1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/kfifo.h> 28 #include <linux/sched/vhost_task.h> 29 #include <linux/call_once.h> 30 #include <linux/atomic.h> 31 32 #include <asm/apic.h> 33 #include <asm/pvclock-abi.h> 34 #include <asm/desc.h> 35 #include <asm/mtrr.h> 36 #include <asm/msr-index.h> 37 #include <asm/msr.h> 38 #include <asm/asm.h> 39 #include <asm/irq_remapping.h> 40 #include <asm/kvm_page_track.h> 41 #include <asm/kvm_vcpu_regs.h> 42 #include <asm/reboot.h> 43 #include <hyperv/hvhdk.h> 44 45 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 46 47 /* 48 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 49 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 50 */ 51 #ifdef CONFIG_KVM_MAX_NR_VCPUS 52 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 53 #else 54 #define KVM_MAX_VCPUS 1024 55 #endif 56 57 /* 58 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 59 * might be larger than the actual number of VCPUs because the 60 * APIC ID encodes CPU topology information. 61 * 62 * In the worst case, we'll need less than one extra bit for the 63 * Core ID, and less than one extra bit for the Package (Die) ID, 64 * so ratio of 4 should be enough. 65 */ 66 #define KVM_VCPU_ID_RATIO 4 67 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 68 69 /* memory slots that are not exposed to userspace */ 70 #define KVM_INTERNAL_MEM_SLOTS 3 71 72 #define KVM_HALT_POLL_NS_DEFAULT 200000 73 74 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 75 76 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 77 KVM_DIRTY_LOG_INITIALLY_SET) 78 79 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 80 KVM_BUS_LOCK_DETECTION_EXIT) 81 82 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 83 KVM_X86_NOTIFY_VMEXIT_USER) 84 85 /* x86-specific vcpu->requests bit members */ 86 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 87 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 88 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 89 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 90 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 91 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 92 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 93 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 94 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 95 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 96 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 97 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 98 #ifdef CONFIG_KVM_SMM 99 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 100 #endif 101 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 102 #define KVM_REQ_MCLOCK_INPROGRESS \ 103 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 104 #define KVM_REQ_SCAN_IOAPIC \ 105 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 106 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 107 #define KVM_REQ_APIC_PAGE_RELOAD \ 108 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 109 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 110 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 111 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 112 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 113 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 114 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 115 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 116 #define KVM_REQ_APICV_UPDATE \ 117 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 118 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 119 #define KVM_REQ_TLB_FLUSH_GUEST \ 120 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 121 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 122 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 123 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 124 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 125 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 126 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 127 #define KVM_REQ_HV_TLB_FLUSH \ 128 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 129 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE KVM_ARCH_REQ(34) 130 131 #define CR0_RESERVED_BITS \ 132 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 133 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 134 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 135 136 #define CR4_RESERVED_BITS \ 137 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 138 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 139 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 140 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 141 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 142 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 143 | X86_CR4_LAM_SUP)) 144 145 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 146 147 148 149 #define INVALID_PAGE (~(hpa_t)0) 150 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 151 152 /* KVM Hugepage definitions for x86 */ 153 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 154 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 155 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 156 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 157 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 158 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 159 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 160 161 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 162 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 163 #define KVM_MMU_HASH_SHIFT 12 164 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 165 #define KVM_MIN_FREE_MMU_PAGES 5 166 #define KVM_REFILL_PAGES 25 167 #define KVM_MAX_CPUID_ENTRIES 256 168 #define KVM_NR_VAR_MTRR 8 169 170 #define ASYNC_PF_PER_VCPU 64 171 172 enum kvm_reg { 173 VCPU_REGS_RAX = __VCPU_REGS_RAX, 174 VCPU_REGS_RCX = __VCPU_REGS_RCX, 175 VCPU_REGS_RDX = __VCPU_REGS_RDX, 176 VCPU_REGS_RBX = __VCPU_REGS_RBX, 177 VCPU_REGS_RSP = __VCPU_REGS_RSP, 178 VCPU_REGS_RBP = __VCPU_REGS_RBP, 179 VCPU_REGS_RSI = __VCPU_REGS_RSI, 180 VCPU_REGS_RDI = __VCPU_REGS_RDI, 181 #ifdef CONFIG_X86_64 182 VCPU_REGS_R8 = __VCPU_REGS_R8, 183 VCPU_REGS_R9 = __VCPU_REGS_R9, 184 VCPU_REGS_R10 = __VCPU_REGS_R10, 185 VCPU_REGS_R11 = __VCPU_REGS_R11, 186 VCPU_REGS_R12 = __VCPU_REGS_R12, 187 VCPU_REGS_R13 = __VCPU_REGS_R13, 188 VCPU_REGS_R14 = __VCPU_REGS_R14, 189 VCPU_REGS_R15 = __VCPU_REGS_R15, 190 #endif 191 VCPU_REGS_RIP, 192 NR_VCPU_REGS, 193 194 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 195 VCPU_EXREG_CR0, 196 VCPU_EXREG_CR3, 197 VCPU_EXREG_CR4, 198 VCPU_EXREG_RFLAGS, 199 VCPU_EXREG_SEGMENTS, 200 VCPU_EXREG_EXIT_INFO_1, 201 VCPU_EXREG_EXIT_INFO_2, 202 }; 203 204 enum { 205 VCPU_SREG_ES, 206 VCPU_SREG_CS, 207 VCPU_SREG_SS, 208 VCPU_SREG_DS, 209 VCPU_SREG_FS, 210 VCPU_SREG_GS, 211 VCPU_SREG_TR, 212 VCPU_SREG_LDTR, 213 }; 214 215 enum exit_fastpath_completion { 216 EXIT_FASTPATH_NONE, 217 EXIT_FASTPATH_REENTER_GUEST, 218 EXIT_FASTPATH_EXIT_HANDLED, 219 EXIT_FASTPATH_EXIT_USERSPACE, 220 }; 221 typedef enum exit_fastpath_completion fastpath_t; 222 223 struct x86_emulate_ctxt; 224 struct x86_exception; 225 union kvm_smram; 226 enum x86_intercept; 227 enum x86_intercept_stage; 228 229 #define KVM_NR_DB_REGS 4 230 231 #define DR6_BUS_LOCK (1 << 11) 232 #define DR6_BD (1 << 13) 233 #define DR6_BS (1 << 14) 234 #define DR6_BT (1 << 15) 235 #define DR6_RTM (1 << 16) 236 /* 237 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 238 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 239 * they will never be 0 for now, but when they are defined 240 * in the future it will require no code change. 241 * 242 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 243 */ 244 #define DR6_ACTIVE_LOW 0xffff0ff0 245 #define DR6_VOLATILE 0x0001e80f 246 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 247 248 #define DR7_BP_EN_MASK 0x000000ff 249 #define DR7_GE (1 << 9) 250 #define DR7_GD (1 << 13) 251 #define DR7_FIXED_1 0x00000400 252 #define DR7_VOLATILE 0xffff2bff 253 254 #define KVM_GUESTDBG_VALID_MASK \ 255 (KVM_GUESTDBG_ENABLE | \ 256 KVM_GUESTDBG_SINGLESTEP | \ 257 KVM_GUESTDBG_USE_HW_BP | \ 258 KVM_GUESTDBG_USE_SW_BP | \ 259 KVM_GUESTDBG_INJECT_BP | \ 260 KVM_GUESTDBG_INJECT_DB | \ 261 KVM_GUESTDBG_BLOCKIRQ) 262 263 #define PFERR_PRESENT_MASK BIT(0) 264 #define PFERR_WRITE_MASK BIT(1) 265 #define PFERR_USER_MASK BIT(2) 266 #define PFERR_RSVD_MASK BIT(3) 267 #define PFERR_FETCH_MASK BIT(4) 268 #define PFERR_PK_MASK BIT(5) 269 #define PFERR_SGX_MASK BIT(15) 270 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 271 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 272 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 273 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 274 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 275 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 276 277 /* 278 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 279 * when emulating instructions that triggers implicit access. 280 */ 281 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 282 /* 283 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 284 * when the guest was accessing private memory. 285 */ 286 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 287 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 288 289 /* apic attention bits */ 290 #define KVM_APIC_CHECK_VAPIC 0 291 /* 292 * The following bit is set with PV-EOI, unset on EOI. 293 * We detect PV-EOI changes by guest by comparing 294 * this bit with PV-EOI in guest memory. 295 * See the implementation in apic_update_pv_eoi. 296 */ 297 #define KVM_APIC_PV_EOI_PENDING 1 298 299 struct kvm_kernel_irq_routing_entry; 300 301 /* 302 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 303 * also includes TDP pages) to determine whether or not a page can be used in 304 * the given MMU context. This is a subset of the overall kvm_cpu_role to 305 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 306 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 307 * 308 * Upper-level shadow pages having gptes are tracked for write-protection via 309 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 310 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 311 * otherwise gfn_write_track will overflow and explosions will ensue. 312 * 313 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 314 * cannot be reused. The ability to reuse a SP is tracked by its role, which 315 * incorporates various mode bits and properties of the SP. Roughly speaking, 316 * the number of unique SPs that can theoretically be created is 2^n, where n 317 * is the number of bits that are used to compute the role. 318 * 319 * But, even though there are 20 bits in the mask below, not all combinations 320 * of modes and flags are possible: 321 * 322 * - invalid shadow pages are not accounted, mirror pages are not shadowed, 323 * so the bits are effectively 18. 324 * 325 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 326 * execonly and ad_disabled are only used for nested EPT which has 327 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 328 * 329 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 330 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 331 * paging has exactly one upper level, making level completely redundant 332 * when has_4_byte_gpte=1. 333 * 334 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 335 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 336 * 337 * Therefore, the maximum number of possible upper-level shadow pages for a 338 * single gfn is a bit less than 2^13. 339 */ 340 union kvm_mmu_page_role { 341 u32 word; 342 struct { 343 unsigned level:4; 344 unsigned has_4_byte_gpte:1; 345 unsigned quadrant:2; 346 unsigned direct:1; 347 unsigned access:3; 348 unsigned invalid:1; 349 unsigned efer_nx:1; 350 unsigned cr0_wp:1; 351 unsigned smep_andnot_wp:1; 352 unsigned smap_andnot_wp:1; 353 unsigned ad_disabled:1; 354 unsigned guest_mode:1; 355 unsigned passthrough:1; 356 unsigned is_mirror:1; 357 unsigned :4; 358 359 /* 360 * This is left at the top of the word so that 361 * kvm_memslots_for_spte_role can extract it with a 362 * simple shift. While there is room, give it a whole 363 * byte so it is also faster to load it from memory. 364 */ 365 unsigned smm:8; 366 }; 367 }; 368 369 /* 370 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 371 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 372 * including on nested transitions, if nothing in the full role changes then 373 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 374 * don't treat all-zero structure as valid data. 375 * 376 * The properties that are tracked in the extended role but not the page role 377 * are for things that either (a) do not affect the validity of the shadow page 378 * or (b) are indirectly reflected in the shadow page's role. For example, 379 * CR4.PKE only affects permission checks for software walks of the guest page 380 * tables (because KVM doesn't support Protection Keys with shadow paging), and 381 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 382 * 383 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 384 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 385 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 386 * SMAP aware regardless of CR0.WP. 387 */ 388 union kvm_mmu_extended_role { 389 u32 word; 390 struct { 391 unsigned int valid:1; 392 unsigned int execonly:1; 393 unsigned int cr4_pse:1; 394 unsigned int cr4_pke:1; 395 unsigned int cr4_smap:1; 396 unsigned int cr4_smep:1; 397 unsigned int cr4_la57:1; 398 unsigned int efer_lma:1; 399 }; 400 }; 401 402 union kvm_cpu_role { 403 u64 as_u64; 404 struct { 405 union kvm_mmu_page_role base; 406 union kvm_mmu_extended_role ext; 407 }; 408 }; 409 410 struct kvm_rmap_head { 411 atomic_long_t val; 412 }; 413 414 struct kvm_pio_request { 415 unsigned long linear_rip; 416 unsigned long count; 417 int in; 418 int port; 419 int size; 420 }; 421 422 #define PT64_ROOT_MAX_LEVEL 5 423 424 struct rsvd_bits_validate { 425 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 426 u64 bad_mt_xwr; 427 }; 428 429 struct kvm_mmu_root_info { 430 gpa_t pgd; 431 hpa_t hpa; 432 }; 433 434 #define KVM_MMU_ROOT_INFO_INVALID \ 435 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 436 437 #define KVM_MMU_NUM_PREV_ROOTS 3 438 439 #define KVM_MMU_ROOT_CURRENT BIT(0) 440 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 441 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 442 443 #define KVM_HAVE_MMU_RWLOCK 444 445 struct kvm_mmu_page; 446 struct kvm_page_fault; 447 448 /* 449 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 450 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 451 * current mmu mode. 452 */ 453 struct kvm_mmu { 454 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 455 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 456 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 457 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 458 struct x86_exception *fault); 459 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 460 gpa_t gva_or_gpa, u64 access, 461 struct x86_exception *exception); 462 int (*sync_spte)(struct kvm_vcpu *vcpu, 463 struct kvm_mmu_page *sp, int i); 464 struct kvm_mmu_root_info root; 465 hpa_t mirror_root_hpa; 466 union kvm_cpu_role cpu_role; 467 union kvm_mmu_page_role root_role; 468 469 /* 470 * The pkru_mask indicates if protection key checks are needed. It 471 * consists of 16 domains indexed by page fault error code bits [4:1], 472 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 473 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 474 */ 475 u32 pkru_mask; 476 477 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 478 479 /* 480 * Bitmap; bit set = permission fault 481 * Byte index: page fault error code [4:1] 482 * Bit index: pte permissions in ACC_* format 483 */ 484 u8 permissions[16]; 485 486 u64 *pae_root; 487 u64 *pml4_root; 488 u64 *pml5_root; 489 490 /* 491 * check zero bits on shadow page table entries, these 492 * bits include not only hardware reserved bits but also 493 * the bits spte never used. 494 */ 495 struct rsvd_bits_validate shadow_zero_check; 496 497 struct rsvd_bits_validate guest_rsvd_check; 498 499 u64 pdptrs[4]; /* pae */ 500 }; 501 502 enum pmc_type { 503 KVM_PMC_GP = 0, 504 KVM_PMC_FIXED, 505 }; 506 507 struct kvm_pmc { 508 enum pmc_type type; 509 u8 idx; 510 bool is_paused; 511 bool intr; 512 /* 513 * Base value of the PMC counter, relative to the *consumed* count in 514 * the associated perf_event. This value includes counter updates from 515 * the perf_event and emulated_count since the last time the counter 516 * was reprogrammed, but it is *not* the current value as seen by the 517 * guest or userspace. 518 * 519 * The count is relative to the associated perf_event so that KVM 520 * doesn't need to reprogram the perf_event every time the guest writes 521 * to the counter. 522 */ 523 u64 counter; 524 /* 525 * PMC events triggered by KVM emulation that haven't been fully 526 * processed, i.e. haven't undergone overflow detection. 527 */ 528 u64 emulated_counter; 529 u64 eventsel; 530 struct perf_event *perf_event; 531 struct kvm_vcpu *vcpu; 532 /* 533 * only for creating or reusing perf_event, 534 * eventsel value for general purpose counters, 535 * ctrl value for fixed counters. 536 */ 537 u64 current_config; 538 }; 539 540 /* More counters may conflict with other existing Architectural MSRs */ 541 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 542 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 543 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 544 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 545 KVM_MAX_NR_AMD_GP_COUNTERS) 546 547 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3 548 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0 549 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \ 550 KVM_MAX_NR_AMD_FIXED_COUTNERS) 551 552 struct kvm_pmu { 553 u8 version; 554 unsigned nr_arch_gp_counters; 555 unsigned nr_arch_fixed_counters; 556 unsigned available_event_types; 557 u64 fixed_ctr_ctrl; 558 u64 fixed_ctr_ctrl_rsvd; 559 u64 global_ctrl; 560 u64 global_status; 561 u64 counter_bitmask[2]; 562 u64 global_ctrl_rsvd; 563 u64 global_status_rsvd; 564 u64 reserved_bits; 565 u64 raw_event_mask; 566 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 567 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 568 569 /* 570 * Overlay the bitmap with a 64-bit atomic so that all bits can be 571 * set in a single access, e.g. to reprogram all counters when the PMU 572 * filter changes. 573 */ 574 union { 575 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 576 atomic64_t __reprogram_pmi; 577 }; 578 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 579 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 580 581 u64 ds_area; 582 u64 pebs_enable; 583 u64 pebs_enable_rsvd; 584 u64 pebs_data_cfg; 585 u64 pebs_data_cfg_rsvd; 586 587 /* 588 * If a guest counter is cross-mapped to host counter with different 589 * index, its PEBS capability will be temporarily disabled. 590 * 591 * The user should make sure that this mask is updated 592 * after disabling interrupts and before perf_guest_get_msrs(); 593 */ 594 u64 host_cross_mapped_mask; 595 596 /* 597 * The gate to release perf_events not marked in 598 * pmc_in_use only once in a vcpu time slice. 599 */ 600 bool need_cleanup; 601 602 /* 603 * The total number of programmed perf_events and it helps to avoid 604 * redundant check before cleanup if guest don't use vPMU at all. 605 */ 606 u8 event_count; 607 }; 608 609 struct kvm_pmu_ops; 610 611 enum { 612 KVM_DEBUGREG_BP_ENABLED = 1, 613 KVM_DEBUGREG_WONT_EXIT = 2, 614 }; 615 616 struct kvm_mtrr { 617 u64 var[KVM_NR_VAR_MTRR * 2]; 618 u64 fixed_64k; 619 u64 fixed_16k[2]; 620 u64 fixed_4k[8]; 621 u64 deftype; 622 }; 623 624 /* Hyper-V SynIC timer */ 625 struct kvm_vcpu_hv_stimer { 626 struct hrtimer timer; 627 int index; 628 union hv_stimer_config config; 629 u64 count; 630 u64 exp_time; 631 struct hv_message msg; 632 bool msg_pending; 633 }; 634 635 /* Hyper-V synthetic interrupt controller (SynIC)*/ 636 struct kvm_vcpu_hv_synic { 637 u64 version; 638 u64 control; 639 u64 msg_page; 640 u64 evt_page; 641 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 642 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 643 DECLARE_BITMAP(auto_eoi_bitmap, 256); 644 DECLARE_BITMAP(vec_bitmap, 256); 645 bool active; 646 bool dont_zero_synic_pages; 647 }; 648 649 /* The maximum number of entries on the TLB flush fifo. */ 650 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 651 /* 652 * Note: the following 'magic' entry is made up by KVM to avoid putting 653 * anything besides GVA on the TLB flush fifo. It is theoretically possible 654 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 655 * which will look identical. KVM's action to 'flush everything' instead of 656 * flushing these particular addresses is, however, fully legitimate as 657 * flushing more than requested is always OK. 658 */ 659 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 660 661 enum hv_tlb_flush_fifos { 662 HV_L1_TLB_FLUSH_FIFO, 663 HV_L2_TLB_FLUSH_FIFO, 664 HV_NR_TLB_FLUSH_FIFOS, 665 }; 666 667 struct kvm_vcpu_hv_tlb_flush_fifo { 668 spinlock_t write_lock; 669 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 670 }; 671 672 /* Hyper-V per vcpu emulation context */ 673 struct kvm_vcpu_hv { 674 struct kvm_vcpu *vcpu; 675 u32 vp_index; 676 u64 hv_vapic; 677 s64 runtime_offset; 678 struct kvm_vcpu_hv_synic synic; 679 struct kvm_hyperv_exit exit; 680 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 681 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 682 bool enforce_cpuid; 683 struct { 684 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 685 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 686 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 687 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 688 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 689 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 690 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 691 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 692 } cpuid_cache; 693 694 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 695 696 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 697 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 698 699 struct hv_vp_assist_page vp_assist_page; 700 701 struct { 702 u64 pa_page_gpa; 703 u64 vm_id; 704 u32 vp_id; 705 } nested; 706 }; 707 708 struct kvm_hypervisor_cpuid { 709 u32 base; 710 u32 limit; 711 }; 712 713 #ifdef CONFIG_KVM_XEN 714 /* Xen HVM per vcpu emulation context */ 715 struct kvm_vcpu_xen { 716 u64 hypercall_rip; 717 u32 current_runstate; 718 u8 upcall_vector; 719 struct gfn_to_pfn_cache vcpu_info_cache; 720 struct gfn_to_pfn_cache vcpu_time_info_cache; 721 struct gfn_to_pfn_cache runstate_cache; 722 struct gfn_to_pfn_cache runstate2_cache; 723 u64 last_steal; 724 u64 runstate_entry_time; 725 u64 runstate_times[4]; 726 unsigned long evtchn_pending_sel; 727 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 728 u32 timer_virq; 729 u64 timer_expires; /* In guest epoch */ 730 atomic_t timer_pending; 731 struct hrtimer timer; 732 int poll_evtchn; 733 struct timer_list poll_timer; 734 struct kvm_hypervisor_cpuid cpuid; 735 }; 736 #endif 737 738 struct kvm_queued_exception { 739 bool pending; 740 bool injected; 741 bool has_error_code; 742 u8 vector; 743 u32 error_code; 744 unsigned long payload; 745 bool has_payload; 746 }; 747 748 /* 749 * Hardware-defined CPUID leafs that are either scattered by the kernel or are 750 * unknown to the kernel, but need to be directly used by KVM. Note, these 751 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those. 752 */ 753 enum kvm_only_cpuid_leafs { 754 CPUID_12_EAX = NCAPINTS, 755 CPUID_7_1_EDX, 756 CPUID_8000_0007_EDX, 757 CPUID_8000_0022_EAX, 758 CPUID_7_2_EDX, 759 CPUID_24_0_EBX, 760 NR_KVM_CPU_CAPS, 761 762 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, 763 }; 764 765 struct kvm_vcpu_arch { 766 /* 767 * rip and regs accesses must go through 768 * kvm_{register,rip}_{read,write} functions. 769 */ 770 unsigned long regs[NR_VCPU_REGS]; 771 u32 regs_avail; 772 u32 regs_dirty; 773 774 unsigned long cr0; 775 unsigned long cr0_guest_owned_bits; 776 unsigned long cr2; 777 unsigned long cr3; 778 unsigned long cr4; 779 unsigned long cr4_guest_owned_bits; 780 unsigned long cr4_guest_rsvd_bits; 781 unsigned long cr8; 782 u32 host_pkru; 783 u32 pkru; 784 u32 hflags; 785 u64 efer; 786 u64 host_debugctl; 787 u64 apic_base; 788 struct kvm_lapic *apic; /* kernel irqchip context */ 789 bool load_eoi_exitmap_pending; 790 DECLARE_BITMAP(ioapic_handled_vectors, 256); 791 unsigned long apic_attention; 792 int32_t apic_arb_prio; 793 int mp_state; 794 u64 ia32_misc_enable_msr; 795 u64 smbase; 796 u64 smi_count; 797 bool at_instruction_boundary; 798 bool tpr_access_reporting; 799 bool xfd_no_write_intercept; 800 u64 ia32_xss; 801 u64 microcode_version; 802 u64 arch_capabilities; 803 u64 perf_capabilities; 804 805 /* 806 * Paging state of the vcpu 807 * 808 * If the vcpu runs in guest mode with two level paging this still saves 809 * the paging mode of the l1 guest. This context is always used to 810 * handle faults. 811 */ 812 struct kvm_mmu *mmu; 813 814 /* Non-nested MMU for L1 */ 815 struct kvm_mmu root_mmu; 816 817 /* L1 MMU when running nested */ 818 struct kvm_mmu guest_mmu; 819 820 /* 821 * Paging state of an L2 guest (used for nested npt) 822 * 823 * This context will save all necessary information to walk page tables 824 * of an L2 guest. This context is only initialized for page table 825 * walking and not for faulting since we never handle l2 page faults on 826 * the host. 827 */ 828 struct kvm_mmu nested_mmu; 829 830 /* 831 * Pointer to the mmu context currently used for 832 * gva_to_gpa translations. 833 */ 834 struct kvm_mmu *walk_mmu; 835 836 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 837 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 838 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 839 struct kvm_mmu_memory_cache mmu_page_header_cache; 840 /* 841 * This cache is to allocate external page table. E.g. private EPT used 842 * by the TDX module. 843 */ 844 struct kvm_mmu_memory_cache mmu_external_spt_cache; 845 846 /* 847 * QEMU userspace and the guest each have their own FPU state. 848 * In vcpu_run, we switch between the user and guest FPU contexts. 849 * While running a VCPU, the VCPU thread will have the guest FPU 850 * context. 851 * 852 * Note that while the PKRU state lives inside the fpu registers, 853 * it is switched out separately at VMENTER and VMEXIT time. The 854 * "guest_fpstate" state here contains the guest FPU context, with the 855 * host PRKU bits. 856 */ 857 struct fpu_guest guest_fpu; 858 859 u64 xcr0; 860 u64 guest_supported_xcr0; 861 862 struct kvm_pio_request pio; 863 void *pio_data; 864 void *sev_pio_data; 865 unsigned sev_pio_count; 866 867 u8 event_exit_inst_len; 868 869 bool exception_from_userspace; 870 871 /* Exceptions to be injected to the guest. */ 872 struct kvm_queued_exception exception; 873 /* Exception VM-Exits to be synthesized to L1. */ 874 struct kvm_queued_exception exception_vmexit; 875 876 struct kvm_queued_interrupt { 877 bool injected; 878 bool soft; 879 u8 nr; 880 } interrupt; 881 882 int halt_request; /* real mode on Intel only */ 883 884 int cpuid_nent; 885 struct kvm_cpuid_entry2 *cpuid_entries; 886 bool cpuid_dynamic_bits_dirty; 887 bool is_amd_compatible; 888 889 /* 890 * cpu_caps holds the effective guest capabilities, i.e. the features 891 * the vCPU is allowed to use. Typically, but not always, features can 892 * be used by the guest if and only if both KVM and userspace want to 893 * expose the feature to the guest. 894 * 895 * A common exception is for virtualization holes, i.e. when KVM can't 896 * prevent the guest from using a feature, in which case the vCPU "has" 897 * the feature regardless of what KVM or userspace desires. 898 * 899 * Note, features that don't require KVM involvement in any way are 900 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the 901 * guest CPUID provided by userspace. 902 */ 903 u32 cpu_caps[NR_KVM_CPU_CAPS]; 904 905 u64 reserved_gpa_bits; 906 int maxphyaddr; 907 908 /* emulate context */ 909 910 struct x86_emulate_ctxt *emulate_ctxt; 911 bool emulate_regs_need_sync_to_vcpu; 912 bool emulate_regs_need_sync_from_vcpu; 913 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 914 915 gpa_t time; 916 s8 pvclock_tsc_shift; 917 u32 pvclock_tsc_mul; 918 unsigned int hw_tsc_khz; 919 struct gfn_to_pfn_cache pv_time; 920 /* set guest stopped flag in pvclock flags field */ 921 bool pvclock_set_guest_stopped_request; 922 923 struct { 924 u8 preempted; 925 u64 msr_val; 926 u64 last_steal; 927 struct gfn_to_hva_cache cache; 928 } st; 929 930 u64 l1_tsc_offset; 931 u64 tsc_offset; /* current tsc offset */ 932 u64 last_guest_tsc; 933 u64 last_host_tsc; 934 u64 tsc_offset_adjustment; 935 u64 this_tsc_nsec; 936 u64 this_tsc_write; 937 u64 this_tsc_generation; 938 bool tsc_catchup; 939 bool tsc_always_catchup; 940 s8 virtual_tsc_shift; 941 u32 virtual_tsc_mult; 942 u32 virtual_tsc_khz; 943 s64 ia32_tsc_adjust_msr; 944 u64 msr_ia32_power_ctl; 945 u64 l1_tsc_scaling_ratio; 946 u64 tsc_scaling_ratio; /* current scaling ratio */ 947 948 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 949 /* Number of NMIs pending injection, not including hardware vNMIs. */ 950 unsigned int nmi_pending; 951 bool nmi_injected; /* Trying to inject an NMI this entry */ 952 bool smi_pending; /* SMI queued after currently running handler */ 953 u8 handling_intr_from_guest; 954 955 struct kvm_mtrr mtrr_state; 956 u64 pat; 957 958 unsigned switch_db_regs; 959 unsigned long db[KVM_NR_DB_REGS]; 960 unsigned long dr6; 961 unsigned long dr7; 962 unsigned long eff_db[KVM_NR_DB_REGS]; 963 unsigned long guest_debug_dr7; 964 u64 msr_platform_info; 965 u64 msr_misc_features_enables; 966 967 u64 mcg_cap; 968 u64 mcg_status; 969 u64 mcg_ctl; 970 u64 mcg_ext_ctl; 971 u64 *mce_banks; 972 u64 *mci_ctl2_banks; 973 974 /* Cache MMIO info */ 975 u64 mmio_gva; 976 unsigned mmio_access; 977 gfn_t mmio_gfn; 978 u64 mmio_gen; 979 980 struct kvm_pmu pmu; 981 982 /* used for guest single stepping over the given code position */ 983 unsigned long singlestep_rip; 984 985 #ifdef CONFIG_KVM_HYPERV 986 bool hyperv_enabled; 987 struct kvm_vcpu_hv *hyperv; 988 #endif 989 #ifdef CONFIG_KVM_XEN 990 struct kvm_vcpu_xen xen; 991 #endif 992 cpumask_var_t wbinvd_dirty_mask; 993 994 unsigned long last_retry_eip; 995 unsigned long last_retry_addr; 996 997 struct { 998 bool halted; 999 gfn_t gfns[ASYNC_PF_PER_VCPU]; 1000 struct gfn_to_hva_cache data; 1001 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 1002 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 1003 u16 vec; 1004 u32 id; 1005 u32 host_apf_flags; 1006 bool send_always; 1007 bool delivery_as_pf_vmexit; 1008 bool pageready_pending; 1009 } apf; 1010 1011 /* OSVW MSRs (AMD only) */ 1012 struct { 1013 u64 length; 1014 u64 status; 1015 } osvw; 1016 1017 struct { 1018 u64 msr_val; 1019 struct gfn_to_hva_cache data; 1020 } pv_eoi; 1021 1022 u64 msr_kvm_poll_control; 1023 1024 /* pv related host specific info */ 1025 struct { 1026 bool pv_unhalted; 1027 } pv; 1028 1029 int pending_ioapic_eoi; 1030 int pending_external_vector; 1031 1032 /* be preempted when it's in kernel-mode(cpl=0) */ 1033 bool preempted_in_kernel; 1034 1035 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1036 bool l1tf_flush_l1d; 1037 1038 /* Host CPU on which VM-entry was most recently attempted */ 1039 int last_vmentry_cpu; 1040 1041 /* AMD MSRC001_0015 Hardware Configuration */ 1042 u64 msr_hwcr; 1043 1044 /* pv related cpuid info */ 1045 struct { 1046 /* 1047 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1048 * leaf. 1049 */ 1050 u32 features; 1051 1052 /* 1053 * indicates whether pv emulation should be disabled if features 1054 * are not present in the guest's cpuid 1055 */ 1056 bool enforce; 1057 } pv_cpuid; 1058 1059 /* Protected Guests */ 1060 bool guest_state_protected; 1061 bool guest_tsc_protected; 1062 1063 /* 1064 * Set when PDPTS were loaded directly by the userspace without 1065 * reading the guest memory 1066 */ 1067 bool pdptrs_from_userspace; 1068 1069 #if IS_ENABLED(CONFIG_HYPERV) 1070 hpa_t hv_root_tdp; 1071 #endif 1072 }; 1073 1074 struct kvm_lpage_info { 1075 int disallow_lpage; 1076 }; 1077 1078 struct kvm_arch_memory_slot { 1079 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1080 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1081 unsigned short *gfn_write_track; 1082 }; 1083 1084 /* 1085 * Track the mode of the optimized logical map, as the rules for decoding the 1086 * destination vary per mode. Enabling the optimized logical map requires all 1087 * software-enabled local APIs to be in the same mode, each addressable APIC to 1088 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1089 */ 1090 enum kvm_apic_logical_mode { 1091 /* All local APICs are software disabled. */ 1092 KVM_APIC_MODE_SW_DISABLED, 1093 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1094 KVM_APIC_MODE_XAPIC_CLUSTER, 1095 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1096 KVM_APIC_MODE_XAPIC_FLAT, 1097 /* All software enabled local APICs in x2APIC mode. */ 1098 KVM_APIC_MODE_X2APIC, 1099 /* 1100 * Optimized map disabled, e.g. not all local APICs in the same logical 1101 * mode, same logical ID assigned to multiple APICs, etc. 1102 */ 1103 KVM_APIC_MODE_MAP_DISABLED, 1104 }; 1105 1106 struct kvm_apic_map { 1107 struct rcu_head rcu; 1108 enum kvm_apic_logical_mode logical_mode; 1109 u32 max_apic_id; 1110 union { 1111 struct kvm_lapic *xapic_flat_map[8]; 1112 struct kvm_lapic *xapic_cluster_map[16][4]; 1113 }; 1114 struct kvm_lapic *phys_map[]; 1115 }; 1116 1117 /* Hyper-V synthetic debugger (SynDbg)*/ 1118 struct kvm_hv_syndbg { 1119 struct { 1120 u64 control; 1121 u64 status; 1122 u64 send_page; 1123 u64 recv_page; 1124 u64 pending_page; 1125 } control; 1126 u64 options; 1127 }; 1128 1129 /* Current state of Hyper-V TSC page clocksource */ 1130 enum hv_tsc_page_status { 1131 /* TSC page was not set up or disabled */ 1132 HV_TSC_PAGE_UNSET = 0, 1133 /* TSC page MSR was written by the guest, update pending */ 1134 HV_TSC_PAGE_GUEST_CHANGED, 1135 /* TSC page update was triggered from the host side */ 1136 HV_TSC_PAGE_HOST_CHANGED, 1137 /* TSC page was properly set up and is currently active */ 1138 HV_TSC_PAGE_SET, 1139 /* TSC page was set up with an inaccessible GPA */ 1140 HV_TSC_PAGE_BROKEN, 1141 }; 1142 1143 #ifdef CONFIG_KVM_HYPERV 1144 /* Hyper-V emulation context */ 1145 struct kvm_hv { 1146 struct mutex hv_lock; 1147 u64 hv_guest_os_id; 1148 u64 hv_hypercall; 1149 u64 hv_tsc_page; 1150 enum hv_tsc_page_status hv_tsc_page_status; 1151 1152 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1153 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1154 u64 hv_crash_ctl; 1155 1156 struct ms_hyperv_tsc_page tsc_ref; 1157 1158 struct idr conn_to_evt; 1159 1160 u64 hv_reenlightenment_control; 1161 u64 hv_tsc_emulation_control; 1162 u64 hv_tsc_emulation_status; 1163 u64 hv_invtsc_control; 1164 1165 /* How many vCPUs have VP index != vCPU index */ 1166 atomic_t num_mismatched_vp_indexes; 1167 1168 /* 1169 * How many SynICs use 'AutoEOI' feature 1170 * (protected by arch.apicv_update_lock) 1171 */ 1172 unsigned int synic_auto_eoi_used; 1173 1174 struct kvm_hv_syndbg hv_syndbg; 1175 1176 bool xsaves_xsavec_checked; 1177 }; 1178 #endif 1179 1180 struct msr_bitmap_range { 1181 u32 flags; 1182 u32 nmsrs; 1183 u32 base; 1184 unsigned long *bitmap; 1185 }; 1186 1187 #ifdef CONFIG_KVM_XEN 1188 /* Xen emulation context */ 1189 struct kvm_xen { 1190 struct mutex xen_lock; 1191 u32 xen_version; 1192 bool long_mode; 1193 bool runstate_update_flag; 1194 u8 upcall_vector; 1195 struct gfn_to_pfn_cache shinfo_cache; 1196 struct idr evtchn_ports; 1197 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1198 1199 struct kvm_xen_hvm_config hvm_config; 1200 }; 1201 #endif 1202 1203 enum kvm_irqchip_mode { 1204 KVM_IRQCHIP_NONE, 1205 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1206 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1207 }; 1208 1209 struct kvm_x86_msr_filter { 1210 u8 count; 1211 bool default_allow:1; 1212 struct msr_bitmap_range ranges[16]; 1213 }; 1214 1215 struct kvm_x86_pmu_event_filter { 1216 __u32 action; 1217 __u32 nevents; 1218 __u32 fixed_counter_bitmap; 1219 __u32 flags; 1220 __u32 nr_includes; 1221 __u32 nr_excludes; 1222 __u64 *includes; 1223 __u64 *excludes; 1224 __u64 events[]; 1225 }; 1226 1227 enum kvm_apicv_inhibit { 1228 1229 /********************************************************************/ 1230 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1231 /********************************************************************/ 1232 1233 /* 1234 * APIC acceleration is disabled by a module parameter 1235 * and/or not supported in hardware. 1236 */ 1237 APICV_INHIBIT_REASON_DISABLED, 1238 1239 /* 1240 * APIC acceleration is inhibited because AutoEOI feature is 1241 * being used by a HyperV guest. 1242 */ 1243 APICV_INHIBIT_REASON_HYPERV, 1244 1245 /* 1246 * APIC acceleration is inhibited because the userspace didn't yet 1247 * enable the kernel/split irqchip. 1248 */ 1249 APICV_INHIBIT_REASON_ABSENT, 1250 1251 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1252 * (out of band, debug measure of blocking all interrupts on this vCPU) 1253 * was enabled, to avoid AVIC/APICv bypassing it. 1254 */ 1255 APICV_INHIBIT_REASON_BLOCKIRQ, 1256 1257 /* 1258 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1259 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1260 */ 1261 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1262 1263 /* 1264 * For simplicity, the APIC acceleration is inhibited 1265 * first time either APIC ID or APIC base are changed by the guest 1266 * from their reset values. 1267 */ 1268 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1269 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1270 1271 /******************************************************/ 1272 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1273 /******************************************************/ 1274 1275 /* 1276 * AVIC is inhibited on a vCPU because it runs a nested guest. 1277 * 1278 * This is needed because unlike APICv, the peers of this vCPU 1279 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1280 * a vCPU runs nested. 1281 */ 1282 APICV_INHIBIT_REASON_NESTED, 1283 1284 /* 1285 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1286 * which cannot be injected when the AVIC is enabled, thus AVIC 1287 * is inhibited while KVM waits for IRQ window. 1288 */ 1289 APICV_INHIBIT_REASON_IRQWIN, 1290 1291 /* 1292 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1293 * which AVIC doesn't support for edge triggered interrupts. 1294 */ 1295 APICV_INHIBIT_REASON_PIT_REINJ, 1296 1297 /* 1298 * AVIC is disabled because SEV doesn't support it. 1299 */ 1300 APICV_INHIBIT_REASON_SEV, 1301 1302 /* 1303 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1304 * mapping between logical ID and vCPU. 1305 */ 1306 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1307 1308 NR_APICV_INHIBIT_REASONS, 1309 }; 1310 1311 #define __APICV_INHIBIT_REASON(reason) \ 1312 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1313 1314 #define APICV_INHIBIT_REASONS \ 1315 __APICV_INHIBIT_REASON(DISABLED), \ 1316 __APICV_INHIBIT_REASON(HYPERV), \ 1317 __APICV_INHIBIT_REASON(ABSENT), \ 1318 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1319 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1320 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1321 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1322 __APICV_INHIBIT_REASON(NESTED), \ 1323 __APICV_INHIBIT_REASON(IRQWIN), \ 1324 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1325 __APICV_INHIBIT_REASON(SEV), \ 1326 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED) 1327 1328 struct kvm_arch { 1329 unsigned long n_used_mmu_pages; 1330 unsigned long n_requested_mmu_pages; 1331 unsigned long n_max_mmu_pages; 1332 unsigned int indirect_shadow_pages; 1333 u8 mmu_valid_gen; 1334 u8 vm_type; 1335 bool has_private_mem; 1336 bool has_protected_state; 1337 bool pre_fault_allowed; 1338 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1339 struct list_head active_mmu_pages; 1340 /* 1341 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1342 * replaced by an NX huge page. A shadow page is on this list if its 1343 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1344 * and there are no other conditions that prevent a huge page, e.g. 1345 * the backing host page is huge, dirtly logging is not enabled for its 1346 * memslot, etc... Note, zapping shadow pages on this list doesn't 1347 * guarantee an NX huge page will be created in its stead, e.g. if the 1348 * guest attempts to execute from the region then KVM obviously can't 1349 * create an NX huge page (without hanging the guest). 1350 */ 1351 struct list_head possible_nx_huge_pages; 1352 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1353 struct kvm_page_track_notifier_head track_notifier_head; 1354 #endif 1355 /* 1356 * Protects marking pages unsync during page faults, as TDP MMU page 1357 * faults only take mmu_lock for read. For simplicity, the unsync 1358 * pages lock is always taken when marking pages unsync regardless of 1359 * whether mmu_lock is held for read or write. 1360 */ 1361 spinlock_t mmu_unsync_pages_lock; 1362 1363 u64 shadow_mmio_value; 1364 1365 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1366 atomic_t noncoherent_dma_count; 1367 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1368 atomic_t assigned_device_count; 1369 struct kvm_pic *vpic; 1370 struct kvm_ioapic *vioapic; 1371 struct kvm_pit *vpit; 1372 atomic_t vapics_in_nmi_mode; 1373 struct mutex apic_map_lock; 1374 struct kvm_apic_map __rcu *apic_map; 1375 atomic_t apic_map_dirty; 1376 1377 bool apic_access_memslot_enabled; 1378 bool apic_access_memslot_inhibited; 1379 1380 /* Protects apicv_inhibit_reasons */ 1381 struct rw_semaphore apicv_update_lock; 1382 unsigned long apicv_inhibit_reasons; 1383 1384 gpa_t wall_clock; 1385 1386 bool mwait_in_guest; 1387 bool hlt_in_guest; 1388 bool pause_in_guest; 1389 bool cstate_in_guest; 1390 1391 unsigned long irq_sources_bitmap; 1392 s64 kvmclock_offset; 1393 1394 /* 1395 * This also protects nr_vcpus_matched_tsc which is read from a 1396 * preemption-disabled region, so it must be a raw spinlock. 1397 */ 1398 raw_spinlock_t tsc_write_lock; 1399 u64 last_tsc_nsec; 1400 u64 last_tsc_write; 1401 u32 last_tsc_khz; 1402 u64 last_tsc_offset; 1403 u64 cur_tsc_nsec; 1404 u64 cur_tsc_write; 1405 u64 cur_tsc_offset; 1406 u64 cur_tsc_generation; 1407 int nr_vcpus_matched_tsc; 1408 1409 u32 default_tsc_khz; 1410 bool user_set_tsc; 1411 u64 apic_bus_cycle_ns; 1412 1413 seqcount_raw_spinlock_t pvclock_sc; 1414 bool use_master_clock; 1415 u64 master_kernel_ns; 1416 u64 master_cycle_now; 1417 struct delayed_work kvmclock_update_work; 1418 struct delayed_work kvmclock_sync_work; 1419 1420 /* reads protected by irq_srcu, writes by irq_lock */ 1421 struct hlist_head mask_notifier_list; 1422 1423 #ifdef CONFIG_KVM_HYPERV 1424 struct kvm_hv hyperv; 1425 #endif 1426 1427 #ifdef CONFIG_KVM_XEN 1428 struct kvm_xen xen; 1429 #endif 1430 1431 bool backwards_tsc_observed; 1432 bool boot_vcpu_runs_old_kvmclock; 1433 u32 bsp_vcpu_id; 1434 1435 u64 disabled_quirks; 1436 1437 enum kvm_irqchip_mode irqchip_mode; 1438 u8 nr_reserved_ioapic_pins; 1439 1440 bool disabled_lapic_found; 1441 1442 bool x2apic_format; 1443 bool x2apic_broadcast_quirk_disabled; 1444 1445 bool guest_can_read_msr_platform_info; 1446 bool exception_payload_enabled; 1447 1448 bool triple_fault_event; 1449 1450 bool bus_lock_detection_enabled; 1451 bool enable_pmu; 1452 1453 u32 notify_window; 1454 u32 notify_vmexit_flags; 1455 /* 1456 * If exit_on_emulation_error is set, and the in-kernel instruction 1457 * emulator fails to emulate an instruction, allow userspace 1458 * the opportunity to look at it. 1459 */ 1460 bool exit_on_emulation_error; 1461 1462 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1463 u32 user_space_msr_mask; 1464 struct kvm_x86_msr_filter __rcu *msr_filter; 1465 1466 u32 hypercall_exit_enabled; 1467 1468 /* Guest can access the SGX PROVISIONKEY. */ 1469 bool sgx_provisioning_allowed; 1470 1471 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1472 struct vhost_task *nx_huge_page_recovery_thread; 1473 u64 nx_huge_page_last; 1474 struct once nx_once; 1475 1476 #ifdef CONFIG_X86_64 1477 #ifdef CONFIG_KVM_PROVE_MMU 1478 /* 1479 * The number of TDP MMU pages across all roots. Used only to sanity 1480 * check that KVM isn't leaking TDP MMU pages. 1481 */ 1482 atomic64_t tdp_mmu_pages; 1483 #endif 1484 1485 /* 1486 * List of struct kvm_mmu_pages being used as roots. 1487 * All struct kvm_mmu_pages in the list should have 1488 * tdp_mmu_page set. 1489 * 1490 * For reads, this list is protected by: 1491 * RCU alone or 1492 * the MMU lock in read mode + RCU or 1493 * the MMU lock in write mode 1494 * 1495 * For writes, this list is protected by tdp_mmu_pages_lock; see 1496 * below for the details. 1497 * 1498 * Roots will remain in the list until their tdp_mmu_root_count 1499 * drops to zero, at which point the thread that decremented the 1500 * count to zero should removed the root from the list and clean 1501 * it up, freeing the root after an RCU grace period. 1502 */ 1503 struct list_head tdp_mmu_roots; 1504 1505 /* 1506 * Protects accesses to the following fields when the MMU lock 1507 * is held in read mode: 1508 * - tdp_mmu_roots (above) 1509 * - the link field of kvm_mmu_page structs used by the TDP MMU 1510 * - possible_nx_huge_pages; 1511 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1512 * by the TDP MMU 1513 * Because the lock is only taken within the MMU lock, strictly 1514 * speaking it is redundant to acquire this lock when the thread 1515 * holds the MMU lock in write mode. However it often simplifies 1516 * the code to do so. 1517 */ 1518 spinlock_t tdp_mmu_pages_lock; 1519 #endif /* CONFIG_X86_64 */ 1520 1521 /* 1522 * If set, at least one shadow root has been allocated. This flag 1523 * is used as one input when determining whether certain memslot 1524 * related allocations are necessary. 1525 */ 1526 bool shadow_root_allocated; 1527 1528 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1529 /* 1530 * If set, the VM has (or had) an external write tracking user, and 1531 * thus all write tracking metadata has been allocated, even if KVM 1532 * itself isn't using write tracking. 1533 */ 1534 bool external_write_tracking_enabled; 1535 #endif 1536 1537 #if IS_ENABLED(CONFIG_HYPERV) 1538 hpa_t hv_root_tdp; 1539 spinlock_t hv_root_tdp_lock; 1540 struct hv_partition_assist_pg *hv_pa_pg; 1541 #endif 1542 /* 1543 * VM-scope maximum vCPU ID. Used to determine the size of structures 1544 * that increase along with the maximum vCPU ID, in which case, using 1545 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1546 */ 1547 u32 max_vcpu_ids; 1548 1549 bool disable_nx_huge_pages; 1550 1551 /* 1552 * Memory caches used to allocate shadow pages when performing eager 1553 * page splitting. No need for a shadowed_info_cache since eager page 1554 * splitting only allocates direct shadow pages. 1555 * 1556 * Protected by kvm->slots_lock. 1557 */ 1558 struct kvm_mmu_memory_cache split_shadow_page_cache; 1559 struct kvm_mmu_memory_cache split_page_header_cache; 1560 1561 /* 1562 * Memory cache used to allocate pte_list_desc structs while splitting 1563 * huge pages. In the worst case, to split one huge page, 512 1564 * pte_list_desc structs are needed to add each lower level leaf sptep 1565 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1566 * page table. 1567 * 1568 * Protected by kvm->slots_lock. 1569 */ 1570 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1571 struct kvm_mmu_memory_cache split_desc_cache; 1572 1573 gfn_t gfn_direct_bits; 1574 }; 1575 1576 struct kvm_vm_stat { 1577 struct kvm_vm_stat_generic generic; 1578 u64 mmu_shadow_zapped; 1579 u64 mmu_pte_write; 1580 u64 mmu_pde_zapped; 1581 u64 mmu_flooded; 1582 u64 mmu_recycled; 1583 u64 mmu_cache_miss; 1584 u64 mmu_unsync; 1585 union { 1586 struct { 1587 atomic64_t pages_4k; 1588 atomic64_t pages_2m; 1589 atomic64_t pages_1g; 1590 }; 1591 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1592 }; 1593 u64 nx_lpage_splits; 1594 u64 max_mmu_page_hash_collisions; 1595 u64 max_mmu_rmap_size; 1596 }; 1597 1598 struct kvm_vcpu_stat { 1599 struct kvm_vcpu_stat_generic generic; 1600 u64 pf_taken; 1601 u64 pf_fixed; 1602 u64 pf_emulate; 1603 u64 pf_spurious; 1604 u64 pf_fast; 1605 u64 pf_mmio_spte_created; 1606 u64 pf_guest; 1607 u64 tlb_flush; 1608 u64 invlpg; 1609 1610 u64 exits; 1611 u64 io_exits; 1612 u64 mmio_exits; 1613 u64 signal_exits; 1614 u64 irq_window_exits; 1615 u64 nmi_window_exits; 1616 u64 l1d_flush; 1617 u64 halt_exits; 1618 u64 request_irq_exits; 1619 u64 irq_exits; 1620 u64 host_state_reload; 1621 u64 fpu_reload; 1622 u64 insn_emulation; 1623 u64 insn_emulation_fail; 1624 u64 hypercalls; 1625 u64 irq_injections; 1626 u64 nmi_injections; 1627 u64 req_event; 1628 u64 nested_run; 1629 u64 directed_yield_attempted; 1630 u64 directed_yield_successful; 1631 u64 preemption_reported; 1632 u64 preemption_other; 1633 u64 guest_mode; 1634 u64 notify_window_exits; 1635 }; 1636 1637 struct x86_instruction_info; 1638 1639 struct msr_data { 1640 bool host_initiated; 1641 u32 index; 1642 u64 data; 1643 }; 1644 1645 struct kvm_lapic_irq { 1646 u32 vector; 1647 u16 delivery_mode; 1648 u16 dest_mode; 1649 bool level; 1650 u16 trig_mode; 1651 u32 shorthand; 1652 u32 dest_id; 1653 bool msi_redir_hint; 1654 }; 1655 1656 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1657 { 1658 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1659 } 1660 1661 struct kvm_x86_ops { 1662 const char *name; 1663 1664 int (*check_processor_compatibility)(void); 1665 1666 int (*enable_virtualization_cpu)(void); 1667 void (*disable_virtualization_cpu)(void); 1668 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1669 1670 void (*hardware_unsetup)(void); 1671 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1672 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1673 1674 unsigned int vm_size; 1675 int (*vm_init)(struct kvm *kvm); 1676 void (*vm_destroy)(struct kvm *kvm); 1677 1678 /* Create, but do not attach this VCPU */ 1679 int (*vcpu_precreate)(struct kvm *kvm); 1680 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1681 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1682 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1683 1684 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1685 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1686 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1687 1688 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1689 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1690 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1691 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1692 void (*get_segment)(struct kvm_vcpu *vcpu, 1693 struct kvm_segment *var, int seg); 1694 int (*get_cpl)(struct kvm_vcpu *vcpu); 1695 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu); 1696 void (*set_segment)(struct kvm_vcpu *vcpu, 1697 struct kvm_segment *var, int seg); 1698 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1699 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1700 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1701 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1702 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1703 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1704 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1705 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1706 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1707 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1708 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1709 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1710 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value); 1711 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1712 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1713 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1714 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1715 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1716 1717 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1718 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1719 #if IS_ENABLED(CONFIG_HYPERV) 1720 int (*flush_remote_tlbs)(struct kvm *kvm); 1721 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1722 gfn_t nr_pages); 1723 #endif 1724 1725 /* 1726 * Flush any TLB entries associated with the given GVA. 1727 * Does not need to flush GPA->HPA mappings. 1728 * Can potentially get non-canonical addresses through INVLPGs, which 1729 * the implementation may choose to ignore if appropriate. 1730 */ 1731 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1732 1733 /* 1734 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1735 * does not need to flush GPA->HPA mappings. 1736 */ 1737 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1738 1739 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1740 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1741 bool force_immediate_exit); 1742 int (*handle_exit)(struct kvm_vcpu *vcpu, 1743 enum exit_fastpath_completion exit_fastpath); 1744 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1745 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1746 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1747 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1748 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1749 unsigned char *hypercall_addr); 1750 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1751 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1752 void (*inject_exception)(struct kvm_vcpu *vcpu); 1753 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1754 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1755 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1756 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1757 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1758 /* Whether or not a virtual NMI is pending in hardware. */ 1759 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1760 /* 1761 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1762 * to allow using static_call_ret0 as the fallback. 1763 */ 1764 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1765 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1766 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1767 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1768 1769 const bool x2apic_icr_is_split; 1770 const unsigned long required_apicv_inhibits; 1771 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1772 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1773 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1774 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1775 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1776 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1777 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1778 int trig_mode, int vector); 1779 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1780 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1781 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1782 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1783 1784 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1785 int root_level); 1786 1787 /* Update external mapping with page table link. */ 1788 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1789 void *external_spt); 1790 /* Update the external page table from spte getting set. */ 1791 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1792 kvm_pfn_t pfn_for_gfn); 1793 1794 /* Update external page tables for page table about to be freed. */ 1795 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1796 void *external_spt); 1797 1798 /* Update external page table from spte getting removed, and flush TLB. */ 1799 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1800 kvm_pfn_t pfn_for_gfn); 1801 1802 bool (*has_wbinvd_exit)(void); 1803 1804 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1805 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1806 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1807 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1808 1809 /* 1810 * Retrieve somewhat arbitrary exit/entry information. Intended to 1811 * be used only from within tracepoints or error paths. 1812 */ 1813 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1814 u64 *info1, u64 *info2, 1815 u32 *intr_info, u32 *error_code); 1816 1817 void (*get_entry_info)(struct kvm_vcpu *vcpu, 1818 u32 *intr_info, u32 *error_code); 1819 1820 int (*check_intercept)(struct kvm_vcpu *vcpu, 1821 struct x86_instruction_info *info, 1822 enum x86_intercept_stage stage, 1823 struct x86_exception *exception); 1824 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1825 1826 /* 1827 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1828 * value indicates CPU dirty logging is unsupported or disabled. 1829 */ 1830 int cpu_dirty_log_size; 1831 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1832 1833 const struct kvm_x86_nested_ops *nested_ops; 1834 1835 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1836 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1837 1838 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1839 uint32_t guest_irq, bool set); 1840 void (*pi_start_assignment)(struct kvm *kvm); 1841 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1842 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1843 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1844 1845 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1846 bool *expired); 1847 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1848 1849 void (*setup_mce)(struct kvm_vcpu *vcpu); 1850 1851 #ifdef CONFIG_KVM_SMM 1852 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1853 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1854 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1855 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1856 #endif 1857 1858 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1859 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1860 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1861 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1862 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1863 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1864 void (*guest_memory_reclaimed)(struct kvm *kvm); 1865 1866 int (*get_feature_msr)(u32 msr, u64 *data); 1867 1868 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1869 void *insn, int insn_len); 1870 1871 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1872 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1873 1874 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1875 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1876 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1877 1878 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1879 1880 /* 1881 * Returns vCPU specific APICv inhibit reasons 1882 */ 1883 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1884 1885 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1886 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1887 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1888 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1889 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn); 1890 }; 1891 1892 struct kvm_x86_nested_ops { 1893 void (*leave_nested)(struct kvm_vcpu *vcpu); 1894 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1895 u32 error_code); 1896 int (*check_events)(struct kvm_vcpu *vcpu); 1897 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1898 void (*triple_fault)(struct kvm_vcpu *vcpu); 1899 int (*get_state)(struct kvm_vcpu *vcpu, 1900 struct kvm_nested_state __user *user_kvm_nested_state, 1901 unsigned user_data_size); 1902 int (*set_state)(struct kvm_vcpu *vcpu, 1903 struct kvm_nested_state __user *user_kvm_nested_state, 1904 struct kvm_nested_state *kvm_state); 1905 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1906 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1907 1908 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1909 uint16_t *vmcs_version); 1910 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1911 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1912 }; 1913 1914 struct kvm_x86_init_ops { 1915 int (*hardware_setup)(void); 1916 unsigned int (*handle_intel_pt_intr)(void); 1917 1918 struct kvm_x86_ops *runtime_ops; 1919 struct kvm_pmu_ops *pmu_ops; 1920 }; 1921 1922 struct kvm_arch_async_pf { 1923 u32 token; 1924 gfn_t gfn; 1925 unsigned long cr3; 1926 bool direct_map; 1927 u64 error_code; 1928 }; 1929 1930 extern u32 __read_mostly kvm_nr_uret_msrs; 1931 extern bool __read_mostly allow_smaller_maxphyaddr; 1932 extern bool __read_mostly enable_apicv; 1933 extern struct kvm_x86_ops kvm_x86_ops; 1934 1935 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1936 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1937 1938 #define KVM_X86_OP(func) \ 1939 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1940 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1941 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1942 #include <asm/kvm-x86-ops.h> 1943 1944 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1945 void kvm_x86_vendor_exit(void); 1946 1947 #define __KVM_HAVE_ARCH_VM_ALLOC 1948 static inline struct kvm *kvm_arch_alloc_vm(void) 1949 { 1950 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1951 } 1952 1953 #define __KVM_HAVE_ARCH_VM_FREE 1954 void kvm_arch_free_vm(struct kvm *kvm); 1955 1956 #if IS_ENABLED(CONFIG_HYPERV) 1957 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1958 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1959 { 1960 if (kvm_x86_ops.flush_remote_tlbs && 1961 !kvm_x86_call(flush_remote_tlbs)(kvm)) 1962 return 0; 1963 else 1964 return -ENOTSUPP; 1965 } 1966 1967 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1968 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1969 u64 nr_pages) 1970 { 1971 if (!kvm_x86_ops.flush_remote_tlbs_range) 1972 return -EOPNOTSUPP; 1973 1974 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1975 } 1976 #endif /* CONFIG_HYPERV */ 1977 1978 enum kvm_intr_type { 1979 /* Values are arbitrary, but must be non-zero. */ 1980 KVM_HANDLING_IRQ = 1, 1981 KVM_HANDLING_NMI, 1982 }; 1983 1984 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 1985 #define kvm_arch_pmi_in_guest(vcpu) \ 1986 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 1987 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 1988 1989 void __init kvm_mmu_x86_module_init(void); 1990 int kvm_mmu_vendor_module_init(void); 1991 void kvm_mmu_vendor_module_exit(void); 1992 1993 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1994 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1995 void kvm_mmu_init_vm(struct kvm *kvm); 1996 void kvm_mmu_uninit_vm(struct kvm *kvm); 1997 1998 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 1999 struct kvm_memory_slot *slot); 2000 2001 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 2002 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 2003 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 2004 const struct kvm_memory_slot *memslot, 2005 int start_level); 2006 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 2007 const struct kvm_memory_slot *memslot, 2008 int target_level); 2009 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 2010 const struct kvm_memory_slot *memslot, 2011 u64 start, u64 end, 2012 int target_level); 2013 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 2014 const struct kvm_memory_slot *memslot); 2015 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 2016 const struct kvm_memory_slot *memslot); 2017 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 2018 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 2019 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 2020 2021 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 2022 2023 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 2024 const void *val, int bytes); 2025 2026 struct kvm_irq_mask_notifier { 2027 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 2028 int irq; 2029 struct hlist_node link; 2030 }; 2031 2032 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 2033 struct kvm_irq_mask_notifier *kimn); 2034 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 2035 struct kvm_irq_mask_notifier *kimn); 2036 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 2037 bool mask); 2038 2039 extern bool tdp_enabled; 2040 2041 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 2042 2043 /* 2044 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 2045 * userspace I/O) to indicate that the emulation context 2046 * should be reused as is, i.e. skip initialization of 2047 * emulation context, instruction fetch and decode. 2048 * 2049 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 2050 * Indicates that only select instructions (tagged with 2051 * EmulateOnUD) should be emulated (to minimize the emulator 2052 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 2053 * 2054 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2055 * decode the instruction length. For use *only* by 2056 * kvm_x86_ops.skip_emulated_instruction() implementations if 2057 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2058 * 2059 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2060 * retry native execution under certain conditions, 2061 * Can only be set in conjunction with EMULTYPE_PF. 2062 * 2063 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2064 * triggered by KVM's magic "force emulation" prefix, 2065 * which is opt in via module param (off by default). 2066 * Bypasses EmulateOnUD restriction despite emulating 2067 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2068 * Used to test the full emulator from userspace. 2069 * 2070 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2071 * backdoor emulation, which is opt in via module param. 2072 * VMware backdoor emulation handles select instructions 2073 * and reinjects the #GP for all other cases. 2074 * 2075 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case 2076 * the CR2/GPA value pass on the stack is valid. 2077 * 2078 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2079 * state and inject single-step #DBs after skipping 2080 * an instruction (after completing userspace I/O). 2081 * 2082 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2083 * is attempting to write a gfn that contains one or 2084 * more of the PTEs used to translate the write itself, 2085 * and the owning page table is being shadowed by KVM. 2086 * If emulation of the faulting instruction fails and 2087 * this flag is set, KVM will exit to userspace instead 2088 * of retrying emulation as KVM cannot make forward 2089 * progress. 2090 * 2091 * If emulation fails for a write to guest page tables, 2092 * KVM unprotects (zaps) the shadow page for the target 2093 * gfn and resumes the guest to retry the non-emulatable 2094 * instruction (on hardware). Unprotecting the gfn 2095 * doesn't allow forward progress for a self-changing 2096 * access because doing so also zaps the translation for 2097 * the gfn, i.e. retrying the instruction will hit a 2098 * !PRESENT fault, which results in a new shadow page 2099 * and sends KVM back to square one. 2100 */ 2101 #define EMULTYPE_NO_DECODE (1 << 0) 2102 #define EMULTYPE_TRAP_UD (1 << 1) 2103 #define EMULTYPE_SKIP (1 << 2) 2104 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2105 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2106 #define EMULTYPE_VMWARE_GP (1 << 5) 2107 #define EMULTYPE_PF (1 << 6) 2108 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2109 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2110 2111 static inline bool kvm_can_emulate_event_vectoring(int emul_type) 2112 { 2113 return !(emul_type & EMULTYPE_PF); 2114 } 2115 2116 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2117 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2118 void *insn, int insn_len); 2119 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2120 u64 *data, u8 ndata); 2121 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2122 2123 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa); 2124 2125 void kvm_enable_efer_bits(u64); 2126 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2127 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2128 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data); 2129 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2130 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2131 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2132 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2133 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2134 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2135 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2136 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2137 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2138 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2139 2140 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2141 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2142 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2143 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2144 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2145 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2146 2147 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2148 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2149 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2150 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2151 2152 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2153 int reason, bool has_error_code, u32 error_code); 2154 2155 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2156 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2157 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2158 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2159 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2160 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2161 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2162 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2163 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2164 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2165 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2166 2167 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2168 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2169 2170 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2171 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2172 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2173 2174 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2175 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2176 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2177 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 2178 bool has_error_code, u32 error_code); 2179 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2180 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2181 struct x86_exception *fault); 2182 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2183 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2184 2185 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2186 int irq_source_id, int level) 2187 { 2188 /* Logical OR for level trig interrupt */ 2189 if (level) 2190 __set_bit(irq_source_id, irq_state); 2191 else 2192 __clear_bit(irq_source_id, irq_state); 2193 2194 return !!(*irq_state); 2195 } 2196 2197 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2198 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2199 2200 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2201 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2202 2203 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2204 2205 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2206 bool always_retry); 2207 2208 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2209 gpa_t cr2_or_gpa) 2210 { 2211 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2212 } 2213 2214 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2215 ulong roots_to_free); 2216 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2217 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2218 struct x86_exception *exception); 2219 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2220 struct x86_exception *exception); 2221 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2222 struct x86_exception *exception); 2223 2224 bool kvm_apicv_activated(struct kvm *kvm); 2225 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2226 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2227 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2228 enum kvm_apicv_inhibit reason, bool set); 2229 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2230 enum kvm_apicv_inhibit reason, bool set); 2231 2232 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2233 enum kvm_apicv_inhibit reason) 2234 { 2235 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2236 } 2237 2238 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2239 enum kvm_apicv_inhibit reason) 2240 { 2241 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2242 } 2243 2244 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2245 void *insn, int insn_len); 2246 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2247 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2248 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2249 u64 addr, unsigned long roots); 2250 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2251 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2252 2253 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2254 int tdp_max_root_level, int tdp_huge_page_level); 2255 2256 2257 #ifdef CONFIG_KVM_PRIVATE_MEM 2258 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2259 #else 2260 #define kvm_arch_has_private_mem(kvm) false 2261 #endif 2262 2263 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2264 2265 static inline u16 kvm_read_ldt(void) 2266 { 2267 u16 ldt; 2268 asm("sldt %0" : "=g"(ldt)); 2269 return ldt; 2270 } 2271 2272 static inline void kvm_load_ldt(u16 sel) 2273 { 2274 asm("lldt %0" : : "rm"(sel)); 2275 } 2276 2277 #ifdef CONFIG_X86_64 2278 static inline unsigned long read_msr(unsigned long msr) 2279 { 2280 u64 value; 2281 2282 rdmsrq(msr, value); 2283 return value; 2284 } 2285 #endif 2286 2287 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2288 { 2289 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2290 } 2291 2292 #define TSS_IOPB_BASE_OFFSET 0x66 2293 #define TSS_BASE_SIZE 0x68 2294 #define TSS_IOPB_SIZE (65536 / 8) 2295 #define TSS_REDIRECTION_SIZE (256 / 8) 2296 #define RMODE_TSS_SIZE \ 2297 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2298 2299 enum { 2300 TASK_SWITCH_CALL = 0, 2301 TASK_SWITCH_IRET = 1, 2302 TASK_SWITCH_JMP = 2, 2303 TASK_SWITCH_GATE = 3, 2304 }; 2305 2306 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2307 2308 #ifdef CONFIG_KVM_SMM 2309 #define HF_SMM_MASK (1 << 1) 2310 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2311 2312 # define KVM_MAX_NR_ADDRESS_SPACES 2 2313 /* SMM is currently unsupported for guests with private memory. */ 2314 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2315 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2316 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2317 #else 2318 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2319 #endif 2320 2321 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2322 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2323 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2324 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2325 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2326 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2327 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2328 2329 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2330 unsigned long ipi_bitmap_high, u32 min, 2331 unsigned long icr, int op_64_bit); 2332 2333 int kvm_add_user_return_msr(u32 msr); 2334 int kvm_find_user_return_msr(u32 msr); 2335 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2336 2337 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2338 { 2339 return kvm_find_user_return_msr(msr) >= 0; 2340 } 2341 2342 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2343 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2344 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2345 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2346 2347 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2348 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2349 2350 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2351 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2352 unsigned long *vcpu_bitmap); 2353 2354 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2355 struct kvm_async_pf *work); 2356 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2357 struct kvm_async_pf *work); 2358 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2359 struct kvm_async_pf *work); 2360 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2361 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2362 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2363 2364 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2365 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2366 2367 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2368 u32 size); 2369 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2370 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2371 2372 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2373 struct kvm_vcpu **dest_vcpu); 2374 2375 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2376 struct kvm_lapic_irq *irq); 2377 2378 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2379 { 2380 /* We can only post Fixed and LowPrio IRQs */ 2381 return (irq->delivery_mode == APIC_DM_FIXED || 2382 irq->delivery_mode == APIC_DM_LOWEST); 2383 } 2384 2385 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2386 { 2387 kvm_x86_call(vcpu_blocking)(vcpu); 2388 } 2389 2390 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2391 { 2392 kvm_x86_call(vcpu_unblocking)(vcpu); 2393 } 2394 2395 static inline int kvm_cpu_get_apicid(int mps_cpu) 2396 { 2397 #ifdef CONFIG_X86_LOCAL_APIC 2398 return default_cpu_present_to_apicid(mps_cpu); 2399 #else 2400 WARN_ON_ONCE(1); 2401 return BAD_APICID; 2402 #endif 2403 } 2404 2405 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2406 2407 #define KVM_CLOCK_VALID_FLAGS \ 2408 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2409 2410 #define KVM_X86_VALID_QUIRKS \ 2411 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2412 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2413 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2414 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2415 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2416 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2417 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2418 KVM_X86_QUIRK_SLOT_ZAP_ALL | \ 2419 KVM_X86_QUIRK_STUFF_FEATURE_MSRS) 2420 2421 /* 2422 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2423 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2424 * remaining 31 lower bits must be 0 to preserve ABI. 2425 */ 2426 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2427 2428 static inline bool kvm_arch_has_irq_bypass(void) 2429 { 2430 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 2431 } 2432 2433 #endif /* _ASM_X86_KVM_HOST_H */ 2434