xref: /linux/arch/x86/include/asm/kvm_host.h (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 
19 #include <linux/kvm.h>
20 #include <linux/kvm_para.h>
21 #include <linux/kvm_types.h>
22 #include <linux/perf_event.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/clocksource.h>
25 #include <linux/irqbypass.h>
26 #include <linux/hyperv.h>
27 
28 #include <asm/apic.h>
29 #include <asm/pvclock-abi.h>
30 #include <asm/desc.h>
31 #include <asm/mtrr.h>
32 #include <asm/msr-index.h>
33 #include <asm/asm.h>
34 #include <asm/kvm_page_track.h>
35 #include <asm/kvm_vcpu_regs.h>
36 #include <asm/hyperv-tlfs.h>
37 
38 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
39 
40 #define KVM_MAX_VCPUS 288
41 #define KVM_SOFT_MAX_VCPUS 240
42 #define KVM_MAX_VCPU_ID 1023
43 /* memory slots that are not exposed to userspace */
44 #define KVM_PRIVATE_MEM_SLOTS 3
45 
46 #define KVM_HALT_POLL_NS_DEFAULT 200000
47 
48 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
49 
50 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
51 					KVM_DIRTY_LOG_INITIALLY_SET)
52 
53 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
54 						 KVM_BUS_LOCK_DETECTION_EXIT)
55 
56 /* x86-specific vcpu->requests bit members */
57 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
58 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
59 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
60 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
61 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
62 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
63 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
64 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
65 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
66 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
67 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
68 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
69 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
70 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
71 #define KVM_REQ_MCLOCK_INPROGRESS \
72 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
73 #define KVM_REQ_SCAN_IOAPIC \
74 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
75 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
76 #define KVM_REQ_APIC_PAGE_RELOAD \
77 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
78 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
79 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
80 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
81 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
82 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
83 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
84 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
85 #define KVM_REQ_APICV_UPDATE \
86 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
87 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
88 #define KVM_REQ_HV_TLB_FLUSH \
89 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_NO_WAKEUP)
90 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
91 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
92 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
93 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
94 
95 #define CR0_RESERVED_BITS                                               \
96 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
97 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
98 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
99 
100 #define CR4_RESERVED_BITS                                               \
101 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
102 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
103 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
104 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
105 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
106 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
107 
108 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
109 
110 
111 
112 #define INVALID_PAGE (~(hpa_t)0)
113 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
114 
115 #define UNMAPPED_GVA (~(gpa_t)0)
116 
117 /* KVM Hugepage definitions for x86 */
118 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
119 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
120 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
121 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
122 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
123 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
124 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
125 
126 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
127 {
128 	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
129 	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
130 		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
131 }
132 
133 #define KVM_PERMILLE_MMU_PAGES 20
134 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
135 #define KVM_MMU_HASH_SHIFT 12
136 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
137 #define KVM_MIN_FREE_MMU_PAGES 5
138 #define KVM_REFILL_PAGES 25
139 #define KVM_MAX_CPUID_ENTRIES 256
140 #define KVM_NR_FIXED_MTRR_REGION 88
141 #define KVM_NR_VAR_MTRR 8
142 
143 #define ASYNC_PF_PER_VCPU 64
144 
145 enum kvm_reg {
146 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
147 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
148 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
149 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
150 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
151 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
152 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
153 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
154 #ifdef CONFIG_X86_64
155 	VCPU_REGS_R8  = __VCPU_REGS_R8,
156 	VCPU_REGS_R9  = __VCPU_REGS_R9,
157 	VCPU_REGS_R10 = __VCPU_REGS_R10,
158 	VCPU_REGS_R11 = __VCPU_REGS_R11,
159 	VCPU_REGS_R12 = __VCPU_REGS_R12,
160 	VCPU_REGS_R13 = __VCPU_REGS_R13,
161 	VCPU_REGS_R14 = __VCPU_REGS_R14,
162 	VCPU_REGS_R15 = __VCPU_REGS_R15,
163 #endif
164 	VCPU_REGS_RIP,
165 	NR_VCPU_REGS,
166 
167 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
168 	VCPU_EXREG_CR0,
169 	VCPU_EXREG_CR3,
170 	VCPU_EXREG_CR4,
171 	VCPU_EXREG_RFLAGS,
172 	VCPU_EXREG_SEGMENTS,
173 	VCPU_EXREG_EXIT_INFO_1,
174 	VCPU_EXREG_EXIT_INFO_2,
175 };
176 
177 enum {
178 	VCPU_SREG_ES,
179 	VCPU_SREG_CS,
180 	VCPU_SREG_SS,
181 	VCPU_SREG_DS,
182 	VCPU_SREG_FS,
183 	VCPU_SREG_GS,
184 	VCPU_SREG_TR,
185 	VCPU_SREG_LDTR,
186 };
187 
188 enum exit_fastpath_completion {
189 	EXIT_FASTPATH_NONE,
190 	EXIT_FASTPATH_REENTER_GUEST,
191 	EXIT_FASTPATH_EXIT_HANDLED,
192 };
193 typedef enum exit_fastpath_completion fastpath_t;
194 
195 struct x86_emulate_ctxt;
196 struct x86_exception;
197 enum x86_intercept;
198 enum x86_intercept_stage;
199 
200 #define KVM_NR_DB_REGS	4
201 
202 #define DR6_BD		(1 << 13)
203 #define DR6_BS		(1 << 14)
204 #define DR6_BT		(1 << 15)
205 #define DR6_RTM		(1 << 16)
206 /*
207  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
208  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
209  * they will never be 0 for now, but when they are defined
210  * in the future it will require no code change.
211  *
212  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
213  */
214 #define DR6_ACTIVE_LOW	0xffff0ff0
215 #define DR6_VOLATILE	0x0001e00f
216 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
217 
218 #define DR7_BP_EN_MASK	0x000000ff
219 #define DR7_GE		(1 << 9)
220 #define DR7_GD		(1 << 13)
221 #define DR7_FIXED_1	0x00000400
222 #define DR7_VOLATILE	0xffff2bff
223 
224 #define PFERR_PRESENT_BIT 0
225 #define PFERR_WRITE_BIT 1
226 #define PFERR_USER_BIT 2
227 #define PFERR_RSVD_BIT 3
228 #define PFERR_FETCH_BIT 4
229 #define PFERR_PK_BIT 5
230 #define PFERR_GUEST_FINAL_BIT 32
231 #define PFERR_GUEST_PAGE_BIT 33
232 
233 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
234 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
235 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
236 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
237 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
238 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
239 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
240 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
241 
242 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
243 				 PFERR_WRITE_MASK |		\
244 				 PFERR_PRESENT_MASK)
245 
246 /* apic attention bits */
247 #define KVM_APIC_CHECK_VAPIC	0
248 /*
249  * The following bit is set with PV-EOI, unset on EOI.
250  * We detect PV-EOI changes by guest by comparing
251  * this bit with PV-EOI in guest memory.
252  * See the implementation in apic_update_pv_eoi.
253  */
254 #define KVM_APIC_PV_EOI_PENDING	1
255 
256 struct kvm_kernel_irq_routing_entry;
257 
258 /*
259  * the pages used as guest page table on soft mmu are tracked by
260  * kvm_memory_slot.arch.gfn_track which is 16 bits, so the role bits used
261  * by indirect shadow page can not be more than 15 bits.
262  *
263  * Currently, we used 14 bits that are @level, @gpte_is_8_bytes, @quadrant, @access,
264  * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp.
265  */
266 union kvm_mmu_page_role {
267 	u32 word;
268 	struct {
269 		unsigned level:4;
270 		unsigned gpte_is_8_bytes:1;
271 		unsigned quadrant:2;
272 		unsigned direct:1;
273 		unsigned access:3;
274 		unsigned invalid:1;
275 		unsigned nxe:1;
276 		unsigned cr0_wp:1;
277 		unsigned smep_andnot_wp:1;
278 		unsigned smap_andnot_wp:1;
279 		unsigned ad_disabled:1;
280 		unsigned guest_mode:1;
281 		unsigned :6;
282 
283 		/*
284 		 * This is left at the top of the word so that
285 		 * kvm_memslots_for_spte_role can extract it with a
286 		 * simple shift.  While there is room, give it a whole
287 		 * byte so it is also faster to load it from memory.
288 		 */
289 		unsigned smm:8;
290 	};
291 };
292 
293 union kvm_mmu_extended_role {
294 /*
295  * This structure complements kvm_mmu_page_role caching everything needed for
296  * MMU configuration. If nothing in both these structures changed, MMU
297  * re-configuration can be skipped. @valid bit is set on first usage so we don't
298  * treat all-zero structure as valid data.
299  */
300 	u32 word;
301 	struct {
302 		unsigned int valid:1;
303 		unsigned int execonly:1;
304 		unsigned int cr0_pg:1;
305 		unsigned int cr4_pae:1;
306 		unsigned int cr4_pse:1;
307 		unsigned int cr4_pke:1;
308 		unsigned int cr4_smap:1;
309 		unsigned int cr4_smep:1;
310 		unsigned int maxphyaddr:6;
311 	};
312 };
313 
314 union kvm_mmu_role {
315 	u64 as_u64;
316 	struct {
317 		union kvm_mmu_page_role base;
318 		union kvm_mmu_extended_role ext;
319 	};
320 };
321 
322 struct kvm_rmap_head {
323 	unsigned long val;
324 };
325 
326 struct kvm_pio_request {
327 	unsigned long linear_rip;
328 	unsigned long count;
329 	int in;
330 	int port;
331 	int size;
332 };
333 
334 #define PT64_ROOT_MAX_LEVEL 5
335 
336 struct rsvd_bits_validate {
337 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
338 	u64 bad_mt_xwr;
339 };
340 
341 struct kvm_mmu_root_info {
342 	gpa_t pgd;
343 	hpa_t hpa;
344 };
345 
346 #define KVM_MMU_ROOT_INFO_INVALID \
347 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
348 
349 #define KVM_MMU_NUM_PREV_ROOTS 3
350 
351 #define KVM_HAVE_MMU_RWLOCK
352 
353 struct kvm_mmu_page;
354 
355 /*
356  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
357  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
358  * current mmu mode.
359  */
360 struct kvm_mmu {
361 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
362 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
363 	int (*page_fault)(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 err,
364 			  bool prefault);
365 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
366 				  struct x86_exception *fault);
367 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t gva_or_gpa,
368 			    u32 access, struct x86_exception *exception);
369 	gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
370 			       struct x86_exception *exception);
371 	int (*sync_page)(struct kvm_vcpu *vcpu,
372 			 struct kvm_mmu_page *sp);
373 	void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
374 	hpa_t root_hpa;
375 	gpa_t root_pgd;
376 	union kvm_mmu_role mmu_role;
377 	u8 root_level;
378 	u8 shadow_root_level;
379 	u8 ept_ad;
380 	bool direct_map;
381 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
382 
383 	/*
384 	 * Bitmap; bit set = permission fault
385 	 * Byte index: page fault error code [4:1]
386 	 * Bit index: pte permissions in ACC_* format
387 	 */
388 	u8 permissions[16];
389 
390 	/*
391 	* The pkru_mask indicates if protection key checks are needed.  It
392 	* consists of 16 domains indexed by page fault error code bits [4:1],
393 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
394 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
395 	*/
396 	u32 pkru_mask;
397 
398 	u64 *pae_root;
399 	u64 *lm_root;
400 
401 	/*
402 	 * check zero bits on shadow page table entries, these
403 	 * bits include not only hardware reserved bits but also
404 	 * the bits spte never used.
405 	 */
406 	struct rsvd_bits_validate shadow_zero_check;
407 
408 	struct rsvd_bits_validate guest_rsvd_check;
409 
410 	/* Can have large pages at levels 2..last_nonleaf_level-1. */
411 	u8 last_nonleaf_level;
412 
413 	bool nx;
414 
415 	u64 pdptrs[4]; /* pae */
416 };
417 
418 struct kvm_tlb_range {
419 	u64 start_gfn;
420 	u64 pages;
421 };
422 
423 enum pmc_type {
424 	KVM_PMC_GP = 0,
425 	KVM_PMC_FIXED,
426 };
427 
428 struct kvm_pmc {
429 	enum pmc_type type;
430 	u8 idx;
431 	u64 counter;
432 	u64 eventsel;
433 	struct perf_event *perf_event;
434 	struct kvm_vcpu *vcpu;
435 	/*
436 	 * eventsel value for general purpose counters,
437 	 * ctrl value for fixed counters.
438 	 */
439 	u64 current_config;
440 };
441 
442 struct kvm_pmu {
443 	unsigned nr_arch_gp_counters;
444 	unsigned nr_arch_fixed_counters;
445 	unsigned available_event_types;
446 	u64 fixed_ctr_ctrl;
447 	u64 global_ctrl;
448 	u64 global_status;
449 	u64 global_ovf_ctrl;
450 	u64 counter_bitmask[2];
451 	u64 global_ctrl_mask;
452 	u64 global_ovf_ctrl_mask;
453 	u64 reserved_bits;
454 	u8 version;
455 	struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
456 	struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
457 	struct irq_work irq_work;
458 	DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
459 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
460 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
461 
462 	/*
463 	 * The gate to release perf_events not marked in
464 	 * pmc_in_use only once in a vcpu time slice.
465 	 */
466 	bool need_cleanup;
467 
468 	/*
469 	 * The total number of programmed perf_events and it helps to avoid
470 	 * redundant check before cleanup if guest don't use vPMU at all.
471 	 */
472 	u8 event_count;
473 };
474 
475 struct kvm_pmu_ops;
476 
477 enum {
478 	KVM_DEBUGREG_BP_ENABLED = 1,
479 	KVM_DEBUGREG_WONT_EXIT = 2,
480 	KVM_DEBUGREG_RELOAD = 4,
481 };
482 
483 struct kvm_mtrr_range {
484 	u64 base;
485 	u64 mask;
486 	struct list_head node;
487 };
488 
489 struct kvm_mtrr {
490 	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
491 	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
492 	u64 deftype;
493 
494 	struct list_head head;
495 };
496 
497 /* Hyper-V SynIC timer */
498 struct kvm_vcpu_hv_stimer {
499 	struct hrtimer timer;
500 	int index;
501 	union hv_stimer_config config;
502 	u64 count;
503 	u64 exp_time;
504 	struct hv_message msg;
505 	bool msg_pending;
506 };
507 
508 /* Hyper-V synthetic interrupt controller (SynIC)*/
509 struct kvm_vcpu_hv_synic {
510 	u64 version;
511 	u64 control;
512 	u64 msg_page;
513 	u64 evt_page;
514 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
515 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
516 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
517 	DECLARE_BITMAP(vec_bitmap, 256);
518 	bool active;
519 	bool dont_zero_synic_pages;
520 };
521 
522 /* Hyper-V per vcpu emulation context */
523 struct kvm_vcpu_hv {
524 	struct kvm_vcpu *vcpu;
525 	u32 vp_index;
526 	u64 hv_vapic;
527 	s64 runtime_offset;
528 	struct kvm_vcpu_hv_synic synic;
529 	struct kvm_hyperv_exit exit;
530 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
531 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
532 	cpumask_t tlb_flush;
533 };
534 
535 /* Xen HVM per vcpu emulation context */
536 struct kvm_vcpu_xen {
537 	u64 hypercall_rip;
538 	u32 current_runstate;
539 	bool vcpu_info_set;
540 	bool vcpu_time_info_set;
541 	bool runstate_set;
542 	struct gfn_to_hva_cache vcpu_info_cache;
543 	struct gfn_to_hva_cache vcpu_time_info_cache;
544 	struct gfn_to_hva_cache runstate_cache;
545 	u64 last_steal;
546 	u64 runstate_entry_time;
547 	u64 runstate_times[4];
548 };
549 
550 struct kvm_vcpu_arch {
551 	/*
552 	 * rip and regs accesses must go through
553 	 * kvm_{register,rip}_{read,write} functions.
554 	 */
555 	unsigned long regs[NR_VCPU_REGS];
556 	u32 regs_avail;
557 	u32 regs_dirty;
558 
559 	unsigned long cr0;
560 	unsigned long cr0_guest_owned_bits;
561 	unsigned long cr2;
562 	unsigned long cr3;
563 	unsigned long cr4;
564 	unsigned long cr4_guest_owned_bits;
565 	unsigned long cr4_guest_rsvd_bits;
566 	unsigned long cr8;
567 	u32 host_pkru;
568 	u32 pkru;
569 	u32 hflags;
570 	u64 efer;
571 	u64 apic_base;
572 	struct kvm_lapic *apic;    /* kernel irqchip context */
573 	bool apicv_active;
574 	bool load_eoi_exitmap_pending;
575 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
576 	unsigned long apic_attention;
577 	int32_t apic_arb_prio;
578 	int mp_state;
579 	u64 ia32_misc_enable_msr;
580 	u64 smbase;
581 	u64 smi_count;
582 	bool tpr_access_reporting;
583 	bool xsaves_enabled;
584 	u64 ia32_xss;
585 	u64 microcode_version;
586 	u64 arch_capabilities;
587 	u64 perf_capabilities;
588 
589 	/*
590 	 * Paging state of the vcpu
591 	 *
592 	 * If the vcpu runs in guest mode with two level paging this still saves
593 	 * the paging mode of the l1 guest. This context is always used to
594 	 * handle faults.
595 	 */
596 	struct kvm_mmu *mmu;
597 
598 	/* Non-nested MMU for L1 */
599 	struct kvm_mmu root_mmu;
600 
601 	/* L1 MMU when running nested */
602 	struct kvm_mmu guest_mmu;
603 
604 	/*
605 	 * Paging state of an L2 guest (used for nested npt)
606 	 *
607 	 * This context will save all necessary information to walk page tables
608 	 * of an L2 guest. This context is only initialized for page table
609 	 * walking and not for faulting since we never handle l2 page faults on
610 	 * the host.
611 	 */
612 	struct kvm_mmu nested_mmu;
613 
614 	/*
615 	 * Pointer to the mmu context currently used for
616 	 * gva_to_gpa translations.
617 	 */
618 	struct kvm_mmu *walk_mmu;
619 
620 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
621 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
622 	struct kvm_mmu_memory_cache mmu_gfn_array_cache;
623 	struct kvm_mmu_memory_cache mmu_page_header_cache;
624 
625 	/*
626 	 * QEMU userspace and the guest each have their own FPU state.
627 	 * In vcpu_run, we switch between the user and guest FPU contexts.
628 	 * While running a VCPU, the VCPU thread will have the guest FPU
629 	 * context.
630 	 *
631 	 * Note that while the PKRU state lives inside the fpu registers,
632 	 * it is switched out separately at VMENTER and VMEXIT time. The
633 	 * "guest_fpu" state here contains the guest FPU context, with the
634 	 * host PRKU bits.
635 	 */
636 	struct fpu *user_fpu;
637 	struct fpu *guest_fpu;
638 
639 	u64 xcr0;
640 	u64 guest_supported_xcr0;
641 
642 	struct kvm_pio_request pio;
643 	void *pio_data;
644 	void *guest_ins_data;
645 
646 	u8 event_exit_inst_len;
647 
648 	struct kvm_queued_exception {
649 		bool pending;
650 		bool injected;
651 		bool has_error_code;
652 		u8 nr;
653 		u32 error_code;
654 		unsigned long payload;
655 		bool has_payload;
656 		u8 nested_apf;
657 	} exception;
658 
659 	struct kvm_queued_interrupt {
660 		bool injected;
661 		bool soft;
662 		u8 nr;
663 	} interrupt;
664 
665 	int halt_request; /* real mode on Intel only */
666 
667 	int cpuid_nent;
668 	struct kvm_cpuid_entry2 *cpuid_entries;
669 
670 	u64 reserved_gpa_bits;
671 	int maxphyaddr;
672 	int max_tdp_level;
673 
674 	/* emulate context */
675 
676 	struct x86_emulate_ctxt *emulate_ctxt;
677 	bool emulate_regs_need_sync_to_vcpu;
678 	bool emulate_regs_need_sync_from_vcpu;
679 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
680 
681 	gpa_t time;
682 	struct pvclock_vcpu_time_info hv_clock;
683 	unsigned int hw_tsc_khz;
684 	struct gfn_to_hva_cache pv_time;
685 	bool pv_time_enabled;
686 	/* set guest stopped flag in pvclock flags field */
687 	bool pvclock_set_guest_stopped_request;
688 
689 	struct {
690 		u8 preempted;
691 		u64 msr_val;
692 		u64 last_steal;
693 		struct gfn_to_pfn_cache cache;
694 	} st;
695 
696 	u64 l1_tsc_offset;
697 	u64 tsc_offset;
698 	u64 last_guest_tsc;
699 	u64 last_host_tsc;
700 	u64 tsc_offset_adjustment;
701 	u64 this_tsc_nsec;
702 	u64 this_tsc_write;
703 	u64 this_tsc_generation;
704 	bool tsc_catchup;
705 	bool tsc_always_catchup;
706 	s8 virtual_tsc_shift;
707 	u32 virtual_tsc_mult;
708 	u32 virtual_tsc_khz;
709 	s64 ia32_tsc_adjust_msr;
710 	u64 msr_ia32_power_ctl;
711 	u64 tsc_scaling_ratio;
712 
713 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
714 	unsigned nmi_pending; /* NMI queued after currently running handler */
715 	bool nmi_injected;    /* Trying to inject an NMI this entry */
716 	bool smi_pending;    /* SMI queued after currently running handler */
717 
718 	struct kvm_mtrr mtrr_state;
719 	u64 pat;
720 
721 	unsigned switch_db_regs;
722 	unsigned long db[KVM_NR_DB_REGS];
723 	unsigned long dr6;
724 	unsigned long dr7;
725 	unsigned long eff_db[KVM_NR_DB_REGS];
726 	unsigned long guest_debug_dr7;
727 	u64 msr_platform_info;
728 	u64 msr_misc_features_enables;
729 
730 	u64 mcg_cap;
731 	u64 mcg_status;
732 	u64 mcg_ctl;
733 	u64 mcg_ext_ctl;
734 	u64 *mce_banks;
735 
736 	/* Cache MMIO info */
737 	u64 mmio_gva;
738 	unsigned mmio_access;
739 	gfn_t mmio_gfn;
740 	u64 mmio_gen;
741 
742 	struct kvm_pmu pmu;
743 
744 	/* used for guest single stepping over the given code position */
745 	unsigned long singlestep_rip;
746 
747 	bool hyperv_enabled;
748 	struct kvm_vcpu_hv *hyperv;
749 	struct kvm_vcpu_xen xen;
750 
751 	cpumask_var_t wbinvd_dirty_mask;
752 
753 	unsigned long last_retry_eip;
754 	unsigned long last_retry_addr;
755 
756 	struct {
757 		bool halted;
758 		gfn_t gfns[ASYNC_PF_PER_VCPU];
759 		struct gfn_to_hva_cache data;
760 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
761 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
762 		u16 vec;
763 		u32 id;
764 		bool send_user_only;
765 		u32 host_apf_flags;
766 		unsigned long nested_apf_token;
767 		bool delivery_as_pf_vmexit;
768 		bool pageready_pending;
769 	} apf;
770 
771 	/* OSVW MSRs (AMD only) */
772 	struct {
773 		u64 length;
774 		u64 status;
775 	} osvw;
776 
777 	struct {
778 		u64 msr_val;
779 		struct gfn_to_hva_cache data;
780 	} pv_eoi;
781 
782 	u64 msr_kvm_poll_control;
783 
784 	/*
785 	 * Indicates the guest is trying to write a gfn that contains one or
786 	 * more of the PTEs used to translate the write itself, i.e. the access
787 	 * is changing its own translation in the guest page tables.  KVM exits
788 	 * to userspace if emulation of the faulting instruction fails and this
789 	 * flag is set, as KVM cannot make forward progress.
790 	 *
791 	 * If emulation fails for a write to guest page tables, KVM unprotects
792 	 * (zaps) the shadow page for the target gfn and resumes the guest to
793 	 * retry the non-emulatable instruction (on hardware).  Unprotecting the
794 	 * gfn doesn't allow forward progress for a self-changing access because
795 	 * doing so also zaps the translation for the gfn, i.e. retrying the
796 	 * instruction will hit a !PRESENT fault, which results in a new shadow
797 	 * page and sends KVM back to square one.
798 	 */
799 	bool write_fault_to_shadow_pgtable;
800 
801 	/* set at EPT violation at this point */
802 	unsigned long exit_qualification;
803 
804 	/* pv related host specific info */
805 	struct {
806 		bool pv_unhalted;
807 	} pv;
808 
809 	int pending_ioapic_eoi;
810 	int pending_external_vector;
811 
812 	/* be preempted when it's in kernel-mode(cpl=0) */
813 	bool preempted_in_kernel;
814 
815 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
816 	bool l1tf_flush_l1d;
817 
818 	/* Host CPU on which VM-entry was most recently attempted */
819 	unsigned int last_vmentry_cpu;
820 
821 	/* AMD MSRC001_0015 Hardware Configuration */
822 	u64 msr_hwcr;
823 
824 	/* pv related cpuid info */
825 	struct {
826 		/*
827 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
828 		 * leaf.
829 		 */
830 		u32 features;
831 
832 		/*
833 		 * indicates whether pv emulation should be disabled if features
834 		 * are not present in the guest's cpuid
835 		 */
836 		bool enforce;
837 	} pv_cpuid;
838 
839 	/* Protected Guests */
840 	bool guest_state_protected;
841 };
842 
843 struct kvm_lpage_info {
844 	int disallow_lpage;
845 };
846 
847 struct kvm_arch_memory_slot {
848 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
849 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
850 	unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
851 };
852 
853 /*
854  * We use as the mode the number of bits allocated in the LDR for the
855  * logical processor ID.  It happens that these are all powers of two.
856  * This makes it is very easy to detect cases where the APICs are
857  * configured for multiple modes; in that case, we cannot use the map and
858  * hence cannot use kvm_irq_delivery_to_apic_fast either.
859  */
860 #define KVM_APIC_MODE_XAPIC_CLUSTER          4
861 #define KVM_APIC_MODE_XAPIC_FLAT             8
862 #define KVM_APIC_MODE_X2APIC                16
863 
864 struct kvm_apic_map {
865 	struct rcu_head rcu;
866 	u8 mode;
867 	u32 max_apic_id;
868 	union {
869 		struct kvm_lapic *xapic_flat_map[8];
870 		struct kvm_lapic *xapic_cluster_map[16][4];
871 	};
872 	struct kvm_lapic *phys_map[];
873 };
874 
875 /* Hyper-V synthetic debugger (SynDbg)*/
876 struct kvm_hv_syndbg {
877 	struct {
878 		u64 control;
879 		u64 status;
880 		u64 send_page;
881 		u64 recv_page;
882 		u64 pending_page;
883 	} control;
884 	u64 options;
885 };
886 
887 /* Hyper-V emulation context */
888 struct kvm_hv {
889 	struct mutex hv_lock;
890 	u64 hv_guest_os_id;
891 	u64 hv_hypercall;
892 	u64 hv_tsc_page;
893 
894 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
895 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
896 	u64 hv_crash_ctl;
897 
898 	struct ms_hyperv_tsc_page tsc_ref;
899 
900 	struct idr conn_to_evt;
901 
902 	u64 hv_reenlightenment_control;
903 	u64 hv_tsc_emulation_control;
904 	u64 hv_tsc_emulation_status;
905 
906 	/* How many vCPUs have VP index != vCPU index */
907 	atomic_t num_mismatched_vp_indexes;
908 
909 	struct hv_partition_assist_pg *hv_pa_pg;
910 	struct kvm_hv_syndbg hv_syndbg;
911 };
912 
913 struct msr_bitmap_range {
914 	u32 flags;
915 	u32 nmsrs;
916 	u32 base;
917 	unsigned long *bitmap;
918 };
919 
920 /* Xen emulation context */
921 struct kvm_xen {
922 	bool long_mode;
923 	bool shinfo_set;
924 	u8 upcall_vector;
925 	struct gfn_to_hva_cache shinfo_cache;
926 };
927 
928 enum kvm_irqchip_mode {
929 	KVM_IRQCHIP_NONE,
930 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
931 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
932 };
933 
934 #define APICV_INHIBIT_REASON_DISABLE    0
935 #define APICV_INHIBIT_REASON_HYPERV     1
936 #define APICV_INHIBIT_REASON_NESTED     2
937 #define APICV_INHIBIT_REASON_IRQWIN     3
938 #define APICV_INHIBIT_REASON_PIT_REINJ  4
939 #define APICV_INHIBIT_REASON_X2APIC	5
940 
941 struct kvm_arch {
942 	unsigned long n_used_mmu_pages;
943 	unsigned long n_requested_mmu_pages;
944 	unsigned long n_max_mmu_pages;
945 	unsigned int indirect_shadow_pages;
946 	u8 mmu_valid_gen;
947 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
948 	struct list_head active_mmu_pages;
949 	struct list_head zapped_obsolete_pages;
950 	struct list_head lpage_disallowed_mmu_pages;
951 	struct kvm_page_track_notifier_node mmu_sp_tracker;
952 	struct kvm_page_track_notifier_head track_notifier_head;
953 
954 	struct list_head assigned_dev_head;
955 	struct iommu_domain *iommu_domain;
956 	bool iommu_noncoherent;
957 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
958 	atomic_t noncoherent_dma_count;
959 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
960 	atomic_t assigned_device_count;
961 	struct kvm_pic *vpic;
962 	struct kvm_ioapic *vioapic;
963 	struct kvm_pit *vpit;
964 	atomic_t vapics_in_nmi_mode;
965 	struct mutex apic_map_lock;
966 	struct kvm_apic_map __rcu *apic_map;
967 	atomic_t apic_map_dirty;
968 
969 	bool apic_access_page_done;
970 	unsigned long apicv_inhibit_reasons;
971 
972 	gpa_t wall_clock;
973 
974 	bool mwait_in_guest;
975 	bool hlt_in_guest;
976 	bool pause_in_guest;
977 	bool cstate_in_guest;
978 
979 	unsigned long irq_sources_bitmap;
980 	s64 kvmclock_offset;
981 	raw_spinlock_t tsc_write_lock;
982 	u64 last_tsc_nsec;
983 	u64 last_tsc_write;
984 	u32 last_tsc_khz;
985 	u64 cur_tsc_nsec;
986 	u64 cur_tsc_write;
987 	u64 cur_tsc_offset;
988 	u64 cur_tsc_generation;
989 	int nr_vcpus_matched_tsc;
990 
991 	spinlock_t pvclock_gtod_sync_lock;
992 	bool use_master_clock;
993 	u64 master_kernel_ns;
994 	u64 master_cycle_now;
995 	struct delayed_work kvmclock_update_work;
996 	struct delayed_work kvmclock_sync_work;
997 
998 	struct kvm_xen_hvm_config xen_hvm_config;
999 
1000 	/* reads protected by irq_srcu, writes by irq_lock */
1001 	struct hlist_head mask_notifier_list;
1002 
1003 	struct kvm_hv hyperv;
1004 	struct kvm_xen xen;
1005 
1006 	#ifdef CONFIG_KVM_MMU_AUDIT
1007 	int audit_point;
1008 	#endif
1009 
1010 	bool backwards_tsc_observed;
1011 	bool boot_vcpu_runs_old_kvmclock;
1012 	u32 bsp_vcpu_id;
1013 
1014 	u64 disabled_quirks;
1015 	int cpu_dirty_logging_count;
1016 
1017 	enum kvm_irqchip_mode irqchip_mode;
1018 	u8 nr_reserved_ioapic_pins;
1019 
1020 	bool disabled_lapic_found;
1021 
1022 	bool x2apic_format;
1023 	bool x2apic_broadcast_quirk_disabled;
1024 
1025 	bool guest_can_read_msr_platform_info;
1026 	bool exception_payload_enabled;
1027 
1028 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1029 	u32 user_space_msr_mask;
1030 
1031 	struct {
1032 		u8 count;
1033 		bool default_allow:1;
1034 		struct msr_bitmap_range ranges[16];
1035 	} msr_filter;
1036 
1037 	bool bus_lock_detection_enabled;
1038 
1039 	struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1040 	struct task_struct *nx_lpage_recovery_thread;
1041 
1042 #ifdef CONFIG_X86_64
1043 	/*
1044 	 * Whether the TDP MMU is enabled for this VM. This contains a
1045 	 * snapshot of the TDP MMU module parameter from when the VM was
1046 	 * created and remains unchanged for the life of the VM. If this is
1047 	 * true, TDP MMU handler functions will run for various MMU
1048 	 * operations.
1049 	 */
1050 	bool tdp_mmu_enabled;
1051 
1052 	/*
1053 	 * List of struct kvmp_mmu_pages being used as roots.
1054 	 * All struct kvm_mmu_pages in the list should have
1055 	 * tdp_mmu_page set.
1056 	 * All struct kvm_mmu_pages in the list should have a positive
1057 	 * root_count except when a thread holds the MMU lock and is removing
1058 	 * an entry from the list.
1059 	 */
1060 	struct list_head tdp_mmu_roots;
1061 
1062 	/*
1063 	 * List of struct kvmp_mmu_pages not being used as roots.
1064 	 * All struct kvm_mmu_pages in the list should have
1065 	 * tdp_mmu_page set and a root_count of 0.
1066 	 */
1067 	struct list_head tdp_mmu_pages;
1068 
1069 	/*
1070 	 * Protects accesses to the following fields when the MMU lock
1071 	 * is held in read mode:
1072 	 *  - tdp_mmu_pages (above)
1073 	 *  - the link field of struct kvm_mmu_pages used by the TDP MMU
1074 	 *  - lpage_disallowed_mmu_pages
1075 	 *  - the lpage_disallowed_link field of struct kvm_mmu_pages used
1076 	 *    by the TDP MMU
1077 	 * It is acceptable, but not necessary, to acquire this lock when
1078 	 * the thread holds the MMU lock in write mode.
1079 	 */
1080 	spinlock_t tdp_mmu_pages_lock;
1081 #endif /* CONFIG_X86_64 */
1082 };
1083 
1084 struct kvm_vm_stat {
1085 	ulong mmu_shadow_zapped;
1086 	ulong mmu_pte_write;
1087 	ulong mmu_pde_zapped;
1088 	ulong mmu_flooded;
1089 	ulong mmu_recycled;
1090 	ulong mmu_cache_miss;
1091 	ulong mmu_unsync;
1092 	ulong remote_tlb_flush;
1093 	ulong lpages;
1094 	ulong nx_lpage_splits;
1095 	ulong max_mmu_page_hash_collisions;
1096 };
1097 
1098 struct kvm_vcpu_stat {
1099 	u64 pf_fixed;
1100 	u64 pf_guest;
1101 	u64 tlb_flush;
1102 	u64 invlpg;
1103 
1104 	u64 exits;
1105 	u64 io_exits;
1106 	u64 mmio_exits;
1107 	u64 signal_exits;
1108 	u64 irq_window_exits;
1109 	u64 nmi_window_exits;
1110 	u64 l1d_flush;
1111 	u64 halt_exits;
1112 	u64 halt_successful_poll;
1113 	u64 halt_attempted_poll;
1114 	u64 halt_poll_invalid;
1115 	u64 halt_wakeup;
1116 	u64 request_irq_exits;
1117 	u64 irq_exits;
1118 	u64 host_state_reload;
1119 	u64 fpu_reload;
1120 	u64 insn_emulation;
1121 	u64 insn_emulation_fail;
1122 	u64 hypercalls;
1123 	u64 irq_injections;
1124 	u64 nmi_injections;
1125 	u64 req_event;
1126 	u64 halt_poll_success_ns;
1127 	u64 halt_poll_fail_ns;
1128 };
1129 
1130 struct x86_instruction_info;
1131 
1132 struct msr_data {
1133 	bool host_initiated;
1134 	u32 index;
1135 	u64 data;
1136 };
1137 
1138 struct kvm_lapic_irq {
1139 	u32 vector;
1140 	u16 delivery_mode;
1141 	u16 dest_mode;
1142 	bool level;
1143 	u16 trig_mode;
1144 	u32 shorthand;
1145 	u32 dest_id;
1146 	bool msi_redir_hint;
1147 };
1148 
1149 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1150 {
1151 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1152 }
1153 
1154 struct kvm_x86_ops {
1155 	int (*hardware_enable)(void);
1156 	void (*hardware_disable)(void);
1157 	void (*hardware_unsetup)(void);
1158 	bool (*cpu_has_accelerated_tpr)(void);
1159 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1160 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1161 
1162 	unsigned int vm_size;
1163 	int (*vm_init)(struct kvm *kvm);
1164 	void (*vm_destroy)(struct kvm *kvm);
1165 
1166 	/* Create, but do not attach this VCPU */
1167 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1168 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1169 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1170 
1171 	void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
1172 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1173 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1174 
1175 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1176 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1177 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1178 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1179 	void (*get_segment)(struct kvm_vcpu *vcpu,
1180 			    struct kvm_segment *var, int seg);
1181 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1182 	void (*set_segment)(struct kvm_vcpu *vcpu,
1183 			    struct kvm_segment *var, int seg);
1184 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1185 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1186 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1187 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1188 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1189 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1190 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1191 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1192 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1193 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1194 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1195 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1196 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1197 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1198 
1199 	void (*tlb_flush_all)(struct kvm_vcpu *vcpu);
1200 	void (*tlb_flush_current)(struct kvm_vcpu *vcpu);
1201 	int  (*tlb_remote_flush)(struct kvm *kvm);
1202 	int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
1203 			struct kvm_tlb_range *range);
1204 
1205 	/*
1206 	 * Flush any TLB entries associated with the given GVA.
1207 	 * Does not need to flush GPA->HPA mappings.
1208 	 * Can potentially get non-canonical addresses through INVLPGs, which
1209 	 * the implementation may choose to ignore if appropriate.
1210 	 */
1211 	void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1212 
1213 	/*
1214 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1215 	 * does not need to flush GPA->HPA mappings.
1216 	 */
1217 	void (*tlb_flush_guest)(struct kvm_vcpu *vcpu);
1218 
1219 	enum exit_fastpath_completion (*run)(struct kvm_vcpu *vcpu);
1220 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1221 		enum exit_fastpath_completion exit_fastpath);
1222 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1223 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1224 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1225 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1226 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1227 				unsigned char *hypercall_addr);
1228 	void (*set_irq)(struct kvm_vcpu *vcpu);
1229 	void (*set_nmi)(struct kvm_vcpu *vcpu);
1230 	void (*queue_exception)(struct kvm_vcpu *vcpu);
1231 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1232 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1233 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1234 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1235 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1236 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1237 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1238 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1239 	bool (*check_apicv_inhibit_reasons)(ulong bit);
1240 	void (*pre_update_apicv_exec_ctrl)(struct kvm *kvm, bool activate);
1241 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1242 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1243 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1244 	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1245 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1246 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1247 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1248 	int (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
1249 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1250 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1251 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1252 	u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1253 
1254 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, unsigned long pgd,
1255 			     int pgd_level);
1256 
1257 	bool (*has_wbinvd_exit)(void);
1258 
1259 	/* Returns actual tsc_offset set in active VMCS */
1260 	u64 (*write_l1_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1261 
1262 	/*
1263 	 * Retrieve somewhat arbitrary exit information.  Intended to be used
1264 	 * only from within tracepoints to avoid VMREADs when tracing is off.
1265 	 */
1266 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
1267 			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1268 
1269 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1270 			       struct x86_instruction_info *info,
1271 			       enum x86_intercept_stage stage,
1272 			       struct x86_exception *exception);
1273 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1274 
1275 	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1276 
1277 	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1278 
1279 	/*
1280 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1281 	 * value indicates CPU dirty logging is unsupported or disabled.
1282 	 */
1283 	int cpu_dirty_log_size;
1284 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1285 
1286 	/* pmu operations of sub-arch */
1287 	const struct kvm_pmu_ops *pmu_ops;
1288 	const struct kvm_x86_nested_ops *nested_ops;
1289 
1290 	/*
1291 	 * Architecture specific hooks for vCPU blocking due to
1292 	 * HLT instruction.
1293 	 * Returns for .pre_block():
1294 	 *    - 0 means continue to block the vCPU.
1295 	 *    - 1 means we cannot block the vCPU since some event
1296 	 *        happens during this period, such as, 'ON' bit in
1297 	 *        posted-interrupts descriptor is set.
1298 	 */
1299 	int (*pre_block)(struct kvm_vcpu *vcpu);
1300 	void (*post_block)(struct kvm_vcpu *vcpu);
1301 
1302 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1303 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1304 
1305 	int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
1306 			      uint32_t guest_irq, bool set);
1307 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1308 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1309 
1310 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1311 			    bool *expired);
1312 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1313 
1314 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1315 
1316 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1317 	int (*pre_enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1318 	int (*pre_leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1319 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1320 
1321 	int (*mem_enc_op)(struct kvm *kvm, void __user *argp);
1322 	int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1323 	int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1324 
1325 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1326 
1327 	bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, void *insn, int insn_len);
1328 
1329 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1330 	int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1331 
1332 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1333 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1334 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1335 
1336 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1337 };
1338 
1339 struct kvm_x86_nested_ops {
1340 	int (*check_events)(struct kvm_vcpu *vcpu);
1341 	bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
1342 	int (*get_state)(struct kvm_vcpu *vcpu,
1343 			 struct kvm_nested_state __user *user_kvm_nested_state,
1344 			 unsigned user_data_size);
1345 	int (*set_state)(struct kvm_vcpu *vcpu,
1346 			 struct kvm_nested_state __user *user_kvm_nested_state,
1347 			 struct kvm_nested_state *kvm_state);
1348 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1349 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1350 
1351 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1352 			    uint16_t *vmcs_version);
1353 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1354 };
1355 
1356 struct kvm_x86_init_ops {
1357 	int (*cpu_has_kvm_support)(void);
1358 	int (*disabled_by_bios)(void);
1359 	int (*check_processor_compatibility)(void);
1360 	int (*hardware_setup)(void);
1361 
1362 	struct kvm_x86_ops *runtime_ops;
1363 };
1364 
1365 struct kvm_arch_async_pf {
1366 	u32 token;
1367 	gfn_t gfn;
1368 	unsigned long cr3;
1369 	bool direct_map;
1370 };
1371 
1372 extern u64 __read_mostly host_efer;
1373 extern bool __read_mostly allow_smaller_maxphyaddr;
1374 extern struct kvm_x86_ops kvm_x86_ops;
1375 
1376 #define KVM_X86_OP(func) \
1377 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1378 #define KVM_X86_OP_NULL KVM_X86_OP
1379 #include <asm/kvm-x86-ops.h>
1380 
1381 static inline void kvm_ops_static_call_update(void)
1382 {
1383 #define KVM_X86_OP(func) \
1384 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
1385 #define KVM_X86_OP_NULL KVM_X86_OP
1386 #include <asm/kvm-x86-ops.h>
1387 }
1388 
1389 #define __KVM_HAVE_ARCH_VM_ALLOC
1390 static inline struct kvm *kvm_arch_alloc_vm(void)
1391 {
1392 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1393 }
1394 void kvm_arch_free_vm(struct kvm *kvm);
1395 
1396 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1397 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1398 {
1399 	if (kvm_x86_ops.tlb_remote_flush &&
1400 	    !static_call(kvm_x86_tlb_remote_flush)(kvm))
1401 		return 0;
1402 	else
1403 		return -ENOTSUPP;
1404 }
1405 
1406 int kvm_mmu_module_init(void);
1407 void kvm_mmu_module_exit(void);
1408 
1409 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1410 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1411 void kvm_mmu_init_vm(struct kvm *kvm);
1412 void kvm_mmu_uninit_vm(struct kvm *kvm);
1413 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
1414 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
1415 		u64 acc_track_mask, u64 me_mask);
1416 
1417 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1418 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1419 				      struct kvm_memory_slot *memslot,
1420 				      int start_level);
1421 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1422 				   const struct kvm_memory_slot *memslot);
1423 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1424 				   struct kvm_memory_slot *memslot);
1425 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
1426 					struct kvm_memory_slot *memslot);
1427 void kvm_mmu_zap_all(struct kvm *kvm);
1428 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1429 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm);
1430 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1431 
1432 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1433 bool pdptrs_changed(struct kvm_vcpu *vcpu);
1434 
1435 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1436 			  const void *val, int bytes);
1437 
1438 struct kvm_irq_mask_notifier {
1439 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1440 	int irq;
1441 	struct hlist_node link;
1442 };
1443 
1444 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1445 				    struct kvm_irq_mask_notifier *kimn);
1446 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1447 				      struct kvm_irq_mask_notifier *kimn);
1448 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1449 			     bool mask);
1450 
1451 extern bool tdp_enabled;
1452 
1453 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1454 
1455 /* control of guest tsc rate supported? */
1456 extern bool kvm_has_tsc_control;
1457 /* maximum supported tsc_khz for guests */
1458 extern u32  kvm_max_guest_tsc_khz;
1459 /* number of bits of the fractional part of the TSC scaling ratio */
1460 extern u8   kvm_tsc_scaling_ratio_frac_bits;
1461 /* maximum allowed value of TSC scaling ratio */
1462 extern u64  kvm_max_tsc_scaling_ratio;
1463 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1464 extern u64  kvm_default_tsc_scaling_ratio;
1465 /* bus lock detection supported? */
1466 extern bool kvm_has_bus_lock_exit;
1467 
1468 extern u64 kvm_mce_cap_supported;
1469 
1470 /*
1471  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1472  *			userspace I/O) to indicate that the emulation context
1473  *			should be resued as is, i.e. skip initialization of
1474  *			emulation context, instruction fetch and decode.
1475  *
1476  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1477  *		      Indicates that only select instructions (tagged with
1478  *		      EmulateOnUD) should be emulated (to minimize the emulator
1479  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1480  *
1481  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1482  *		   decode the instruction length.  For use *only* by
1483  *		   kvm_x86_ops.skip_emulated_instruction() implementations.
1484  *
1485  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1486  *			     retry native execution under certain conditions,
1487  *			     Can only be set in conjunction with EMULTYPE_PF.
1488  *
1489  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1490  *			     triggered by KVM's magic "force emulation" prefix,
1491  *			     which is opt in via module param (off by default).
1492  *			     Bypasses EmulateOnUD restriction despite emulating
1493  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1494  *			     Used to test the full emulator from userspace.
1495  *
1496  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1497  *			backdoor emulation, which is opt in via module param.
1498  *			VMware backoor emulation handles select instructions
1499  *			and reinjects the #GP for all other cases.
1500  *
1501  * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1502  *		 case the CR2/GPA value pass on the stack is valid.
1503  */
1504 #define EMULTYPE_NO_DECODE	    (1 << 0)
1505 #define EMULTYPE_TRAP_UD	    (1 << 1)
1506 #define EMULTYPE_SKIP		    (1 << 2)
1507 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
1508 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
1509 #define EMULTYPE_VMWARE_GP	    (1 << 5)
1510 #define EMULTYPE_PF		    (1 << 6)
1511 
1512 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1513 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1514 					void *insn, int insn_len);
1515 
1516 void kvm_enable_efer_bits(u64);
1517 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1518 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1519 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1520 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1521 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1522 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1523 
1524 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1525 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1526 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1527 int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1528 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1529 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1530 
1531 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1532 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1533 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1534 
1535 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1536 		    int reason, bool has_error_code, u32 error_code);
1537 
1538 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu);
1539 
1540 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1541 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1542 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1543 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1544 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1545 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1546 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1547 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1548 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1549 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1550 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1551 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr);
1552 
1553 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1554 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1555 
1556 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1557 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1558 bool kvm_rdpmc(struct kvm_vcpu *vcpu);
1559 
1560 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1561 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1562 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1563 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1564 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1565 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1566 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1567 				    struct x86_exception *fault);
1568 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1569 			    gfn_t gfn, void *data, int offset, int len,
1570 			    u32 access);
1571 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1572 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1573 
1574 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1575 				       int irq_source_id, int level)
1576 {
1577 	/* Logical OR for level trig interrupt */
1578 	if (level)
1579 		__set_bit(irq_source_id, irq_state);
1580 	else
1581 		__clear_bit(irq_source_id, irq_state);
1582 
1583 	return !!(*irq_state);
1584 }
1585 
1586 #define KVM_MMU_ROOT_CURRENT		BIT(0)
1587 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
1588 #define KVM_MMU_ROOTS_ALL		(~0UL)
1589 
1590 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1591 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1592 
1593 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1594 
1595 void kvm_update_dr7(struct kvm_vcpu *vcpu);
1596 
1597 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1598 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1599 int kvm_mmu_load(struct kvm_vcpu *vcpu);
1600 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
1601 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
1602 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1603 			ulong roots_to_free);
1604 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1605 			   struct x86_exception *exception);
1606 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1607 			      struct x86_exception *exception);
1608 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1609 			       struct x86_exception *exception);
1610 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1611 			       struct x86_exception *exception);
1612 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1613 				struct x86_exception *exception);
1614 
1615 bool kvm_apicv_activated(struct kvm *kvm);
1616 void kvm_apicv_init(struct kvm *kvm, bool enable);
1617 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1618 void kvm_request_apicv_update(struct kvm *kvm, bool activate,
1619 			      unsigned long bit);
1620 
1621 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1622 
1623 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1624 		       void *insn, int insn_len);
1625 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1626 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1627 			    gva_t gva, hpa_t root_hpa);
1628 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1629 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
1630 		     bool skip_mmu_sync);
1631 
1632 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
1633 		       int tdp_huge_page_level);
1634 
1635 static inline u16 kvm_read_ldt(void)
1636 {
1637 	u16 ldt;
1638 	asm("sldt %0" : "=g"(ldt));
1639 	return ldt;
1640 }
1641 
1642 static inline void kvm_load_ldt(u16 sel)
1643 {
1644 	asm("lldt %0" : : "rm"(sel));
1645 }
1646 
1647 #ifdef CONFIG_X86_64
1648 static inline unsigned long read_msr(unsigned long msr)
1649 {
1650 	u64 value;
1651 
1652 	rdmsrl(msr, value);
1653 	return value;
1654 }
1655 #endif
1656 
1657 static inline u32 get_rdx_init_val(void)
1658 {
1659 	return 0x600; /* P6 family */
1660 }
1661 
1662 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1663 {
1664 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1665 }
1666 
1667 #define TSS_IOPB_BASE_OFFSET 0x66
1668 #define TSS_BASE_SIZE 0x68
1669 #define TSS_IOPB_SIZE (65536 / 8)
1670 #define TSS_REDIRECTION_SIZE (256 / 8)
1671 #define RMODE_TSS_SIZE							\
1672 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1673 
1674 enum {
1675 	TASK_SWITCH_CALL = 0,
1676 	TASK_SWITCH_IRET = 1,
1677 	TASK_SWITCH_JMP = 2,
1678 	TASK_SWITCH_GATE = 3,
1679 };
1680 
1681 #define HF_GIF_MASK		(1 << 0)
1682 #define HF_NMI_MASK		(1 << 3)
1683 #define HF_IRET_MASK		(1 << 4)
1684 #define HF_GUEST_MASK		(1 << 5) /* VCPU is in guest-mode */
1685 #define HF_SMM_MASK		(1 << 6)
1686 #define HF_SMM_INSIDE_NMI_MASK	(1 << 7)
1687 
1688 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1689 #define KVM_ADDRESS_SPACE_NUM 2
1690 
1691 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1692 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1693 
1694 asmlinkage void kvm_spurious_fault(void);
1695 
1696 /*
1697  * Hardware virtualization extension instructions may fault if a
1698  * reboot turns off virtualization while processes are running.
1699  * Usually after catching the fault we just panic; during reboot
1700  * instead the instruction is ignored.
1701  */
1702 #define __kvm_handle_fault_on_reboot(insn)				\
1703 	"666: \n\t"							\
1704 	insn "\n\t"							\
1705 	"jmp	668f \n\t"						\
1706 	"667: \n\t"							\
1707 	"1: \n\t"							\
1708 	".pushsection .discard.instr_begin \n\t"			\
1709 	".long 1b - . \n\t"						\
1710 	".popsection \n\t"						\
1711 	"call	kvm_spurious_fault \n\t"				\
1712 	"1: \n\t"							\
1713 	".pushsection .discard.instr_end \n\t"				\
1714 	".long 1b - . \n\t"						\
1715 	".popsection \n\t"						\
1716 	"668: \n\t"							\
1717 	_ASM_EXTABLE(666b, 667b)
1718 
1719 #define KVM_ARCH_WANT_MMU_NOTIFIER
1720 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1721 			unsigned flags);
1722 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
1723 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
1724 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
1725 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1726 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1727 int kvm_cpu_has_extint(struct kvm_vcpu *v);
1728 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1729 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1730 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1731 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1732 
1733 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1734 		    unsigned long ipi_bitmap_high, u32 min,
1735 		    unsigned long icr, int op_64_bit);
1736 
1737 void kvm_define_user_return_msr(unsigned index, u32 msr);
1738 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
1739 
1740 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc);
1741 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1742 
1743 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1744 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1745 
1746 void kvm_make_mclock_inprogress_request(struct kvm *kvm);
1747 void kvm_make_scan_ioapic_request(struct kvm *kvm);
1748 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
1749 				       unsigned long *vcpu_bitmap);
1750 
1751 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1752 				     struct kvm_async_pf *work);
1753 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1754 				 struct kvm_async_pf *work);
1755 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1756 			       struct kvm_async_pf *work);
1757 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
1758 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
1759 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1760 
1761 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
1762 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1763 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
1764 
1765 int kvm_is_in_guest(void);
1766 
1767 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
1768 				     u32 size);
1769 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1770 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1771 
1772 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1773 			     struct kvm_vcpu **dest_vcpu);
1774 
1775 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
1776 		     struct kvm_lapic_irq *irq);
1777 
1778 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
1779 {
1780 	/* We can only post Fixed and LowPrio IRQs */
1781 	return (irq->delivery_mode == APIC_DM_FIXED ||
1782 		irq->delivery_mode == APIC_DM_LOWEST);
1783 }
1784 
1785 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
1786 {
1787 	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
1788 }
1789 
1790 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
1791 {
1792 	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
1793 }
1794 
1795 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
1796 
1797 static inline int kvm_cpu_get_apicid(int mps_cpu)
1798 {
1799 #ifdef CONFIG_X86_LOCAL_APIC
1800 	return default_cpu_present_to_apicid(mps_cpu);
1801 #else
1802 	WARN_ON_ONCE(1);
1803 	return BAD_APICID;
1804 #endif
1805 }
1806 
1807 #define put_smstate(type, buf, offset, val)                      \
1808 	*(type *)((buf) + (offset) - 0x7e00) = val
1809 
1810 #define GET_SMSTATE(type, buf, offset)		\
1811 	(*(type *)((buf) + (offset) - 0x7e00))
1812 
1813 int kvm_cpu_dirty_log_size(void);
1814 
1815 #endif /* _ASM_X86_KVM_HOST_H */
1816