1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/hyperv.h> 28 #include <linux/kfifo.h> 29 #include <linux/sched/vhost_task.h> 30 31 #include <asm/apic.h> 32 #include <asm/pvclock-abi.h> 33 #include <asm/desc.h> 34 #include <asm/mtrr.h> 35 #include <asm/msr-index.h> 36 #include <asm/asm.h> 37 #include <asm/kvm_page_track.h> 38 #include <asm/kvm_vcpu_regs.h> 39 #include <asm/hyperv-tlfs.h> 40 #include <asm/reboot.h> 41 42 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 43 44 /* 45 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 46 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 47 */ 48 #ifdef CONFIG_KVM_MAX_NR_VCPUS 49 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 50 #else 51 #define KVM_MAX_VCPUS 1024 52 #endif 53 54 /* 55 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 56 * might be larger than the actual number of VCPUs because the 57 * APIC ID encodes CPU topology information. 58 * 59 * In the worst case, we'll need less than one extra bit for the 60 * Core ID, and less than one extra bit for the Package (Die) ID, 61 * so ratio of 4 should be enough. 62 */ 63 #define KVM_VCPU_ID_RATIO 4 64 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 65 66 /* memory slots that are not exposed to userspace */ 67 #define KVM_INTERNAL_MEM_SLOTS 3 68 69 #define KVM_HALT_POLL_NS_DEFAULT 200000 70 71 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 72 73 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 74 KVM_DIRTY_LOG_INITIALLY_SET) 75 76 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 77 KVM_BUS_LOCK_DETECTION_EXIT) 78 79 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 80 KVM_X86_NOTIFY_VMEXIT_USER) 81 82 /* x86-specific vcpu->requests bit members */ 83 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 84 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 85 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 86 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 87 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 88 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 89 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 90 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 91 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 92 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 93 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 94 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 95 #ifdef CONFIG_KVM_SMM 96 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 97 #endif 98 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 99 #define KVM_REQ_MCLOCK_INPROGRESS \ 100 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 101 #define KVM_REQ_SCAN_IOAPIC \ 102 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 103 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 104 #define KVM_REQ_APIC_PAGE_RELOAD \ 105 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 106 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 107 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 108 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 109 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 110 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 111 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 112 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 113 #define KVM_REQ_APICV_UPDATE \ 114 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 115 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 116 #define KVM_REQ_TLB_FLUSH_GUEST \ 117 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 118 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 119 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 120 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 121 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 123 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 124 #define KVM_REQ_HV_TLB_FLUSH \ 125 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE KVM_ARCH_REQ(34) 127 128 #define CR0_RESERVED_BITS \ 129 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 130 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 131 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 132 133 #define CR4_RESERVED_BITS \ 134 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 135 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 136 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 137 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 138 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 139 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 140 | X86_CR4_LAM_SUP)) 141 142 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 143 144 145 146 #define INVALID_PAGE (~(hpa_t)0) 147 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 148 149 /* KVM Hugepage definitions for x86 */ 150 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 151 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 152 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 153 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 154 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 155 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 156 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 157 158 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 159 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 160 #define KVM_MMU_HASH_SHIFT 12 161 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 162 #define KVM_MIN_FREE_MMU_PAGES 5 163 #define KVM_REFILL_PAGES 25 164 #define KVM_MAX_CPUID_ENTRIES 256 165 #define KVM_NR_VAR_MTRR 8 166 167 #define ASYNC_PF_PER_VCPU 64 168 169 enum kvm_reg { 170 VCPU_REGS_RAX = __VCPU_REGS_RAX, 171 VCPU_REGS_RCX = __VCPU_REGS_RCX, 172 VCPU_REGS_RDX = __VCPU_REGS_RDX, 173 VCPU_REGS_RBX = __VCPU_REGS_RBX, 174 VCPU_REGS_RSP = __VCPU_REGS_RSP, 175 VCPU_REGS_RBP = __VCPU_REGS_RBP, 176 VCPU_REGS_RSI = __VCPU_REGS_RSI, 177 VCPU_REGS_RDI = __VCPU_REGS_RDI, 178 #ifdef CONFIG_X86_64 179 VCPU_REGS_R8 = __VCPU_REGS_R8, 180 VCPU_REGS_R9 = __VCPU_REGS_R9, 181 VCPU_REGS_R10 = __VCPU_REGS_R10, 182 VCPU_REGS_R11 = __VCPU_REGS_R11, 183 VCPU_REGS_R12 = __VCPU_REGS_R12, 184 VCPU_REGS_R13 = __VCPU_REGS_R13, 185 VCPU_REGS_R14 = __VCPU_REGS_R14, 186 VCPU_REGS_R15 = __VCPU_REGS_R15, 187 #endif 188 VCPU_REGS_RIP, 189 NR_VCPU_REGS, 190 191 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 192 VCPU_EXREG_CR0, 193 VCPU_EXREG_CR3, 194 VCPU_EXREG_CR4, 195 VCPU_EXREG_RFLAGS, 196 VCPU_EXREG_SEGMENTS, 197 VCPU_EXREG_EXIT_INFO_1, 198 VCPU_EXREG_EXIT_INFO_2, 199 }; 200 201 enum { 202 VCPU_SREG_ES, 203 VCPU_SREG_CS, 204 VCPU_SREG_SS, 205 VCPU_SREG_DS, 206 VCPU_SREG_FS, 207 VCPU_SREG_GS, 208 VCPU_SREG_TR, 209 VCPU_SREG_LDTR, 210 }; 211 212 enum exit_fastpath_completion { 213 EXIT_FASTPATH_NONE, 214 EXIT_FASTPATH_REENTER_GUEST, 215 EXIT_FASTPATH_EXIT_HANDLED, 216 EXIT_FASTPATH_EXIT_USERSPACE, 217 }; 218 typedef enum exit_fastpath_completion fastpath_t; 219 220 struct x86_emulate_ctxt; 221 struct x86_exception; 222 union kvm_smram; 223 enum x86_intercept; 224 enum x86_intercept_stage; 225 226 #define KVM_NR_DB_REGS 4 227 228 #define DR6_BUS_LOCK (1 << 11) 229 #define DR6_BD (1 << 13) 230 #define DR6_BS (1 << 14) 231 #define DR6_BT (1 << 15) 232 #define DR6_RTM (1 << 16) 233 /* 234 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 235 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 236 * they will never be 0 for now, but when they are defined 237 * in the future it will require no code change. 238 * 239 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 240 */ 241 #define DR6_ACTIVE_LOW 0xffff0ff0 242 #define DR6_VOLATILE 0x0001e80f 243 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 244 245 #define DR7_BP_EN_MASK 0x000000ff 246 #define DR7_GE (1 << 9) 247 #define DR7_GD (1 << 13) 248 #define DR7_FIXED_1 0x00000400 249 #define DR7_VOLATILE 0xffff2bff 250 251 #define KVM_GUESTDBG_VALID_MASK \ 252 (KVM_GUESTDBG_ENABLE | \ 253 KVM_GUESTDBG_SINGLESTEP | \ 254 KVM_GUESTDBG_USE_HW_BP | \ 255 KVM_GUESTDBG_USE_SW_BP | \ 256 KVM_GUESTDBG_INJECT_BP | \ 257 KVM_GUESTDBG_INJECT_DB | \ 258 KVM_GUESTDBG_BLOCKIRQ) 259 260 #define PFERR_PRESENT_MASK BIT(0) 261 #define PFERR_WRITE_MASK BIT(1) 262 #define PFERR_USER_MASK BIT(2) 263 #define PFERR_RSVD_MASK BIT(3) 264 #define PFERR_FETCH_MASK BIT(4) 265 #define PFERR_PK_MASK BIT(5) 266 #define PFERR_SGX_MASK BIT(15) 267 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 268 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 269 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 270 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 271 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 272 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 273 274 /* 275 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 276 * when emulating instructions that triggers implicit access. 277 */ 278 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 279 /* 280 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 281 * when the guest was accessing private memory. 282 */ 283 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 284 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 285 286 /* apic attention bits */ 287 #define KVM_APIC_CHECK_VAPIC 0 288 /* 289 * The following bit is set with PV-EOI, unset on EOI. 290 * We detect PV-EOI changes by guest by comparing 291 * this bit with PV-EOI in guest memory. 292 * See the implementation in apic_update_pv_eoi. 293 */ 294 #define KVM_APIC_PV_EOI_PENDING 1 295 296 struct kvm_kernel_irq_routing_entry; 297 298 /* 299 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 300 * also includes TDP pages) to determine whether or not a page can be used in 301 * the given MMU context. This is a subset of the overall kvm_cpu_role to 302 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 303 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 304 * 305 * Upper-level shadow pages having gptes are tracked for write-protection via 306 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 307 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 308 * otherwise gfn_write_track will overflow and explosions will ensue. 309 * 310 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 311 * cannot be reused. The ability to reuse a SP is tracked by its role, which 312 * incorporates various mode bits and properties of the SP. Roughly speaking, 313 * the number of unique SPs that can theoretically be created is 2^n, where n 314 * is the number of bits that are used to compute the role. 315 * 316 * But, even though there are 19 bits in the mask below, not all combinations 317 * of modes and flags are possible: 318 * 319 * - invalid shadow pages are not accounted, so the bits are effectively 18 320 * 321 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 322 * execonly and ad_disabled are only used for nested EPT which has 323 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 324 * 325 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 326 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 327 * paging has exactly one upper level, making level completely redundant 328 * when has_4_byte_gpte=1. 329 * 330 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 331 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 332 * 333 * Therefore, the maximum number of possible upper-level shadow pages for a 334 * single gfn is a bit less than 2^13. 335 */ 336 union kvm_mmu_page_role { 337 u32 word; 338 struct { 339 unsigned level:4; 340 unsigned has_4_byte_gpte:1; 341 unsigned quadrant:2; 342 unsigned direct:1; 343 unsigned access:3; 344 unsigned invalid:1; 345 unsigned efer_nx:1; 346 unsigned cr0_wp:1; 347 unsigned smep_andnot_wp:1; 348 unsigned smap_andnot_wp:1; 349 unsigned ad_disabled:1; 350 unsigned guest_mode:1; 351 unsigned passthrough:1; 352 unsigned :5; 353 354 /* 355 * This is left at the top of the word so that 356 * kvm_memslots_for_spte_role can extract it with a 357 * simple shift. While there is room, give it a whole 358 * byte so it is also faster to load it from memory. 359 */ 360 unsigned smm:8; 361 }; 362 }; 363 364 /* 365 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 366 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 367 * including on nested transitions, if nothing in the full role changes then 368 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 369 * don't treat all-zero structure as valid data. 370 * 371 * The properties that are tracked in the extended role but not the page role 372 * are for things that either (a) do not affect the validity of the shadow page 373 * or (b) are indirectly reflected in the shadow page's role. For example, 374 * CR4.PKE only affects permission checks for software walks of the guest page 375 * tables (because KVM doesn't support Protection Keys with shadow paging), and 376 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 377 * 378 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 379 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 380 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 381 * SMAP aware regardless of CR0.WP. 382 */ 383 union kvm_mmu_extended_role { 384 u32 word; 385 struct { 386 unsigned int valid:1; 387 unsigned int execonly:1; 388 unsigned int cr4_pse:1; 389 unsigned int cr4_pke:1; 390 unsigned int cr4_smap:1; 391 unsigned int cr4_smep:1; 392 unsigned int cr4_la57:1; 393 unsigned int efer_lma:1; 394 }; 395 }; 396 397 union kvm_cpu_role { 398 u64 as_u64; 399 struct { 400 union kvm_mmu_page_role base; 401 union kvm_mmu_extended_role ext; 402 }; 403 }; 404 405 struct kvm_rmap_head { 406 unsigned long val; 407 }; 408 409 struct kvm_pio_request { 410 unsigned long linear_rip; 411 unsigned long count; 412 int in; 413 int port; 414 int size; 415 }; 416 417 #define PT64_ROOT_MAX_LEVEL 5 418 419 struct rsvd_bits_validate { 420 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 421 u64 bad_mt_xwr; 422 }; 423 424 struct kvm_mmu_root_info { 425 gpa_t pgd; 426 hpa_t hpa; 427 }; 428 429 #define KVM_MMU_ROOT_INFO_INVALID \ 430 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 431 432 #define KVM_MMU_NUM_PREV_ROOTS 3 433 434 #define KVM_MMU_ROOT_CURRENT BIT(0) 435 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 436 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 437 438 #define KVM_HAVE_MMU_RWLOCK 439 440 struct kvm_mmu_page; 441 struct kvm_page_fault; 442 443 /* 444 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 445 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 446 * current mmu mode. 447 */ 448 struct kvm_mmu { 449 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 450 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 451 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 452 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 453 struct x86_exception *fault); 454 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 455 gpa_t gva_or_gpa, u64 access, 456 struct x86_exception *exception); 457 int (*sync_spte)(struct kvm_vcpu *vcpu, 458 struct kvm_mmu_page *sp, int i); 459 struct kvm_mmu_root_info root; 460 union kvm_cpu_role cpu_role; 461 union kvm_mmu_page_role root_role; 462 463 /* 464 * The pkru_mask indicates if protection key checks are needed. It 465 * consists of 16 domains indexed by page fault error code bits [4:1], 466 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 467 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 468 */ 469 u32 pkru_mask; 470 471 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 472 473 /* 474 * Bitmap; bit set = permission fault 475 * Byte index: page fault error code [4:1] 476 * Bit index: pte permissions in ACC_* format 477 */ 478 u8 permissions[16]; 479 480 u64 *pae_root; 481 u64 *pml4_root; 482 u64 *pml5_root; 483 484 /* 485 * check zero bits on shadow page table entries, these 486 * bits include not only hardware reserved bits but also 487 * the bits spte never used. 488 */ 489 struct rsvd_bits_validate shadow_zero_check; 490 491 struct rsvd_bits_validate guest_rsvd_check; 492 493 u64 pdptrs[4]; /* pae */ 494 }; 495 496 enum pmc_type { 497 KVM_PMC_GP = 0, 498 KVM_PMC_FIXED, 499 }; 500 501 struct kvm_pmc { 502 enum pmc_type type; 503 u8 idx; 504 bool is_paused; 505 bool intr; 506 /* 507 * Base value of the PMC counter, relative to the *consumed* count in 508 * the associated perf_event. This value includes counter updates from 509 * the perf_event and emulated_count since the last time the counter 510 * was reprogrammed, but it is *not* the current value as seen by the 511 * guest or userspace. 512 * 513 * The count is relative to the associated perf_event so that KVM 514 * doesn't need to reprogram the perf_event every time the guest writes 515 * to the counter. 516 */ 517 u64 counter; 518 /* 519 * PMC events triggered by KVM emulation that haven't been fully 520 * processed, i.e. haven't undergone overflow detection. 521 */ 522 u64 emulated_counter; 523 u64 eventsel; 524 struct perf_event *perf_event; 525 struct kvm_vcpu *vcpu; 526 /* 527 * only for creating or reusing perf_event, 528 * eventsel value for general purpose counters, 529 * ctrl value for fixed counters. 530 */ 531 u64 current_config; 532 }; 533 534 /* More counters may conflict with other existing Architectural MSRs */ 535 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 536 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 537 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 538 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 539 KVM_MAX_NR_AMD_GP_COUNTERS) 540 541 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3 542 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0 543 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \ 544 KVM_MAX_NR_AMD_FIXED_COUTNERS) 545 546 struct kvm_pmu { 547 u8 version; 548 unsigned nr_arch_gp_counters; 549 unsigned nr_arch_fixed_counters; 550 unsigned available_event_types; 551 u64 fixed_ctr_ctrl; 552 u64 fixed_ctr_ctrl_rsvd; 553 u64 global_ctrl; 554 u64 global_status; 555 u64 counter_bitmask[2]; 556 u64 global_ctrl_rsvd; 557 u64 global_status_rsvd; 558 u64 reserved_bits; 559 u64 raw_event_mask; 560 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 561 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 562 563 /* 564 * Overlay the bitmap with a 64-bit atomic so that all bits can be 565 * set in a single access, e.g. to reprogram all counters when the PMU 566 * filter changes. 567 */ 568 union { 569 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 570 atomic64_t __reprogram_pmi; 571 }; 572 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 573 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 574 575 u64 ds_area; 576 u64 pebs_enable; 577 u64 pebs_enable_rsvd; 578 u64 pebs_data_cfg; 579 u64 pebs_data_cfg_rsvd; 580 581 /* 582 * If a guest counter is cross-mapped to host counter with different 583 * index, its PEBS capability will be temporarily disabled. 584 * 585 * The user should make sure that this mask is updated 586 * after disabling interrupts and before perf_guest_get_msrs(); 587 */ 588 u64 host_cross_mapped_mask; 589 590 /* 591 * The gate to release perf_events not marked in 592 * pmc_in_use only once in a vcpu time slice. 593 */ 594 bool need_cleanup; 595 596 /* 597 * The total number of programmed perf_events and it helps to avoid 598 * redundant check before cleanup if guest don't use vPMU at all. 599 */ 600 u8 event_count; 601 }; 602 603 struct kvm_pmu_ops; 604 605 enum { 606 KVM_DEBUGREG_BP_ENABLED = 1, 607 KVM_DEBUGREG_WONT_EXIT = 2, 608 }; 609 610 struct kvm_mtrr { 611 u64 var[KVM_NR_VAR_MTRR * 2]; 612 u64 fixed_64k; 613 u64 fixed_16k[2]; 614 u64 fixed_4k[8]; 615 u64 deftype; 616 }; 617 618 /* Hyper-V SynIC timer */ 619 struct kvm_vcpu_hv_stimer { 620 struct hrtimer timer; 621 int index; 622 union hv_stimer_config config; 623 u64 count; 624 u64 exp_time; 625 struct hv_message msg; 626 bool msg_pending; 627 }; 628 629 /* Hyper-V synthetic interrupt controller (SynIC)*/ 630 struct kvm_vcpu_hv_synic { 631 u64 version; 632 u64 control; 633 u64 msg_page; 634 u64 evt_page; 635 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 636 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 637 DECLARE_BITMAP(auto_eoi_bitmap, 256); 638 DECLARE_BITMAP(vec_bitmap, 256); 639 bool active; 640 bool dont_zero_synic_pages; 641 }; 642 643 /* The maximum number of entries on the TLB flush fifo. */ 644 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 645 /* 646 * Note: the following 'magic' entry is made up by KVM to avoid putting 647 * anything besides GVA on the TLB flush fifo. It is theoretically possible 648 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 649 * which will look identical. KVM's action to 'flush everything' instead of 650 * flushing these particular addresses is, however, fully legitimate as 651 * flushing more than requested is always OK. 652 */ 653 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 654 655 enum hv_tlb_flush_fifos { 656 HV_L1_TLB_FLUSH_FIFO, 657 HV_L2_TLB_FLUSH_FIFO, 658 HV_NR_TLB_FLUSH_FIFOS, 659 }; 660 661 struct kvm_vcpu_hv_tlb_flush_fifo { 662 spinlock_t write_lock; 663 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 664 }; 665 666 /* Hyper-V per vcpu emulation context */ 667 struct kvm_vcpu_hv { 668 struct kvm_vcpu *vcpu; 669 u32 vp_index; 670 u64 hv_vapic; 671 s64 runtime_offset; 672 struct kvm_vcpu_hv_synic synic; 673 struct kvm_hyperv_exit exit; 674 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 675 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 676 bool enforce_cpuid; 677 struct { 678 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 679 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 680 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 681 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 682 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 683 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 684 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 685 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 686 } cpuid_cache; 687 688 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 689 690 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 691 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 692 693 struct hv_vp_assist_page vp_assist_page; 694 695 struct { 696 u64 pa_page_gpa; 697 u64 vm_id; 698 u32 vp_id; 699 } nested; 700 }; 701 702 struct kvm_hypervisor_cpuid { 703 u32 base; 704 u32 limit; 705 }; 706 707 #ifdef CONFIG_KVM_XEN 708 /* Xen HVM per vcpu emulation context */ 709 struct kvm_vcpu_xen { 710 u64 hypercall_rip; 711 u32 current_runstate; 712 u8 upcall_vector; 713 struct gfn_to_pfn_cache vcpu_info_cache; 714 struct gfn_to_pfn_cache vcpu_time_info_cache; 715 struct gfn_to_pfn_cache runstate_cache; 716 struct gfn_to_pfn_cache runstate2_cache; 717 u64 last_steal; 718 u64 runstate_entry_time; 719 u64 runstate_times[4]; 720 unsigned long evtchn_pending_sel; 721 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 722 u32 timer_virq; 723 u64 timer_expires; /* In guest epoch */ 724 atomic_t timer_pending; 725 struct hrtimer timer; 726 int poll_evtchn; 727 struct timer_list poll_timer; 728 struct kvm_hypervisor_cpuid cpuid; 729 }; 730 #endif 731 732 struct kvm_queued_exception { 733 bool pending; 734 bool injected; 735 bool has_error_code; 736 u8 vector; 737 u32 error_code; 738 unsigned long payload; 739 bool has_payload; 740 }; 741 742 struct kvm_vcpu_arch { 743 /* 744 * rip and regs accesses must go through 745 * kvm_{register,rip}_{read,write} functions. 746 */ 747 unsigned long regs[NR_VCPU_REGS]; 748 u32 regs_avail; 749 u32 regs_dirty; 750 751 unsigned long cr0; 752 unsigned long cr0_guest_owned_bits; 753 unsigned long cr2; 754 unsigned long cr3; 755 unsigned long cr4; 756 unsigned long cr4_guest_owned_bits; 757 unsigned long cr4_guest_rsvd_bits; 758 unsigned long cr8; 759 u32 host_pkru; 760 u32 pkru; 761 u32 hflags; 762 u64 efer; 763 u64 apic_base; 764 struct kvm_lapic *apic; /* kernel irqchip context */ 765 bool load_eoi_exitmap_pending; 766 DECLARE_BITMAP(ioapic_handled_vectors, 256); 767 unsigned long apic_attention; 768 int32_t apic_arb_prio; 769 int mp_state; 770 u64 ia32_misc_enable_msr; 771 u64 smbase; 772 u64 smi_count; 773 bool at_instruction_boundary; 774 bool tpr_access_reporting; 775 bool xfd_no_write_intercept; 776 u64 ia32_xss; 777 u64 microcode_version; 778 u64 arch_capabilities; 779 u64 perf_capabilities; 780 781 /* 782 * Paging state of the vcpu 783 * 784 * If the vcpu runs in guest mode with two level paging this still saves 785 * the paging mode of the l1 guest. This context is always used to 786 * handle faults. 787 */ 788 struct kvm_mmu *mmu; 789 790 /* Non-nested MMU for L1 */ 791 struct kvm_mmu root_mmu; 792 793 /* L1 MMU when running nested */ 794 struct kvm_mmu guest_mmu; 795 796 /* 797 * Paging state of an L2 guest (used for nested npt) 798 * 799 * This context will save all necessary information to walk page tables 800 * of an L2 guest. This context is only initialized for page table 801 * walking and not for faulting since we never handle l2 page faults on 802 * the host. 803 */ 804 struct kvm_mmu nested_mmu; 805 806 /* 807 * Pointer to the mmu context currently used for 808 * gva_to_gpa translations. 809 */ 810 struct kvm_mmu *walk_mmu; 811 812 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 813 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 814 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 815 struct kvm_mmu_memory_cache mmu_page_header_cache; 816 817 /* 818 * QEMU userspace and the guest each have their own FPU state. 819 * In vcpu_run, we switch between the user and guest FPU contexts. 820 * While running a VCPU, the VCPU thread will have the guest FPU 821 * context. 822 * 823 * Note that while the PKRU state lives inside the fpu registers, 824 * it is switched out separately at VMENTER and VMEXIT time. The 825 * "guest_fpstate" state here contains the guest FPU context, with the 826 * host PRKU bits. 827 */ 828 struct fpu_guest guest_fpu; 829 830 u64 xcr0; 831 u64 guest_supported_xcr0; 832 833 struct kvm_pio_request pio; 834 void *pio_data; 835 void *sev_pio_data; 836 unsigned sev_pio_count; 837 838 u8 event_exit_inst_len; 839 840 bool exception_from_userspace; 841 842 /* Exceptions to be injected to the guest. */ 843 struct kvm_queued_exception exception; 844 /* Exception VM-Exits to be synthesized to L1. */ 845 struct kvm_queued_exception exception_vmexit; 846 847 struct kvm_queued_interrupt { 848 bool injected; 849 bool soft; 850 u8 nr; 851 } interrupt; 852 853 int halt_request; /* real mode on Intel only */ 854 855 int cpuid_nent; 856 struct kvm_cpuid_entry2 *cpuid_entries; 857 struct kvm_hypervisor_cpuid kvm_cpuid; 858 bool is_amd_compatible; 859 860 /* 861 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly 862 * when "struct kvm_vcpu_arch" is no longer defined in an 863 * arch/x86/include/asm header. The max is mostly arbitrary, i.e. 864 * can be increased as necessary. 865 */ 866 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG 867 868 /* 869 * Track whether or not the guest is allowed to use features that are 870 * governed by KVM, where "governed" means KVM needs to manage state 871 * and/or explicitly enable the feature in hardware. Typically, but 872 * not always, governed features can be used by the guest if and only 873 * if both KVM and userspace want to expose the feature to the guest. 874 */ 875 struct { 876 DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES); 877 } governed_features; 878 879 u64 reserved_gpa_bits; 880 int maxphyaddr; 881 882 /* emulate context */ 883 884 struct x86_emulate_ctxt *emulate_ctxt; 885 bool emulate_regs_need_sync_to_vcpu; 886 bool emulate_regs_need_sync_from_vcpu; 887 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 888 889 gpa_t time; 890 struct pvclock_vcpu_time_info hv_clock; 891 unsigned int hw_tsc_khz; 892 struct gfn_to_pfn_cache pv_time; 893 /* set guest stopped flag in pvclock flags field */ 894 bool pvclock_set_guest_stopped_request; 895 896 struct { 897 u8 preempted; 898 u64 msr_val; 899 u64 last_steal; 900 struct gfn_to_hva_cache cache; 901 } st; 902 903 u64 l1_tsc_offset; 904 u64 tsc_offset; /* current tsc offset */ 905 u64 last_guest_tsc; 906 u64 last_host_tsc; 907 u64 tsc_offset_adjustment; 908 u64 this_tsc_nsec; 909 u64 this_tsc_write; 910 u64 this_tsc_generation; 911 bool tsc_catchup; 912 bool tsc_always_catchup; 913 s8 virtual_tsc_shift; 914 u32 virtual_tsc_mult; 915 u32 virtual_tsc_khz; 916 s64 ia32_tsc_adjust_msr; 917 u64 msr_ia32_power_ctl; 918 u64 l1_tsc_scaling_ratio; 919 u64 tsc_scaling_ratio; /* current scaling ratio */ 920 921 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 922 /* Number of NMIs pending injection, not including hardware vNMIs. */ 923 unsigned int nmi_pending; 924 bool nmi_injected; /* Trying to inject an NMI this entry */ 925 bool smi_pending; /* SMI queued after currently running handler */ 926 u8 handling_intr_from_guest; 927 928 struct kvm_mtrr mtrr_state; 929 u64 pat; 930 931 unsigned switch_db_regs; 932 unsigned long db[KVM_NR_DB_REGS]; 933 unsigned long dr6; 934 unsigned long dr7; 935 unsigned long eff_db[KVM_NR_DB_REGS]; 936 unsigned long guest_debug_dr7; 937 u64 msr_platform_info; 938 u64 msr_misc_features_enables; 939 940 u64 mcg_cap; 941 u64 mcg_status; 942 u64 mcg_ctl; 943 u64 mcg_ext_ctl; 944 u64 *mce_banks; 945 u64 *mci_ctl2_banks; 946 947 /* Cache MMIO info */ 948 u64 mmio_gva; 949 unsigned mmio_access; 950 gfn_t mmio_gfn; 951 u64 mmio_gen; 952 953 struct kvm_pmu pmu; 954 955 /* used for guest single stepping over the given code position */ 956 unsigned long singlestep_rip; 957 958 #ifdef CONFIG_KVM_HYPERV 959 bool hyperv_enabled; 960 struct kvm_vcpu_hv *hyperv; 961 #endif 962 #ifdef CONFIG_KVM_XEN 963 struct kvm_vcpu_xen xen; 964 #endif 965 cpumask_var_t wbinvd_dirty_mask; 966 967 unsigned long last_retry_eip; 968 unsigned long last_retry_addr; 969 970 struct { 971 bool halted; 972 gfn_t gfns[ASYNC_PF_PER_VCPU]; 973 struct gfn_to_hva_cache data; 974 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 975 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 976 u16 vec; 977 u32 id; 978 bool send_user_only; 979 u32 host_apf_flags; 980 bool delivery_as_pf_vmexit; 981 bool pageready_pending; 982 } apf; 983 984 /* OSVW MSRs (AMD only) */ 985 struct { 986 u64 length; 987 u64 status; 988 } osvw; 989 990 struct { 991 u64 msr_val; 992 struct gfn_to_hva_cache data; 993 } pv_eoi; 994 995 u64 msr_kvm_poll_control; 996 997 /* pv related host specific info */ 998 struct { 999 bool pv_unhalted; 1000 } pv; 1001 1002 int pending_ioapic_eoi; 1003 int pending_external_vector; 1004 1005 /* be preempted when it's in kernel-mode(cpl=0) */ 1006 bool preempted_in_kernel; 1007 1008 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1009 bool l1tf_flush_l1d; 1010 1011 /* Host CPU on which VM-entry was most recently attempted */ 1012 int last_vmentry_cpu; 1013 1014 /* AMD MSRC001_0015 Hardware Configuration */ 1015 u64 msr_hwcr; 1016 1017 /* pv related cpuid info */ 1018 struct { 1019 /* 1020 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1021 * leaf. 1022 */ 1023 u32 features; 1024 1025 /* 1026 * indicates whether pv emulation should be disabled if features 1027 * are not present in the guest's cpuid 1028 */ 1029 bool enforce; 1030 } pv_cpuid; 1031 1032 /* Protected Guests */ 1033 bool guest_state_protected; 1034 1035 /* 1036 * Set when PDPTS were loaded directly by the userspace without 1037 * reading the guest memory 1038 */ 1039 bool pdptrs_from_userspace; 1040 1041 #if IS_ENABLED(CONFIG_HYPERV) 1042 hpa_t hv_root_tdp; 1043 #endif 1044 }; 1045 1046 struct kvm_lpage_info { 1047 int disallow_lpage; 1048 }; 1049 1050 struct kvm_arch_memory_slot { 1051 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1052 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1053 unsigned short *gfn_write_track; 1054 }; 1055 1056 /* 1057 * Track the mode of the optimized logical map, as the rules for decoding the 1058 * destination vary per mode. Enabling the optimized logical map requires all 1059 * software-enabled local APIs to be in the same mode, each addressable APIC to 1060 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1061 */ 1062 enum kvm_apic_logical_mode { 1063 /* All local APICs are software disabled. */ 1064 KVM_APIC_MODE_SW_DISABLED, 1065 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1066 KVM_APIC_MODE_XAPIC_CLUSTER, 1067 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1068 KVM_APIC_MODE_XAPIC_FLAT, 1069 /* All software enabled local APICs in x2APIC mode. */ 1070 KVM_APIC_MODE_X2APIC, 1071 /* 1072 * Optimized map disabled, e.g. not all local APICs in the same logical 1073 * mode, same logical ID assigned to multiple APICs, etc. 1074 */ 1075 KVM_APIC_MODE_MAP_DISABLED, 1076 }; 1077 1078 struct kvm_apic_map { 1079 struct rcu_head rcu; 1080 enum kvm_apic_logical_mode logical_mode; 1081 u32 max_apic_id; 1082 union { 1083 struct kvm_lapic *xapic_flat_map[8]; 1084 struct kvm_lapic *xapic_cluster_map[16][4]; 1085 }; 1086 struct kvm_lapic *phys_map[]; 1087 }; 1088 1089 /* Hyper-V synthetic debugger (SynDbg)*/ 1090 struct kvm_hv_syndbg { 1091 struct { 1092 u64 control; 1093 u64 status; 1094 u64 send_page; 1095 u64 recv_page; 1096 u64 pending_page; 1097 } control; 1098 u64 options; 1099 }; 1100 1101 /* Current state of Hyper-V TSC page clocksource */ 1102 enum hv_tsc_page_status { 1103 /* TSC page was not set up or disabled */ 1104 HV_TSC_PAGE_UNSET = 0, 1105 /* TSC page MSR was written by the guest, update pending */ 1106 HV_TSC_PAGE_GUEST_CHANGED, 1107 /* TSC page update was triggered from the host side */ 1108 HV_TSC_PAGE_HOST_CHANGED, 1109 /* TSC page was properly set up and is currently active */ 1110 HV_TSC_PAGE_SET, 1111 /* TSC page was set up with an inaccessible GPA */ 1112 HV_TSC_PAGE_BROKEN, 1113 }; 1114 1115 #ifdef CONFIG_KVM_HYPERV 1116 /* Hyper-V emulation context */ 1117 struct kvm_hv { 1118 struct mutex hv_lock; 1119 u64 hv_guest_os_id; 1120 u64 hv_hypercall; 1121 u64 hv_tsc_page; 1122 enum hv_tsc_page_status hv_tsc_page_status; 1123 1124 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1125 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1126 u64 hv_crash_ctl; 1127 1128 struct ms_hyperv_tsc_page tsc_ref; 1129 1130 struct idr conn_to_evt; 1131 1132 u64 hv_reenlightenment_control; 1133 u64 hv_tsc_emulation_control; 1134 u64 hv_tsc_emulation_status; 1135 u64 hv_invtsc_control; 1136 1137 /* How many vCPUs have VP index != vCPU index */ 1138 atomic_t num_mismatched_vp_indexes; 1139 1140 /* 1141 * How many SynICs use 'AutoEOI' feature 1142 * (protected by arch.apicv_update_lock) 1143 */ 1144 unsigned int synic_auto_eoi_used; 1145 1146 struct kvm_hv_syndbg hv_syndbg; 1147 1148 bool xsaves_xsavec_checked; 1149 }; 1150 #endif 1151 1152 struct msr_bitmap_range { 1153 u32 flags; 1154 u32 nmsrs; 1155 u32 base; 1156 unsigned long *bitmap; 1157 }; 1158 1159 #ifdef CONFIG_KVM_XEN 1160 /* Xen emulation context */ 1161 struct kvm_xen { 1162 struct mutex xen_lock; 1163 u32 xen_version; 1164 bool long_mode; 1165 bool runstate_update_flag; 1166 u8 upcall_vector; 1167 struct gfn_to_pfn_cache shinfo_cache; 1168 struct idr evtchn_ports; 1169 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1170 }; 1171 #endif 1172 1173 enum kvm_irqchip_mode { 1174 KVM_IRQCHIP_NONE, 1175 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1176 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1177 }; 1178 1179 struct kvm_x86_msr_filter { 1180 u8 count; 1181 bool default_allow:1; 1182 struct msr_bitmap_range ranges[16]; 1183 }; 1184 1185 struct kvm_x86_pmu_event_filter { 1186 __u32 action; 1187 __u32 nevents; 1188 __u32 fixed_counter_bitmap; 1189 __u32 flags; 1190 __u32 nr_includes; 1191 __u32 nr_excludes; 1192 __u64 *includes; 1193 __u64 *excludes; 1194 __u64 events[]; 1195 }; 1196 1197 enum kvm_apicv_inhibit { 1198 1199 /********************************************************************/ 1200 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1201 /********************************************************************/ 1202 1203 /* 1204 * APIC acceleration is disabled by a module parameter 1205 * and/or not supported in hardware. 1206 */ 1207 APICV_INHIBIT_REASON_DISABLED, 1208 1209 /* 1210 * APIC acceleration is inhibited because AutoEOI feature is 1211 * being used by a HyperV guest. 1212 */ 1213 APICV_INHIBIT_REASON_HYPERV, 1214 1215 /* 1216 * APIC acceleration is inhibited because the userspace didn't yet 1217 * enable the kernel/split irqchip. 1218 */ 1219 APICV_INHIBIT_REASON_ABSENT, 1220 1221 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1222 * (out of band, debug measure of blocking all interrupts on this vCPU) 1223 * was enabled, to avoid AVIC/APICv bypassing it. 1224 */ 1225 APICV_INHIBIT_REASON_BLOCKIRQ, 1226 1227 /* 1228 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1229 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1230 */ 1231 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1232 1233 /* 1234 * For simplicity, the APIC acceleration is inhibited 1235 * first time either APIC ID or APIC base are changed by the guest 1236 * from their reset values. 1237 */ 1238 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1239 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1240 1241 /******************************************************/ 1242 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1243 /******************************************************/ 1244 1245 /* 1246 * AVIC is inhibited on a vCPU because it runs a nested guest. 1247 * 1248 * This is needed because unlike APICv, the peers of this vCPU 1249 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1250 * a vCPU runs nested. 1251 */ 1252 APICV_INHIBIT_REASON_NESTED, 1253 1254 /* 1255 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1256 * which cannot be injected when the AVIC is enabled, thus AVIC 1257 * is inhibited while KVM waits for IRQ window. 1258 */ 1259 APICV_INHIBIT_REASON_IRQWIN, 1260 1261 /* 1262 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1263 * which AVIC doesn't support for edge triggered interrupts. 1264 */ 1265 APICV_INHIBIT_REASON_PIT_REINJ, 1266 1267 /* 1268 * AVIC is disabled because SEV doesn't support it. 1269 */ 1270 APICV_INHIBIT_REASON_SEV, 1271 1272 /* 1273 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1274 * mapping between logical ID and vCPU. 1275 */ 1276 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1277 1278 NR_APICV_INHIBIT_REASONS, 1279 }; 1280 1281 #define __APICV_INHIBIT_REASON(reason) \ 1282 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1283 1284 #define APICV_INHIBIT_REASONS \ 1285 __APICV_INHIBIT_REASON(DISABLED), \ 1286 __APICV_INHIBIT_REASON(HYPERV), \ 1287 __APICV_INHIBIT_REASON(ABSENT), \ 1288 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1289 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1290 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1291 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1292 __APICV_INHIBIT_REASON(NESTED), \ 1293 __APICV_INHIBIT_REASON(IRQWIN), \ 1294 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1295 __APICV_INHIBIT_REASON(SEV), \ 1296 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED) 1297 1298 struct kvm_arch { 1299 unsigned long n_used_mmu_pages; 1300 unsigned long n_requested_mmu_pages; 1301 unsigned long n_max_mmu_pages; 1302 unsigned int indirect_shadow_pages; 1303 u8 mmu_valid_gen; 1304 u8 vm_type; 1305 bool has_private_mem; 1306 bool has_protected_state; 1307 bool pre_fault_allowed; 1308 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1309 struct list_head active_mmu_pages; 1310 /* 1311 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1312 * replaced by an NX huge page. A shadow page is on this list if its 1313 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1314 * and there are no other conditions that prevent a huge page, e.g. 1315 * the backing host page is huge, dirtly logging is not enabled for its 1316 * memslot, etc... Note, zapping shadow pages on this list doesn't 1317 * guarantee an NX huge page will be created in its stead, e.g. if the 1318 * guest attempts to execute from the region then KVM obviously can't 1319 * create an NX huge page (without hanging the guest). 1320 */ 1321 struct list_head possible_nx_huge_pages; 1322 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1323 struct kvm_page_track_notifier_head track_notifier_head; 1324 #endif 1325 /* 1326 * Protects marking pages unsync during page faults, as TDP MMU page 1327 * faults only take mmu_lock for read. For simplicity, the unsync 1328 * pages lock is always taken when marking pages unsync regardless of 1329 * whether mmu_lock is held for read or write. 1330 */ 1331 spinlock_t mmu_unsync_pages_lock; 1332 1333 u64 shadow_mmio_value; 1334 1335 struct iommu_domain *iommu_domain; 1336 bool iommu_noncoherent; 1337 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1338 atomic_t noncoherent_dma_count; 1339 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1340 atomic_t assigned_device_count; 1341 struct kvm_pic *vpic; 1342 struct kvm_ioapic *vioapic; 1343 struct kvm_pit *vpit; 1344 atomic_t vapics_in_nmi_mode; 1345 struct mutex apic_map_lock; 1346 struct kvm_apic_map __rcu *apic_map; 1347 atomic_t apic_map_dirty; 1348 1349 bool apic_access_memslot_enabled; 1350 bool apic_access_memslot_inhibited; 1351 1352 /* Protects apicv_inhibit_reasons */ 1353 struct rw_semaphore apicv_update_lock; 1354 unsigned long apicv_inhibit_reasons; 1355 1356 gpa_t wall_clock; 1357 1358 bool mwait_in_guest; 1359 bool hlt_in_guest; 1360 bool pause_in_guest; 1361 bool cstate_in_guest; 1362 1363 unsigned long irq_sources_bitmap; 1364 s64 kvmclock_offset; 1365 1366 /* 1367 * This also protects nr_vcpus_matched_tsc which is read from a 1368 * preemption-disabled region, so it must be a raw spinlock. 1369 */ 1370 raw_spinlock_t tsc_write_lock; 1371 u64 last_tsc_nsec; 1372 u64 last_tsc_write; 1373 u32 last_tsc_khz; 1374 u64 last_tsc_offset; 1375 u64 cur_tsc_nsec; 1376 u64 cur_tsc_write; 1377 u64 cur_tsc_offset; 1378 u64 cur_tsc_generation; 1379 int nr_vcpus_matched_tsc; 1380 1381 u32 default_tsc_khz; 1382 bool user_set_tsc; 1383 u64 apic_bus_cycle_ns; 1384 1385 seqcount_raw_spinlock_t pvclock_sc; 1386 bool use_master_clock; 1387 u64 master_kernel_ns; 1388 u64 master_cycle_now; 1389 struct delayed_work kvmclock_update_work; 1390 struct delayed_work kvmclock_sync_work; 1391 1392 struct kvm_xen_hvm_config xen_hvm_config; 1393 1394 /* reads protected by irq_srcu, writes by irq_lock */ 1395 struct hlist_head mask_notifier_list; 1396 1397 #ifdef CONFIG_KVM_HYPERV 1398 struct kvm_hv hyperv; 1399 #endif 1400 1401 #ifdef CONFIG_KVM_XEN 1402 struct kvm_xen xen; 1403 #endif 1404 1405 bool backwards_tsc_observed; 1406 bool boot_vcpu_runs_old_kvmclock; 1407 u32 bsp_vcpu_id; 1408 1409 u64 disabled_quirks; 1410 1411 enum kvm_irqchip_mode irqchip_mode; 1412 u8 nr_reserved_ioapic_pins; 1413 1414 bool disabled_lapic_found; 1415 1416 bool x2apic_format; 1417 bool x2apic_broadcast_quirk_disabled; 1418 1419 bool guest_can_read_msr_platform_info; 1420 bool exception_payload_enabled; 1421 1422 bool triple_fault_event; 1423 1424 bool bus_lock_detection_enabled; 1425 bool enable_pmu; 1426 1427 u32 notify_window; 1428 u32 notify_vmexit_flags; 1429 /* 1430 * If exit_on_emulation_error is set, and the in-kernel instruction 1431 * emulator fails to emulate an instruction, allow userspace 1432 * the opportunity to look at it. 1433 */ 1434 bool exit_on_emulation_error; 1435 1436 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1437 u32 user_space_msr_mask; 1438 struct kvm_x86_msr_filter __rcu *msr_filter; 1439 1440 u32 hypercall_exit_enabled; 1441 1442 /* Guest can access the SGX PROVISIONKEY. */ 1443 bool sgx_provisioning_allowed; 1444 1445 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1446 struct vhost_task *nx_huge_page_recovery_thread; 1447 u64 nx_huge_page_last; 1448 1449 #ifdef CONFIG_X86_64 1450 /* The number of TDP MMU pages across all roots. */ 1451 atomic64_t tdp_mmu_pages; 1452 1453 /* 1454 * List of struct kvm_mmu_pages being used as roots. 1455 * All struct kvm_mmu_pages in the list should have 1456 * tdp_mmu_page set. 1457 * 1458 * For reads, this list is protected by: 1459 * the MMU lock in read mode + RCU or 1460 * the MMU lock in write mode 1461 * 1462 * For writes, this list is protected by tdp_mmu_pages_lock; see 1463 * below for the details. 1464 * 1465 * Roots will remain in the list until their tdp_mmu_root_count 1466 * drops to zero, at which point the thread that decremented the 1467 * count to zero should removed the root from the list and clean 1468 * it up, freeing the root after an RCU grace period. 1469 */ 1470 struct list_head tdp_mmu_roots; 1471 1472 /* 1473 * Protects accesses to the following fields when the MMU lock 1474 * is held in read mode: 1475 * - tdp_mmu_roots (above) 1476 * - the link field of kvm_mmu_page structs used by the TDP MMU 1477 * - possible_nx_huge_pages; 1478 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1479 * by the TDP MMU 1480 * Because the lock is only taken within the MMU lock, strictly 1481 * speaking it is redundant to acquire this lock when the thread 1482 * holds the MMU lock in write mode. However it often simplifies 1483 * the code to do so. 1484 */ 1485 spinlock_t tdp_mmu_pages_lock; 1486 #endif /* CONFIG_X86_64 */ 1487 1488 /* 1489 * If set, at least one shadow root has been allocated. This flag 1490 * is used as one input when determining whether certain memslot 1491 * related allocations are necessary. 1492 */ 1493 bool shadow_root_allocated; 1494 1495 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1496 /* 1497 * If set, the VM has (or had) an external write tracking user, and 1498 * thus all write tracking metadata has been allocated, even if KVM 1499 * itself isn't using write tracking. 1500 */ 1501 bool external_write_tracking_enabled; 1502 #endif 1503 1504 #if IS_ENABLED(CONFIG_HYPERV) 1505 hpa_t hv_root_tdp; 1506 spinlock_t hv_root_tdp_lock; 1507 struct hv_partition_assist_pg *hv_pa_pg; 1508 #endif 1509 /* 1510 * VM-scope maximum vCPU ID. Used to determine the size of structures 1511 * that increase along with the maximum vCPU ID, in which case, using 1512 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1513 */ 1514 u32 max_vcpu_ids; 1515 1516 bool disable_nx_huge_pages; 1517 1518 /* 1519 * Memory caches used to allocate shadow pages when performing eager 1520 * page splitting. No need for a shadowed_info_cache since eager page 1521 * splitting only allocates direct shadow pages. 1522 * 1523 * Protected by kvm->slots_lock. 1524 */ 1525 struct kvm_mmu_memory_cache split_shadow_page_cache; 1526 struct kvm_mmu_memory_cache split_page_header_cache; 1527 1528 /* 1529 * Memory cache used to allocate pte_list_desc structs while splitting 1530 * huge pages. In the worst case, to split one huge page, 512 1531 * pte_list_desc structs are needed to add each lower level leaf sptep 1532 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1533 * page table. 1534 * 1535 * Protected by kvm->slots_lock. 1536 */ 1537 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1538 struct kvm_mmu_memory_cache split_desc_cache; 1539 }; 1540 1541 struct kvm_vm_stat { 1542 struct kvm_vm_stat_generic generic; 1543 u64 mmu_shadow_zapped; 1544 u64 mmu_pte_write; 1545 u64 mmu_pde_zapped; 1546 u64 mmu_flooded; 1547 u64 mmu_recycled; 1548 u64 mmu_cache_miss; 1549 u64 mmu_unsync; 1550 union { 1551 struct { 1552 atomic64_t pages_4k; 1553 atomic64_t pages_2m; 1554 atomic64_t pages_1g; 1555 }; 1556 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1557 }; 1558 u64 nx_lpage_splits; 1559 u64 max_mmu_page_hash_collisions; 1560 u64 max_mmu_rmap_size; 1561 }; 1562 1563 struct kvm_vcpu_stat { 1564 struct kvm_vcpu_stat_generic generic; 1565 u64 pf_taken; 1566 u64 pf_fixed; 1567 u64 pf_emulate; 1568 u64 pf_spurious; 1569 u64 pf_fast; 1570 u64 pf_mmio_spte_created; 1571 u64 pf_guest; 1572 u64 tlb_flush; 1573 u64 invlpg; 1574 1575 u64 exits; 1576 u64 io_exits; 1577 u64 mmio_exits; 1578 u64 signal_exits; 1579 u64 irq_window_exits; 1580 u64 nmi_window_exits; 1581 u64 l1d_flush; 1582 u64 halt_exits; 1583 u64 request_irq_exits; 1584 u64 irq_exits; 1585 u64 host_state_reload; 1586 u64 fpu_reload; 1587 u64 insn_emulation; 1588 u64 insn_emulation_fail; 1589 u64 hypercalls; 1590 u64 irq_injections; 1591 u64 nmi_injections; 1592 u64 req_event; 1593 u64 nested_run; 1594 u64 directed_yield_attempted; 1595 u64 directed_yield_successful; 1596 u64 preemption_reported; 1597 u64 preemption_other; 1598 u64 guest_mode; 1599 u64 notify_window_exits; 1600 }; 1601 1602 struct x86_instruction_info; 1603 1604 struct msr_data { 1605 bool host_initiated; 1606 u32 index; 1607 u64 data; 1608 }; 1609 1610 struct kvm_lapic_irq { 1611 u32 vector; 1612 u16 delivery_mode; 1613 u16 dest_mode; 1614 bool level; 1615 u16 trig_mode; 1616 u32 shorthand; 1617 u32 dest_id; 1618 bool msi_redir_hint; 1619 }; 1620 1621 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1622 { 1623 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1624 } 1625 1626 struct kvm_x86_ops { 1627 const char *name; 1628 1629 int (*check_processor_compatibility)(void); 1630 1631 int (*enable_virtualization_cpu)(void); 1632 void (*disable_virtualization_cpu)(void); 1633 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1634 1635 void (*hardware_unsetup)(void); 1636 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1637 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1638 1639 unsigned int vm_size; 1640 int (*vm_init)(struct kvm *kvm); 1641 void (*vm_destroy)(struct kvm *kvm); 1642 1643 /* Create, but do not attach this VCPU */ 1644 int (*vcpu_precreate)(struct kvm *kvm); 1645 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1646 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1647 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1648 1649 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1650 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1651 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1652 1653 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1654 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1655 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1656 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1657 void (*get_segment)(struct kvm_vcpu *vcpu, 1658 struct kvm_segment *var, int seg); 1659 int (*get_cpl)(struct kvm_vcpu *vcpu); 1660 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu); 1661 void (*set_segment)(struct kvm_vcpu *vcpu, 1662 struct kvm_segment *var, int seg); 1663 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1664 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1665 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1666 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1667 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1668 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1669 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1670 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1671 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1672 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1673 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1674 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1675 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1676 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1677 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1678 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1679 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1680 1681 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1682 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1683 #if IS_ENABLED(CONFIG_HYPERV) 1684 int (*flush_remote_tlbs)(struct kvm *kvm); 1685 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1686 gfn_t nr_pages); 1687 #endif 1688 1689 /* 1690 * Flush any TLB entries associated with the given GVA. 1691 * Does not need to flush GPA->HPA mappings. 1692 * Can potentially get non-canonical addresses through INVLPGs, which 1693 * the implementation may choose to ignore if appropriate. 1694 */ 1695 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1696 1697 /* 1698 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1699 * does not need to flush GPA->HPA mappings. 1700 */ 1701 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1702 1703 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1704 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1705 bool force_immediate_exit); 1706 int (*handle_exit)(struct kvm_vcpu *vcpu, 1707 enum exit_fastpath_completion exit_fastpath); 1708 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1709 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1710 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1711 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1712 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1713 unsigned char *hypercall_addr); 1714 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1715 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1716 void (*inject_exception)(struct kvm_vcpu *vcpu); 1717 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1718 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1719 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1720 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1721 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1722 /* Whether or not a virtual NMI is pending in hardware. */ 1723 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1724 /* 1725 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1726 * to allow using static_call_ret0 as the fallback. 1727 */ 1728 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1729 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1730 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1731 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1732 1733 const bool x2apic_icr_is_split; 1734 const unsigned long required_apicv_inhibits; 1735 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1736 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1737 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1738 void (*hwapic_isr_update)(int isr); 1739 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1740 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1741 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1742 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1743 int trig_mode, int vector); 1744 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1745 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1746 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1747 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1748 1749 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1750 int root_level); 1751 1752 bool (*has_wbinvd_exit)(void); 1753 1754 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1755 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1756 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1757 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1758 1759 /* 1760 * Retrieve somewhat arbitrary exit information. Intended to 1761 * be used only from within tracepoints or error paths. 1762 */ 1763 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1764 u64 *info1, u64 *info2, 1765 u32 *exit_int_info, u32 *exit_int_info_err_code); 1766 1767 int (*check_intercept)(struct kvm_vcpu *vcpu, 1768 struct x86_instruction_info *info, 1769 enum x86_intercept_stage stage, 1770 struct x86_exception *exception); 1771 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1772 1773 /* 1774 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1775 * value indicates CPU dirty logging is unsupported or disabled. 1776 */ 1777 int cpu_dirty_log_size; 1778 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1779 1780 const struct kvm_x86_nested_ops *nested_ops; 1781 1782 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1783 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1784 1785 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1786 uint32_t guest_irq, bool set); 1787 void (*pi_start_assignment)(struct kvm *kvm); 1788 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1789 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1790 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1791 1792 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1793 bool *expired); 1794 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1795 1796 void (*setup_mce)(struct kvm_vcpu *vcpu); 1797 1798 #ifdef CONFIG_KVM_SMM 1799 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1800 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1801 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1802 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1803 #endif 1804 1805 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1806 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1807 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1808 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1809 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1810 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1811 void (*guest_memory_reclaimed)(struct kvm *kvm); 1812 1813 int (*get_feature_msr)(u32 msr, u64 *data); 1814 1815 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1816 void *insn, int insn_len); 1817 1818 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1819 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1820 1821 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1822 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1823 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1824 1825 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1826 1827 /* 1828 * Returns vCPU specific APICv inhibit reasons 1829 */ 1830 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1831 1832 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1833 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1834 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1835 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1836 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn); 1837 }; 1838 1839 struct kvm_x86_nested_ops { 1840 void (*leave_nested)(struct kvm_vcpu *vcpu); 1841 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1842 u32 error_code); 1843 int (*check_events)(struct kvm_vcpu *vcpu); 1844 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1845 void (*triple_fault)(struct kvm_vcpu *vcpu); 1846 int (*get_state)(struct kvm_vcpu *vcpu, 1847 struct kvm_nested_state __user *user_kvm_nested_state, 1848 unsigned user_data_size); 1849 int (*set_state)(struct kvm_vcpu *vcpu, 1850 struct kvm_nested_state __user *user_kvm_nested_state, 1851 struct kvm_nested_state *kvm_state); 1852 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1853 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1854 1855 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1856 uint16_t *vmcs_version); 1857 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1858 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1859 }; 1860 1861 struct kvm_x86_init_ops { 1862 int (*hardware_setup)(void); 1863 unsigned int (*handle_intel_pt_intr)(void); 1864 1865 struct kvm_x86_ops *runtime_ops; 1866 struct kvm_pmu_ops *pmu_ops; 1867 }; 1868 1869 struct kvm_arch_async_pf { 1870 u32 token; 1871 gfn_t gfn; 1872 unsigned long cr3; 1873 bool direct_map; 1874 u64 error_code; 1875 }; 1876 1877 extern u32 __read_mostly kvm_nr_uret_msrs; 1878 extern bool __read_mostly allow_smaller_maxphyaddr; 1879 extern bool __read_mostly enable_apicv; 1880 extern struct kvm_x86_ops kvm_x86_ops; 1881 1882 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1883 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1884 1885 #define KVM_X86_OP(func) \ 1886 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1887 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1888 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1889 #include <asm/kvm-x86-ops.h> 1890 1891 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1892 void kvm_x86_vendor_exit(void); 1893 1894 #define __KVM_HAVE_ARCH_VM_ALLOC 1895 static inline struct kvm *kvm_arch_alloc_vm(void) 1896 { 1897 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1898 } 1899 1900 #define __KVM_HAVE_ARCH_VM_FREE 1901 void kvm_arch_free_vm(struct kvm *kvm); 1902 1903 #if IS_ENABLED(CONFIG_HYPERV) 1904 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1905 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1906 { 1907 if (kvm_x86_ops.flush_remote_tlbs && 1908 !kvm_x86_call(flush_remote_tlbs)(kvm)) 1909 return 0; 1910 else 1911 return -ENOTSUPP; 1912 } 1913 1914 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1915 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1916 u64 nr_pages) 1917 { 1918 if (!kvm_x86_ops.flush_remote_tlbs_range) 1919 return -EOPNOTSUPP; 1920 1921 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1922 } 1923 #endif /* CONFIG_HYPERV */ 1924 1925 enum kvm_intr_type { 1926 /* Values are arbitrary, but must be non-zero. */ 1927 KVM_HANDLING_IRQ = 1, 1928 KVM_HANDLING_NMI, 1929 }; 1930 1931 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 1932 #define kvm_arch_pmi_in_guest(vcpu) \ 1933 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 1934 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 1935 1936 void __init kvm_mmu_x86_module_init(void); 1937 int kvm_mmu_vendor_module_init(void); 1938 void kvm_mmu_vendor_module_exit(void); 1939 1940 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1941 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1942 void kvm_mmu_init_vm(struct kvm *kvm); 1943 void kvm_mmu_uninit_vm(struct kvm *kvm); 1944 1945 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 1946 struct kvm_memory_slot *slot); 1947 1948 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1949 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1950 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1951 const struct kvm_memory_slot *memslot, 1952 int start_level); 1953 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1954 const struct kvm_memory_slot *memslot, 1955 int target_level); 1956 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1957 const struct kvm_memory_slot *memslot, 1958 u64 start, u64 end, 1959 int target_level); 1960 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 1961 const struct kvm_memory_slot *memslot); 1962 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1963 const struct kvm_memory_slot *memslot); 1964 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1965 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1966 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 1967 1968 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 1969 1970 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1971 const void *val, int bytes); 1972 1973 struct kvm_irq_mask_notifier { 1974 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1975 int irq; 1976 struct hlist_node link; 1977 }; 1978 1979 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1980 struct kvm_irq_mask_notifier *kimn); 1981 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1982 struct kvm_irq_mask_notifier *kimn); 1983 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1984 bool mask); 1985 1986 extern bool tdp_enabled; 1987 1988 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1989 1990 /* 1991 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1992 * userspace I/O) to indicate that the emulation context 1993 * should be reused as is, i.e. skip initialization of 1994 * emulation context, instruction fetch and decode. 1995 * 1996 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1997 * Indicates that only select instructions (tagged with 1998 * EmulateOnUD) should be emulated (to minimize the emulator 1999 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 2000 * 2001 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2002 * decode the instruction length. For use *only* by 2003 * kvm_x86_ops.skip_emulated_instruction() implementations if 2004 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2005 * 2006 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2007 * retry native execution under certain conditions, 2008 * Can only be set in conjunction with EMULTYPE_PF. 2009 * 2010 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2011 * triggered by KVM's magic "force emulation" prefix, 2012 * which is opt in via module param (off by default). 2013 * Bypasses EmulateOnUD restriction despite emulating 2014 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2015 * Used to test the full emulator from userspace. 2016 * 2017 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2018 * backdoor emulation, which is opt in via module param. 2019 * VMware backdoor emulation handles select instructions 2020 * and reinjects the #GP for all other cases. 2021 * 2022 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 2023 * case the CR2/GPA value pass on the stack is valid. 2024 * 2025 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2026 * state and inject single-step #DBs after skipping 2027 * an instruction (after completing userspace I/O). 2028 * 2029 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2030 * is attempting to write a gfn that contains one or 2031 * more of the PTEs used to translate the write itself, 2032 * and the owning page table is being shadowed by KVM. 2033 * If emulation of the faulting instruction fails and 2034 * this flag is set, KVM will exit to userspace instead 2035 * of retrying emulation as KVM cannot make forward 2036 * progress. 2037 * 2038 * If emulation fails for a write to guest page tables, 2039 * KVM unprotects (zaps) the shadow page for the target 2040 * gfn and resumes the guest to retry the non-emulatable 2041 * instruction (on hardware). Unprotecting the gfn 2042 * doesn't allow forward progress for a self-changing 2043 * access because doing so also zaps the translation for 2044 * the gfn, i.e. retrying the instruction will hit a 2045 * !PRESENT fault, which results in a new shadow page 2046 * and sends KVM back to square one. 2047 */ 2048 #define EMULTYPE_NO_DECODE (1 << 0) 2049 #define EMULTYPE_TRAP_UD (1 << 1) 2050 #define EMULTYPE_SKIP (1 << 2) 2051 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2052 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2053 #define EMULTYPE_VMWARE_GP (1 << 5) 2054 #define EMULTYPE_PF (1 << 6) 2055 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2056 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2057 2058 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2059 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2060 void *insn, int insn_len); 2061 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2062 u64 *data, u8 ndata); 2063 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2064 2065 void kvm_enable_efer_bits(u64); 2066 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2067 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2068 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data); 2069 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2070 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2071 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2072 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2073 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2074 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2075 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2076 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2077 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2078 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2079 2080 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2081 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2082 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2083 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2084 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2085 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2086 2087 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2088 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2089 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2090 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2091 2092 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2093 int reason, bool has_error_code, u32 error_code); 2094 2095 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2096 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2097 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2098 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2099 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2100 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2101 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2102 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2103 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2104 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2105 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2106 2107 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2108 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2109 2110 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2111 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2112 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2113 2114 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2115 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2116 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2117 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2118 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2119 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2120 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2121 struct x86_exception *fault); 2122 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2123 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2124 2125 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2126 int irq_source_id, int level) 2127 { 2128 /* Logical OR for level trig interrupt */ 2129 if (level) 2130 __set_bit(irq_source_id, irq_state); 2131 else 2132 __clear_bit(irq_source_id, irq_state); 2133 2134 return !!(*irq_state); 2135 } 2136 2137 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2138 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2139 2140 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2141 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2142 2143 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2144 2145 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2146 bool always_retry); 2147 2148 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2149 gpa_t cr2_or_gpa) 2150 { 2151 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2152 } 2153 2154 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2155 ulong roots_to_free); 2156 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2157 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2158 struct x86_exception *exception); 2159 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2160 struct x86_exception *exception); 2161 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2162 struct x86_exception *exception); 2163 2164 bool kvm_apicv_activated(struct kvm *kvm); 2165 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2166 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2167 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2168 enum kvm_apicv_inhibit reason, bool set); 2169 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2170 enum kvm_apicv_inhibit reason, bool set); 2171 2172 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2173 enum kvm_apicv_inhibit reason) 2174 { 2175 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2176 } 2177 2178 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2179 enum kvm_apicv_inhibit reason) 2180 { 2181 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2182 } 2183 2184 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr, 2185 unsigned long a0, unsigned long a1, 2186 unsigned long a2, unsigned long a3, 2187 int op_64_bit, int cpl); 2188 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 2189 2190 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2191 void *insn, int insn_len); 2192 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2193 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2194 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2195 u64 addr, unsigned long roots); 2196 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2197 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2198 2199 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2200 int tdp_max_root_level, int tdp_huge_page_level); 2201 2202 2203 #ifdef CONFIG_KVM_PRIVATE_MEM 2204 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2205 #else 2206 #define kvm_arch_has_private_mem(kvm) false 2207 #endif 2208 2209 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2210 2211 static inline u16 kvm_read_ldt(void) 2212 { 2213 u16 ldt; 2214 asm("sldt %0" : "=g"(ldt)); 2215 return ldt; 2216 } 2217 2218 static inline void kvm_load_ldt(u16 sel) 2219 { 2220 asm("lldt %0" : : "rm"(sel)); 2221 } 2222 2223 #ifdef CONFIG_X86_64 2224 static inline unsigned long read_msr(unsigned long msr) 2225 { 2226 u64 value; 2227 2228 rdmsrl(msr, value); 2229 return value; 2230 } 2231 #endif 2232 2233 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2234 { 2235 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2236 } 2237 2238 #define TSS_IOPB_BASE_OFFSET 0x66 2239 #define TSS_BASE_SIZE 0x68 2240 #define TSS_IOPB_SIZE (65536 / 8) 2241 #define TSS_REDIRECTION_SIZE (256 / 8) 2242 #define RMODE_TSS_SIZE \ 2243 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2244 2245 enum { 2246 TASK_SWITCH_CALL = 0, 2247 TASK_SWITCH_IRET = 1, 2248 TASK_SWITCH_JMP = 2, 2249 TASK_SWITCH_GATE = 3, 2250 }; 2251 2252 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2253 2254 #ifdef CONFIG_KVM_SMM 2255 #define HF_SMM_MASK (1 << 1) 2256 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2257 2258 # define KVM_MAX_NR_ADDRESS_SPACES 2 2259 /* SMM is currently unsupported for guests with private memory. */ 2260 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2261 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2262 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2263 #else 2264 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2265 #endif 2266 2267 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2268 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2269 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2270 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2271 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2272 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2273 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2274 2275 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2276 unsigned long ipi_bitmap_high, u32 min, 2277 unsigned long icr, int op_64_bit); 2278 2279 int kvm_add_user_return_msr(u32 msr); 2280 int kvm_find_user_return_msr(u32 msr); 2281 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2282 2283 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2284 { 2285 return kvm_find_user_return_msr(msr) >= 0; 2286 } 2287 2288 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2289 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2290 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2291 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2292 2293 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2294 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2295 2296 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2297 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2298 unsigned long *vcpu_bitmap); 2299 2300 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2301 struct kvm_async_pf *work); 2302 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2303 struct kvm_async_pf *work); 2304 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2305 struct kvm_async_pf *work); 2306 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2307 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2308 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2309 2310 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2311 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2312 2313 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2314 u32 size); 2315 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2316 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2317 2318 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2319 struct kvm_vcpu **dest_vcpu); 2320 2321 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2322 struct kvm_lapic_irq *irq); 2323 2324 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2325 { 2326 /* We can only post Fixed and LowPrio IRQs */ 2327 return (irq->delivery_mode == APIC_DM_FIXED || 2328 irq->delivery_mode == APIC_DM_LOWEST); 2329 } 2330 2331 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2332 { 2333 kvm_x86_call(vcpu_blocking)(vcpu); 2334 } 2335 2336 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2337 { 2338 kvm_x86_call(vcpu_unblocking)(vcpu); 2339 } 2340 2341 static inline int kvm_cpu_get_apicid(int mps_cpu) 2342 { 2343 #ifdef CONFIG_X86_LOCAL_APIC 2344 return default_cpu_present_to_apicid(mps_cpu); 2345 #else 2346 WARN_ON_ONCE(1); 2347 return BAD_APICID; 2348 #endif 2349 } 2350 2351 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2352 2353 #define KVM_CLOCK_VALID_FLAGS \ 2354 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2355 2356 #define KVM_X86_VALID_QUIRKS \ 2357 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2358 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2359 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2360 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2361 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2362 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2363 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2364 KVM_X86_QUIRK_SLOT_ZAP_ALL | \ 2365 KVM_X86_QUIRK_STUFF_FEATURE_MSRS) 2366 2367 /* 2368 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2369 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2370 * remaining 31 lower bits must be 0 to preserve ABI. 2371 */ 2372 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2373 2374 #endif /* _ASM_X86_KVM_HOST_H */ 2375