values need to be restored. 619 */ 620 KVM_DEBUGREG_AUTO_SWITCH = BIT(2), 621 }; 622 623 struct kvm_mtrr { 624 u64 var[KVM_NR_VAR_MTRR * 2]; 625 u64 fixed_64k; 626 u64 fixed_16k[2]; 627 u64 fixed_4k[8]; 628 u64 deftype; 629 }; 630 631 /* Hyper-V SynIC timer */ 632 struct kvm_vcpu_hv_stimer { 633 struct hrtimer timer; 634 int index; 635 union hv_stimer_config config; 636 u64 count; 637 u64 exp_time; 638 struct hv_message msg; 639 bool msg_pending; 640 }; 641 642 /* Hyper-V synthetic interrupt controller (SynIC)*/ 643 struct kvm_vcpu_hv_synic { 644 u64 version; 645 u64 control; 646 u64 msg_page; 647 u64 evt_page; 648 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 649 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 650 DECLARE_BITMAP(auto_eoi_bitmap, 256); 651 DECLARE_BITMAP(vec_bitmap, 256); 652 bool active; 653 bool dont_zero_synic_pages; 654 }; 655 656 /* The maximum number of entries on the TLB flush fifo. */ 657 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 658 /* 659 * Note: the following 'magic' entry is made up by KVM to avoid putting 660 * anything besides GVA on the TLB flush fifo. It is theoretically possible 661 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 662 * which will look identical. KVM's action to 'flush everything' instead of 663 * flushing these particular addresses is, however, fully legitimate as 664 * flushing more than requested is always OK. 665 */ 666 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 667 668 enum hv_tlb_flush_fifos { 669 HV_L1_TLB_FLUSH_FIFO, 670 HV_L2_TLB_FLUSH_FIFO, 671 HV_NR_TLB_FLUSH_FIFOS, 672 }; 673 674 struct kvm_vcpu_hv_tlb_flush_fifo { 675 spinlock_t write_lock; 676 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 677 }; 678 679 /* Hyper-V per vcpu emulation context */ 680 struct kvm_vcpu_hv { 681 struct kvm_vcpu *vcpu; 682 u32 vp_index; 683 u64 hv_vapic; 684 s64 runtime_offset; 685 struct kvm_vcpu_hv_synic synic; 686 struct kvm_hyperv_exit exit; 687 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 688 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 689 bool enforce_cpuid; 690 struct { 691 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 692 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 693 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 694 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 695 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 696 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 697 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 698 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 699 } cpuid_cache; 700 701 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 702 703 /* 704 * Preallocated buffers for handling hypercalls that pass sparse vCPU 705 * sets (for high vCPU counts, they're too large to comfortably fit on 706 * the stack). 707 */ 708 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 709 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS); 710 711 struct hv_vp_assist_page vp_assist_page; 712 713 struct { 714 u64 pa_page_gpa; 715 u64 vm_id; 716 u32 vp_id; 717 } nested; 718 }; 719 720 struct kvm_hypervisor_cpuid { 721 u32 base; 722 u32 limit; 723 }; 724 725 #ifdef CONFIG_KVM_XEN 726 /* Xen HVM per vcpu emulation context */ 727 struct kvm_vcpu_xen { 728 u64 hypercall_rip; 729 u32 current_runstate; 730 u8 upcall_vector; 731 struct gfn_to_pfn_cache vcpu_info_cache; 732 struct gfn_to_pfn_cache vcpu_time_info_cache; 733 struct gfn_to_pfn_cache runstate_cache; 734 struct gfn_to_pfn_cache runstate2_cache; 735 u64 last_steal; 736 u64 runstate_entry_time; 737 u64 runstate_times[4]; 738 unsigned long evtchn_pending_sel; 739 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 740 u32 timer_virq; 741 u64 timer_expires; /* In guest epoch */ 742 atomic_t timer_pending; 743 struct hrtimer timer; 744 int poll_evtchn; 745 struct timer_list poll_timer; 746 struct kvm_hypervisor_cpuid cpuid; 747 }; 748 #endif 749 750 struct kvm_queued_exception { 751 bool pending; 752 bool injected; 753 bool has_error_code; 754 u8 vector; 755 u32 error_code; 756 unsigned long payload; 757 bool has_payload; 758 }; 759 760 /* 761 * Hardware-defined CPUID leafs that are either scattered by the kernel or are 762 * unknown to the kernel, but need to be directly used by KVM. Note, these 763 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those. 764 */ 765 enum kvm_only_cpuid_leafs { 766 CPUID_12_EAX = NCAPINTS, 767 CPUID_7_1_EDX, 768 CPUID_8000_0007_EDX, 769 CPUID_8000_0022_EAX, 770 CPUID_7_2_EDX, 771 CPUID_24_0_EBX, 772 CPUID_8000_0021_ECX, 773 NR_KVM_CPU_CAPS, 774 775 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, 776 }; 777 778 struct kvm_vcpu_arch { 779 /* 780 * rip and regs accesses must go through 781 * kvm_{register,rip}_{read,write} functions. 782 */ 783 unsigned long regs[NR_VCPU_REGS]; 784 u32 regs_avail; 785 u32 regs_dirty; 786 787 unsigned long cr0; 788 unsigned long cr0_guest_owned_bits; 789 unsigned long cr2; 790 unsigned long cr3; 791 unsigned long cr4; 792 unsigned long cr4_guest_owned_bits; 793 unsigned long cr4_guest_rsvd_bits; 794 unsigned long cr8; 795 u32 host_pkru; 796 u32 pkru; 797 u32 hflags; 798 u64 efer; 799 u64 host_debugctl; 800 u64 apic_base; 801 struct kvm_lapic *apic; /* kernel irqchip context */ 802 bool load_eoi_exitmap_pending; 803 DECLARE_BITMAP(ioapic_handled_vectors, 256); 804 unsigned long apic_attention; 805 int32_t apic_arb_prio; 806 int mp_state; 807 u64 ia32_misc_enable_msr; 808 u64 smbase; 809 u64 smi_count; 810 bool at_instruction_boundary; 811 bool tpr_access_reporting; 812 bool xfd_no_write_intercept; 813 u64 ia32_xss; 814 u64 microcode_version; 815 u64 arch_capabilities; 816 u64 perf_capabilities; 817 818 /* 819 * Paging state of the vcpu 820 * 821 * If the vcpu runs in guest mode with two level paging this still saves 822 * the paging mode of the l1 guest. This context is always used to 823 * handle faults. 824 */ 825 struct kvm_mmu *mmu; 826 827 /* Non-nested MMU for L1 */ 828 struct kvm_mmu root_mmu; 829 830 /* L1 MMU when running nested */ 831 struct kvm_mmu guest_mmu; 832 833 /* 834 * Paging state of an L2 guest (used for nested npt) 835 * 836 * This context will save all necessary information to walk page tables 837 * of an L2 guest. This context is only initialized for page table 838 * walking and not for faulting since we never handle l2 page faults on 839 * the host. 840 */ 841 struct kvm_mmu nested_mmu; 842 843 /* 844 * Pointer to the mmu context currently used for 845 * gva_to_gpa translations. 846 */ 847 struct kvm_mmu *walk_mmu; 848 849 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 850 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 851 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 852 struct kvm_mmu_memory_cache mmu_page_header_cache; 853 /* 854 * This cache is to allocate external page table. E.g. private EPT used 855 * by the TDX module. 856 */ 857 struct kvm_mmu_memory_cache mmu_external_spt_cache; 858 859 /* 860 * QEMU userspace and the guest each have their own FPU state. 861 * In vcpu_run, we switch between the user and guest FPU contexts. 862 * While running a VCPU, the VCPU thread will have the guest FPU 863 * context. 864 * 865 * Note that while the PKRU state lives inside the fpu registers, 866 * it is switched out separately at VMENTER and VMEXIT time. The 867 * "guest_fpstate" state here contains the guest FPU context, with the 868 * host PRKU bits. 869 */ 870 struct fpu_guest guest_fpu; 871 872 u64 xcr0; 873 u64 guest_supported_xcr0; 874 875 struct kvm_pio_request pio; 876 void *pio_data; 877 void *sev_pio_data; 878 unsigned sev_pio_count; 879 880 u8 event_exit_inst_len; 881 882 bool exception_from_userspace; 883 884 /* Exceptions to be injected to the guest. */ 885 struct kvm_queued_exception exception; 886 /* Exception VM-Exits to be synthesized to L1. */ 887 struct kvm_queued_exception exception_vmexit; 888 889 struct kvm_queued_interrupt { 890 bool injected; 891 bool soft; 892 u8 nr; 893 } interrupt; 894 895 int halt_request; /* real mode on Intel only */ 896 897 int cpuid_nent; 898 struct kvm_cpuid_entry2 *cpuid_entries; 899 bool cpuid_dynamic_bits_dirty; 900 bool is_amd_compatible; 901 902 /* 903 * cpu_caps holds the effective guest capabilities, i.e. the features 904 * the vCPU is allowed to use. Typically, but not always, features can 905 * be used by the guest if and only if both KVM and userspace want to 906 * expose the feature to the guest. 907 * 908 * A common exception is for virtualization holes, i.e. when KVM can't 909 * prevent the guest from using a feature, in which case the vCPU "has" 910 * the feature regardless of what KVM or userspace desires. 911 * 912 * Note, features that don't require KVM involvement in any way are 913 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the 914 * guest CPUID provided by userspace. 915 */ 916 u32 cpu_caps[NR_KVM_CPU_CAPS]; 917 918 u64 reserved_gpa_bits; 919 int maxphyaddr; 920 921 /* emulate context */ 922 923 struct x86_emulate_ctxt *emulate_ctxt; 924 bool emulate_regs_need_sync_to_vcpu; 925 bool emulate_regs_need_sync_from_vcpu; 926 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 927 unsigned long cui_linear_rip; 928 929 gpa_t time; 930 s8 pvclock_tsc_shift; 931 u32 pvclock_tsc_mul; 932 unsigned int hw_tsc_khz; 933 struct gfn_to_pfn_cache pv_time; 934 /* set guest stopped flag in pvclock flags field */ 935 bool pvclock_set_guest_stopped_request; 936 937 struct { 938 u8 preempted; 939 u64 msr_val; 940 u64 last_steal; 941 struct gfn_to_hva_cache cache; 942 } st; 943 944 u64 l1_tsc_offset; 945 u64 tsc_offset; /* current tsc offset */ 946 u64 last_guest_tsc; 947 u64 last_host_tsc; 948 u64 tsc_offset_adjustment; 949 u64 this_tsc_nsec; 950 u64 this_tsc_write; 951 u64 this_tsc_generation; 952 bool tsc_catchup; 953 bool tsc_always_catchup; 954 s8 virtual_tsc_shift; 955 u32 virtual_tsc_mult; 956 u32 virtual_tsc_khz; 957 s64 ia32_tsc_adjust_msr; 958 u64 msr_ia32_power_ctl; 959 u64 l1_tsc_scaling_ratio; 960 u64 tsc_scaling_ratio; /* current scaling ratio */ 961 962 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 963 /* Number of NMIs pending injection, not including hardware vNMIs. */ 964 unsigned int nmi_pending; 965 bool nmi_injected; /* Trying to inject an NMI this entry */ 966 bool smi_pending; /* SMI queued after currently running handler */ 967 u8 handling_intr_from_guest; 968 969 struct kvm_mtrr mtrr_state; 970 u64 pat; 971 972 unsigned switch_db_regs; 973 unsigned long db[KVM_NR_DB_REGS]; 974 unsigned long dr6; 975 unsigned long dr7; 976 unsigned long eff_db[KVM_NR_DB_REGS]; 977 unsigned long guest_debug_dr7; 978 u64 msr_platform_info; 979 u64 msr_misc_features_enables; 980 981 u64 mcg_cap; 982 u64 mcg_status; 983 u64 mcg_ctl; 984 u64 mcg_ext_ctl; 985 u64 *mce_banks; 986 u64 *mci_ctl2_banks; 987 988 /* Cache MMIO info */ 989 u64 mmio_gva; 990 unsigned mmio_access; 991 gfn_t mmio_gfn; 992 u64 mmio_gen; 993 994 struct kvm_pmu pmu; 995 996 /* used for guest single stepping over the given code position */ 997 unsigned long singlestep_rip; 998 999 #ifdef CONFIG_KVM_HYPERV 1000 bool hyperv_enabled; 1001 struct kvm_vcpu_hv *hyperv; 1002 #endif 1003 #ifdef CONFIG_KVM_XEN 1004 struct kvm_vcpu_xen xen; 1005 #endif 1006 cpumask_var_t wbinvd_dirty_mask; 1007 1008 unsigned long last_retry_eip; 1009 unsigned long last_retry_addr; 1010 1011 struct { 1012 bool halted; 1013 gfn_t gfns[ASYNC_PF_PER_VCPU]; 1014 struct gfn_to_hva_cache data; 1015 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 1016 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 1017 u16 vec; 1018 u32 id; 1019 u32 host_apf_flags; 1020 bool send_always; 1021 bool delivery_as_pf_vmexit; 1022 bool pageready_pending; 1023 } apf; 1024 1025 /* OSVW MSRs (AMD only) */ 1026 struct { 1027 u64 length; 1028 u64 status; 1029 } osvw; 1030 1031 struct { 1032 u64 msr_val; 1033 struct gfn_to_hva_cache data; 1034 } pv_eoi; 1035 1036 u64 msr_kvm_poll_control; 1037 1038 /* pv related host specific info */ 1039 struct { 1040 bool pv_unhalted; 1041 } pv; 1042 1043 int pending_ioapic_eoi; 1044 int pending_external_vector; 1045 int highest_stale_pending_ioapic_eoi; 1046 1047 /* be preempted when it's in kernel-mode(cpl=0) */ 1048 bool preempted_in_kernel; 1049 1050 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1051 bool l1tf_flush_l1d; 1052 1053 /* Host CPU on which VM-entry was most recently attempted */ 1054 int last_vmentry_cpu; 1055 1056 /* AMD MSRC001_0015 Hardware Configuration */ 1057 u64 msr_hwcr; 1058 1059 /* pv related cpuid info */ 1060 struct { 1061 /* 1062 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1063 * leaf. 1064 */ 1065 u32 features; 1066 1067 /* 1068 * indicates whether pv emulation should be disabled if features 1069 * are not present in the guest's cpuid 1070 */ 1071 bool enforce; 1072 } pv_cpuid; 1073 1074 /* Protected Guests */ 1075 bool guest_state_protected; 1076 bool guest_tsc_protected; 1077 1078 /* 1079 * Set when PDPTS were loaded directly by the userspace without 1080 * reading the guest memory 1081 */ 1082 bool pdptrs_from_userspace; 1083 1084 #if IS_ENABLED(CONFIG_HYPERV) 1085 hpa_t hv_root_tdp; 1086 #endif 1087 }; 1088 1089 struct kvm_lpage_info { 1090 int disallow_lpage; 1091 }; 1092 1093 struct kvm_arch_memory_slot { 1094 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1095 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1096 unsigned short *gfn_write_track; 1097 }; 1098 1099 /* 1100 * Track the mode of the optimized logical map, as the rules for decoding the 1101 * destination vary per mode. Enabling the optimized logical map requires all 1102 * software-enabled local APIs to be in the same mode, each addressable APIC to 1103 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1104 */ 1105 enum kvm_apic_logical_mode { 1106 /* All local APICs are software disabled. */ 1107 KVM_APIC_MODE_SW_DISABLED, 1108 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1109 KVM_APIC_MODE_XAPIC_CLUSTER, 1110 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1111 KVM_APIC_MODE_XAPIC_FLAT, 1112 /* All software enabled local APICs in x2APIC mode. */ 1113 KVM_APIC_MODE_X2APIC, 1114 /* 1115 * Optimized map disabled, e.g. not all local APICs in the same logical 1116 * mode, same logical ID assigned to multiple APICs, etc. 1117 */ 1118 KVM_APIC_MODE_MAP_DISABLED, 1119 }; 1120 1121 struct kvm_apic_map { 1122 struct rcu_head rcu; 1123 enum kvm_apic_logical_mode logical_mode; 1124 u32 max_apic_id; 1125 union { 1126 struct kvm_lapic *xapic_flat_map[8]; 1127 struct kvm_lapic *xapic_cluster_map[16][4]; 1128 }; 1129 struct kvm_lapic *phys_map[]; 1130 }; 1131 1132 /* Hyper-V synthetic debugger (SynDbg)*/ 1133 struct kvm_hv_syndbg { 1134 struct { 1135 u64 control; 1136 u64 status; 1137 u64 send_page; 1138 u64 recv_page; 1139 u64 pending_page; 1140 } control; 1141 u64 options; 1142 }; 1143 1144 /* Current state of Hyper-V TSC page clocksource */ 1145 enum hv_tsc_page_status { 1146 /* TSC page was not set up or disabled */ 1147 HV_TSC_PAGE_UNSET = 0, 1148 /* TSC page MSR was written by the guest, update pending */ 1149 HV_TSC_PAGE_GUEST_CHANGED, 1150 /* TSC page update was triggered from the host side */ 1151 HV_TSC_PAGE_HOST_CHANGED, 1152 /* TSC page was properly set up and is currently active */ 1153 HV_TSC_PAGE_SET, 1154 /* TSC page was set up with an inaccessible GPA */ 1155 HV_TSC_PAGE_BROKEN, 1156 }; 1157 1158 #ifdef CONFIG_KVM_HYPERV 1159 /* Hyper-V emulation context */ 1160 struct kvm_hv { 1161 struct mutex hv_lock; 1162 u64 hv_guest_os_id; 1163 u64 hv_hypercall; 1164 u64 hv_tsc_page; 1165 enum hv_tsc_page_status hv_tsc_page_status; 1166 1167 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1168 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1169 u64 hv_crash_ctl; 1170 1171 struct ms_hyperv_tsc_page tsc_ref; 1172 1173 struct idr conn_to_evt; 1174 1175 u64 hv_reenlightenment_control; 1176 u64 hv_tsc_emulation_control; 1177 u64 hv_tsc_emulation_status; 1178 u64 hv_invtsc_control; 1179 1180 /* How many vCPUs have VP index != vCPU index */ 1181 atomic_t num_mismatched_vp_indexes; 1182 1183 /* 1184 * How many SynICs use 'AutoEOI' feature 1185 * (protected by arch.apicv_update_lock) 1186 */ 1187 unsigned int synic_auto_eoi_used; 1188 1189 struct kvm_hv_syndbg hv_syndbg; 1190 1191 bool xsaves_xsavec_checked; 1192 }; 1193 #endif 1194 1195 struct msr_bitmap_range { 1196 u32 flags; 1197 u32 nmsrs; 1198 u32 base; 1199 unsigned long *bitmap; 1200 }; 1201 1202 #ifdef CONFIG_KVM_XEN 1203 /* Xen emulation context */ 1204 struct kvm_xen { 1205 struct mutex xen_lock; 1206 u32 xen_version; 1207 bool long_mode; 1208 bool runstate_update_flag; 1209 u8 upcall_vector; 1210 struct gfn_to_pfn_cache shinfo_cache; 1211 struct idr evtchn_ports; 1212 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1213 1214 struct kvm_xen_hvm_config hvm_config; 1215 }; 1216 #endif 1217 1218 enum kvm_irqchip_mode { 1219 KVM_IRQCHIP_NONE, 1220 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1221 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1222 }; 1223 1224 struct kvm_x86_msr_filter { 1225 u8 count; 1226 bool default_allow:1; 1227 struct msr_bitmap_range ranges[16]; 1228 }; 1229 1230 struct kvm_x86_pmu_event_filter { 1231 __u32 action; 1232 __u32 nevents; 1233 __u32 fixed_counter_bitmap; 1234 __u32 flags; 1235 __u32 nr_includes; 1236 __u32 nr_excludes; 1237 __u64 *includes; 1238 __u64 *excludes; 1239 __u64 events[]; 1240 }; 1241 1242 enum kvm_apicv_inhibit { 1243 1244 /********************************************************************/ 1245 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1246 /********************************************************************/ 1247 1248 /* 1249 * APIC acceleration is disabled by a module parameter 1250 * and/or not supported in hardware. 1251 */ 1252 APICV_INHIBIT_REASON_DISABLED, 1253 1254 /* 1255 * APIC acceleration is inhibited because AutoEOI feature is 1256 * being used by a HyperV guest. 1257 */ 1258 APICV_INHIBIT_REASON_HYPERV, 1259 1260 /* 1261 * APIC acceleration is inhibited because the userspace didn't yet 1262 * enable the kernel/split irqchip. 1263 */ 1264 APICV_INHIBIT_REASON_ABSENT, 1265 1266 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1267 * (out of band, debug measure of blocking all interrupts on this vCPU) 1268 * was enabled, to avoid AVIC/APICv bypassing it. 1269 */ 1270 APICV_INHIBIT_REASON_BLOCKIRQ, 1271 1272 /* 1273 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1274 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1275 */ 1276 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1277 1278 /* 1279 * For simplicity, the APIC acceleration is inhibited 1280 * first time either APIC ID or APIC base are changed by the guest 1281 * from their reset values. 1282 */ 1283 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1284 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1285 1286 /******************************************************/ 1287 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1288 /******************************************************/ 1289 1290 /* 1291 * AVIC is inhibited on a vCPU because it runs a nested guest. 1292 * 1293 * This is needed because unlike APICv, the peers of this vCPU 1294 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1295 * a vCPU runs nested. 1296 */ 1297 APICV_INHIBIT_REASON_NESTED, 1298 1299 /* 1300 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1301 * which cannot be injected when the AVIC is enabled, thus AVIC 1302 * is inhibited while KVM waits for IRQ window. 1303 */ 1304 APICV_INHIBIT_REASON_IRQWIN, 1305 1306 /* 1307 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1308 * which AVIC doesn't support for edge triggered interrupts. 1309 */ 1310 APICV_INHIBIT_REASON_PIT_REINJ, 1311 1312 /* 1313 * AVIC is disabled because SEV doesn't support it. 1314 */ 1315 APICV_INHIBIT_REASON_SEV, 1316 1317 /* 1318 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1319 * mapping between logical ID and vCPU. 1320 */ 1321 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1322 1323 NR_APICV_INHIBIT_REASONS, 1324 }; 1325 1326 #define __APICV_INHIBIT_REASON(reason) \ 1327 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1328 1329 #define APICV_INHIBIT_REASONS \ 1330 __APICV_INHIBIT_REASON(DISABLED), \ 1331 __APICV_INHIBIT_REASON(HYPERV), \ 1332 __APICV_INHIBIT_REASON(ABSENT), \ 1333 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1334 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1335 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1336 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1337 __APICV_INHIBIT_REASON(NESTED), \ 1338 __APICV_INHIBIT_REASON(IRQWIN), \ 1339 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1340 __APICV_INHIBIT_REASON(SEV), \ 1341 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED) 1342 1343 struct kvm_arch { 1344 unsigned long n_used_mmu_pages; 1345 unsigned long n_requested_mmu_pages; 1346 unsigned long n_max_mmu_pages; 1347 unsigned int indirect_shadow_pages; 1348 u8 mmu_valid_gen; 1349 u8 vm_type; 1350 bool has_private_mem; 1351 bool has_protected_state; 1352 bool pre_fault_allowed; 1353 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1354 struct list_head active_mmu_pages; 1355 /* 1356 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1357 * replaced by an NX huge page. A shadow page is on this list if its 1358 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1359 * and there are no other conditions that prevent a huge page, e.g. 1360 * the backing host page is huge, dirtly logging is not enabled for its 1361 * memslot, etc... Note, zapping shadow pages on this list doesn't 1362 * guarantee an NX huge page will be created in its stead, e.g. if the 1363 * guest attempts to execute from the region then KVM obviously can't 1364 * create an NX huge page (without hanging the guest). 1365 */ 1366 struct list_head possible_nx_huge_pages; 1367 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1368 struct kvm_page_track_notifier_head track_notifier_head; 1369 #endif 1370 /* 1371 * Protects marking pages unsync during page faults, as TDP MMU page 1372 * faults only take mmu_lock for read. For simplicity, the unsync 1373 * pages lock is always taken when marking pages unsync regardless of 1374 * whether mmu_lock is held for read or write. 1375 */ 1376 spinlock_t mmu_unsync_pages_lock; 1377 1378 u64 shadow_mmio_value; 1379 1380 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1381 atomic_t noncoherent_dma_count; 1382 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1383 atomic_t assigned_device_count; 1384 struct kvm_pic *vpic; 1385 struct kvm_ioapic *vioapic; 1386 struct kvm_pit *vpit; 1387 atomic_t vapics_in_nmi_mode; 1388 struct mutex apic_map_lock; 1389 struct kvm_apic_map __rcu *apic_map; 1390 atomic_t apic_map_dirty; 1391 1392 bool apic_access_memslot_enabled; 1393 bool apic_access_memslot_inhibited; 1394 1395 /* Protects apicv_inhibit_reasons */ 1396 struct rw_semaphore apicv_update_lock; 1397 unsigned long apicv_inhibit_reasons; 1398 1399 gpa_t wall_clock; 1400 1401 bool mwait_in_guest; 1402 bool hlt_in_guest; 1403 bool pause_in_guest; 1404 bool cstate_in_guest; 1405 1406 unsigned long irq_sources_bitmap; 1407 s64 kvmclock_offset; 1408 1409 /* 1410 * This also protects nr_vcpus_matched_tsc which is read from a 1411 * preemption-disabled region, so it must be a raw spinlock. 1412 */ 1413 raw_spinlock_t tsc_write_lock; 1414 u64 last_tsc_nsec; 1415 u64 last_tsc_write; 1416 u32 last_tsc_khz; 1417 u64 last_tsc_offset; 1418 u64 cur_tsc_nsec; 1419 u64 cur_tsc_write; 1420 u64 cur_tsc_offset; 1421 u64 cur_tsc_generation; 1422 int nr_vcpus_matched_tsc; 1423 1424 u32 default_tsc_khz; 1425 bool user_set_tsc; 1426 u64 apic_bus_cycle_ns; 1427 1428 seqcount_raw_spinlock_t pvclock_sc; 1429 bool use_master_clock; 1430 u64 master_kernel_ns; 1431 u64 master_cycle_now; 1432 struct delayed_work kvmclock_update_work; 1433 struct delayed_work kvmclock_sync_work; 1434 1435 /* reads protected by irq_srcu, writes by irq_lock */ 1436 struct hlist_head mask_notifier_list; 1437 1438 #ifdef CONFIG_KVM_HYPERV 1439 struct kvm_hv hyperv; 1440 #endif 1441 1442 #ifdef CONFIG_KVM_XEN 1443 struct kvm_xen xen; 1444 #endif 1445 1446 bool backwards_tsc_observed; 1447 bool boot_vcpu_runs_old_kvmclock; 1448 u32 bsp_vcpu_id; 1449 1450 u64 disabled_quirks; 1451 1452 enum kvm_irqchip_mode irqchip_mode; 1453 u8 nr_reserved_ioapic_pins; 1454 1455 bool disabled_lapic_found; 1456 1457 bool x2apic_format; 1458 bool x2apic_broadcast_quirk_disabled; 1459 1460 bool guest_can_read_msr_platform_info; 1461 bool exception_payload_enabled; 1462 1463 bool triple_fault_event; 1464 1465 bool bus_lock_detection_enabled; 1466 bool enable_pmu; 1467 1468 u32 notify_window; 1469 u32 notify_vmexit_flags; 1470 /* 1471 * If exit_on_emulation_error is set, and the in-kernel instruction 1472 * emulator fails to emulate an instruction, allow userspace 1473 * the opportunity to look at it. 1474 */ 1475 bool exit_on_emulation_error; 1476 1477 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1478 u32 user_space_msr_mask; 1479 struct kvm_x86_msr_filter __rcu *msr_filter; 1480 1481 u32 hypercall_exit_enabled; 1482 1483 /* Guest can access the SGX PROVISIONKEY. */ 1484 bool sgx_provisioning_allowed; 1485 1486 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1487 struct vhost_task *nx_huge_page_recovery_thread; 1488 u64 nx_huge_page_last; 1489 struct once nx_once; 1490 1491 #ifdef CONFIG_X86_64 1492 #ifdef CONFIG_KVM_PROVE_MMU 1493 /* 1494 * The number of TDP MMU pages across all roots. Used only to sanity 1495 * check that KVM isn't leaking TDP MMU pages. 1496 */ 1497 atomic64_t tdp_mmu_pages; 1498 #endif 1499 1500 /* 1501 * List of struct kvm_mmu_pages being used as roots. 1502 * All struct kvm_mmu_pages in the list should have 1503 * tdp_mmu_page set. 1504 * 1505 * For reads, this list is protected by: 1506 * RCU alone or 1507 * the MMU lock in read mode + RCU or 1508 * the MMU lock in write mode 1509 * 1510 * For writes, this list is protected by tdp_mmu_pages_lock; see 1511 * below for the details. 1512 * 1513 * Roots will remain in the list until their tdp_mmu_root_count 1514 * drops to zero, at which point the thread that decremented the 1515 * count to zero should removed the root from the list and clean 1516 * it up, freeing the root after an RCU grace period. 1517 */ 1518 struct list_head tdp_mmu_roots; 1519 1520 /* 1521 * Protects accesses to the following fields when the MMU lock 1522 * is held in read mode: 1523 * - tdp_mmu_roots (above) 1524 * - the link field of kvm_mmu_page structs used by the TDP MMU 1525 * - possible_nx_huge_pages; 1526 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1527 * by the TDP MMU 1528 * Because the lock is only taken within the MMU lock, strictly 1529 * speaking it is redundant to acquire this lock when the thread 1530 * holds the MMU lock in write mode. However it often simplifies 1531 * the code to do so. 1532 */ 1533 spinlock_t tdp_mmu_pages_lock; 1534 #endif /* CONFIG_X86_64 */ 1535 1536 /* 1537 * If set, at least one shadow root has been allocated. This flag 1538 * is used as one input when determining whether certain memslot 1539 * related allocations are necessary. 1540 */ 1541 bool shadow_root_allocated; 1542 1543 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1544 /* 1545 * If set, the VM has (or had) an external write tracking user, and 1546 * thus all write tracking metadata has been allocated, even if KVM 1547 * itself isn't using write tracking. 1548 */ 1549 bool external_write_tracking_enabled; 1550 #endif 1551 1552 #if IS_ENABLED(CONFIG_HYPERV) 1553 hpa_t hv_root_tdp; 1554 spinlock_t hv_root_tdp_lock; 1555 struct hv_partition_assist_pg *hv_pa_pg; 1556 #endif 1557 /* 1558 * VM-scope maximum vCPU ID. Used to determine the size of structures 1559 * that increase along with the maximum vCPU ID, in which case, using 1560 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1561 */ 1562 u32 max_vcpu_ids; 1563 1564 bool disable_nx_huge_pages; 1565 1566 /* 1567 * Memory caches used to allocate shadow pages when performing eager 1568 * page splitting. No need for a shadowed_info_cache since eager page 1569 * splitting only allocates direct shadow pages. 1570 * 1571 * Protected by kvm->slots_lock. 1572 */ 1573 struct kvm_mmu_memory_cache split_shadow_page_cache; 1574 struct kvm_mmu_memory_cache split_page_header_cache; 1575 1576 /* 1577 * Memory cache used to allocate pte_list_desc structs while splitting 1578 * huge pages. In the worst case, to split one huge page, 512 1579 * pte_list_desc structs are needed to add each lower level leaf sptep 1580 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1581 * page table. 1582 * 1583 * Protected by kvm->slots_lock. 1584 */ 1585 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1586 struct kvm_mmu_memory_cache split_desc_cache; 1587 1588 gfn_t gfn_direct_bits; 1589 1590 /* 1591 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero 1592 * value indicates CPU dirty logging is unsupported or disabled in 1593 * current VM. 1594 */ 1595 int cpu_dirty_log_size; 1596 }; 1597 1598 struct kvm_vm_stat { 1599 struct kvm_vm_stat_generic generic; 1600 u64 mmu_shadow_zapped; 1601 u64 mmu_pte_write; 1602 u64 mmu_pde_zapped; 1603 u64 mmu_flooded; 1604 u64 mmu_recycled; 1605 u64 mmu_cache_miss; 1606 u64 mmu_unsync; 1607 union { 1608 struct { 1609 atomic64_t pages_4k; 1610 atomic64_t pages_2m; 1611 atomic64_t pages_1g; 1612 }; 1613 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1614 }; 1615 u64 nx_lpage_splits; 1616 u64 max_mmu_page_hash_collisions; 1617 u64 max_mmu_rmap_size; 1618 }; 1619 1620 struct kvm_vcpu_stat { 1621 struct kvm_vcpu_stat_generic generic; 1622 u64 pf_taken; 1623 u64 pf_fixed; 1624 u64 pf_emulate; 1625 u64 pf_spurious; 1626 u64 pf_fast; 1627 u64 pf_mmio_spte_created; 1628 u64 pf_guest; 1629 u64 tlb_flush; 1630 u64 invlpg; 1631 1632 u64 exits; 1633 u64 io_exits; 1634 u64 mmio_exits; 1635 u64 signal_exits; 1636 u64 irq_window_exits; 1637 u64 nmi_window_exits; 1638 u64 l1d_flush; 1639 u64 halt_exits; 1640 u64 request_irq_exits; 1641 u64 irq_exits; 1642 u64 host_state_reload; 1643 u64 fpu_reload; 1644 u64 insn_emulation; 1645 u64 insn_emulation_fail; 1646 u64 hypercalls; 1647 u64 irq_injections; 1648 u64 nmi_injections; 1649 u64 req_event; 1650 u64 nested_run; 1651 u64 directed_yield_attempted; 1652 u64 directed_yield_successful; 1653 u64 preemption_reported; 1654 u64 preemption_other; 1655 u64 guest_mode; 1656 u64 notify_window_exits; 1657 }; 1658 1659 struct x86_instruction_info; 1660 1661 struct msr_data { 1662 bool host_initiated; 1663 u32 index; 1664 u64 data; 1665 }; 1666 1667 struct kvm_lapic_irq { 1668 u32 vector; 1669 u16 delivery_mode; 1670 u16 dest_mode; 1671 bool level; 1672 u16 trig_mode; 1673 u32 shorthand; 1674 u32 dest_id; 1675 bool msi_redir_hint; 1676 }; 1677 1678 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1679 { 1680 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1681 } 1682 1683 struct kvm_x86_ops { 1684 const char *name; 1685 1686 int (*check_processor_compatibility)(void); 1687 1688 int (*enable_virtualization_cpu)(void); 1689 void (*disable_virtualization_cpu)(void); 1690 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1691 1692 void (*hardware_unsetup)(void); 1693 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1694 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1695 1696 unsigned int vm_size; 1697 int (*vm_init)(struct kvm *kvm); 1698 void (*vm_destroy)(struct kvm *kvm); 1699 void (*vm_pre_destroy)(struct kvm *kvm); 1700 1701 /* Create, but do not attach this VCPU */ 1702 int (*vcpu_precreate)(struct kvm *kvm); 1703 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1704 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1705 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1706 1707 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1708 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1709 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1710 1711 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1712 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1713 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1714 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1715 void (*get_segment)(struct kvm_vcpu *vcpu, 1716 struct kvm_segment *var, int seg); 1717 int (*get_cpl)(struct kvm_vcpu *vcpu); 1718 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu); 1719 void (*set_segment)(struct kvm_vcpu *vcpu, 1720 struct kvm_segment *var, int seg); 1721 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1722 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1723 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1724 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1725 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1726 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1727 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1728 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1729 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1730 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1731 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1732 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1733 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value); 1734 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1735 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1736 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1737 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1738 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1739 1740 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1741 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1742 #if IS_ENABLED(CONFIG_HYPERV) 1743 int (*flush_remote_tlbs)(struct kvm *kvm); 1744 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1745 gfn_t nr_pages); 1746 #endif 1747 1748 /* 1749 * Flush any TLB entries associated with the given GVA. 1750 * Does not need to flush GPA->HPA mappings. 1751 * Can potentially get non-canonical addresses through INVLPGs, which 1752 * the implementation may choose to ignore if appropriate. 1753 */ 1754 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1755 1756 /* 1757 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1758 * does not need to flush GPA->HPA mappings. 1759 */ 1760 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1761 1762 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1763 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1764 bool force_immediate_exit); 1765 int (*handle_exit)(struct kvm_vcpu *vcpu, 1766 enum exit_fastpath_completion exit_fastpath); 1767 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1768 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1769 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1770 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1771 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1772 unsigned char *hypercall_addr); 1773 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1774 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1775 void (*inject_exception)(struct kvm_vcpu *vcpu); 1776 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1777 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1778 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1779 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1780 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1781 /* Whether or not a virtual NMI is pending in hardware. */ 1782 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1783 /* 1784 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1785 * to allow using static_call_ret0 as the fallback. 1786 */ 1787 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1788 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1789 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1790 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1791 1792 const bool x2apic_icr_is_split; 1793 const unsigned long required_apicv_inhibits; 1794 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1795 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1796 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1797 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1798 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1799 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1800 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1801 int trig_mode, int vector); 1802 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1803 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1804 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1805 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1806 1807 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1808 int root_level); 1809 1810 /* Update external mapping with page table link. */ 1811 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1812 void *external_spt); 1813 /* Update the external page table from spte getting set. */ 1814 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1815 kvm_pfn_t pfn_for_gfn); 1816 1817 /* Update external page tables for page table about to be freed. */ 1818 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1819 void *external_spt); 1820 1821 /* Update external page table from spte getting removed, and flush TLB. */ 1822 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1823 kvm_pfn_t pfn_for_gfn); 1824 1825 bool (*has_wbinvd_exit)(void); 1826 1827 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1828 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1829 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1830 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1831 1832 /* 1833 * Retrieve somewhat arbitrary exit/entry information. Intended to 1834 * be used only from within tracepoints or error paths. 1835 */ 1836 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1837 u64 *info1, u64 *info2, 1838 u32 *intr_info, u32 *error_code); 1839 1840 void (*get_entry_info)(struct kvm_vcpu *vcpu, 1841 u32 *intr_info, u32 *error_code); 1842 1843 int (*check_intercept)(struct kvm_vcpu *vcpu, 1844 struct x86_instruction_info *info, 1845 enum x86_intercept_stage stage, 1846 struct x86_exception *exception); 1847 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1848 1849 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1850 1851 const struct kvm_x86_nested_ops *nested_ops; 1852 1853 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1854 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1855 1856 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1857 uint32_t guest_irq, bool set); 1858 void (*pi_start_assignment)(struct kvm *kvm); 1859 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1860 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1861 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1862 bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1863 1864 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1865 bool *expired); 1866 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1867 1868 void (*setup_mce)(struct kvm_vcpu *vcpu); 1869 1870 #ifdef CONFIG_KVM_SMM 1871 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1872 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1873 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1874 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1875 #endif 1876 1877 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1878 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1879 int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp); 1880 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1881 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1882 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1883 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1884 void (*guest_memory_reclaimed)(struct kvm *kvm); 1885 1886 int (*get_feature_msr)(u32 msr, u64 *data); 1887 1888 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1889 void *insn, int insn_len); 1890 1891 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1892 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1893 1894 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1895 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1896 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1897 1898 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1899 1900 /* 1901 * Returns vCPU specific APICv inhibit reasons 1902 */ 1903 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1904 1905 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1906 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1907 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1908 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1909 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn); 1910 }; 1911 1912 struct kvm_x86_nested_ops { 1913 void (*leave_nested)(struct kvm_vcpu *vcpu); 1914 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1915 u32 error_code); 1916 int (*check_events)(struct kvm_vcpu *vcpu); 1917 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1918 void (*triple_fault)(struct kvm_vcpu *vcpu); 1919 int (*get_state)(struct kvm_vcpu *vcpu, 1920 struct kvm_nested_state __user *user_kvm_nested_state, 1921 unsigned user_data_size); 1922 int (*set_state)(struct kvm_vcpu *vcpu, 1923 struct kvm_nested_state __user *user_kvm_nested_state, 1924 struct kvm_nested_state *kvm_state); 1925 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1926 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1927 1928 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1929 uint16_t *vmcs_version); 1930 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1931 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1932 }; 1933 1934 struct kvm_x86_init_ops { 1935 int (*hardware_setup)(void); 1936 unsigned int (*handle_intel_pt_intr)(void); 1937 1938 struct kvm_x86_ops *runtime_ops; 1939 struct kvm_pmu_ops *pmu_ops; 1940 }; 1941 1942 struct kvm_arch_async_pf { 1943 u32 token; 1944 gfn_t gfn; 1945 unsigned long cr3; 1946 bool direct_map; 1947 u64 error_code; 1948 }; 1949 1950 extern u32 __read_mostly kvm_nr_uret_msrs; 1951 extern bool __read_mostly allow_smaller_maxphyaddr; 1952 extern bool __read_mostly enable_apicv; 1953 extern bool __read_mostly enable_device_posted_irqs; 1954 extern struct kvm_x86_ops kvm_x86_ops; 1955 1956 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1957 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1958 1959 #define KVM_X86_OP(func) \ 1960 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1961 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1962 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1963 #include <asm/kvm-x86-ops.h> 1964 1965 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1966 void kvm_x86_vendor_exit(void); 1967 1968 #define __KVM_HAVE_ARCH_VM_ALLOC 1969 static inline struct kvm *kvm_arch_alloc_vm(void) 1970 { 1971 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1972 } 1973 1974 #define __KVM_HAVE_ARCH_VM_FREE 1975 void kvm_arch_free_vm(struct kvm *kvm); 1976 1977 #if IS_ENABLED(CONFIG_HYPERV) 1978 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1979 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1980 { 1981 if (kvm_x86_ops.flush_remote_tlbs && 1982 !kvm_x86_call(flush_remote_tlbs)(kvm)) 1983 return 0; 1984 else 1985 return -ENOTSUPP; 1986 } 1987 1988 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1989 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1990 u64 nr_pages) 1991 { 1992 if (!kvm_x86_ops.flush_remote_tlbs_range) 1993 return -EOPNOTSUPP; 1994 1995 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1996 } 1997 #endif /* CONFIG_HYPERV */ 1998 1999 enum kvm_intr_type { 2000 /* Values are arbitrary, but must be non-zero. */ 2001 KVM_HANDLING_IRQ = 1, 2002 KVM_HANDLING_NMI, 2003 }; 2004 2005 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 2006 #define kvm_arch_pmi_in_guest(vcpu) \ 2007 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 2008 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 2009 2010 void __init kvm_mmu_x86_module_init(void); 2011 int kvm_mmu_vendor_module_init(void); 2012 void kvm_mmu_vendor_module_exit(void); 2013 2014 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 2015 int kvm_mmu_create(struct kvm_vcpu *vcpu); 2016 void kvm_mmu_init_vm(struct kvm *kvm); 2017 void kvm_mmu_uninit_vm(struct kvm *kvm); 2018 2019 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 2020 struct kvm_memory_slot *slot); 2021 2022 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 2023 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 2024 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 2025 const struct kvm_memory_slot *memslot, 2026 int start_level); 2027 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 2028 const struct kvm_memory_slot *memslot, 2029 int target_level); 2030 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 2031 const struct kvm_memory_slot *memslot, 2032 u64 start, u64 end, 2033 int target_level); 2034 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 2035 const struct kvm_memory_slot *memslot); 2036 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 2037 const struct kvm_memory_slot *memslot); 2038 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 2039 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 2040 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 2041 2042 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 2043 2044 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 2045 const void *val, int bytes); 2046 2047 struct kvm_irq_mask_notifier { 2048 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 2049 int irq; 2050 struct hlist_node link; 2051 }; 2052 2053 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 2054 struct kvm_irq_mask_notifier *kimn); 2055 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 2056 struct kvm_irq_mask_notifier *kimn); 2057 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 2058 bool mask); 2059 2060 extern bool tdp_enabled; 2061 2062 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 2063 2064 /* 2065 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 2066 * userspace I/O) to indicate that the emulation context 2067 * should be reused as is, i.e. skip initialization of 2068 * emulation context, instruction fetch and decode. 2069 * 2070 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 2071 * Indicates that only select instructions (tagged with 2072 * EmulateOnUD) should be emulated (to minimize the emulator 2073 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 2074 * 2075 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2076 * decode the instruction length. For use *only* by 2077 * kvm_x86_ops.skip_emulated_instruction() implementations if 2078 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2079 * 2080 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2081 * retry native execution under certain conditions, 2082 * Can only be set in conjunction with EMULTYPE_PF. 2083 * 2084 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2085 * triggered by KVM's magic "force emulation" prefix, 2086 * which is opt in via module param (off by default). 2087 * Bypasses EmulateOnUD restriction despite emulating 2088 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2089 * Used to test the full emulator from userspace. 2090 * 2091 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2092 * backdoor emulation, which is opt in via module param. 2093 * VMware backdoor emulation handles select instructions 2094 * and reinjects the #GP for all other cases. 2095 * 2096 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case 2097 * the CR2/GPA value pass on the stack is valid. 2098 * 2099 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2100 * state and inject single-step #DBs after skipping 2101 * an instruction (after completing userspace I/O). 2102 * 2103 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2104 * is attempting to write a gfn that contains one or 2105 * more of the PTEs used to translate the write itself, 2106 * and the owning page table is being shadowed by KVM. 2107 * If emulation of the faulting instruction fails and 2108 * this flag is set, KVM will exit to userspace instead 2109 * of retrying emulation as KVM cannot make forward 2110 * progress. 2111 * 2112 * If emulation fails for a write to guest page tables, 2113 * KVM unprotects (zaps) the shadow page for the target 2114 * gfn and resumes the guest to retry the non-emulatable 2115 * instruction (on hardware). Unprotecting the gfn 2116 * doesn't allow forward progress for a self-changing 2117 * access because doing so also zaps the translation for 2118 * the gfn, i.e. retrying the instruction will hit a 2119 * !PRESENT fault, which results in a new shadow page 2120 * and sends KVM back to square one. 2121 */ 2122 #define EMULTYPE_NO_DECODE (1 << 0) 2123 #define EMULTYPE_TRAP_UD (1 << 1) 2124 #define EMULTYPE_SKIP (1 << 2) 2125 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2126 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2127 #define EMULTYPE_VMWARE_GP (1 << 5) 2128 #define EMULTYPE_PF (1 << 6) 2129 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2130 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2131 2132 static inline bool kvm_can_emulate_event_vectoring(int emul_type) 2133 { 2134 return !(emul_type & EMULTYPE_PF); 2135 } 2136 2137 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2138 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2139 void *insn, int insn_len); 2140 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2141 u64 *data, u8 ndata); 2142 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2143 2144 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa); 2145 2146 void kvm_enable_efer_bits(u64); 2147 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2148 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2149 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data); 2150 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2151 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2152 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2153 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2154 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2155 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2156 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2157 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2158 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2159 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2160 2161 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2162 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2163 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2164 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2165 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2166 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2167 2168 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2169 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2170 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2171 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2172 2173 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2174 int reason, bool has_error_code, u32 error_code); 2175 2176 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2177 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2178 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2179 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2180 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2181 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2182 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2183 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2184 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2185 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2186 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2187 2188 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2189 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2190 2191 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2192 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2193 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2194 2195 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2196 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2197 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2198 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 2199 bool has_error_code, u32 error_code); 2200 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2201 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2202 struct x86_exception *fault); 2203 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2204 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2205 2206 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2207 int irq_source_id, int level) 2208 { 2209 /* Logical OR for level trig interrupt */ 2210 if (level) 2211 __set_bit(irq_source_id, irq_state); 2212 else 2213 __clear_bit(irq_source_id, irq_state); 2214 2215 return !!(*irq_state); 2216 } 2217 2218 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2219 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2220 2221 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2222 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2223 2224 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2225 2226 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2227 bool always_retry); 2228 2229 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2230 gpa_t cr2_or_gpa) 2231 { 2232 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2233 } 2234 2235 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2236 ulong roots_to_free); 2237 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2238 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2239 struct x86_exception *exception); 2240 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2241 struct x86_exception *exception); 2242 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2243 struct x86_exception *exception); 2244 2245 bool kvm_apicv_activated(struct kvm *kvm); 2246 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2247 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2248 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2249 enum kvm_apicv_inhibit reason, bool set); 2250 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2251 enum kvm_apicv_inhibit reason, bool set); 2252 2253 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2254 enum kvm_apicv_inhibit reason) 2255 { 2256 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2257 } 2258 2259 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2260 enum kvm_apicv_inhibit reason) 2261 { 2262 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2263 } 2264 2265 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2266 void *insn, int insn_len); 2267 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2268 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2269 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2270 u64 addr, unsigned long roots); 2271 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2272 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2273 2274 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2275 int tdp_max_root_level, int tdp_huge_page_level); 2276 2277 2278 #ifdef CONFIG_KVM_PRIVATE_MEM 2279 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2280 #else 2281 #define kvm_arch_has_private_mem(kvm) false 2282 #endif 2283 2284 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2285 2286 static inline u16 kvm_read_ldt(void) 2287 { 2288 u16 ldt; 2289 asm("sldt %0" : "=g"(ldt)); 2290 return ldt; 2291 } 2292 2293 static inline void kvm_load_ldt(u16 sel) 2294 { 2295 asm("lldt %0" : : "rm"(sel)); 2296 } 2297 2298 #ifdef CONFIG_X86_64 2299 static inline unsigned long read_msr(unsigned long msr) 2300 { 2301 u64 value; 2302 2303 rdmsrq(msr, value); 2304 return value; 2305 } 2306 #endif 2307 2308 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2309 { 2310 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2311 } 2312 2313 #define TSS_IOPB_BASE_OFFSET 0x66 2314 #define TSS_BASE_SIZE 0x68 2315 #define TSS_IOPB_SIZE (65536 / 8) 2316 #define TSS_REDIRECTION_SIZE (256 / 8) 2317 #define RMODE_TSS_SIZE \ 2318 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2319 2320 enum { 2321 TASK_SWITCH_CALL = 0, 2322 TASK_SWITCH_IRET = 1, 2323 TASK_SWITCH_JMP = 2, 2324 TASK_SWITCH_GATE = 3, 2325 }; 2326 2327 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2328 2329 #ifdef CONFIG_KVM_SMM 2330 #define HF_SMM_MASK (1 << 1) 2331 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2332 2333 # define KVM_MAX_NR_ADDRESS_SPACES 2 2334 /* SMM is currently unsupported for guests with private memory. */ 2335 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2336 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2337 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2338 #else 2339 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2340 #endif 2341 2342 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2343 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2344 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2345 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2346 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2347 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2348 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2349 2350 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2351 unsigned long ipi_bitmap_high, u32 min, 2352 unsigned long icr, int op_64_bit); 2353 2354 int kvm_add_user_return_msr(u32 msr); 2355 int kvm_find_user_return_msr(u32 msr); 2356 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2357 void kvm_user_return_msr_update_cache(unsigned int index, u64 val); 2358 2359 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2360 { 2361 return kvm_find_user_return_msr(msr) >= 0; 2362 } 2363 2364 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2365 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2366 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2367 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2368 2369 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2370 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2371 2372 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2373 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2374 unsigned long *vcpu_bitmap); 2375 2376 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2377 struct kvm_async_pf *work); 2378 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2379 struct kvm_async_pf *work); 2380 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2381 struct kvm_async_pf *work); 2382 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2383 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2384 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2385 2386 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2387 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2388 2389 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2390 u32 size); 2391 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2392 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2393 2394 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2395 struct kvm_vcpu **dest_vcpu); 2396 2397 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2398 struct kvm_lapic_irq *irq); 2399 2400 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2401 { 2402 /* We can only post Fixed and LowPrio IRQs */ 2403 return (irq->delivery_mode == APIC_DM_FIXED || 2404 irq->delivery_mode == APIC_DM_LOWEST); 2405 } 2406 2407 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2408 { 2409 kvm_x86_call(vcpu_blocking)(vcpu); 2410 } 2411 2412 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2413 { 2414 kvm_x86_call(vcpu_unblocking)(vcpu); 2415 } 2416 2417 static inline int kvm_cpu_get_apicid(int mps_cpu) 2418 { 2419 #ifdef CONFIG_X86_LOCAL_APIC 2420 return default_cpu_present_to_apicid(mps_cpu); 2421 #else 2422 WARN_ON_ONCE(1); 2423 return BAD_APICID; 2424 #endif 2425 } 2426 2427 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2428 2429 #define KVM_CLOCK_VALID_FLAGS \ 2430 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2431 2432 #define KVM_X86_VALID_QUIRKS \ 2433 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2434 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2435 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2436 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2437 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2438 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2439 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2440 KVM_X86_QUIRK_SLOT_ZAP_ALL | \ 2441 KVM_X86_QUIRK_STUFF_FEATURE_MSRS | \ 2442 KVM_X86_QUIRK_IGNORE_GUEST_PAT) 2443 2444 #define KVM_X86_CONDITIONAL_QUIRKS \ 2445 (KVM_X86_QUIRK_CD_NW_CLEARED | \ 2446 KVM_X86_QUIRK_IGNORE_GUEST_PAT) 2447 2448 /* 2449 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2450 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2451 * remaining 31 lower bits must be 0 to preserve ABI. 2452 */ 2453 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2454 2455 static inline bool kvm_arch_has_irq_bypass(void) 2456 { 2457 return enable_device_posted_irqs; 2458 } 2459 2460 #endif /* _ASM_X86_KVM_HOST_H */ 2461