xref: /linux/arch/x86/include/asm/kvm_host.h (revision 4f372263ef92ed2af55a8c226750b72021ff8d0f)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31 
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/desc.h>
35 #include <asm/mtrr.h>
36 #include <asm/msr-index.h>
37 #include <asm/msr.h>
38 #include <asm/asm.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kvm_page_track.h>
41 #include <asm/kvm_vcpu_regs.h>
42 #include <asm/reboot.h>
43 #include <hyperv/hvhdk.h>
44 
45 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
46 
47 /*
48  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
49  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
50  */
51 #ifdef CONFIG_KVM_MAX_NR_VCPUS
52 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
53 #else
54 #define KVM_MAX_VCPUS 1024
55 #endif
56 
57 /*
58  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
59  * might be larger than the actual number of VCPUs because the
60  * APIC ID encodes CPU topology information.
61  *
62  * In the worst case, we'll need less than one extra bit for the
63  * Core ID, and less than one extra bit for the Package (Die) ID,
64  * so ratio of 4 should be enough.
65  */
66 #define KVM_VCPU_ID_RATIO 4
67 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
68 
69 /* memory slots that are not exposed to userspace */
70 #define KVM_INTERNAL_MEM_SLOTS 3
71 
72 #define KVM_HALT_POLL_NS_DEFAULT 200000
73 
74 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
75 
76 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
77 					KVM_DIRTY_LOG_INITIALLY_SET)
78 
79 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
80 						 KVM_BUS_LOCK_DETECTION_EXIT)
81 
82 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
83 						 KVM_X86_NOTIFY_VMEXIT_USER)
84 
85 /* x86-specific vcpu->requests bit members */
86 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
87 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
88 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
89 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
90 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
91 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
92 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
93 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
94 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
95 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
96 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
97 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
98 #ifdef CONFIG_KVM_SMM
99 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
100 #endif
101 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
102 #define KVM_REQ_MCLOCK_INPROGRESS \
103 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
104 #define KVM_REQ_SCAN_IOAPIC \
105 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
106 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
107 #define KVM_REQ_APIC_PAGE_RELOAD \
108 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
109 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
110 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
111 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
112 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
113 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
114 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
115 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
116 #define KVM_REQ_APICV_UPDATE \
117 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
118 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
119 #define KVM_REQ_TLB_FLUSH_GUEST \
120 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
121 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
122 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
123 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
124 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
125 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
126 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
127 #define KVM_REQ_HV_TLB_FLUSH \
128 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
129 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE	KVM_ARCH_REQ(34)
130 
131 #define CR0_RESERVED_BITS                                               \
132 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
133 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
134 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
135 
136 #define CR4_RESERVED_BITS                                               \
137 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
138 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
139 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
140 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
141 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
142 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
143 			  | X86_CR4_LAM_SUP))
144 
145 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
146 
147 
148 
149 #define INVALID_PAGE (~(hpa_t)0)
150 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
151 
152 /* KVM Hugepage definitions for x86 */
153 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
154 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
155 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
156 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
157 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
158 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
159 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
160 
161 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
162 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
163 #define KVM_MMU_HASH_SHIFT 12
164 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
165 #define KVM_MIN_FREE_MMU_PAGES 5
166 #define KVM_REFILL_PAGES 25
167 #define KVM_MAX_CPUID_ENTRIES 256
168 #define KVM_NR_VAR_MTRR 8
169 
170 #define ASYNC_PF_PER_VCPU 64
171 
172 enum kvm_reg {
173 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
174 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
175 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
176 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
177 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
178 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
179 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
180 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
181 #ifdef CONFIG_X86_64
182 	VCPU_REGS_R8  = __VCPU_REGS_R8,
183 	VCPU_REGS_R9  = __VCPU_REGS_R9,
184 	VCPU_REGS_R10 = __VCPU_REGS_R10,
185 	VCPU_REGS_R11 = __VCPU_REGS_R11,
186 	VCPU_REGS_R12 = __VCPU_REGS_R12,
187 	VCPU_REGS_R13 = __VCPU_REGS_R13,
188 	VCPU_REGS_R14 = __VCPU_REGS_R14,
189 	VCPU_REGS_R15 = __VCPU_REGS_R15,
190 #endif
191 	VCPU_REGS_RIP,
192 	NR_VCPU_REGS,
193 
194 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
195 	VCPU_EXREG_CR0,
196 	VCPU_EXREG_CR3,
197 	VCPU_EXREG_CR4,
198 	VCPU_EXREG_RFLAGS,
199 	VCPU_EXREG_SEGMENTS,
200 	VCPU_EXREG_EXIT_INFO_1,
201 	VCPU_EXREG_EXIT_INFO_2,
202 };
203 
204 enum {
205 	VCPU_SREG_ES,
206 	VCPU_SREG_CS,
207 	VCPU_SREG_SS,
208 	VCPU_SREG_DS,
209 	VCPU_SREG_FS,
210 	VCPU_SREG_GS,
211 	VCPU_SREG_TR,
212 	VCPU_SREG_LDTR,
213 };
214 
215 enum exit_fastpath_completion {
216 	EXIT_FASTPATH_NONE,
217 	EXIT_FASTPATH_REENTER_GUEST,
218 	EXIT_FASTPATH_EXIT_HANDLED,
219 	EXIT_FASTPATH_EXIT_USERSPACE,
220 };
221 typedef enum exit_fastpath_completion fastpath_t;
222 
223 struct x86_emulate_ctxt;
224 struct x86_exception;
225 union kvm_smram;
226 enum x86_intercept;
227 enum x86_intercept_stage;
228 
229 #define KVM_NR_DB_REGS	4
230 
231 #define DR6_BUS_LOCK   (1 << 11)
232 #define DR6_BD		(1 << 13)
233 #define DR6_BS		(1 << 14)
234 #define DR6_BT		(1 << 15)
235 #define DR6_RTM		(1 << 16)
236 /*
237  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
238  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
239  * they will never be 0 for now, but when they are defined
240  * in the future it will require no code change.
241  *
242  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
243  */
244 #define DR6_ACTIVE_LOW	0xffff0ff0
245 #define DR6_VOLATILE	0x0001e80f
246 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
247 
248 #define DR7_BP_EN_MASK	0x000000ff
249 #define DR7_GE		(1 << 9)
250 #define DR7_GD		(1 << 13)
251 #define DR7_FIXED_1	0x00000400
252 #define DR7_VOLATILE	0xffff2bff
253 
254 #define KVM_GUESTDBG_VALID_MASK \
255 	(KVM_GUESTDBG_ENABLE | \
256 	KVM_GUESTDBG_SINGLESTEP | \
257 	KVM_GUESTDBG_USE_HW_BP | \
258 	KVM_GUESTDBG_USE_SW_BP | \
259 	KVM_GUESTDBG_INJECT_BP | \
260 	KVM_GUESTDBG_INJECT_DB | \
261 	KVM_GUESTDBG_BLOCKIRQ)
262 
263 #define PFERR_PRESENT_MASK	BIT(0)
264 #define PFERR_WRITE_MASK	BIT(1)
265 #define PFERR_USER_MASK		BIT(2)
266 #define PFERR_RSVD_MASK		BIT(3)
267 #define PFERR_FETCH_MASK	BIT(4)
268 #define PFERR_PK_MASK		BIT(5)
269 #define PFERR_SGX_MASK		BIT(15)
270 #define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
271 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
272 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
273 #define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
274 #define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
275 #define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
276 
277 /*
278  * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
279  * when emulating instructions that triggers implicit access.
280  */
281 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
282 /*
283  * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
284  * when the guest was accessing private memory.
285  */
286 #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
287 #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
288 
289 /* apic attention bits */
290 #define KVM_APIC_CHECK_VAPIC	0
291 /*
292  * The following bit is set with PV-EOI, unset on EOI.
293  * We detect PV-EOI changes by guest by comparing
294  * this bit with PV-EOI in guest memory.
295  * See the implementation in apic_update_pv_eoi.
296  */
297 #define KVM_APIC_PV_EOI_PENDING	1
298 
299 struct kvm_kernel_irq_routing_entry;
300 
301 /*
302  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
303  * also includes TDP pages) to determine whether or not a page can be used in
304  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
305  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
306  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
307  *
308  * Upper-level shadow pages having gptes are tracked for write-protection via
309  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
310  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
311  * otherwise gfn_write_track will overflow and explosions will ensue.
312  *
313  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
314  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
315  * incorporates various mode bits and properties of the SP.  Roughly speaking,
316  * the number of unique SPs that can theoretically be created is 2^n, where n
317  * is the number of bits that are used to compute the role.
318  *
319  * But, even though there are 20 bits in the mask below, not all combinations
320  * of modes and flags are possible:
321  *
322  *   - invalid shadow pages are not accounted, mirror pages are not shadowed,
323  *     so the bits are effectively 18.
324  *
325  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
326  *     execonly and ad_disabled are only used for nested EPT which has
327  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
328  *
329  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
330  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
331  *     paging has exactly one upper level, making level completely redundant
332  *     when has_4_byte_gpte=1.
333  *
334  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
335  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
336  *
337  * Therefore, the maximum number of possible upper-level shadow pages for a
338  * single gfn is a bit less than 2^13.
339  */
340 union kvm_mmu_page_role {
341 	u32 word;
342 	struct {
343 		unsigned level:4;
344 		unsigned has_4_byte_gpte:1;
345 		unsigned quadrant:2;
346 		unsigned direct:1;
347 		unsigned access:3;
348 		unsigned invalid:1;
349 		unsigned efer_nx:1;
350 		unsigned cr0_wp:1;
351 		unsigned smep_andnot_wp:1;
352 		unsigned smap_andnot_wp:1;
353 		unsigned ad_disabled:1;
354 		unsigned guest_mode:1;
355 		unsigned passthrough:1;
356 		unsigned is_mirror:1;
357 		unsigned :4;
358 
359 		/*
360 		 * This is left at the top of the word so that
361 		 * kvm_memslots_for_spte_role can extract it with a
362 		 * simple shift.  While there is room, give it a whole
363 		 * byte so it is also faster to load it from memory.
364 		 */
365 		unsigned smm:8;
366 	};
367 };
368 
369 /*
370  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
371  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
372  * including on nested transitions, if nothing in the full role changes then
373  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
374  * don't treat all-zero structure as valid data.
375  *
376  * The properties that are tracked in the extended role but not the page role
377  * are for things that either (a) do not affect the validity of the shadow page
378  * or (b) are indirectly reflected in the shadow page's role.  For example,
379  * CR4.PKE only affects permission checks for software walks of the guest page
380  * tables (because KVM doesn't support Protection Keys with shadow paging), and
381  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
382  *
383  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
384  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
385  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
386  * SMAP aware regardless of CR0.WP.
387  */
388 union kvm_mmu_extended_role {
389 	u32 word;
390 	struct {
391 		unsigned int valid:1;
392 		unsigned int execonly:1;
393 		unsigned int cr4_pse:1;
394 		unsigned int cr4_pke:1;
395 		unsigned int cr4_smap:1;
396 		unsigned int cr4_smep:1;
397 		unsigned int cr4_la57:1;
398 		unsigned int efer_lma:1;
399 	};
400 };
401 
402 union kvm_cpu_role {
403 	u64 as_u64;
404 	struct {
405 		union kvm_mmu_page_role base;
406 		union kvm_mmu_extended_role ext;
407 	};
408 };
409 
410 struct kvm_rmap_head {
411 	atomic_long_t val;
412 };
413 
414 struct kvm_pio_request {
415 	unsigned long linear_rip;
416 	unsigned long count;
417 	int in;
418 	int port;
419 	int size;
420 };
421 
422 #define PT64_ROOT_MAX_LEVEL 5
423 
424 struct rsvd_bits_validate {
425 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
426 	u64 bad_mt_xwr;
427 };
428 
429 struct kvm_mmu_root_info {
430 	gpa_t pgd;
431 	hpa_t hpa;
432 };
433 
434 #define KVM_MMU_ROOT_INFO_INVALID \
435 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
436 
437 #define KVM_MMU_NUM_PREV_ROOTS 3
438 
439 #define KVM_MMU_ROOT_CURRENT		BIT(0)
440 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
441 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
442 
443 #define KVM_HAVE_MMU_RWLOCK
444 
445 struct kvm_mmu_page;
446 struct kvm_page_fault;
447 
448 /*
449  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
450  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
451  * current mmu mode.
452  */
453 struct kvm_mmu {
454 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
455 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
456 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
457 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
458 				  struct x86_exception *fault);
459 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
460 			    gpa_t gva_or_gpa, u64 access,
461 			    struct x86_exception *exception);
462 	int (*sync_spte)(struct kvm_vcpu *vcpu,
463 			 struct kvm_mmu_page *sp, int i);
464 	struct kvm_mmu_root_info root;
465 	hpa_t mirror_root_hpa;
466 	union kvm_cpu_role cpu_role;
467 	union kvm_mmu_page_role root_role;
468 
469 	/*
470 	* The pkru_mask indicates if protection key checks are needed.  It
471 	* consists of 16 domains indexed by page fault error code bits [4:1],
472 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
473 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
474 	*/
475 	u32 pkru_mask;
476 
477 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
478 
479 	/*
480 	 * Bitmap; bit set = permission fault
481 	 * Byte index: page fault error code [4:1]
482 	 * Bit index: pte permissions in ACC_* format
483 	 */
484 	u8 permissions[16];
485 
486 	u64 *pae_root;
487 	u64 *pml4_root;
488 	u64 *pml5_root;
489 
490 	/*
491 	 * check zero bits on shadow page table entries, these
492 	 * bits include not only hardware reserved bits but also
493 	 * the bits spte never used.
494 	 */
495 	struct rsvd_bits_validate shadow_zero_check;
496 
497 	struct rsvd_bits_validate guest_rsvd_check;
498 
499 	u64 pdptrs[4]; /* pae */
500 };
501 
502 enum pmc_type {
503 	KVM_PMC_GP = 0,
504 	KVM_PMC_FIXED,
505 };
506 
507 struct kvm_pmc {
508 	enum pmc_type type;
509 	u8 idx;
510 	bool is_paused;
511 	bool intr;
512 	/*
513 	 * Base value of the PMC counter, relative to the *consumed* count in
514 	 * the associated perf_event.  This value includes counter updates from
515 	 * the perf_event and emulated_count since the last time the counter
516 	 * was reprogrammed, but it is *not* the current value as seen by the
517 	 * guest or userspace.
518 	 *
519 	 * The count is relative to the associated perf_event so that KVM
520 	 * doesn't need to reprogram the perf_event every time the guest writes
521 	 * to the counter.
522 	 */
523 	u64 counter;
524 	/*
525 	 * PMC events triggered by KVM emulation that haven't been fully
526 	 * processed, i.e. haven't undergone overflow detection.
527 	 */
528 	u64 emulated_counter;
529 	u64 eventsel;
530 	struct perf_event *perf_event;
531 	struct kvm_vcpu *vcpu;
532 	/*
533 	 * only for creating or reusing perf_event,
534 	 * eventsel value for general purpose counters,
535 	 * ctrl value for fixed counters.
536 	 */
537 	u64 current_config;
538 };
539 
540 /* More counters may conflict with other existing Architectural MSRs */
541 #define KVM_MAX(a, b)	((a) >= (b) ? (a) : (b))
542 #define KVM_MAX_NR_INTEL_GP_COUNTERS	8
543 #define KVM_MAX_NR_AMD_GP_COUNTERS	6
544 #define KVM_MAX_NR_GP_COUNTERS		KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
545 						KVM_MAX_NR_AMD_GP_COUNTERS)
546 
547 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS	3
548 #define KVM_MAX_NR_AMD_FIXED_COUTNERS	0
549 #define KVM_MAX_NR_FIXED_COUNTERS	KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
550 						KVM_MAX_NR_AMD_FIXED_COUTNERS)
551 
552 struct kvm_pmu {
553 	u8 version;
554 	unsigned nr_arch_gp_counters;
555 	unsigned nr_arch_fixed_counters;
556 	unsigned available_event_types;
557 	u64 fixed_ctr_ctrl;
558 	u64 fixed_ctr_ctrl_rsvd;
559 	u64 global_ctrl;
560 	u64 global_status;
561 	u64 counter_bitmask[2];
562 	u64 global_ctrl_rsvd;
563 	u64 global_status_rsvd;
564 	u64 reserved_bits;
565 	u64 raw_event_mask;
566 	struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
567 	struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
568 
569 	/*
570 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
571 	 * set in a single access, e.g. to reprogram all counters when the PMU
572 	 * filter changes.
573 	 */
574 	union {
575 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
576 		atomic64_t __reprogram_pmi;
577 	};
578 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
579 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
580 
581 	u64 ds_area;
582 	u64 pebs_enable;
583 	u64 pebs_enable_rsvd;
584 	u64 pebs_data_cfg;
585 	u64 pebs_data_cfg_rsvd;
586 
587 	/*
588 	 * If a guest counter is cross-mapped to host counter with different
589 	 * index, its PEBS capability will be temporarily disabled.
590 	 *
591 	 * The user should make sure that this mask is updated
592 	 * after disabling interrupts and before perf_guest_get_msrs();
593 	 */
594 	u64 host_cross_mapped_mask;
595 
596 	/*
597 	 * The gate to release perf_events not marked in
598 	 * pmc_in_use only once in a vcpu time slice.
599 	 */
600 	bool need_cleanup;
601 
602 	/*
603 	 * The total number of programmed perf_events and it helps to avoid
604 	 * redundant check before cleanup if guest don't use vPMU at all.
605 	 */
606 	u8 event_count;
607 };
608 
609 struct kvm_pmu_ops;
610 
611 enum {
612 	KVM_DEBUGREG_BP_ENABLED = 1,
613 	KVM_DEBUGREG_WONT_EXIT = 2,
614 };
615 
616 struct kvm_mtrr {
617 	u64 var[KVM_NR_VAR_MTRR * 2];
618 	u64 fixed_64k;
619 	u64 fixed_16k[2];
620 	u64 fixed_4k[8];
621 	u64 deftype;
622 };
623 
624 /* Hyper-V SynIC timer */
625 struct kvm_vcpu_hv_stimer {
626 	struct hrtimer timer;
627 	int index;
628 	union hv_stimer_config config;
629 	u64 count;
630 	u64 exp_time;
631 	struct hv_message msg;
632 	bool msg_pending;
633 };
634 
635 /* Hyper-V synthetic interrupt controller (SynIC)*/
636 struct kvm_vcpu_hv_synic {
637 	u64 version;
638 	u64 control;
639 	u64 msg_page;
640 	u64 evt_page;
641 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
642 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
643 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
644 	DECLARE_BITMAP(vec_bitmap, 256);
645 	bool active;
646 	bool dont_zero_synic_pages;
647 };
648 
649 /* The maximum number of entries on the TLB flush fifo. */
650 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
651 /*
652  * Note: the following 'magic' entry is made up by KVM to avoid putting
653  * anything besides GVA on the TLB flush fifo. It is theoretically possible
654  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
655  * which will look identical. KVM's action to 'flush everything' instead of
656  * flushing these particular addresses is, however, fully legitimate as
657  * flushing more than requested is always OK.
658  */
659 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
660 
661 enum hv_tlb_flush_fifos {
662 	HV_L1_TLB_FLUSH_FIFO,
663 	HV_L2_TLB_FLUSH_FIFO,
664 	HV_NR_TLB_FLUSH_FIFOS,
665 };
666 
667 struct kvm_vcpu_hv_tlb_flush_fifo {
668 	spinlock_t write_lock;
669 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
670 };
671 
672 /* Hyper-V per vcpu emulation context */
673 struct kvm_vcpu_hv {
674 	struct kvm_vcpu *vcpu;
675 	u32 vp_index;
676 	u64 hv_vapic;
677 	s64 runtime_offset;
678 	struct kvm_vcpu_hv_synic synic;
679 	struct kvm_hyperv_exit exit;
680 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
681 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
682 	bool enforce_cpuid;
683 	struct {
684 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
685 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
686 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
687 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
688 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
689 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
690 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
691 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
692 	} cpuid_cache;
693 
694 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
695 
696 	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
697 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
698 
699 	struct hv_vp_assist_page vp_assist_page;
700 
701 	struct {
702 		u64 pa_page_gpa;
703 		u64 vm_id;
704 		u32 vp_id;
705 	} nested;
706 };
707 
708 struct kvm_hypervisor_cpuid {
709 	u32 base;
710 	u32 limit;
711 };
712 
713 #ifdef CONFIG_KVM_XEN
714 /* Xen HVM per vcpu emulation context */
715 struct kvm_vcpu_xen {
716 	u64 hypercall_rip;
717 	u32 current_runstate;
718 	u8 upcall_vector;
719 	struct gfn_to_pfn_cache vcpu_info_cache;
720 	struct gfn_to_pfn_cache vcpu_time_info_cache;
721 	struct gfn_to_pfn_cache runstate_cache;
722 	struct gfn_to_pfn_cache runstate2_cache;
723 	u64 last_steal;
724 	u64 runstate_entry_time;
725 	u64 runstate_times[4];
726 	unsigned long evtchn_pending_sel;
727 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
728 	u32 timer_virq;
729 	u64 timer_expires; /* In guest epoch */
730 	atomic_t timer_pending;
731 	struct hrtimer timer;
732 	int poll_evtchn;
733 	struct timer_list poll_timer;
734 	struct kvm_hypervisor_cpuid cpuid;
735 };
736 #endif
737 
738 struct kvm_queued_exception {
739 	bool pending;
740 	bool injected;
741 	bool has_error_code;
742 	u8 vector;
743 	u32 error_code;
744 	unsigned long payload;
745 	bool has_payload;
746 };
747 
748 /*
749  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
750  * unknown to the kernel, but need to be directly used by KVM.  Note, these
751  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
752  */
753 enum kvm_only_cpuid_leafs {
754 	CPUID_12_EAX	 = NCAPINTS,
755 	CPUID_7_1_EDX,
756 	CPUID_8000_0007_EDX,
757 	CPUID_8000_0022_EAX,
758 	CPUID_7_2_EDX,
759 	CPUID_24_0_EBX,
760 	NR_KVM_CPU_CAPS,
761 
762 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
763 };
764 
765 struct kvm_vcpu_arch {
766 	/*
767 	 * rip and regs accesses must go through
768 	 * kvm_{register,rip}_{read,write} functions.
769 	 */
770 	unsigned long regs[NR_VCPU_REGS];
771 	u32 regs_avail;
772 	u32 regs_dirty;
773 
774 	unsigned long cr0;
775 	unsigned long cr0_guest_owned_bits;
776 	unsigned long cr2;
777 	unsigned long cr3;
778 	unsigned long cr4;
779 	unsigned long cr4_guest_owned_bits;
780 	unsigned long cr4_guest_rsvd_bits;
781 	unsigned long cr8;
782 	u32 host_pkru;
783 	u32 pkru;
784 	u32 hflags;
785 	u64 efer;
786 	u64 host_debugctl;
787 	u64 apic_base;
788 	struct kvm_lapic *apic;    /* kernel irqchip context */
789 	bool load_eoi_exitmap_pending;
790 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
791 	unsigned long apic_attention;
792 	int32_t apic_arb_prio;
793 	int mp_state;
794 	u64 ia32_misc_enable_msr;
795 	u64 smbase;
796 	u64 smi_count;
797 	bool at_instruction_boundary;
798 	bool tpr_access_reporting;
799 	bool xfd_no_write_intercept;
800 	u64 ia32_xss;
801 	u64 microcode_version;
802 	u64 arch_capabilities;
803 	u64 perf_capabilities;
804 
805 	/*
806 	 * Paging state of the vcpu
807 	 *
808 	 * If the vcpu runs in guest mode with two level paging this still saves
809 	 * the paging mode of the l1 guest. This context is always used to
810 	 * handle faults.
811 	 */
812 	struct kvm_mmu *mmu;
813 
814 	/* Non-nested MMU for L1 */
815 	struct kvm_mmu root_mmu;
816 
817 	/* L1 MMU when running nested */
818 	struct kvm_mmu guest_mmu;
819 
820 	/*
821 	 * Paging state of an L2 guest (used for nested npt)
822 	 *
823 	 * This context will save all necessary information to walk page tables
824 	 * of an L2 guest. This context is only initialized for page table
825 	 * walking and not for faulting since we never handle l2 page faults on
826 	 * the host.
827 	 */
828 	struct kvm_mmu nested_mmu;
829 
830 	/*
831 	 * Pointer to the mmu context currently used for
832 	 * gva_to_gpa translations.
833 	 */
834 	struct kvm_mmu *walk_mmu;
835 
836 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
837 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
838 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
839 	struct kvm_mmu_memory_cache mmu_page_header_cache;
840 	/*
841 	 * This cache is to allocate external page table. E.g. private EPT used
842 	 * by the TDX module.
843 	 */
844 	struct kvm_mmu_memory_cache mmu_external_spt_cache;
845 
846 	/*
847 	 * QEMU userspace and the guest each have their own FPU state.
848 	 * In vcpu_run, we switch between the user and guest FPU contexts.
849 	 * While running a VCPU, the VCPU thread will have the guest FPU
850 	 * context.
851 	 *
852 	 * Note that while the PKRU state lives inside the fpu registers,
853 	 * it is switched out separately at VMENTER and VMEXIT time. The
854 	 * "guest_fpstate" state here contains the guest FPU context, with the
855 	 * host PRKU bits.
856 	 */
857 	struct fpu_guest guest_fpu;
858 
859 	u64 xcr0;
860 	u64 guest_supported_xcr0;
861 
862 	struct kvm_pio_request pio;
863 	void *pio_data;
864 	void *sev_pio_data;
865 	unsigned sev_pio_count;
866 
867 	u8 event_exit_inst_len;
868 
869 	bool exception_from_userspace;
870 
871 	/* Exceptions to be injected to the guest. */
872 	struct kvm_queued_exception exception;
873 	/* Exception VM-Exits to be synthesized to L1. */
874 	struct kvm_queued_exception exception_vmexit;
875 
876 	struct kvm_queued_interrupt {
877 		bool injected;
878 		bool soft;
879 		u8 nr;
880 	} interrupt;
881 
882 	int halt_request; /* real mode on Intel only */
883 
884 	int cpuid_nent;
885 	struct kvm_cpuid_entry2 *cpuid_entries;
886 	bool cpuid_dynamic_bits_dirty;
887 	bool is_amd_compatible;
888 
889 	/*
890 	 * cpu_caps holds the effective guest capabilities, i.e. the features
891 	 * the vCPU is allowed to use.  Typically, but not always, features can
892 	 * be used by the guest if and only if both KVM and userspace want to
893 	 * expose the feature to the guest.
894 	 *
895 	 * A common exception is for virtualization holes, i.e. when KVM can't
896 	 * prevent the guest from using a feature, in which case the vCPU "has"
897 	 * the feature regardless of what KVM or userspace desires.
898 	 *
899 	 * Note, features that don't require KVM involvement in any way are
900 	 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
901 	 * guest CPUID provided by userspace.
902 	 */
903 	u32 cpu_caps[NR_KVM_CPU_CAPS];
904 
905 	u64 reserved_gpa_bits;
906 	int maxphyaddr;
907 
908 	/* emulate context */
909 
910 	struct x86_emulate_ctxt *emulate_ctxt;
911 	bool emulate_regs_need_sync_to_vcpu;
912 	bool emulate_regs_need_sync_from_vcpu;
913 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
914 
915 	gpa_t time;
916 	s8  pvclock_tsc_shift;
917 	u32 pvclock_tsc_mul;
918 	unsigned int hw_tsc_khz;
919 	struct gfn_to_pfn_cache pv_time;
920 	/* set guest stopped flag in pvclock flags field */
921 	bool pvclock_set_guest_stopped_request;
922 
923 	struct {
924 		u8 preempted;
925 		u64 msr_val;
926 		u64 last_steal;
927 		struct gfn_to_hva_cache cache;
928 	} st;
929 
930 	u64 l1_tsc_offset;
931 	u64 tsc_offset; /* current tsc offset */
932 	u64 last_guest_tsc;
933 	u64 last_host_tsc;
934 	u64 tsc_offset_adjustment;
935 	u64 this_tsc_nsec;
936 	u64 this_tsc_write;
937 	u64 this_tsc_generation;
938 	bool tsc_catchup;
939 	bool tsc_always_catchup;
940 	s8 virtual_tsc_shift;
941 	u32 virtual_tsc_mult;
942 	u32 virtual_tsc_khz;
943 	s64 ia32_tsc_adjust_msr;
944 	u64 msr_ia32_power_ctl;
945 	u64 l1_tsc_scaling_ratio;
946 	u64 tsc_scaling_ratio; /* current scaling ratio */
947 
948 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
949 	/* Number of NMIs pending injection, not including hardware vNMIs. */
950 	unsigned int nmi_pending;
951 	bool nmi_injected;    /* Trying to inject an NMI this entry */
952 	bool smi_pending;    /* SMI queued after currently running handler */
953 	u8 handling_intr_from_guest;
954 
955 	struct kvm_mtrr mtrr_state;
956 	u64 pat;
957 
958 	unsigned switch_db_regs;
959 	unsigned long db[KVM_NR_DB_REGS];
960 	unsigned long dr6;
961 	unsigned long dr7;
962 	unsigned long eff_db[KVM_NR_DB_REGS];
963 	unsigned long guest_debug_dr7;
964 	u64 msr_platform_info;
965 	u64 msr_misc_features_enables;
966 
967 	u64 mcg_cap;
968 	u64 mcg_status;
969 	u64 mcg_ctl;
970 	u64 mcg_ext_ctl;
971 	u64 *mce_banks;
972 	u64 *mci_ctl2_banks;
973 
974 	/* Cache MMIO info */
975 	u64 mmio_gva;
976 	unsigned mmio_access;
977 	gfn_t mmio_gfn;
978 	u64 mmio_gen;
979 
980 	struct kvm_pmu pmu;
981 
982 	/* used for guest single stepping over the given code position */
983 	unsigned long singlestep_rip;
984 
985 #ifdef CONFIG_KVM_HYPERV
986 	bool hyperv_enabled;
987 	struct kvm_vcpu_hv *hyperv;
988 #endif
989 #ifdef CONFIG_KVM_XEN
990 	struct kvm_vcpu_xen xen;
991 #endif
992 	cpumask_var_t wbinvd_dirty_mask;
993 
994 	unsigned long last_retry_eip;
995 	unsigned long last_retry_addr;
996 
997 	struct {
998 		bool halted;
999 		gfn_t gfns[ASYNC_PF_PER_VCPU];
1000 		struct gfn_to_hva_cache data;
1001 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1002 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1003 		u16 vec;
1004 		u32 id;
1005 		u32 host_apf_flags;
1006 		bool send_always;
1007 		bool delivery_as_pf_vmexit;
1008 		bool pageready_pending;
1009 	} apf;
1010 
1011 	/* OSVW MSRs (AMD only) */
1012 	struct {
1013 		u64 length;
1014 		u64 status;
1015 	} osvw;
1016 
1017 	struct {
1018 		u64 msr_val;
1019 		struct gfn_to_hva_cache data;
1020 	} pv_eoi;
1021 
1022 	u64 msr_kvm_poll_control;
1023 
1024 	/* pv related host specific info */
1025 	struct {
1026 		bool pv_unhalted;
1027 	} pv;
1028 
1029 	int pending_ioapic_eoi;
1030 	int pending_external_vector;
1031 
1032 	/* be preempted when it's in kernel-mode(cpl=0) */
1033 	bool preempted_in_kernel;
1034 
1035 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1036 	bool l1tf_flush_l1d;
1037 
1038 	/* Host CPU on which VM-entry was most recently attempted */
1039 	int last_vmentry_cpu;
1040 
1041 	/* AMD MSRC001_0015 Hardware Configuration */
1042 	u64 msr_hwcr;
1043 
1044 	/* pv related cpuid info */
1045 	struct {
1046 		/*
1047 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1048 		 * leaf.
1049 		 */
1050 		u32 features;
1051 
1052 		/*
1053 		 * indicates whether pv emulation should be disabled if features
1054 		 * are not present in the guest's cpuid
1055 		 */
1056 		bool enforce;
1057 	} pv_cpuid;
1058 
1059 	/* Protected Guests */
1060 	bool guest_state_protected;
1061 	bool guest_tsc_protected;
1062 
1063 	/*
1064 	 * Set when PDPTS were loaded directly by the userspace without
1065 	 * reading the guest memory
1066 	 */
1067 	bool pdptrs_from_userspace;
1068 
1069 #if IS_ENABLED(CONFIG_HYPERV)
1070 	hpa_t hv_root_tdp;
1071 #endif
1072 };
1073 
1074 struct kvm_lpage_info {
1075 	int disallow_lpage;
1076 };
1077 
1078 struct kvm_arch_memory_slot {
1079 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1080 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1081 	unsigned short *gfn_write_track;
1082 };
1083 
1084 /*
1085  * Track the mode of the optimized logical map, as the rules for decoding the
1086  * destination vary per mode.  Enabling the optimized logical map requires all
1087  * software-enabled local APIs to be in the same mode, each addressable APIC to
1088  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1089  */
1090 enum kvm_apic_logical_mode {
1091 	/* All local APICs are software disabled. */
1092 	KVM_APIC_MODE_SW_DISABLED,
1093 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1094 	KVM_APIC_MODE_XAPIC_CLUSTER,
1095 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1096 	KVM_APIC_MODE_XAPIC_FLAT,
1097 	/* All software enabled local APICs in x2APIC mode. */
1098 	KVM_APIC_MODE_X2APIC,
1099 	/*
1100 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1101 	 * mode, same logical ID assigned to multiple APICs, etc.
1102 	 */
1103 	KVM_APIC_MODE_MAP_DISABLED,
1104 };
1105 
1106 struct kvm_apic_map {
1107 	struct rcu_head rcu;
1108 	enum kvm_apic_logical_mode logical_mode;
1109 	u32 max_apic_id;
1110 	union {
1111 		struct kvm_lapic *xapic_flat_map[8];
1112 		struct kvm_lapic *xapic_cluster_map[16][4];
1113 	};
1114 	struct kvm_lapic *phys_map[];
1115 };
1116 
1117 /* Hyper-V synthetic debugger (SynDbg)*/
1118 struct kvm_hv_syndbg {
1119 	struct {
1120 		u64 control;
1121 		u64 status;
1122 		u64 send_page;
1123 		u64 recv_page;
1124 		u64 pending_page;
1125 	} control;
1126 	u64 options;
1127 };
1128 
1129 /* Current state of Hyper-V TSC page clocksource */
1130 enum hv_tsc_page_status {
1131 	/* TSC page was not set up or disabled */
1132 	HV_TSC_PAGE_UNSET = 0,
1133 	/* TSC page MSR was written by the guest, update pending */
1134 	HV_TSC_PAGE_GUEST_CHANGED,
1135 	/* TSC page update was triggered from the host side */
1136 	HV_TSC_PAGE_HOST_CHANGED,
1137 	/* TSC page was properly set up and is currently active  */
1138 	HV_TSC_PAGE_SET,
1139 	/* TSC page was set up with an inaccessible GPA */
1140 	HV_TSC_PAGE_BROKEN,
1141 };
1142 
1143 #ifdef CONFIG_KVM_HYPERV
1144 /* Hyper-V emulation context */
1145 struct kvm_hv {
1146 	struct mutex hv_lock;
1147 	u64 hv_guest_os_id;
1148 	u64 hv_hypercall;
1149 	u64 hv_tsc_page;
1150 	enum hv_tsc_page_status hv_tsc_page_status;
1151 
1152 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1153 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1154 	u64 hv_crash_ctl;
1155 
1156 	struct ms_hyperv_tsc_page tsc_ref;
1157 
1158 	struct idr conn_to_evt;
1159 
1160 	u64 hv_reenlightenment_control;
1161 	u64 hv_tsc_emulation_control;
1162 	u64 hv_tsc_emulation_status;
1163 	u64 hv_invtsc_control;
1164 
1165 	/* How many vCPUs have VP index != vCPU index */
1166 	atomic_t num_mismatched_vp_indexes;
1167 
1168 	/*
1169 	 * How many SynICs use 'AutoEOI' feature
1170 	 * (protected by arch.apicv_update_lock)
1171 	 */
1172 	unsigned int synic_auto_eoi_used;
1173 
1174 	struct kvm_hv_syndbg hv_syndbg;
1175 
1176 	bool xsaves_xsavec_checked;
1177 };
1178 #endif
1179 
1180 struct msr_bitmap_range {
1181 	u32 flags;
1182 	u32 nmsrs;
1183 	u32 base;
1184 	unsigned long *bitmap;
1185 };
1186 
1187 #ifdef CONFIG_KVM_XEN
1188 /* Xen emulation context */
1189 struct kvm_xen {
1190 	struct mutex xen_lock;
1191 	u32 xen_version;
1192 	bool long_mode;
1193 	bool runstate_update_flag;
1194 	u8 upcall_vector;
1195 	struct gfn_to_pfn_cache shinfo_cache;
1196 	struct idr evtchn_ports;
1197 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1198 
1199 	struct kvm_xen_hvm_config hvm_config;
1200 };
1201 #endif
1202 
1203 enum kvm_irqchip_mode {
1204 	KVM_IRQCHIP_NONE,
1205 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1206 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1207 };
1208 
1209 struct kvm_x86_msr_filter {
1210 	u8 count;
1211 	bool default_allow:1;
1212 	struct msr_bitmap_range ranges[16];
1213 };
1214 
1215 struct kvm_x86_pmu_event_filter {
1216 	__u32 action;
1217 	__u32 nevents;
1218 	__u32 fixed_counter_bitmap;
1219 	__u32 flags;
1220 	__u32 nr_includes;
1221 	__u32 nr_excludes;
1222 	__u64 *includes;
1223 	__u64 *excludes;
1224 	__u64 events[];
1225 };
1226 
1227 enum kvm_apicv_inhibit {
1228 
1229 	/********************************************************************/
1230 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1231 	/********************************************************************/
1232 
1233 	/*
1234 	 * APIC acceleration is disabled by a module parameter
1235 	 * and/or not supported in hardware.
1236 	 */
1237 	APICV_INHIBIT_REASON_DISABLED,
1238 
1239 	/*
1240 	 * APIC acceleration is inhibited because AutoEOI feature is
1241 	 * being used by a HyperV guest.
1242 	 */
1243 	APICV_INHIBIT_REASON_HYPERV,
1244 
1245 	/*
1246 	 * APIC acceleration is inhibited because the userspace didn't yet
1247 	 * enable the kernel/split irqchip.
1248 	 */
1249 	APICV_INHIBIT_REASON_ABSENT,
1250 
1251 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1252 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1253 	 * was enabled, to avoid AVIC/APICv bypassing it.
1254 	 */
1255 	APICV_INHIBIT_REASON_BLOCKIRQ,
1256 
1257 	/*
1258 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1259 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1260 	 */
1261 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1262 
1263 	/*
1264 	 * For simplicity, the APIC acceleration is inhibited
1265 	 * first time either APIC ID or APIC base are changed by the guest
1266 	 * from their reset values.
1267 	 */
1268 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1269 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1270 
1271 	/******************************************************/
1272 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1273 	/******************************************************/
1274 
1275 	/*
1276 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1277 	 *
1278 	 * This is needed because unlike APICv, the peers of this vCPU
1279 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1280 	 * a vCPU runs nested.
1281 	 */
1282 	APICV_INHIBIT_REASON_NESTED,
1283 
1284 	/*
1285 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1286 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1287 	 * is inhibited while KVM waits for IRQ window.
1288 	 */
1289 	APICV_INHIBIT_REASON_IRQWIN,
1290 
1291 	/*
1292 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1293 	 * which AVIC doesn't support for edge triggered interrupts.
1294 	 */
1295 	APICV_INHIBIT_REASON_PIT_REINJ,
1296 
1297 	/*
1298 	 * AVIC is disabled because SEV doesn't support it.
1299 	 */
1300 	APICV_INHIBIT_REASON_SEV,
1301 
1302 	/*
1303 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1304 	 * mapping between logical ID and vCPU.
1305 	 */
1306 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1307 
1308 	NR_APICV_INHIBIT_REASONS,
1309 };
1310 
1311 #define __APICV_INHIBIT_REASON(reason)			\
1312 	{ BIT(APICV_INHIBIT_REASON_##reason), #reason }
1313 
1314 #define APICV_INHIBIT_REASONS				\
1315 	__APICV_INHIBIT_REASON(DISABLED),		\
1316 	__APICV_INHIBIT_REASON(HYPERV),			\
1317 	__APICV_INHIBIT_REASON(ABSENT),			\
1318 	__APICV_INHIBIT_REASON(BLOCKIRQ),		\
1319 	__APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED),	\
1320 	__APICV_INHIBIT_REASON(APIC_ID_MODIFIED),	\
1321 	__APICV_INHIBIT_REASON(APIC_BASE_MODIFIED),	\
1322 	__APICV_INHIBIT_REASON(NESTED),			\
1323 	__APICV_INHIBIT_REASON(IRQWIN),			\
1324 	__APICV_INHIBIT_REASON(PIT_REINJ),		\
1325 	__APICV_INHIBIT_REASON(SEV),			\
1326 	__APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1327 
1328 struct kvm_arch {
1329 	unsigned long n_used_mmu_pages;
1330 	unsigned long n_requested_mmu_pages;
1331 	unsigned long n_max_mmu_pages;
1332 	unsigned int indirect_shadow_pages;
1333 	u8 mmu_valid_gen;
1334 	u8 vm_type;
1335 	bool has_private_mem;
1336 	bool has_protected_state;
1337 	bool pre_fault_allowed;
1338 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1339 	struct list_head active_mmu_pages;
1340 	/*
1341 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1342 	 * replaced by an NX huge page.  A shadow page is on this list if its
1343 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1344 	 * and there are no other conditions that prevent a huge page, e.g.
1345 	 * the backing host page is huge, dirtly logging is not enabled for its
1346 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1347 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1348 	 * guest attempts to execute from the region then KVM obviously can't
1349 	 * create an NX huge page (without hanging the guest).
1350 	 */
1351 	struct list_head possible_nx_huge_pages;
1352 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1353 	struct kvm_page_track_notifier_head track_notifier_head;
1354 #endif
1355 	/*
1356 	 * Protects marking pages unsync during page faults, as TDP MMU page
1357 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1358 	 * pages lock is always taken when marking pages unsync regardless of
1359 	 * whether mmu_lock is held for read or write.
1360 	 */
1361 	spinlock_t mmu_unsync_pages_lock;
1362 
1363 	u64 shadow_mmio_value;
1364 
1365 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1366 	atomic_t noncoherent_dma_count;
1367 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1368 	atomic_t assigned_device_count;
1369 	struct kvm_pic *vpic;
1370 	struct kvm_ioapic *vioapic;
1371 	struct kvm_pit *vpit;
1372 	atomic_t vapics_in_nmi_mode;
1373 	struct mutex apic_map_lock;
1374 	struct kvm_apic_map __rcu *apic_map;
1375 	atomic_t apic_map_dirty;
1376 
1377 	bool apic_access_memslot_enabled;
1378 	bool apic_access_memslot_inhibited;
1379 
1380 	/* Protects apicv_inhibit_reasons */
1381 	struct rw_semaphore apicv_update_lock;
1382 	unsigned long apicv_inhibit_reasons;
1383 
1384 	gpa_t wall_clock;
1385 
1386 	bool mwait_in_guest;
1387 	bool hlt_in_guest;
1388 	bool pause_in_guest;
1389 	bool cstate_in_guest;
1390 
1391 	unsigned long irq_sources_bitmap;
1392 	s64 kvmclock_offset;
1393 
1394 	/*
1395 	 * This also protects nr_vcpus_matched_tsc which is read from a
1396 	 * preemption-disabled region, so it must be a raw spinlock.
1397 	 */
1398 	raw_spinlock_t tsc_write_lock;
1399 	u64 last_tsc_nsec;
1400 	u64 last_tsc_write;
1401 	u32 last_tsc_khz;
1402 	u64 last_tsc_offset;
1403 	u64 cur_tsc_nsec;
1404 	u64 cur_tsc_write;
1405 	u64 cur_tsc_offset;
1406 	u64 cur_tsc_generation;
1407 	int nr_vcpus_matched_tsc;
1408 
1409 	u32 default_tsc_khz;
1410 	bool user_set_tsc;
1411 	u64 apic_bus_cycle_ns;
1412 
1413 	seqcount_raw_spinlock_t pvclock_sc;
1414 	bool use_master_clock;
1415 	u64 master_kernel_ns;
1416 	u64 master_cycle_now;
1417 	struct delayed_work kvmclock_update_work;
1418 	struct delayed_work kvmclock_sync_work;
1419 
1420 	/* reads protected by irq_srcu, writes by irq_lock */
1421 	struct hlist_head mask_notifier_list;
1422 
1423 #ifdef CONFIG_KVM_HYPERV
1424 	struct kvm_hv hyperv;
1425 #endif
1426 
1427 #ifdef CONFIG_KVM_XEN
1428 	struct kvm_xen xen;
1429 #endif
1430 
1431 	bool backwards_tsc_observed;
1432 	bool boot_vcpu_runs_old_kvmclock;
1433 	u32 bsp_vcpu_id;
1434 
1435 	u64 disabled_quirks;
1436 
1437 	enum kvm_irqchip_mode irqchip_mode;
1438 	u8 nr_reserved_ioapic_pins;
1439 
1440 	bool disabled_lapic_found;
1441 
1442 	bool x2apic_format;
1443 	bool x2apic_broadcast_quirk_disabled;
1444 
1445 	bool guest_can_read_msr_platform_info;
1446 	bool exception_payload_enabled;
1447 
1448 	bool triple_fault_event;
1449 
1450 	bool bus_lock_detection_enabled;
1451 	bool enable_pmu;
1452 
1453 	u32 notify_window;
1454 	u32 notify_vmexit_flags;
1455 	/*
1456 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1457 	 * emulator fails to emulate an instruction, allow userspace
1458 	 * the opportunity to look at it.
1459 	 */
1460 	bool exit_on_emulation_error;
1461 
1462 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1463 	u32 user_space_msr_mask;
1464 	struct kvm_x86_msr_filter __rcu *msr_filter;
1465 
1466 	u32 hypercall_exit_enabled;
1467 
1468 	/* Guest can access the SGX PROVISIONKEY. */
1469 	bool sgx_provisioning_allowed;
1470 
1471 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1472 	struct vhost_task *nx_huge_page_recovery_thread;
1473 	u64 nx_huge_page_last;
1474 	struct once nx_once;
1475 
1476 #ifdef CONFIG_X86_64
1477 #ifdef CONFIG_KVM_PROVE_MMU
1478 	/*
1479 	 * The number of TDP MMU pages across all roots.  Used only to sanity
1480 	 * check that KVM isn't leaking TDP MMU pages.
1481 	 */
1482 	atomic64_t tdp_mmu_pages;
1483 #endif
1484 
1485 	/*
1486 	 * List of struct kvm_mmu_pages being used as roots.
1487 	 * All struct kvm_mmu_pages in the list should have
1488 	 * tdp_mmu_page set.
1489 	 *
1490 	 * For reads, this list is protected by:
1491 	 *	RCU alone or
1492 	 *	the MMU lock in read mode + RCU or
1493 	 *	the MMU lock in write mode
1494 	 *
1495 	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1496 	 * below for the details.
1497 	 *
1498 	 * Roots will remain in the list until their tdp_mmu_root_count
1499 	 * drops to zero, at which point the thread that decremented the
1500 	 * count to zero should removed the root from the list and clean
1501 	 * it up, freeing the root after an RCU grace period.
1502 	 */
1503 	struct list_head tdp_mmu_roots;
1504 
1505 	/*
1506 	 * Protects accesses to the following fields when the MMU lock
1507 	 * is held in read mode:
1508 	 *  - tdp_mmu_roots (above)
1509 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1510 	 *  - possible_nx_huge_pages;
1511 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1512 	 *    by the TDP MMU
1513 	 * Because the lock is only taken within the MMU lock, strictly
1514 	 * speaking it is redundant to acquire this lock when the thread
1515 	 * holds the MMU lock in write mode.  However it often simplifies
1516 	 * the code to do so.
1517 	 */
1518 	spinlock_t tdp_mmu_pages_lock;
1519 #endif /* CONFIG_X86_64 */
1520 
1521 	/*
1522 	 * If set, at least one shadow root has been allocated. This flag
1523 	 * is used as one input when determining whether certain memslot
1524 	 * related allocations are necessary.
1525 	 */
1526 	bool shadow_root_allocated;
1527 
1528 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1529 	/*
1530 	 * If set, the VM has (or had) an external write tracking user, and
1531 	 * thus all write tracking metadata has been allocated, even if KVM
1532 	 * itself isn't using write tracking.
1533 	 */
1534 	bool external_write_tracking_enabled;
1535 #endif
1536 
1537 #if IS_ENABLED(CONFIG_HYPERV)
1538 	hpa_t	hv_root_tdp;
1539 	spinlock_t hv_root_tdp_lock;
1540 	struct hv_partition_assist_pg *hv_pa_pg;
1541 #endif
1542 	/*
1543 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1544 	 * that increase along with the maximum vCPU ID, in which case, using
1545 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1546 	 */
1547 	u32 max_vcpu_ids;
1548 
1549 	bool disable_nx_huge_pages;
1550 
1551 	/*
1552 	 * Memory caches used to allocate shadow pages when performing eager
1553 	 * page splitting. No need for a shadowed_info_cache since eager page
1554 	 * splitting only allocates direct shadow pages.
1555 	 *
1556 	 * Protected by kvm->slots_lock.
1557 	 */
1558 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1559 	struct kvm_mmu_memory_cache split_page_header_cache;
1560 
1561 	/*
1562 	 * Memory cache used to allocate pte_list_desc structs while splitting
1563 	 * huge pages. In the worst case, to split one huge page, 512
1564 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1565 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1566 	 * page table.
1567 	 *
1568 	 * Protected by kvm->slots_lock.
1569 	 */
1570 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1571 	struct kvm_mmu_memory_cache split_desc_cache;
1572 
1573 	gfn_t gfn_direct_bits;
1574 };
1575 
1576 struct kvm_vm_stat {
1577 	struct kvm_vm_stat_generic generic;
1578 	u64 mmu_shadow_zapped;
1579 	u64 mmu_pte_write;
1580 	u64 mmu_pde_zapped;
1581 	u64 mmu_flooded;
1582 	u64 mmu_recycled;
1583 	u64 mmu_cache_miss;
1584 	u64 mmu_unsync;
1585 	union {
1586 		struct {
1587 			atomic64_t pages_4k;
1588 			atomic64_t pages_2m;
1589 			atomic64_t pages_1g;
1590 		};
1591 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1592 	};
1593 	u64 nx_lpage_splits;
1594 	u64 max_mmu_page_hash_collisions;
1595 	u64 max_mmu_rmap_size;
1596 };
1597 
1598 struct kvm_vcpu_stat {
1599 	struct kvm_vcpu_stat_generic generic;
1600 	u64 pf_taken;
1601 	u64 pf_fixed;
1602 	u64 pf_emulate;
1603 	u64 pf_spurious;
1604 	u64 pf_fast;
1605 	u64 pf_mmio_spte_created;
1606 	u64 pf_guest;
1607 	u64 tlb_flush;
1608 	u64 invlpg;
1609 
1610 	u64 exits;
1611 	u64 io_exits;
1612 	u64 mmio_exits;
1613 	u64 signal_exits;
1614 	u64 irq_window_exits;
1615 	u64 nmi_window_exits;
1616 	u64 l1d_flush;
1617 	u64 halt_exits;
1618 	u64 request_irq_exits;
1619 	u64 irq_exits;
1620 	u64 host_state_reload;
1621 	u64 fpu_reload;
1622 	u64 insn_emulation;
1623 	u64 insn_emulation_fail;
1624 	u64 hypercalls;
1625 	u64 irq_injections;
1626 	u64 nmi_injections;
1627 	u64 req_event;
1628 	u64 nested_run;
1629 	u64 directed_yield_attempted;
1630 	u64 directed_yield_successful;
1631 	u64 preemption_reported;
1632 	u64 preemption_other;
1633 	u64 guest_mode;
1634 	u64 notify_window_exits;
1635 };
1636 
1637 struct x86_instruction_info;
1638 
1639 struct msr_data {
1640 	bool host_initiated;
1641 	u32 index;
1642 	u64 data;
1643 };
1644 
1645 struct kvm_lapic_irq {
1646 	u32 vector;
1647 	u16 delivery_mode;
1648 	u16 dest_mode;
1649 	bool level;
1650 	u16 trig_mode;
1651 	u32 shorthand;
1652 	u32 dest_id;
1653 	bool msi_redir_hint;
1654 };
1655 
1656 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1657 {
1658 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1659 }
1660 
1661 struct kvm_x86_ops {
1662 	const char *name;
1663 
1664 	int (*check_processor_compatibility)(void);
1665 
1666 	int (*enable_virtualization_cpu)(void);
1667 	void (*disable_virtualization_cpu)(void);
1668 	cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1669 
1670 	void (*hardware_unsetup)(void);
1671 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1672 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1673 
1674 	unsigned int vm_size;
1675 	int (*vm_init)(struct kvm *kvm);
1676 	void (*vm_destroy)(struct kvm *kvm);
1677 
1678 	/* Create, but do not attach this VCPU */
1679 	int (*vcpu_precreate)(struct kvm *kvm);
1680 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1681 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1682 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1683 
1684 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1685 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1686 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1687 
1688 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1689 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1690 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1691 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1692 	void (*get_segment)(struct kvm_vcpu *vcpu,
1693 			    struct kvm_segment *var, int seg);
1694 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1695 	int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1696 	void (*set_segment)(struct kvm_vcpu *vcpu,
1697 			    struct kvm_segment *var, int seg);
1698 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1699 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1700 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1701 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1702 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1703 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1704 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1705 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1706 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1707 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1708 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1709 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1710 	void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
1711 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1712 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1713 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1714 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1715 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1716 
1717 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1718 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1719 #if IS_ENABLED(CONFIG_HYPERV)
1720 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1721 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1722 					gfn_t nr_pages);
1723 #endif
1724 
1725 	/*
1726 	 * Flush any TLB entries associated with the given GVA.
1727 	 * Does not need to flush GPA->HPA mappings.
1728 	 * Can potentially get non-canonical addresses through INVLPGs, which
1729 	 * the implementation may choose to ignore if appropriate.
1730 	 */
1731 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1732 
1733 	/*
1734 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1735 	 * does not need to flush GPA->HPA mappings.
1736 	 */
1737 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1738 
1739 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1740 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1741 						  bool force_immediate_exit);
1742 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1743 		enum exit_fastpath_completion exit_fastpath);
1744 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1745 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1746 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1747 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1748 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1749 				unsigned char *hypercall_addr);
1750 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1751 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1752 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1753 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1754 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1755 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1756 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1757 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1758 	/* Whether or not a virtual NMI is pending in hardware. */
1759 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1760 	/*
1761 	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1762 	 * to allow using static_call_ret0 as the fallback.
1763 	 */
1764 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1765 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1766 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1767 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1768 
1769 	const bool x2apic_icr_is_split;
1770 	const unsigned long required_apicv_inhibits;
1771 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1772 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1773 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1774 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1775 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1776 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1777 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1778 				  int trig_mode, int vector);
1779 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1780 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1781 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1782 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1783 
1784 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1785 			     int root_level);
1786 
1787 	/* Update external mapping with page table link. */
1788 	int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1789 				void *external_spt);
1790 	/* Update the external page table from spte getting set. */
1791 	int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1792 				 kvm_pfn_t pfn_for_gfn);
1793 
1794 	/* Update external page tables for page table about to be freed. */
1795 	int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1796 				 void *external_spt);
1797 
1798 	/* Update external page table from spte getting removed, and flush TLB. */
1799 	int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1800 				    kvm_pfn_t pfn_for_gfn);
1801 
1802 	bool (*has_wbinvd_exit)(void);
1803 
1804 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1805 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1806 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1807 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1808 
1809 	/*
1810 	 * Retrieve somewhat arbitrary exit/entry information.  Intended to
1811 	 * be used only from within tracepoints or error paths.
1812 	 */
1813 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1814 			      u64 *info1, u64 *info2,
1815 			      u32 *intr_info, u32 *error_code);
1816 
1817 	void (*get_entry_info)(struct kvm_vcpu *vcpu,
1818 			       u32 *intr_info, u32 *error_code);
1819 
1820 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1821 			       struct x86_instruction_info *info,
1822 			       enum x86_intercept_stage stage,
1823 			       struct x86_exception *exception);
1824 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1825 
1826 	/*
1827 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1828 	 * value indicates CPU dirty logging is unsupported or disabled.
1829 	 */
1830 	int cpu_dirty_log_size;
1831 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1832 
1833 	const struct kvm_x86_nested_ops *nested_ops;
1834 
1835 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1836 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1837 
1838 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1839 			      uint32_t guest_irq, bool set);
1840 	void (*pi_start_assignment)(struct kvm *kvm);
1841 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1842 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1843 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1844 
1845 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1846 			    bool *expired);
1847 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1848 
1849 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1850 
1851 #ifdef CONFIG_KVM_SMM
1852 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1853 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1854 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1855 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1856 #endif
1857 
1858 	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1859 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1860 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1861 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1862 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1863 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1864 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1865 
1866 	int (*get_feature_msr)(u32 msr, u64 *data);
1867 
1868 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1869 					 void *insn, int insn_len);
1870 
1871 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1872 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1873 
1874 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1875 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1876 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1877 
1878 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1879 
1880 	/*
1881 	 * Returns vCPU specific APICv inhibit reasons
1882 	 */
1883 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1884 
1885 	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1886 	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1887 	int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1888 	void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1889 	int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1890 };
1891 
1892 struct kvm_x86_nested_ops {
1893 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1894 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1895 				    u32 error_code);
1896 	int (*check_events)(struct kvm_vcpu *vcpu);
1897 	bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1898 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1899 	int (*get_state)(struct kvm_vcpu *vcpu,
1900 			 struct kvm_nested_state __user *user_kvm_nested_state,
1901 			 unsigned user_data_size);
1902 	int (*set_state)(struct kvm_vcpu *vcpu,
1903 			 struct kvm_nested_state __user *user_kvm_nested_state,
1904 			 struct kvm_nested_state *kvm_state);
1905 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1906 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1907 
1908 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1909 			    uint16_t *vmcs_version);
1910 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1911 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1912 };
1913 
1914 struct kvm_x86_init_ops {
1915 	int (*hardware_setup)(void);
1916 	unsigned int (*handle_intel_pt_intr)(void);
1917 
1918 	struct kvm_x86_ops *runtime_ops;
1919 	struct kvm_pmu_ops *pmu_ops;
1920 };
1921 
1922 struct kvm_arch_async_pf {
1923 	u32 token;
1924 	gfn_t gfn;
1925 	unsigned long cr3;
1926 	bool direct_map;
1927 	u64 error_code;
1928 };
1929 
1930 extern u32 __read_mostly kvm_nr_uret_msrs;
1931 extern bool __read_mostly allow_smaller_maxphyaddr;
1932 extern bool __read_mostly enable_apicv;
1933 extern struct kvm_x86_ops kvm_x86_ops;
1934 
1935 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1936 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1937 
1938 #define KVM_X86_OP(func) \
1939 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1940 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1941 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1942 #include <asm/kvm-x86-ops.h>
1943 
1944 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1945 void kvm_x86_vendor_exit(void);
1946 
1947 #define __KVM_HAVE_ARCH_VM_ALLOC
1948 static inline struct kvm *kvm_arch_alloc_vm(void)
1949 {
1950 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1951 }
1952 
1953 #define __KVM_HAVE_ARCH_VM_FREE
1954 void kvm_arch_free_vm(struct kvm *kvm);
1955 
1956 #if IS_ENABLED(CONFIG_HYPERV)
1957 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1958 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1959 {
1960 	if (kvm_x86_ops.flush_remote_tlbs &&
1961 	    !kvm_x86_call(flush_remote_tlbs)(kvm))
1962 		return 0;
1963 	else
1964 		return -ENOTSUPP;
1965 }
1966 
1967 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1968 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1969 						   u64 nr_pages)
1970 {
1971 	if (!kvm_x86_ops.flush_remote_tlbs_range)
1972 		return -EOPNOTSUPP;
1973 
1974 	return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1975 }
1976 #endif /* CONFIG_HYPERV */
1977 
1978 enum kvm_intr_type {
1979 	/* Values are arbitrary, but must be non-zero. */
1980 	KVM_HANDLING_IRQ = 1,
1981 	KVM_HANDLING_NMI,
1982 };
1983 
1984 /* Enable perf NMI and timer modes to work, and minimise false positives. */
1985 #define kvm_arch_pmi_in_guest(vcpu) \
1986 	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1987 	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
1988 
1989 void __init kvm_mmu_x86_module_init(void);
1990 int kvm_mmu_vendor_module_init(void);
1991 void kvm_mmu_vendor_module_exit(void);
1992 
1993 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1994 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1995 void kvm_mmu_init_vm(struct kvm *kvm);
1996 void kvm_mmu_uninit_vm(struct kvm *kvm);
1997 
1998 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1999 					    struct kvm_memory_slot *slot);
2000 
2001 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2002 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2003 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2004 				      const struct kvm_memory_slot *memslot,
2005 				      int start_level);
2006 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2007 				       const struct kvm_memory_slot *memslot,
2008 				       int target_level);
2009 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2010 				  const struct kvm_memory_slot *memslot,
2011 				  u64 start, u64 end,
2012 				  int target_level);
2013 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2014 				const struct kvm_memory_slot *memslot);
2015 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2016 				   const struct kvm_memory_slot *memslot);
2017 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2018 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2019 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2020 
2021 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2022 
2023 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2024 			  const void *val, int bytes);
2025 
2026 struct kvm_irq_mask_notifier {
2027 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
2028 	int irq;
2029 	struct hlist_node link;
2030 };
2031 
2032 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
2033 				    struct kvm_irq_mask_notifier *kimn);
2034 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
2035 				      struct kvm_irq_mask_notifier *kimn);
2036 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
2037 			     bool mask);
2038 
2039 extern bool tdp_enabled;
2040 
2041 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2042 
2043 /*
2044  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2045  *			userspace I/O) to indicate that the emulation context
2046  *			should be reused as is, i.e. skip initialization of
2047  *			emulation context, instruction fetch and decode.
2048  *
2049  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2050  *		      Indicates that only select instructions (tagged with
2051  *		      EmulateOnUD) should be emulated (to minimize the emulator
2052  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
2053  *
2054  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2055  *		   decode the instruction length.  For use *only* by
2056  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
2057  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
2058  *
2059  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2060  *			     retry native execution under certain conditions,
2061  *			     Can only be set in conjunction with EMULTYPE_PF.
2062  *
2063  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2064  *			     triggered by KVM's magic "force emulation" prefix,
2065  *			     which is opt in via module param (off by default).
2066  *			     Bypasses EmulateOnUD restriction despite emulating
2067  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2068  *			     Used to test the full emulator from userspace.
2069  *
2070  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2071  *			backdoor emulation, which is opt in via module param.
2072  *			VMware backdoor emulation handles select instructions
2073  *			and reinjects the #GP for all other cases.
2074  *
2075  * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2076  *		 the CR2/GPA value pass on the stack is valid.
2077  *
2078  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2079  *				 state and inject single-step #DBs after skipping
2080  *				 an instruction (after completing userspace I/O).
2081  *
2082  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2083  *			     is attempting to write a gfn that contains one or
2084  *			     more of the PTEs used to translate the write itself,
2085  *			     and the owning page table is being shadowed by KVM.
2086  *			     If emulation of the faulting instruction fails and
2087  *			     this flag is set, KVM will exit to userspace instead
2088  *			     of retrying emulation as KVM cannot make forward
2089  *			     progress.
2090  *
2091  *			     If emulation fails for a write to guest page tables,
2092  *			     KVM unprotects (zaps) the shadow page for the target
2093  *			     gfn and resumes the guest to retry the non-emulatable
2094  *			     instruction (on hardware).  Unprotecting the gfn
2095  *			     doesn't allow forward progress for a self-changing
2096  *			     access because doing so also zaps the translation for
2097  *			     the gfn, i.e. retrying the instruction will hit a
2098  *			     !PRESENT fault, which results in a new shadow page
2099  *			     and sends KVM back to square one.
2100  */
2101 #define EMULTYPE_NO_DECODE	    (1 << 0)
2102 #define EMULTYPE_TRAP_UD	    (1 << 1)
2103 #define EMULTYPE_SKIP		    (1 << 2)
2104 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2105 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2106 #define EMULTYPE_VMWARE_GP	    (1 << 5)
2107 #define EMULTYPE_PF		    (1 << 6)
2108 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2109 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2110 
2111 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2112 {
2113 	return !(emul_type & EMULTYPE_PF);
2114 }
2115 
2116 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2117 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2118 					void *insn, int insn_len);
2119 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2120 					  u64 *data, u8 ndata);
2121 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2122 
2123 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2124 
2125 void kvm_enable_efer_bits(u64);
2126 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2127 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2128 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2129 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2130 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2131 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2132 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2133 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2134 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2135 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2136 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2137 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2138 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2139 
2140 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2141 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2142 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2143 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2144 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2145 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2146 
2147 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2148 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2149 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2150 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2151 
2152 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2153 		    int reason, bool has_error_code, u32 error_code);
2154 
2155 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2156 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2157 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2158 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2159 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2160 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2161 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2162 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2163 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2164 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2165 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2166 
2167 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2168 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2169 
2170 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2171 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2172 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2173 
2174 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2175 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2176 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2177 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2178 			   bool has_error_code, u32 error_code);
2179 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2180 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2181 				    struct x86_exception *fault);
2182 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2183 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2184 
2185 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2186 				       int irq_source_id, int level)
2187 {
2188 	/* Logical OR for level trig interrupt */
2189 	if (level)
2190 		__set_bit(irq_source_id, irq_state);
2191 	else
2192 		__clear_bit(irq_source_id, irq_state);
2193 
2194 	return !!(*irq_state);
2195 }
2196 
2197 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2198 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2199 
2200 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2201 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2202 
2203 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2204 
2205 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2206 				       bool always_retry);
2207 
2208 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2209 						   gpa_t cr2_or_gpa)
2210 {
2211 	return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2212 }
2213 
2214 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2215 			ulong roots_to_free);
2216 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2217 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2218 			      struct x86_exception *exception);
2219 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2220 			       struct x86_exception *exception);
2221 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2222 				struct x86_exception *exception);
2223 
2224 bool kvm_apicv_activated(struct kvm *kvm);
2225 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2226 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2227 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2228 				      enum kvm_apicv_inhibit reason, bool set);
2229 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2230 				    enum kvm_apicv_inhibit reason, bool set);
2231 
2232 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2233 					 enum kvm_apicv_inhibit reason)
2234 {
2235 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2236 }
2237 
2238 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2239 					   enum kvm_apicv_inhibit reason)
2240 {
2241 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2242 }
2243 
2244 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2245 		       void *insn, int insn_len);
2246 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2247 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2248 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2249 			     u64 addr, unsigned long roots);
2250 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2251 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2252 
2253 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2254 		       int tdp_max_root_level, int tdp_huge_page_level);
2255 
2256 
2257 #ifdef CONFIG_KVM_PRIVATE_MEM
2258 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2259 #else
2260 #define kvm_arch_has_private_mem(kvm) false
2261 #endif
2262 
2263 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2264 
2265 static inline u16 kvm_read_ldt(void)
2266 {
2267 	u16 ldt;
2268 	asm("sldt %0" : "=g"(ldt));
2269 	return ldt;
2270 }
2271 
2272 static inline void kvm_load_ldt(u16 sel)
2273 {
2274 	asm("lldt %0" : : "rm"(sel));
2275 }
2276 
2277 #ifdef CONFIG_X86_64
2278 static inline unsigned long read_msr(unsigned long msr)
2279 {
2280 	u64 value;
2281 
2282 	rdmsrq(msr, value);
2283 	return value;
2284 }
2285 #endif
2286 
2287 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2288 {
2289 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2290 }
2291 
2292 #define TSS_IOPB_BASE_OFFSET 0x66
2293 #define TSS_BASE_SIZE 0x68
2294 #define TSS_IOPB_SIZE (65536 / 8)
2295 #define TSS_REDIRECTION_SIZE (256 / 8)
2296 #define RMODE_TSS_SIZE							\
2297 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2298 
2299 enum {
2300 	TASK_SWITCH_CALL = 0,
2301 	TASK_SWITCH_IRET = 1,
2302 	TASK_SWITCH_JMP = 2,
2303 	TASK_SWITCH_GATE = 3,
2304 };
2305 
2306 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2307 
2308 #ifdef CONFIG_KVM_SMM
2309 #define HF_SMM_MASK		(1 << 1)
2310 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2311 
2312 # define KVM_MAX_NR_ADDRESS_SPACES	2
2313 /* SMM is currently unsupported for guests with private memory. */
2314 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2315 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2316 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2317 #else
2318 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2319 #endif
2320 
2321 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2322 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2323 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2324 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2325 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2326 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2327 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2328 
2329 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2330 		    unsigned long ipi_bitmap_high, u32 min,
2331 		    unsigned long icr, int op_64_bit);
2332 
2333 int kvm_add_user_return_msr(u32 msr);
2334 int kvm_find_user_return_msr(u32 msr);
2335 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2336 
2337 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2338 {
2339 	return kvm_find_user_return_msr(msr) >= 0;
2340 }
2341 
2342 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2343 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2344 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2345 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2346 
2347 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2348 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2349 
2350 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2351 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2352 				       unsigned long *vcpu_bitmap);
2353 
2354 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2355 				     struct kvm_async_pf *work);
2356 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2357 				 struct kvm_async_pf *work);
2358 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2359 			       struct kvm_async_pf *work);
2360 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2361 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2362 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2363 
2364 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2365 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2366 
2367 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2368 				     u32 size);
2369 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2370 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2371 
2372 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2373 			     struct kvm_vcpu **dest_vcpu);
2374 
2375 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2376 		     struct kvm_lapic_irq *irq);
2377 
2378 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2379 {
2380 	/* We can only post Fixed and LowPrio IRQs */
2381 	return (irq->delivery_mode == APIC_DM_FIXED ||
2382 		irq->delivery_mode == APIC_DM_LOWEST);
2383 }
2384 
2385 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2386 {
2387 	kvm_x86_call(vcpu_blocking)(vcpu);
2388 }
2389 
2390 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2391 {
2392 	kvm_x86_call(vcpu_unblocking)(vcpu);
2393 }
2394 
2395 static inline int kvm_cpu_get_apicid(int mps_cpu)
2396 {
2397 #ifdef CONFIG_X86_LOCAL_APIC
2398 	return default_cpu_present_to_apicid(mps_cpu);
2399 #else
2400 	WARN_ON_ONCE(1);
2401 	return BAD_APICID;
2402 #endif
2403 }
2404 
2405 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2406 
2407 #define KVM_CLOCK_VALID_FLAGS						\
2408 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2409 
2410 #define KVM_X86_VALID_QUIRKS			\
2411 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2412 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2413 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2414 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2415 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2416 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2417 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS |	\
2418 	 KVM_X86_QUIRK_SLOT_ZAP_ALL |		\
2419 	 KVM_X86_QUIRK_STUFF_FEATURE_MSRS)
2420 
2421 /*
2422  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2423  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2424  * remaining 31 lower bits must be 0 to preserve ABI.
2425  */
2426 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2427 
2428 static inline bool kvm_arch_has_irq_bypass(void)
2429 {
2430 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
2431 }
2432 
2433 #endif /* _ASM_X86_KVM_HOST_H */
2434