1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/kfifo.h> 28 #include <linux/sched/vhost_task.h> 29 #include <linux/call_once.h> 30 #include <linux/atomic.h> 31 32 #include <asm/apic.h> 33 #include <asm/pvclock-abi.h> 34 #include <asm/debugreg.h> 35 #include <asm/desc.h> 36 #include <asm/mtrr.h> 37 #include <asm/msr-index.h> 38 #include <asm/msr.h> 39 #include <asm/asm.h> 40 #include <asm/irq_remapping.h> 41 #include <asm/kvm_page_track.h> 42 #include <asm/kvm_vcpu_regs.h> 43 #include <asm/reboot.h> 44 #include <hyperv/hvhdk.h> 45 46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 47 48 /* 49 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 50 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 51 */ 52 #ifdef CONFIG_KVM_MAX_NR_VCPUS 53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 54 #else 55 #define KVM_MAX_VCPUS 1024 56 #endif 57 58 /* 59 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 60 * might be larger than the actual number of VCPUs because the 61 * APIC ID encodes CPU topology information. 62 * 63 * In the worst case, we'll need less than one extra bit for the 64 * Core ID, and less than one extra bit for the Package (Die) ID, 65 * so ratio of 4 should be enough. 66 */ 67 #define KVM_VCPU_ID_RATIO 4 68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 69 70 /* memory slots that are not exposed to userspace */ 71 #define KVM_INTERNAL_MEM_SLOTS 3 72 73 #define KVM_HALT_POLL_NS_DEFAULT 200000 74 75 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 76 77 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 78 KVM_DIRTY_LOG_INITIALLY_SET) 79 80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 81 KVM_BUS_LOCK_DETECTION_EXIT) 82 83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 84 KVM_X86_NOTIFY_VMEXIT_USER) 85 86 /* x86-specific vcpu->requests bit members */ 87 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 88 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 89 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 90 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 91 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 92 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 93 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 94 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 95 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 96 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 97 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 98 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 99 #ifdef CONFIG_KVM_SMM 100 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 101 #endif 102 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 103 #define KVM_REQ_MCLOCK_INPROGRESS \ 104 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 105 #define KVM_REQ_SCAN_IOAPIC \ 106 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 108 #define KVM_REQ_APIC_PAGE_RELOAD \ 109 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 110 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 111 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 112 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 113 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 114 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 115 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 116 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 117 #define KVM_REQ_APICV_UPDATE \ 118 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 119 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 120 #define KVM_REQ_TLB_FLUSH_GUEST \ 121 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 123 #define KVM_REQ_RECALC_INTERCEPTS KVM_ARCH_REQ(29) 124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 125 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 127 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 128 #define KVM_REQ_HV_TLB_FLUSH \ 129 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \ 131 KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT) 132 133 #define CR0_RESERVED_BITS \ 134 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 135 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 136 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 137 138 #define CR4_RESERVED_BITS \ 139 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 140 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 141 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 142 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 143 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 144 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 145 | X86_CR4_LAM_SUP | X86_CR4_CET)) 146 147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 148 149 150 151 #define INVALID_PAGE (~(hpa_t)0) 152 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 153 154 /* KVM Hugepage definitions for x86 */ 155 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 156 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 157 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 158 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 159 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 160 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 161 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 162 163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 165 #define KVM_MMU_HASH_SHIFT 12 166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 167 #define KVM_MIN_FREE_MMU_PAGES 5 168 #define KVM_REFILL_PAGES 25 169 #define KVM_MAX_CPUID_ENTRIES 256 170 #define KVM_NR_VAR_MTRR 8 171 172 #define ASYNC_PF_PER_VCPU 64 173 174 enum kvm_reg { 175 VCPU_REGS_RAX = __VCPU_REGS_RAX, 176 VCPU_REGS_RCX = __VCPU_REGS_RCX, 177 VCPU_REGS_RDX = __VCPU_REGS_RDX, 178 VCPU_REGS_RBX = __VCPU_REGS_RBX, 179 VCPU_REGS_RSP = __VCPU_REGS_RSP, 180 VCPU_REGS_RBP = __VCPU_REGS_RBP, 181 VCPU_REGS_RSI = __VCPU_REGS_RSI, 182 VCPU_REGS_RDI = __VCPU_REGS_RDI, 183 #ifdef CONFIG_X86_64 184 VCPU_REGS_R8 = __VCPU_REGS_R8, 185 VCPU_REGS_R9 = __VCPU_REGS_R9, 186 VCPU_REGS_R10 = __VCPU_REGS_R10, 187 VCPU_REGS_R11 = __VCPU_REGS_R11, 188 VCPU_REGS_R12 = __VCPU_REGS_R12, 189 VCPU_REGS_R13 = __VCPU_REGS_R13, 190 VCPU_REGS_R14 = __VCPU_REGS_R14, 191 VCPU_REGS_R15 = __VCPU_REGS_R15, 192 #endif 193 VCPU_REGS_RIP, 194 NR_VCPU_REGS, 195 196 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 197 VCPU_EXREG_CR0, 198 VCPU_EXREG_CR3, 199 VCPU_EXREG_CR4, 200 VCPU_EXREG_RFLAGS, 201 VCPU_EXREG_SEGMENTS, 202 VCPU_EXREG_EXIT_INFO_1, 203 VCPU_EXREG_EXIT_INFO_2, 204 }; 205 206 enum { 207 VCPU_SREG_ES, 208 VCPU_SREG_CS, 209 VCPU_SREG_SS, 210 VCPU_SREG_DS, 211 VCPU_SREG_FS, 212 VCPU_SREG_GS, 213 VCPU_SREG_TR, 214 VCPU_SREG_LDTR, 215 }; 216 217 enum exit_fastpath_completion { 218 EXIT_FASTPATH_NONE, 219 EXIT_FASTPATH_REENTER_GUEST, 220 EXIT_FASTPATH_EXIT_HANDLED, 221 EXIT_FASTPATH_EXIT_USERSPACE, 222 }; 223 typedef enum exit_fastpath_completion fastpath_t; 224 225 struct x86_emulate_ctxt; 226 struct x86_exception; 227 union kvm_smram; 228 enum x86_intercept; 229 enum x86_intercept_stage; 230 231 #define KVM_NR_DB_REGS 4 232 233 #define DR6_BUS_LOCK (1 << 11) 234 #define DR6_BD (1 << 13) 235 #define DR6_BS (1 << 14) 236 #define DR6_BT (1 << 15) 237 #define DR6_RTM (1 << 16) 238 /* 239 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 240 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 241 * they will never be 0 for now, but when they are defined 242 * in the future it will require no code change. 243 * 244 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 245 */ 246 #define DR6_ACTIVE_LOW 0xffff0ff0 247 #define DR6_VOLATILE 0x0001e80f 248 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 249 250 #define DR7_BP_EN_MASK 0x000000ff 251 #define DR7_GE (1 << 9) 252 #define DR7_GD (1 << 13) 253 #define DR7_VOLATILE 0xffff2bff 254 255 #define KVM_GUESTDBG_VALID_MASK \ 256 (KVM_GUESTDBG_ENABLE | \ 257 KVM_GUESTDBG_SINGLESTEP | \ 258 KVM_GUESTDBG_USE_HW_BP | \ 259 KVM_GUESTDBG_USE_SW_BP | \ 260 KVM_GUESTDBG_INJECT_BP | \ 261 KVM_GUESTDBG_INJECT_DB | \ 262 KVM_GUESTDBG_BLOCKIRQ) 263 264 #define PFERR_PRESENT_MASK BIT(0) 265 #define PFERR_WRITE_MASK BIT(1) 266 #define PFERR_USER_MASK BIT(2) 267 #define PFERR_RSVD_MASK BIT(3) 268 #define PFERR_FETCH_MASK BIT(4) 269 #define PFERR_PK_MASK BIT(5) 270 #define PFERR_SS_MASK BIT(6) 271 #define PFERR_SGX_MASK BIT(15) 272 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 273 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 274 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 275 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 276 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 277 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 278 279 /* 280 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 281 * when emulating instructions that triggers implicit access. 282 */ 283 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 284 /* 285 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 286 * when the guest was accessing private memory. 287 */ 288 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 289 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 290 291 /* apic attention bits */ 292 #define KVM_APIC_CHECK_VAPIC 0 293 /* 294 * The following bit is set with PV-EOI, unset on EOI. 295 * We detect PV-EOI changes by guest by comparing 296 * this bit with PV-EOI in guest memory. 297 * See the implementation in apic_update_pv_eoi. 298 */ 299 #define KVM_APIC_PV_EOI_PENDING 1 300 301 struct kvm_kernel_irqfd; 302 struct kvm_kernel_irq_routing_entry; 303 304 /* 305 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 306 * also includes TDP pages) to determine whether or not a page can be used in 307 * the given MMU context. This is a subset of the overall kvm_cpu_role to 308 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 309 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 310 * 311 * Upper-level shadow pages having gptes are tracked for write-protection via 312 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 313 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 314 * otherwise gfn_write_track will overflow and explosions will ensue. 315 * 316 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 317 * cannot be reused. The ability to reuse a SP is tracked by its role, which 318 * incorporates various mode bits and properties of the SP. Roughly speaking, 319 * the number of unique SPs that can theoretically be created is 2^n, where n 320 * is the number of bits that are used to compute the role. 321 * 322 * But, even though there are 20 bits in the mask below, not all combinations 323 * of modes and flags are possible: 324 * 325 * - invalid shadow pages are not accounted, mirror pages are not shadowed, 326 * so the bits are effectively 18. 327 * 328 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 329 * execonly and ad_disabled are only used for nested EPT which has 330 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 331 * 332 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 333 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 334 * paging has exactly one upper level, making level completely redundant 335 * when has_4_byte_gpte=1. 336 * 337 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 338 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 339 * 340 * Therefore, the maximum number of possible upper-level shadow pages for a 341 * single gfn is a bit less than 2^13. 342 */ 343 union kvm_mmu_page_role { 344 u32 word; 345 struct { 346 unsigned level:4; 347 unsigned has_4_byte_gpte:1; 348 unsigned quadrant:2; 349 unsigned direct:1; 350 unsigned access:3; 351 unsigned invalid:1; 352 unsigned efer_nx:1; 353 unsigned cr0_wp:1; 354 unsigned smep_andnot_wp:1; 355 unsigned smap_andnot_wp:1; 356 unsigned ad_disabled:1; 357 unsigned guest_mode:1; 358 unsigned passthrough:1; 359 unsigned is_mirror:1; 360 unsigned :4; 361 362 /* 363 * This is left at the top of the word so that 364 * kvm_memslots_for_spte_role can extract it with a 365 * simple shift. While there is room, give it a whole 366 * byte so it is also faster to load it from memory. 367 */ 368 unsigned smm:8; 369 }; 370 }; 371 372 /* 373 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 374 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 375 * including on nested transitions, if nothing in the full role changes then 376 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 377 * don't treat all-zero structure as valid data. 378 * 379 * The properties that are tracked in the extended role but not the page role 380 * are for things that either (a) do not affect the validity of the shadow page 381 * or (b) are indirectly reflected in the shadow page's role. For example, 382 * CR4.PKE only affects permission checks for software walks of the guest page 383 * tables (because KVM doesn't support Protection Keys with shadow paging), and 384 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 385 * 386 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 387 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 388 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 389 * SMAP aware regardless of CR0.WP. 390 */ 391 union kvm_mmu_extended_role { 392 u32 word; 393 struct { 394 unsigned int valid:1; 395 unsigned int execonly:1; 396 unsigned int cr4_pse:1; 397 unsigned int cr4_pke:1; 398 unsigned int cr4_smap:1; 399 unsigned int cr4_smep:1; 400 unsigned int cr4_la57:1; 401 unsigned int efer_lma:1; 402 }; 403 }; 404 405 union kvm_cpu_role { 406 u64 as_u64; 407 struct { 408 union kvm_mmu_page_role base; 409 union kvm_mmu_extended_role ext; 410 }; 411 }; 412 413 struct kvm_rmap_head { 414 atomic_long_t val; 415 }; 416 417 struct kvm_pio_request { 418 unsigned long count; 419 int in; 420 int port; 421 int size; 422 }; 423 424 #define PT64_ROOT_MAX_LEVEL 5 425 426 struct rsvd_bits_validate { 427 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 428 u64 bad_mt_xwr; 429 }; 430 431 struct kvm_mmu_root_info { 432 gpa_t pgd; 433 hpa_t hpa; 434 }; 435 436 #define KVM_MMU_ROOT_INFO_INVALID \ 437 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 438 439 #define KVM_MMU_NUM_PREV_ROOTS 3 440 441 #define KVM_MMU_ROOT_CURRENT BIT(0) 442 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 443 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 444 445 #define KVM_HAVE_MMU_RWLOCK 446 447 struct kvm_mmu_page; 448 struct kvm_page_fault; 449 450 /* 451 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 452 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 453 * current mmu mode. 454 */ 455 struct kvm_mmu { 456 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 457 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 458 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 459 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 460 struct x86_exception *fault); 461 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 462 gpa_t gva_or_gpa, u64 access, 463 struct x86_exception *exception); 464 int (*sync_spte)(struct kvm_vcpu *vcpu, 465 struct kvm_mmu_page *sp, int i); 466 struct kvm_mmu_root_info root; 467 hpa_t mirror_root_hpa; 468 union kvm_cpu_role cpu_role; 469 union kvm_mmu_page_role root_role; 470 471 /* 472 * The pkru_mask indicates if protection key checks are needed. It 473 * consists of 16 domains indexed by page fault error code bits [4:1], 474 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 475 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 476 */ 477 u32 pkru_mask; 478 479 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 480 481 /* 482 * Bitmap; bit set = permission fault 483 * Byte index: page fault error code [4:1] 484 * Bit index: pte permissions in ACC_* format 485 */ 486 u8 permissions[16]; 487 488 u64 *pae_root; 489 u64 *pml4_root; 490 u64 *pml5_root; 491 492 /* 493 * check zero bits on shadow page table entries, these 494 * bits include not only hardware reserved bits but also 495 * the bits spte never used. 496 */ 497 struct rsvd_bits_validate shadow_zero_check; 498 499 struct rsvd_bits_validate guest_rsvd_check; 500 501 u64 pdptrs[4]; /* pae */ 502 }; 503 504 enum pmc_type { 505 KVM_PMC_GP = 0, 506 KVM_PMC_FIXED, 507 }; 508 509 struct kvm_pmc { 510 enum pmc_type type; 511 u8 idx; 512 bool is_paused; 513 bool intr; 514 /* 515 * Base value of the PMC counter, relative to the *consumed* count in 516 * the associated perf_event. This value includes counter updates from 517 * the perf_event and emulated_count since the last time the counter 518 * was reprogrammed, but it is *not* the current value as seen by the 519 * guest or userspace. 520 * 521 * The count is relative to the associated perf_event so that KVM 522 * doesn't need to reprogram the perf_event every time the guest writes 523 * to the counter. 524 */ 525 u64 counter; 526 /* 527 * PMC events triggered by KVM emulation that haven't been fully 528 * processed, i.e. haven't undergone overflow detection. 529 */ 530 u64 emulated_counter; 531 u64 eventsel; 532 struct perf_event *perf_event; 533 struct kvm_vcpu *vcpu; 534 /* 535 * only for creating or reusing perf_event, 536 * eventsel value for general purpose counters, 537 * ctrl value for fixed counters. 538 */ 539 u64 current_config; 540 }; 541 542 /* More counters may conflict with other existing Architectural MSRs */ 543 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 544 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 545 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 546 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 547 KVM_MAX_NR_AMD_GP_COUNTERS) 548 549 #define KVM_MAX_NR_INTEL_FIXED_COUNTERS 3 550 #define KVM_MAX_NR_AMD_FIXED_COUNTERS 0 551 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUNTERS, \ 552 KVM_MAX_NR_AMD_FIXED_COUNTERS) 553 554 struct kvm_pmu { 555 u8 version; 556 unsigned nr_arch_gp_counters; 557 unsigned nr_arch_fixed_counters; 558 unsigned available_event_types; 559 u64 fixed_ctr_ctrl; 560 u64 fixed_ctr_ctrl_rsvd; 561 u64 global_ctrl; 562 u64 global_status; 563 u64 counter_bitmask[2]; 564 u64 global_ctrl_rsvd; 565 u64 global_status_rsvd; 566 u64 reserved_bits; 567 u64 raw_event_mask; 568 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 569 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 570 571 /* 572 * Overlay the bitmap with a 64-bit atomic so that all bits can be 573 * set in a single access, e.g. to reprogram all counters when the PMU 574 * filter changes. 575 */ 576 union { 577 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 578 atomic64_t __reprogram_pmi; 579 }; 580 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 581 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 582 583 DECLARE_BITMAP(pmc_counting_instructions, X86_PMC_IDX_MAX); 584 DECLARE_BITMAP(pmc_counting_branches, X86_PMC_IDX_MAX); 585 586 u64 ds_area; 587 u64 pebs_enable; 588 u64 pebs_enable_rsvd; 589 u64 pebs_data_cfg; 590 u64 pebs_data_cfg_rsvd; 591 592 /* 593 * If a guest counter is cross-mapped to host counter with different 594 * index, its PEBS capability will be temporarily disabled. 595 * 596 * The user should make sure that this mask is updated 597 * after disabling interrupts and before perf_guest_get_msrs(); 598 */ 599 u64 host_cross_mapped_mask; 600 601 /* 602 * The gate to release perf_events not marked in 603 * pmc_in_use only once in a vcpu time slice. 604 */ 605 bool need_cleanup; 606 607 /* 608 * The total number of programmed perf_events and it helps to avoid 609 * redundant check before cleanup if guest don't use vPMU at all. 610 */ 611 u8 event_count; 612 }; 613 614 struct kvm_pmu_ops; 615 616 enum { 617 KVM_DEBUGREG_BP_ENABLED = BIT(0), 618 KVM_DEBUGREG_WONT_EXIT = BIT(1), 619 /* 620 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by 621 * hardware on exit from or enter to guest. KVM needn't switch them. 622 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM 623 * exit, host values need to be restored. 624 */ 625 KVM_DEBUGREG_AUTO_SWITCH = BIT(2), 626 }; 627 628 struct kvm_mtrr { 629 u64 var[KVM_NR_VAR_MTRR * 2]; 630 u64 fixed_64k; 631 u64 fixed_16k[2]; 632 u64 fixed_4k[8]; 633 u64 deftype; 634 }; 635 636 /* Hyper-V SynIC timer */ 637 struct kvm_vcpu_hv_stimer { 638 struct hrtimer timer; 639 int index; 640 union hv_stimer_config config; 641 u64 count; 642 u64 exp_time; 643 struct hv_message msg; 644 bool msg_pending; 645 }; 646 647 /* Hyper-V synthetic interrupt controller (SynIC)*/ 648 struct kvm_vcpu_hv_synic { 649 u64 version; 650 u64 control; 651 u64 msg_page; 652 u64 evt_page; 653 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 654 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 655 DECLARE_BITMAP(auto_eoi_bitmap, 256); 656 DECLARE_BITMAP(vec_bitmap, 256); 657 bool active; 658 bool dont_zero_synic_pages; 659 }; 660 661 /* The maximum number of entries on the TLB flush fifo. */ 662 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 663 /* 664 * Note: the following 'magic' entry is made up by KVM to avoid putting 665 * anything besides GVA on the TLB flush fifo. It is theoretically possible 666 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 667 * which will look identical. KVM's action to 'flush everything' instead of 668 * flushing these particular addresses is, however, fully legitimate as 669 * flushing more than requested is always OK. 670 */ 671 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 672 673 enum hv_tlb_flush_fifos { 674 HV_L1_TLB_FLUSH_FIFO, 675 HV_L2_TLB_FLUSH_FIFO, 676 HV_NR_TLB_FLUSH_FIFOS, 677 }; 678 679 struct kvm_vcpu_hv_tlb_flush_fifo { 680 spinlock_t write_lock; 681 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 682 }; 683 684 /* Hyper-V per vcpu emulation context */ 685 struct kvm_vcpu_hv { 686 struct kvm_vcpu *vcpu; 687 u32 vp_index; 688 u64 hv_vapic; 689 s64 runtime_offset; 690 struct kvm_vcpu_hv_synic synic; 691 struct kvm_hyperv_exit exit; 692 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 693 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 694 bool enforce_cpuid; 695 struct { 696 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 697 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 698 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 699 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 700 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 701 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 702 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 703 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 704 } cpuid_cache; 705 706 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 707 708 /* 709 * Preallocated buffers for handling hypercalls that pass sparse vCPU 710 * sets (for high vCPU counts, they're too large to comfortably fit on 711 * the stack). 712 */ 713 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 714 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS); 715 716 struct hv_vp_assist_page vp_assist_page; 717 718 struct { 719 u64 pa_page_gpa; 720 u64 vm_id; 721 u32 vp_id; 722 } nested; 723 }; 724 725 struct kvm_hypervisor_cpuid { 726 u32 base; 727 u32 limit; 728 }; 729 730 #ifdef CONFIG_KVM_XEN 731 /* Xen HVM per vcpu emulation context */ 732 struct kvm_vcpu_xen { 733 u64 hypercall_rip; 734 u32 current_runstate; 735 u8 upcall_vector; 736 struct gfn_to_pfn_cache vcpu_info_cache; 737 struct gfn_to_pfn_cache vcpu_time_info_cache; 738 struct gfn_to_pfn_cache runstate_cache; 739 struct gfn_to_pfn_cache runstate2_cache; 740 u64 last_steal; 741 u64 runstate_entry_time; 742 u64 runstate_times[4]; 743 unsigned long evtchn_pending_sel; 744 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 745 u32 timer_virq; 746 u64 timer_expires; /* In guest epoch */ 747 atomic_t timer_pending; 748 struct hrtimer timer; 749 int poll_evtchn; 750 struct timer_list poll_timer; 751 struct kvm_hypervisor_cpuid cpuid; 752 }; 753 #endif 754 755 struct kvm_queued_exception { 756 bool pending; 757 bool injected; 758 bool has_error_code; 759 u8 vector; 760 u32 error_code; 761 unsigned long payload; 762 bool has_payload; 763 }; 764 765 /* 766 * Hardware-defined CPUID leafs that are either scattered by the kernel or are 767 * unknown to the kernel, but need to be directly used by KVM. Note, these 768 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those. 769 */ 770 enum kvm_only_cpuid_leafs { 771 CPUID_12_EAX = NCAPINTS, 772 CPUID_7_1_EDX, 773 CPUID_8000_0007_EDX, 774 CPUID_8000_0022_EAX, 775 CPUID_7_2_EDX, 776 CPUID_24_0_EBX, 777 CPUID_8000_0021_ECX, 778 CPUID_7_1_ECX, 779 NR_KVM_CPU_CAPS, 780 781 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, 782 }; 783 784 struct kvm_vcpu_arch { 785 /* 786 * rip and regs accesses must go through 787 * kvm_{register,rip}_{read,write} functions. 788 */ 789 unsigned long regs[NR_VCPU_REGS]; 790 u32 regs_avail; 791 u32 regs_dirty; 792 793 unsigned long cr0; 794 unsigned long cr0_guest_owned_bits; 795 unsigned long cr2; 796 unsigned long cr3; 797 unsigned long cr4; 798 unsigned long cr4_guest_owned_bits; 799 unsigned long cr4_guest_rsvd_bits; 800 unsigned long cr8; 801 u32 host_pkru; 802 u32 pkru; 803 u32 hflags; 804 u64 efer; 805 u64 host_debugctl; 806 u64 apic_base; 807 struct kvm_lapic *apic; /* kernel irqchip context */ 808 bool load_eoi_exitmap_pending; 809 DECLARE_BITMAP(ioapic_handled_vectors, 256); 810 unsigned long apic_attention; 811 int32_t apic_arb_prio; 812 int mp_state; 813 u64 ia32_misc_enable_msr; 814 u64 smbase; 815 u64 smi_count; 816 bool at_instruction_boundary; 817 bool tpr_access_reporting; 818 bool xfd_no_write_intercept; 819 u64 microcode_version; 820 u64 arch_capabilities; 821 u64 perf_capabilities; 822 823 /* 824 * Paging state of the vcpu 825 * 826 * If the vcpu runs in guest mode with two level paging this still saves 827 * the paging mode of the l1 guest. This context is always used to 828 * handle faults. 829 */ 830 struct kvm_mmu *mmu; 831 832 /* Non-nested MMU for L1 */ 833 struct kvm_mmu root_mmu; 834 835 /* L1 MMU when running nested */ 836 struct kvm_mmu guest_mmu; 837 838 /* 839 * Paging state of an L2 guest (used for nested npt) 840 * 841 * This context will save all necessary information to walk page tables 842 * of an L2 guest. This context is only initialized for page table 843 * walking and not for faulting since we never handle l2 page faults on 844 * the host. 845 */ 846 struct kvm_mmu nested_mmu; 847 848 /* 849 * Pointer to the mmu context currently used for 850 * gva_to_gpa translations. 851 */ 852 struct kvm_mmu *walk_mmu; 853 854 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 855 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 856 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 857 struct kvm_mmu_memory_cache mmu_page_header_cache; 858 /* 859 * This cache is to allocate external page table. E.g. private EPT used 860 * by the TDX module. 861 */ 862 struct kvm_mmu_memory_cache mmu_external_spt_cache; 863 864 /* 865 * QEMU userspace and the guest each have their own FPU state. 866 * In vcpu_run, we switch between the user and guest FPU contexts. 867 * While running a VCPU, the VCPU thread will have the guest FPU 868 * context. 869 * 870 * Note that while the PKRU state lives inside the fpu registers, 871 * it is switched out separately at VMENTER and VMEXIT time. The 872 * "guest_fpstate" state here contains the guest FPU context, with the 873 * host PRKU bits. 874 */ 875 struct fpu_guest guest_fpu; 876 877 u64 xcr0; 878 u64 guest_supported_xcr0; 879 u64 ia32_xss; 880 u64 guest_supported_xss; 881 882 struct kvm_pio_request pio; 883 void *pio_data; 884 void *sev_pio_data; 885 unsigned sev_pio_count; 886 887 u8 event_exit_inst_len; 888 889 bool exception_from_userspace; 890 891 /* Exceptions to be injected to the guest. */ 892 struct kvm_queued_exception exception; 893 /* Exception VM-Exits to be synthesized to L1. */ 894 struct kvm_queued_exception exception_vmexit; 895 896 struct kvm_queued_interrupt { 897 bool injected; 898 bool soft; 899 u8 nr; 900 } interrupt; 901 902 int halt_request; /* real mode on Intel only */ 903 904 int cpuid_nent; 905 struct kvm_cpuid_entry2 *cpuid_entries; 906 bool cpuid_dynamic_bits_dirty; 907 bool is_amd_compatible; 908 909 /* 910 * cpu_caps holds the effective guest capabilities, i.e. the features 911 * the vCPU is allowed to use. Typically, but not always, features can 912 * be used by the guest if and only if both KVM and userspace want to 913 * expose the feature to the guest. 914 * 915 * A common exception is for virtualization holes, i.e. when KVM can't 916 * prevent the guest from using a feature, in which case the vCPU "has" 917 * the feature regardless of what KVM or userspace desires. 918 * 919 * Note, features that don't require KVM involvement in any way are 920 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the 921 * guest CPUID provided by userspace. 922 */ 923 u32 cpu_caps[NR_KVM_CPU_CAPS]; 924 925 u64 reserved_gpa_bits; 926 int maxphyaddr; 927 928 /* emulate context */ 929 930 struct x86_emulate_ctxt *emulate_ctxt; 931 bool emulate_regs_need_sync_to_vcpu; 932 bool emulate_regs_need_sync_from_vcpu; 933 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 934 unsigned long cui_linear_rip; 935 int cui_rdmsr_imm_reg; 936 937 gpa_t time; 938 s8 pvclock_tsc_shift; 939 u32 pvclock_tsc_mul; 940 unsigned int hw_tsc_khz; 941 struct gfn_to_pfn_cache pv_time; 942 /* set guest stopped flag in pvclock flags field */ 943 bool pvclock_set_guest_stopped_request; 944 945 struct { 946 u8 preempted; 947 u64 msr_val; 948 u64 last_steal; 949 struct gfn_to_hva_cache cache; 950 } st; 951 952 u64 l1_tsc_offset; 953 u64 tsc_offset; /* current tsc offset */ 954 u64 last_guest_tsc; 955 u64 last_host_tsc; 956 u64 tsc_offset_adjustment; 957 u64 this_tsc_nsec; 958 u64 this_tsc_write; 959 u64 this_tsc_generation; 960 bool tsc_catchup; 961 bool tsc_always_catchup; 962 s8 virtual_tsc_shift; 963 u32 virtual_tsc_mult; 964 u32 virtual_tsc_khz; 965 s64 ia32_tsc_adjust_msr; 966 u64 msr_ia32_power_ctl; 967 u64 l1_tsc_scaling_ratio; 968 u64 tsc_scaling_ratio; /* current scaling ratio */ 969 970 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 971 /* Number of NMIs pending injection, not including hardware vNMIs. */ 972 unsigned int nmi_pending; 973 bool nmi_injected; /* Trying to inject an NMI this entry */ 974 bool smi_pending; /* SMI queued after currently running handler */ 975 u8 handling_intr_from_guest; 976 977 struct kvm_mtrr mtrr_state; 978 u64 pat; 979 980 unsigned switch_db_regs; 981 unsigned long db[KVM_NR_DB_REGS]; 982 unsigned long dr6; 983 unsigned long dr7; 984 unsigned long eff_db[KVM_NR_DB_REGS]; 985 unsigned long guest_debug_dr7; 986 u64 msr_platform_info; 987 u64 msr_misc_features_enables; 988 989 u64 mcg_cap; 990 u64 mcg_status; 991 u64 mcg_ctl; 992 u64 mcg_ext_ctl; 993 u64 *mce_banks; 994 u64 *mci_ctl2_banks; 995 996 /* Cache MMIO info */ 997 u64 mmio_gva; 998 unsigned mmio_access; 999 gfn_t mmio_gfn; 1000 u64 mmio_gen; 1001 1002 struct kvm_pmu pmu; 1003 1004 /* used for guest single stepping over the given code position */ 1005 unsigned long singlestep_rip; 1006 1007 #ifdef CONFIG_KVM_HYPERV 1008 bool hyperv_enabled; 1009 struct kvm_vcpu_hv *hyperv; 1010 #endif 1011 #ifdef CONFIG_KVM_XEN 1012 struct kvm_vcpu_xen xen; 1013 #endif 1014 cpumask_var_t wbinvd_dirty_mask; 1015 1016 unsigned long last_retry_eip; 1017 unsigned long last_retry_addr; 1018 1019 struct { 1020 bool halted; 1021 gfn_t gfns[ASYNC_PF_PER_VCPU]; 1022 struct gfn_to_hva_cache data; 1023 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 1024 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 1025 u16 vec; 1026 u32 id; 1027 u32 host_apf_flags; 1028 bool send_always; 1029 bool delivery_as_pf_vmexit; 1030 bool pageready_pending; 1031 } apf; 1032 1033 /* OSVW MSRs (AMD only) */ 1034 struct { 1035 u64 length; 1036 u64 status; 1037 } osvw; 1038 1039 struct { 1040 u64 msr_val; 1041 struct gfn_to_hva_cache data; 1042 } pv_eoi; 1043 1044 u64 msr_kvm_poll_control; 1045 1046 /* pv related host specific info */ 1047 struct { 1048 bool pv_unhalted; 1049 } pv; 1050 1051 int pending_ioapic_eoi; 1052 int pending_external_vector; 1053 int highest_stale_pending_ioapic_eoi; 1054 1055 /* be preempted when it's in kernel-mode(cpl=0) */ 1056 bool preempted_in_kernel; 1057 1058 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1059 bool l1tf_flush_l1d; 1060 1061 /* Host CPU on which VM-entry was most recently attempted */ 1062 int last_vmentry_cpu; 1063 1064 /* AMD MSRC001_0015 Hardware Configuration */ 1065 u64 msr_hwcr; 1066 1067 /* pv related cpuid info */ 1068 struct { 1069 /* 1070 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1071 * leaf. 1072 */ 1073 u32 features; 1074 1075 /* 1076 * indicates whether pv emulation should be disabled if features 1077 * are not present in the guest's cpuid 1078 */ 1079 bool enforce; 1080 } pv_cpuid; 1081 1082 /* Protected Guests */ 1083 bool guest_state_protected; 1084 bool guest_tsc_protected; 1085 1086 /* 1087 * Set when PDPTS were loaded directly by the userspace without 1088 * reading the guest memory 1089 */ 1090 bool pdptrs_from_userspace; 1091 1092 #if IS_ENABLED(CONFIG_HYPERV) 1093 hpa_t hv_root_tdp; 1094 #endif 1095 }; 1096 1097 struct kvm_lpage_info { 1098 int disallow_lpage; 1099 }; 1100 1101 struct kvm_arch_memory_slot { 1102 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1103 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1104 unsigned short *gfn_write_track; 1105 }; 1106 1107 /* 1108 * Track the mode of the optimized logical map, as the rules for decoding the 1109 * destination vary per mode. Enabling the optimized logical map requires all 1110 * software-enabled local APIs to be in the same mode, each addressable APIC to 1111 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1112 */ 1113 enum kvm_apic_logical_mode { 1114 /* All local APICs are software disabled. */ 1115 KVM_APIC_MODE_SW_DISABLED, 1116 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1117 KVM_APIC_MODE_XAPIC_CLUSTER, 1118 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1119 KVM_APIC_MODE_XAPIC_FLAT, 1120 /* All software enabled local APICs in x2APIC mode. */ 1121 KVM_APIC_MODE_X2APIC, 1122 /* 1123 * Optimized map disabled, e.g. not all local APICs in the same logical 1124 * mode, same logical ID assigned to multiple APICs, etc. 1125 */ 1126 KVM_APIC_MODE_MAP_DISABLED, 1127 }; 1128 1129 struct kvm_apic_map { 1130 struct rcu_head rcu; 1131 enum kvm_apic_logical_mode logical_mode; 1132 u32 max_apic_id; 1133 union { 1134 struct kvm_lapic *xapic_flat_map[8]; 1135 struct kvm_lapic *xapic_cluster_map[16][4]; 1136 }; 1137 struct kvm_lapic *phys_map[]; 1138 }; 1139 1140 /* Hyper-V synthetic debugger (SynDbg)*/ 1141 struct kvm_hv_syndbg { 1142 struct { 1143 u64 control; 1144 u64 status; 1145 u64 send_page; 1146 u64 recv_page; 1147 u64 pending_page; 1148 } control; 1149 u64 options; 1150 }; 1151 1152 /* Current state of Hyper-V TSC page clocksource */ 1153 enum hv_tsc_page_status { 1154 /* TSC page was not set up or disabled */ 1155 HV_TSC_PAGE_UNSET = 0, 1156 /* TSC page MSR was written by the guest, update pending */ 1157 HV_TSC_PAGE_GUEST_CHANGED, 1158 /* TSC page update was triggered from the host side */ 1159 HV_TSC_PAGE_HOST_CHANGED, 1160 /* TSC page was properly set up and is currently active */ 1161 HV_TSC_PAGE_SET, 1162 /* TSC page was set up with an inaccessible GPA */ 1163 HV_TSC_PAGE_BROKEN, 1164 }; 1165 1166 #ifdef CONFIG_KVM_HYPERV 1167 /* Hyper-V emulation context */ 1168 struct kvm_hv { 1169 struct mutex hv_lock; 1170 u64 hv_guest_os_id; 1171 u64 hv_hypercall; 1172 u64 hv_tsc_page; 1173 enum hv_tsc_page_status hv_tsc_page_status; 1174 1175 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1176 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1177 u64 hv_crash_ctl; 1178 1179 struct ms_hyperv_tsc_page tsc_ref; 1180 1181 struct idr conn_to_evt; 1182 1183 u64 hv_reenlightenment_control; 1184 u64 hv_tsc_emulation_control; 1185 u64 hv_tsc_emulation_status; 1186 u64 hv_invtsc_control; 1187 1188 /* How many vCPUs have VP index != vCPU index */ 1189 atomic_t num_mismatched_vp_indexes; 1190 1191 /* 1192 * How many SynICs use 'AutoEOI' feature 1193 * (protected by arch.apicv_update_lock) 1194 */ 1195 unsigned int synic_auto_eoi_used; 1196 1197 struct kvm_hv_syndbg hv_syndbg; 1198 1199 bool xsaves_xsavec_checked; 1200 }; 1201 #endif 1202 1203 struct msr_bitmap_range { 1204 u32 flags; 1205 u32 nmsrs; 1206 u32 base; 1207 unsigned long *bitmap; 1208 }; 1209 1210 #ifdef CONFIG_KVM_XEN 1211 /* Xen emulation context */ 1212 struct kvm_xen { 1213 struct mutex xen_lock; 1214 u32 xen_version; 1215 bool long_mode; 1216 bool runstate_update_flag; 1217 u8 upcall_vector; 1218 struct gfn_to_pfn_cache shinfo_cache; 1219 struct idr evtchn_ports; 1220 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1221 1222 struct kvm_xen_hvm_config hvm_config; 1223 }; 1224 #endif 1225 1226 enum kvm_irqchip_mode { 1227 KVM_IRQCHIP_NONE, 1228 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1229 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1230 }; 1231 1232 struct kvm_x86_msr_filter { 1233 u8 count; 1234 bool default_allow:1; 1235 struct msr_bitmap_range ranges[16]; 1236 }; 1237 1238 struct kvm_x86_pmu_event_filter { 1239 __u32 action; 1240 __u32 nevents; 1241 __u32 fixed_counter_bitmap; 1242 __u32 flags; 1243 __u32 nr_includes; 1244 __u32 nr_excludes; 1245 __u64 *includes; 1246 __u64 *excludes; 1247 __u64 events[]; 1248 }; 1249 1250 enum kvm_apicv_inhibit { 1251 1252 /********************************************************************/ 1253 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1254 /********************************************************************/ 1255 1256 /* 1257 * APIC acceleration is disabled by a module parameter 1258 * and/or not supported in hardware. 1259 */ 1260 APICV_INHIBIT_REASON_DISABLED, 1261 1262 /* 1263 * APIC acceleration is inhibited because AutoEOI feature is 1264 * being used by a HyperV guest. 1265 */ 1266 APICV_INHIBIT_REASON_HYPERV, 1267 1268 /* 1269 * APIC acceleration is inhibited because the userspace didn't yet 1270 * enable the kernel/split irqchip. 1271 */ 1272 APICV_INHIBIT_REASON_ABSENT, 1273 1274 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1275 * (out of band, debug measure of blocking all interrupts on this vCPU) 1276 * was enabled, to avoid AVIC/APICv bypassing it. 1277 */ 1278 APICV_INHIBIT_REASON_BLOCKIRQ, 1279 1280 /* 1281 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1282 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1283 */ 1284 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1285 1286 /* 1287 * For simplicity, the APIC acceleration is inhibited 1288 * first time either APIC ID or APIC base are changed by the guest 1289 * from their reset values. 1290 */ 1291 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1292 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1293 1294 /******************************************************/ 1295 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1296 /******************************************************/ 1297 1298 /* 1299 * AVIC is inhibited on a vCPU because it runs a nested guest. 1300 * 1301 * This is needed because unlike APICv, the peers of this vCPU 1302 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1303 * a vCPU runs nested. 1304 */ 1305 APICV_INHIBIT_REASON_NESTED, 1306 1307 /* 1308 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1309 * which cannot be injected when the AVIC is enabled, thus AVIC 1310 * is inhibited while KVM waits for IRQ window. 1311 */ 1312 APICV_INHIBIT_REASON_IRQWIN, 1313 1314 /* 1315 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1316 * which AVIC doesn't support for edge triggered interrupts. 1317 */ 1318 APICV_INHIBIT_REASON_PIT_REINJ, 1319 1320 /* 1321 * AVIC is disabled because SEV doesn't support it. 1322 */ 1323 APICV_INHIBIT_REASON_SEV, 1324 1325 /* 1326 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1327 * mapping between logical ID and vCPU. 1328 */ 1329 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1330 1331 /* 1332 * AVIC is disabled because the vCPU's APIC ID is beyond the max 1333 * supported by AVIC/x2AVIC, i.e. the vCPU is unaddressable. 1334 */ 1335 APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG, 1336 1337 NR_APICV_INHIBIT_REASONS, 1338 }; 1339 1340 #define __APICV_INHIBIT_REASON(reason) \ 1341 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1342 1343 #define APICV_INHIBIT_REASONS \ 1344 __APICV_INHIBIT_REASON(DISABLED), \ 1345 __APICV_INHIBIT_REASON(HYPERV), \ 1346 __APICV_INHIBIT_REASON(ABSENT), \ 1347 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1348 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1349 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1350 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1351 __APICV_INHIBIT_REASON(NESTED), \ 1352 __APICV_INHIBIT_REASON(IRQWIN), \ 1353 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1354 __APICV_INHIBIT_REASON(SEV), \ 1355 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED), \ 1356 __APICV_INHIBIT_REASON(PHYSICAL_ID_TOO_BIG) 1357 1358 struct kvm_possible_nx_huge_pages { 1359 /* 1360 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1361 * replaced by an NX huge page. A shadow page is on this list if its 1362 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1363 * and there are no other conditions that prevent a huge page, e.g. 1364 * the backing host page is huge, dirtly logging is not enabled for its 1365 * memslot, etc... Note, zapping shadow pages on this list doesn't 1366 * guarantee an NX huge page will be created in its stead, e.g. if the 1367 * guest attempts to execute from the region then KVM obviously can't 1368 * create an NX huge page (without hanging the guest). 1369 */ 1370 struct list_head pages; 1371 u64 nr_pages; 1372 }; 1373 1374 enum kvm_mmu_type { 1375 KVM_SHADOW_MMU, 1376 #ifdef CONFIG_X86_64 1377 KVM_TDP_MMU, 1378 #endif 1379 KVM_NR_MMU_TYPES, 1380 }; 1381 1382 struct kvm_arch { 1383 unsigned long n_used_mmu_pages; 1384 unsigned long n_requested_mmu_pages; 1385 unsigned long n_max_mmu_pages; 1386 unsigned int indirect_shadow_pages; 1387 u8 mmu_valid_gen; 1388 u8 vm_type; 1389 bool has_private_mem; 1390 bool has_protected_state; 1391 bool has_protected_eoi; 1392 bool pre_fault_allowed; 1393 struct hlist_head *mmu_page_hash; 1394 struct list_head active_mmu_pages; 1395 struct kvm_possible_nx_huge_pages possible_nx_huge_pages[KVM_NR_MMU_TYPES]; 1396 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1397 struct kvm_page_track_notifier_head track_notifier_head; 1398 #endif 1399 /* 1400 * Protects marking pages unsync during page faults, as TDP MMU page 1401 * faults only take mmu_lock for read. For simplicity, the unsync 1402 * pages lock is always taken when marking pages unsync regardless of 1403 * whether mmu_lock is held for read or write. 1404 */ 1405 spinlock_t mmu_unsync_pages_lock; 1406 1407 u64 shadow_mmio_value; 1408 1409 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1410 atomic_t noncoherent_dma_count; 1411 unsigned long nr_possible_bypass_irqs; 1412 1413 #ifdef CONFIG_KVM_IOAPIC 1414 struct kvm_pic *vpic; 1415 struct kvm_ioapic *vioapic; 1416 struct kvm_pit *vpit; 1417 #endif 1418 atomic_t vapics_in_nmi_mode; 1419 struct mutex apic_map_lock; 1420 struct kvm_apic_map __rcu *apic_map; 1421 atomic_t apic_map_dirty; 1422 1423 bool apic_access_memslot_enabled; 1424 bool apic_access_memslot_inhibited; 1425 1426 /* Protects apicv_inhibit_reasons */ 1427 struct rw_semaphore apicv_update_lock; 1428 unsigned long apicv_inhibit_reasons; 1429 1430 gpa_t wall_clock; 1431 1432 u64 disabled_exits; 1433 1434 s64 kvmclock_offset; 1435 1436 /* 1437 * This also protects nr_vcpus_matched_tsc which is read from a 1438 * preemption-disabled region, so it must be a raw spinlock. 1439 */ 1440 raw_spinlock_t tsc_write_lock; 1441 u64 last_tsc_nsec; 1442 u64 last_tsc_write; 1443 u32 last_tsc_khz; 1444 u64 last_tsc_offset; 1445 u64 cur_tsc_nsec; 1446 u64 cur_tsc_write; 1447 u64 cur_tsc_offset; 1448 u64 cur_tsc_generation; 1449 int nr_vcpus_matched_tsc; 1450 1451 u32 default_tsc_khz; 1452 bool user_set_tsc; 1453 u64 apic_bus_cycle_ns; 1454 1455 seqcount_raw_spinlock_t pvclock_sc; 1456 bool use_master_clock; 1457 u64 master_kernel_ns; 1458 u64 master_cycle_now; 1459 struct delayed_work kvmclock_update_work; 1460 struct delayed_work kvmclock_sync_work; 1461 1462 #ifdef CONFIG_KVM_HYPERV 1463 struct kvm_hv hyperv; 1464 #endif 1465 1466 #ifdef CONFIG_KVM_XEN 1467 struct kvm_xen xen; 1468 #endif 1469 1470 bool backwards_tsc_observed; 1471 bool boot_vcpu_runs_old_kvmclock; 1472 u32 bsp_vcpu_id; 1473 1474 u64 disabled_quirks; 1475 1476 enum kvm_irqchip_mode irqchip_mode; 1477 u8 nr_reserved_ioapic_pins; 1478 1479 bool disabled_lapic_found; 1480 1481 bool x2apic_format; 1482 bool x2apic_broadcast_quirk_disabled; 1483 1484 bool has_mapped_host_mmio; 1485 bool guest_can_read_msr_platform_info; 1486 bool exception_payload_enabled; 1487 1488 bool triple_fault_event; 1489 1490 bool bus_lock_detection_enabled; 1491 bool enable_pmu; 1492 1493 u32 notify_window; 1494 u32 notify_vmexit_flags; 1495 /* 1496 * If exit_on_emulation_error is set, and the in-kernel instruction 1497 * emulator fails to emulate an instruction, allow userspace 1498 * the opportunity to look at it. 1499 */ 1500 bool exit_on_emulation_error; 1501 1502 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1503 u32 user_space_msr_mask; 1504 struct kvm_x86_msr_filter __rcu *msr_filter; 1505 1506 u32 hypercall_exit_enabled; 1507 1508 /* Guest can access the SGX PROVISIONKEY. */ 1509 bool sgx_provisioning_allowed; 1510 1511 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1512 struct vhost_task *nx_huge_page_recovery_thread; 1513 u64 nx_huge_page_last; 1514 struct once nx_once; 1515 1516 #ifdef CONFIG_X86_64 1517 #ifdef CONFIG_KVM_PROVE_MMU 1518 /* 1519 * The number of TDP MMU pages across all roots. Used only to sanity 1520 * check that KVM isn't leaking TDP MMU pages. 1521 */ 1522 atomic64_t tdp_mmu_pages; 1523 #endif 1524 1525 /* 1526 * List of struct kvm_mmu_pages being used as roots. 1527 * All struct kvm_mmu_pages in the list should have 1528 * tdp_mmu_page set. 1529 * 1530 * For reads, this list is protected by: 1531 * RCU alone or 1532 * the MMU lock in read mode + RCU or 1533 * the MMU lock in write mode 1534 * 1535 * For writes, this list is protected by tdp_mmu_pages_lock; see 1536 * below for the details. 1537 * 1538 * Roots will remain in the list until their tdp_mmu_root_count 1539 * drops to zero, at which point the thread that decremented the 1540 * count to zero should removed the root from the list and clean 1541 * it up, freeing the root after an RCU grace period. 1542 */ 1543 struct list_head tdp_mmu_roots; 1544 1545 /* 1546 * Protects accesses to the following fields when the MMU lock 1547 * is held in read mode: 1548 * - tdp_mmu_roots (above) 1549 * - the link field of kvm_mmu_page structs used by the TDP MMU 1550 * - possible_nx_huge_pages[KVM_TDP_MMU]; 1551 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1552 * by the TDP MMU 1553 * Because the lock is only taken within the MMU lock, strictly 1554 * speaking it is redundant to acquire this lock when the thread 1555 * holds the MMU lock in write mode. However it often simplifies 1556 * the code to do so. 1557 */ 1558 spinlock_t tdp_mmu_pages_lock; 1559 #endif /* CONFIG_X86_64 */ 1560 1561 /* 1562 * If set, at least one shadow root has been allocated. This flag 1563 * is used as one input when determining whether certain memslot 1564 * related allocations are necessary. 1565 */ 1566 bool shadow_root_allocated; 1567 1568 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1569 /* 1570 * If set, the VM has (or had) an external write tracking user, and 1571 * thus all write tracking metadata has been allocated, even if KVM 1572 * itself isn't using write tracking. 1573 */ 1574 bool external_write_tracking_enabled; 1575 #endif 1576 1577 #if IS_ENABLED(CONFIG_HYPERV) 1578 hpa_t hv_root_tdp; 1579 spinlock_t hv_root_tdp_lock; 1580 struct hv_partition_assist_pg *hv_pa_pg; 1581 #endif 1582 /* 1583 * VM-scope maximum vCPU ID. Used to determine the size of structures 1584 * that increase along with the maximum vCPU ID, in which case, using 1585 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1586 */ 1587 u32 max_vcpu_ids; 1588 1589 bool disable_nx_huge_pages; 1590 1591 /* 1592 * Memory caches used to allocate shadow pages when performing eager 1593 * page splitting. No need for a shadowed_info_cache since eager page 1594 * splitting only allocates direct shadow pages. 1595 * 1596 * Protected by kvm->slots_lock. 1597 */ 1598 struct kvm_mmu_memory_cache split_shadow_page_cache; 1599 struct kvm_mmu_memory_cache split_page_header_cache; 1600 1601 /* 1602 * Memory cache used to allocate pte_list_desc structs while splitting 1603 * huge pages. In the worst case, to split one huge page, 512 1604 * pte_list_desc structs are needed to add each lower level leaf sptep 1605 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1606 * page table. 1607 * 1608 * Protected by kvm->slots_lock. 1609 */ 1610 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1611 struct kvm_mmu_memory_cache split_desc_cache; 1612 1613 gfn_t gfn_direct_bits; 1614 1615 /* 1616 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero 1617 * value indicates CPU dirty logging is unsupported or disabled in 1618 * current VM. 1619 */ 1620 int cpu_dirty_log_size; 1621 }; 1622 1623 struct kvm_vm_stat { 1624 struct kvm_vm_stat_generic generic; 1625 u64 mmu_shadow_zapped; 1626 u64 mmu_pte_write; 1627 u64 mmu_pde_zapped; 1628 u64 mmu_flooded; 1629 u64 mmu_recycled; 1630 u64 mmu_cache_miss; 1631 u64 mmu_unsync; 1632 union { 1633 struct { 1634 atomic64_t pages_4k; 1635 atomic64_t pages_2m; 1636 atomic64_t pages_1g; 1637 }; 1638 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1639 }; 1640 u64 nx_lpage_splits; 1641 u64 max_mmu_page_hash_collisions; 1642 u64 max_mmu_rmap_size; 1643 }; 1644 1645 struct kvm_vcpu_stat { 1646 struct kvm_vcpu_stat_generic generic; 1647 u64 pf_taken; 1648 u64 pf_fixed; 1649 u64 pf_emulate; 1650 u64 pf_spurious; 1651 u64 pf_fast; 1652 u64 pf_mmio_spte_created; 1653 u64 pf_guest; 1654 u64 tlb_flush; 1655 u64 invlpg; 1656 1657 u64 exits; 1658 u64 io_exits; 1659 u64 mmio_exits; 1660 u64 signal_exits; 1661 u64 irq_window_exits; 1662 u64 nmi_window_exits; 1663 u64 l1d_flush; 1664 u64 halt_exits; 1665 u64 request_irq_exits; 1666 u64 irq_exits; 1667 u64 host_state_reload; 1668 u64 fpu_reload; 1669 u64 insn_emulation; 1670 u64 insn_emulation_fail; 1671 u64 hypercalls; 1672 u64 irq_injections; 1673 u64 nmi_injections; 1674 u64 req_event; 1675 u64 nested_run; 1676 u64 directed_yield_attempted; 1677 u64 directed_yield_successful; 1678 u64 preemption_reported; 1679 u64 preemption_other; 1680 u64 guest_mode; 1681 u64 notify_window_exits; 1682 }; 1683 1684 struct x86_instruction_info; 1685 1686 struct msr_data { 1687 bool host_initiated; 1688 u32 index; 1689 u64 data; 1690 }; 1691 1692 struct kvm_lapic_irq { 1693 u32 vector; 1694 u16 delivery_mode; 1695 u16 dest_mode; 1696 bool level; 1697 u16 trig_mode; 1698 u32 shorthand; 1699 u32 dest_id; 1700 bool msi_redir_hint; 1701 }; 1702 1703 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1704 { 1705 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1706 } 1707 1708 enum kvm_x86_run_flags { 1709 KVM_RUN_FORCE_IMMEDIATE_EXIT = BIT(0), 1710 KVM_RUN_LOAD_GUEST_DR6 = BIT(1), 1711 KVM_RUN_LOAD_DEBUGCTL = BIT(2), 1712 }; 1713 1714 struct kvm_x86_ops { 1715 const char *name; 1716 1717 int (*check_processor_compatibility)(void); 1718 1719 int (*enable_virtualization_cpu)(void); 1720 void (*disable_virtualization_cpu)(void); 1721 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1722 1723 void (*hardware_unsetup)(void); 1724 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1725 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1726 1727 unsigned int vm_size; 1728 int (*vm_init)(struct kvm *kvm); 1729 void (*vm_destroy)(struct kvm *kvm); 1730 void (*vm_pre_destroy)(struct kvm *kvm); 1731 1732 /* Create, but do not attach this VCPU */ 1733 int (*vcpu_precreate)(struct kvm *kvm); 1734 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1735 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1736 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1737 1738 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1739 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1740 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1741 1742 /* 1743 * Mask of DEBUGCTL bits that are owned by the host, i.e. that need to 1744 * match the host's value even while the guest is active. 1745 */ 1746 const u64 HOST_OWNED_DEBUGCTL; 1747 1748 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1749 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1750 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1751 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1752 void (*get_segment)(struct kvm_vcpu *vcpu, 1753 struct kvm_segment *var, int seg); 1754 int (*get_cpl)(struct kvm_vcpu *vcpu); 1755 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu); 1756 void (*set_segment)(struct kvm_vcpu *vcpu, 1757 struct kvm_segment *var, int seg); 1758 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1759 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1760 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1761 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1762 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1763 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1764 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1765 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1766 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1767 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1768 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1769 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1770 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1771 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1772 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1773 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1774 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1775 1776 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1777 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1778 #if IS_ENABLED(CONFIG_HYPERV) 1779 int (*flush_remote_tlbs)(struct kvm *kvm); 1780 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1781 gfn_t nr_pages); 1782 #endif 1783 1784 /* 1785 * Flush any TLB entries associated with the given GVA. 1786 * Does not need to flush GPA->HPA mappings. 1787 * Can potentially get non-canonical addresses through INVLPGs, which 1788 * the implementation may choose to ignore if appropriate. 1789 */ 1790 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1791 1792 /* 1793 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1794 * does not need to flush GPA->HPA mappings. 1795 */ 1796 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1797 1798 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1799 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1800 u64 run_flags); 1801 int (*handle_exit)(struct kvm_vcpu *vcpu, 1802 enum exit_fastpath_completion exit_fastpath); 1803 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1804 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1805 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1806 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1807 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1808 unsigned char *hypercall_addr); 1809 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1810 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1811 void (*inject_exception)(struct kvm_vcpu *vcpu); 1812 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1813 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1814 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1815 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1816 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1817 /* Whether or not a virtual NMI is pending in hardware. */ 1818 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1819 /* 1820 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1821 * to allow using static_call_ret0 as the fallback. 1822 */ 1823 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1824 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1825 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1826 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1827 1828 const bool x2apic_icr_is_split; 1829 const unsigned long required_apicv_inhibits; 1830 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1831 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1832 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1833 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1834 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1835 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1836 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1837 int trig_mode, int vector); 1838 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1839 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1840 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1841 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1842 1843 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1844 int root_level); 1845 1846 /* Update external mapping with page table link. */ 1847 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1848 void *external_spt); 1849 /* Update the external page table from spte getting set. */ 1850 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1851 kvm_pfn_t pfn_for_gfn); 1852 1853 /* Update external page tables for page table about to be freed. */ 1854 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1855 void *external_spt); 1856 1857 /* Update external page table from spte getting removed, and flush TLB. */ 1858 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1859 kvm_pfn_t pfn_for_gfn); 1860 1861 bool (*has_wbinvd_exit)(void); 1862 1863 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1864 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1865 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1866 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1867 1868 /* 1869 * Retrieve somewhat arbitrary exit/entry information. Intended to 1870 * be used only from within tracepoints or error paths. 1871 */ 1872 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1873 u64 *info1, u64 *info2, 1874 u32 *intr_info, u32 *error_code); 1875 1876 void (*get_entry_info)(struct kvm_vcpu *vcpu, 1877 u32 *intr_info, u32 *error_code); 1878 1879 int (*check_intercept)(struct kvm_vcpu *vcpu, 1880 struct x86_instruction_info *info, 1881 enum x86_intercept_stage stage, 1882 struct x86_exception *exception); 1883 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1884 1885 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1886 1887 const struct kvm_x86_nested_ops *nested_ops; 1888 1889 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1890 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1891 1892 int (*pi_update_irte)(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm, 1893 unsigned int host_irq, uint32_t guest_irq, 1894 struct kvm_vcpu *vcpu, u32 vector); 1895 void (*pi_start_bypass)(struct kvm *kvm); 1896 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1897 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1898 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1899 bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1900 1901 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1902 bool *expired); 1903 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1904 1905 void (*setup_mce)(struct kvm_vcpu *vcpu); 1906 1907 #ifdef CONFIG_KVM_SMM 1908 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1909 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1910 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1911 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1912 #endif 1913 1914 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1915 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1916 int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp); 1917 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1918 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1919 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1920 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1921 void (*guest_memory_reclaimed)(struct kvm *kvm); 1922 1923 int (*get_feature_msr)(u32 msr, u64 *data); 1924 1925 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1926 void *insn, int insn_len); 1927 1928 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1929 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1930 1931 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1932 void (*recalc_intercepts)(struct kvm_vcpu *vcpu); 1933 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1934 1935 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1936 1937 /* 1938 * Returns vCPU specific APICv inhibit reasons 1939 */ 1940 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1941 1942 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1943 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1944 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1945 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1946 int (*gmem_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn, bool is_private); 1947 }; 1948 1949 struct kvm_x86_nested_ops { 1950 void (*leave_nested)(struct kvm_vcpu *vcpu); 1951 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1952 u32 error_code); 1953 int (*check_events)(struct kvm_vcpu *vcpu); 1954 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1955 void (*triple_fault)(struct kvm_vcpu *vcpu); 1956 int (*get_state)(struct kvm_vcpu *vcpu, 1957 struct kvm_nested_state __user *user_kvm_nested_state, 1958 unsigned user_data_size); 1959 int (*set_state)(struct kvm_vcpu *vcpu, 1960 struct kvm_nested_state __user *user_kvm_nested_state, 1961 struct kvm_nested_state *kvm_state); 1962 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1963 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1964 1965 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1966 uint16_t *vmcs_version); 1967 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1968 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1969 }; 1970 1971 struct kvm_x86_init_ops { 1972 int (*hardware_setup)(void); 1973 unsigned int (*handle_intel_pt_intr)(void); 1974 1975 struct kvm_x86_ops *runtime_ops; 1976 struct kvm_pmu_ops *pmu_ops; 1977 }; 1978 1979 struct kvm_arch_async_pf { 1980 u32 token; 1981 gfn_t gfn; 1982 unsigned long cr3; 1983 bool direct_map; 1984 u64 error_code; 1985 }; 1986 1987 extern u32 __read_mostly kvm_nr_uret_msrs; 1988 extern bool __read_mostly allow_smaller_maxphyaddr; 1989 extern bool __read_mostly enable_apicv; 1990 extern bool __read_mostly enable_ipiv; 1991 extern bool __read_mostly enable_device_posted_irqs; 1992 extern struct kvm_x86_ops kvm_x86_ops; 1993 1994 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1995 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1996 1997 #define KVM_X86_OP(func) \ 1998 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1999 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 2000 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 2001 #include <asm/kvm-x86-ops.h> 2002 2003 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 2004 void kvm_x86_vendor_exit(void); 2005 2006 #define __KVM_HAVE_ARCH_VM_ALLOC 2007 static inline struct kvm *kvm_arch_alloc_vm(void) 2008 { 2009 return kvzalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT); 2010 } 2011 2012 #define __KVM_HAVE_ARCH_VM_FREE 2013 void kvm_arch_free_vm(struct kvm *kvm); 2014 2015 #if IS_ENABLED(CONFIG_HYPERV) 2016 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 2017 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 2018 { 2019 if (kvm_x86_ops.flush_remote_tlbs && 2020 !kvm_x86_call(flush_remote_tlbs)(kvm)) 2021 return 0; 2022 else 2023 return -ENOTSUPP; 2024 } 2025 2026 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 2027 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 2028 u64 nr_pages) 2029 { 2030 if (!kvm_x86_ops.flush_remote_tlbs_range) 2031 return -EOPNOTSUPP; 2032 2033 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 2034 } 2035 #endif /* CONFIG_HYPERV */ 2036 2037 enum kvm_intr_type { 2038 /* Values are arbitrary, but must be non-zero. */ 2039 KVM_HANDLING_IRQ = 1, 2040 KVM_HANDLING_NMI, 2041 }; 2042 2043 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 2044 #define kvm_arch_pmi_in_guest(vcpu) \ 2045 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 2046 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 2047 2048 void __init kvm_mmu_x86_module_init(void); 2049 int kvm_mmu_vendor_module_init(void); 2050 void kvm_mmu_vendor_module_exit(void); 2051 2052 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 2053 int kvm_mmu_create(struct kvm_vcpu *vcpu); 2054 int kvm_mmu_init_vm(struct kvm *kvm); 2055 void kvm_mmu_uninit_vm(struct kvm *kvm); 2056 2057 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 2058 struct kvm_memory_slot *slot); 2059 2060 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 2061 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 2062 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 2063 const struct kvm_memory_slot *memslot, 2064 int start_level); 2065 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 2066 const struct kvm_memory_slot *memslot, 2067 int target_level); 2068 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 2069 const struct kvm_memory_slot *memslot, 2070 u64 start, u64 end, 2071 int target_level); 2072 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 2073 const struct kvm_memory_slot *memslot); 2074 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 2075 const struct kvm_memory_slot *memslot); 2076 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 2077 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 2078 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 2079 2080 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 2081 2082 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 2083 const void *val, int bytes); 2084 2085 extern bool tdp_enabled; 2086 2087 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 2088 2089 /* 2090 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 2091 * userspace I/O) to indicate that the emulation context 2092 * should be reused as is, i.e. skip initialization of 2093 * emulation context, instruction fetch and decode. 2094 * 2095 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 2096 * Indicates that only select instructions (tagged with 2097 * EmulateOnUD) should be emulated (to minimize the emulator 2098 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 2099 * 2100 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2101 * decode the instruction length. For use *only* by 2102 * kvm_x86_ops.skip_emulated_instruction() implementations if 2103 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2104 * 2105 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2106 * retry native execution under certain conditions, 2107 * Can only be set in conjunction with EMULTYPE_PF. 2108 * 2109 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2110 * triggered by KVM's magic "force emulation" prefix, 2111 * which is opt in via module param (off by default). 2112 * Bypasses EmulateOnUD restriction despite emulating 2113 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2114 * Used to test the full emulator from userspace. 2115 * 2116 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2117 * backdoor emulation, which is opt in via module param. 2118 * VMware backdoor emulation handles select instructions 2119 * and reinjects the #GP for all other cases. 2120 * 2121 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case 2122 * the CR2/GPA value pass on the stack is valid. 2123 * 2124 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2125 * state and inject single-step #DBs after skipping 2126 * an instruction (after completing userspace I/O). 2127 * 2128 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2129 * is attempting to write a gfn that contains one or 2130 * more of the PTEs used to translate the write itself, 2131 * and the owning page table is being shadowed by KVM. 2132 * If emulation of the faulting instruction fails and 2133 * this flag is set, KVM will exit to userspace instead 2134 * of retrying emulation as KVM cannot make forward 2135 * progress. 2136 * 2137 * If emulation fails for a write to guest page tables, 2138 * KVM unprotects (zaps) the shadow page for the target 2139 * gfn and resumes the guest to retry the non-emulatable 2140 * instruction (on hardware). Unprotecting the gfn 2141 * doesn't allow forward progress for a self-changing 2142 * access because doing so also zaps the translation for 2143 * the gfn, i.e. retrying the instruction will hit a 2144 * !PRESENT fault, which results in a new shadow page 2145 * and sends KVM back to square one. 2146 */ 2147 #define EMULTYPE_NO_DECODE (1 << 0) 2148 #define EMULTYPE_TRAP_UD (1 << 1) 2149 #define EMULTYPE_SKIP (1 << 2) 2150 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2151 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2152 #define EMULTYPE_VMWARE_GP (1 << 5) 2153 #define EMULTYPE_PF (1 << 6) 2154 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2155 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2156 2157 static inline bool kvm_can_emulate_event_vectoring(int emul_type) 2158 { 2159 return !(emul_type & EMULTYPE_PF); 2160 } 2161 2162 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2163 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2164 void *insn, int insn_len); 2165 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2166 u64 *data, u8 ndata); 2167 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2168 2169 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa); 2170 2171 void kvm_enable_efer_bits(u64); 2172 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2173 int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2174 int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data); 2175 int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2176 int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data); 2177 int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2178 int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data); 2179 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2180 int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg); 2181 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2182 int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg); 2183 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2184 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2185 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2186 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2187 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2188 2189 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2190 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2191 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2192 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2193 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2194 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2195 2196 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2197 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2198 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2199 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2200 2201 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2202 int reason, bool has_error_code, u32 error_code); 2203 2204 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2205 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2206 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2207 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2208 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2209 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2210 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2211 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2212 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2213 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2214 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr); 2215 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2216 2217 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2218 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2219 2220 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2221 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2222 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2223 2224 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2225 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2226 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2227 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 2228 bool has_error_code, u32 error_code); 2229 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2230 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2231 struct x86_exception *fault); 2232 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2233 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2234 2235 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2236 int irq_source_id, int level) 2237 { 2238 /* Logical OR for level trig interrupt */ 2239 if (level) 2240 __set_bit(irq_source_id, irq_state); 2241 else 2242 __clear_bit(irq_source_id, irq_state); 2243 2244 return !!(*irq_state); 2245 } 2246 2247 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2248 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2249 2250 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2251 2252 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2253 bool always_retry); 2254 2255 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2256 gpa_t cr2_or_gpa) 2257 { 2258 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2259 } 2260 2261 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2262 ulong roots_to_free); 2263 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2264 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2265 struct x86_exception *exception); 2266 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2267 struct x86_exception *exception); 2268 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2269 struct x86_exception *exception); 2270 2271 bool kvm_apicv_activated(struct kvm *kvm); 2272 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2273 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2274 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2275 enum kvm_apicv_inhibit reason, bool set); 2276 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2277 enum kvm_apicv_inhibit reason, bool set); 2278 2279 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2280 enum kvm_apicv_inhibit reason) 2281 { 2282 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2283 } 2284 2285 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2286 enum kvm_apicv_inhibit reason) 2287 { 2288 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2289 } 2290 2291 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2292 void *insn, int insn_len); 2293 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2294 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2295 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2296 u64 addr, unsigned long roots); 2297 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2298 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2299 2300 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2301 int tdp_max_root_level, int tdp_huge_page_level); 2302 2303 2304 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2305 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2306 #endif 2307 2308 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2309 2310 static inline u16 kvm_read_ldt(void) 2311 { 2312 u16 ldt; 2313 asm("sldt %0" : "=g"(ldt)); 2314 return ldt; 2315 } 2316 2317 static inline void kvm_load_ldt(u16 sel) 2318 { 2319 asm("lldt %0" : : "rm"(sel)); 2320 } 2321 2322 #ifdef CONFIG_X86_64 2323 static inline unsigned long read_msr(unsigned long msr) 2324 { 2325 u64 value; 2326 2327 rdmsrq(msr, value); 2328 return value; 2329 } 2330 #endif 2331 2332 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2333 { 2334 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2335 } 2336 2337 #define TSS_IOPB_BASE_OFFSET 0x66 2338 #define TSS_BASE_SIZE 0x68 2339 #define TSS_IOPB_SIZE (65536 / 8) 2340 #define TSS_REDIRECTION_SIZE (256 / 8) 2341 #define RMODE_TSS_SIZE \ 2342 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2343 2344 enum { 2345 TASK_SWITCH_CALL = 0, 2346 TASK_SWITCH_IRET = 1, 2347 TASK_SWITCH_JMP = 2, 2348 TASK_SWITCH_GATE = 3, 2349 }; 2350 2351 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2352 2353 #ifdef CONFIG_KVM_SMM 2354 #define HF_SMM_MASK (1 << 1) 2355 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2356 2357 # define KVM_MAX_NR_ADDRESS_SPACES 2 2358 /* SMM is currently unsupported for guests with private memory. */ 2359 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2360 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2361 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2362 #else 2363 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2364 #endif 2365 2366 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2367 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2368 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2369 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2370 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2371 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2372 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2373 2374 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2375 unsigned long ipi_bitmap_high, u32 min, 2376 unsigned long icr, int op_64_bit); 2377 2378 int kvm_add_user_return_msr(u32 msr); 2379 int kvm_find_user_return_msr(u32 msr); 2380 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2381 void kvm_user_return_msr_update_cache(unsigned int index, u64 val); 2382 u64 kvm_get_user_return_msr(unsigned int slot); 2383 2384 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2385 { 2386 return kvm_find_user_return_msr(msr) >= 0; 2387 } 2388 2389 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2390 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2391 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2392 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2393 2394 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2395 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2396 2397 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2398 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2399 unsigned long *vcpu_bitmap); 2400 2401 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2402 struct kvm_async_pf *work); 2403 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2404 struct kvm_async_pf *work); 2405 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2406 struct kvm_async_pf *work); 2407 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2408 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2409 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2410 2411 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2412 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2413 2414 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2415 u32 size); 2416 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2417 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2418 2419 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2420 { 2421 /* We can only post Fixed and LowPrio IRQs */ 2422 return (irq->delivery_mode == APIC_DM_FIXED || 2423 irq->delivery_mode == APIC_DM_LOWEST); 2424 } 2425 2426 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2427 { 2428 kvm_x86_call(vcpu_blocking)(vcpu); 2429 } 2430 2431 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2432 { 2433 kvm_x86_call(vcpu_unblocking)(vcpu); 2434 } 2435 2436 static inline int kvm_cpu_get_apicid(int mps_cpu) 2437 { 2438 #ifdef CONFIG_X86_LOCAL_APIC 2439 return default_cpu_present_to_apicid(mps_cpu); 2440 #else 2441 WARN_ON_ONCE(1); 2442 return BAD_APICID; 2443 #endif 2444 } 2445 2446 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2447 2448 #define KVM_CLOCK_VALID_FLAGS \ 2449 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2450 2451 #define KVM_X86_VALID_QUIRKS \ 2452 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2453 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2454 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2455 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2456 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2457 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2458 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2459 KVM_X86_QUIRK_SLOT_ZAP_ALL | \ 2460 KVM_X86_QUIRK_STUFF_FEATURE_MSRS | \ 2461 KVM_X86_QUIRK_IGNORE_GUEST_PAT) 2462 2463 #define KVM_X86_CONDITIONAL_QUIRKS \ 2464 (KVM_X86_QUIRK_CD_NW_CLEARED | \ 2465 KVM_X86_QUIRK_IGNORE_GUEST_PAT) 2466 2467 /* 2468 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2469 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2470 * remaining 31 lower bits must be 0 to preserve ABI. 2471 */ 2472 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2473 2474 static inline bool kvm_arch_has_irq_bypass(void) 2475 { 2476 return enable_device_posted_irqs; 2477 } 2478 2479 #endif /* _ASM_X86_KVM_HOST_H */ 2480