1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/hyperv.h> 28 #include <linux/kfifo.h> 29 30 #include <asm/apic.h> 31 #include <asm/pvclock-abi.h> 32 #include <asm/desc.h> 33 #include <asm/mtrr.h> 34 #include <asm/msr-index.h> 35 #include <asm/asm.h> 36 #include <asm/kvm_page_track.h> 37 #include <asm/kvm_vcpu_regs.h> 38 #include <asm/hyperv-tlfs.h> 39 40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 41 42 /* 43 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 44 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 45 */ 46 #ifdef CONFIG_KVM_MAX_NR_VCPUS 47 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 48 #else 49 #define KVM_MAX_VCPUS 1024 50 #endif 51 52 /* 53 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 54 * might be larger than the actual number of VCPUs because the 55 * APIC ID encodes CPU topology information. 56 * 57 * In the worst case, we'll need less than one extra bit for the 58 * Core ID, and less than one extra bit for the Package (Die) ID, 59 * so ratio of 4 should be enough. 60 */ 61 #define KVM_VCPU_ID_RATIO 4 62 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 63 64 /* memory slots that are not exposed to userspace */ 65 #define KVM_INTERNAL_MEM_SLOTS 3 66 67 #define KVM_HALT_POLL_NS_DEFAULT 200000 68 69 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 70 71 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 72 KVM_DIRTY_LOG_INITIALLY_SET) 73 74 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 75 KVM_BUS_LOCK_DETECTION_EXIT) 76 77 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 78 KVM_X86_NOTIFY_VMEXIT_USER) 79 80 /* x86-specific vcpu->requests bit members */ 81 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 82 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 83 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 84 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 85 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 86 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 87 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 88 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 89 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 90 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 91 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 92 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 93 #ifdef CONFIG_KVM_SMM 94 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 95 #endif 96 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 97 #define KVM_REQ_MCLOCK_INPROGRESS \ 98 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 99 #define KVM_REQ_SCAN_IOAPIC \ 100 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 101 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 102 #define KVM_REQ_APIC_PAGE_RELOAD \ 103 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 104 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 105 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 106 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 107 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 108 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 109 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 110 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 111 #define KVM_REQ_APICV_UPDATE \ 112 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 113 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 114 #define KVM_REQ_TLB_FLUSH_GUEST \ 115 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 116 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 117 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 118 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 119 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 120 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 121 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_HV_TLB_FLUSH \ 123 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 124 125 #define CR0_RESERVED_BITS \ 126 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 127 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 128 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 129 130 #define CR4_RESERVED_BITS \ 131 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 132 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 133 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 134 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 135 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 136 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP)) 137 138 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 139 140 141 142 #define INVALID_PAGE (~(hpa_t)0) 143 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 144 145 /* KVM Hugepage definitions for x86 */ 146 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 147 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 148 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 149 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 150 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 151 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 152 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 153 154 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 155 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 156 #define KVM_MMU_HASH_SHIFT 12 157 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 158 #define KVM_MIN_FREE_MMU_PAGES 5 159 #define KVM_REFILL_PAGES 25 160 #define KVM_MAX_CPUID_ENTRIES 256 161 #define KVM_NR_FIXED_MTRR_REGION 88 162 #define KVM_NR_VAR_MTRR 8 163 164 #define ASYNC_PF_PER_VCPU 64 165 166 enum kvm_reg { 167 VCPU_REGS_RAX = __VCPU_REGS_RAX, 168 VCPU_REGS_RCX = __VCPU_REGS_RCX, 169 VCPU_REGS_RDX = __VCPU_REGS_RDX, 170 VCPU_REGS_RBX = __VCPU_REGS_RBX, 171 VCPU_REGS_RSP = __VCPU_REGS_RSP, 172 VCPU_REGS_RBP = __VCPU_REGS_RBP, 173 VCPU_REGS_RSI = __VCPU_REGS_RSI, 174 VCPU_REGS_RDI = __VCPU_REGS_RDI, 175 #ifdef CONFIG_X86_64 176 VCPU_REGS_R8 = __VCPU_REGS_R8, 177 VCPU_REGS_R9 = __VCPU_REGS_R9, 178 VCPU_REGS_R10 = __VCPU_REGS_R10, 179 VCPU_REGS_R11 = __VCPU_REGS_R11, 180 VCPU_REGS_R12 = __VCPU_REGS_R12, 181 VCPU_REGS_R13 = __VCPU_REGS_R13, 182 VCPU_REGS_R14 = __VCPU_REGS_R14, 183 VCPU_REGS_R15 = __VCPU_REGS_R15, 184 #endif 185 VCPU_REGS_RIP, 186 NR_VCPU_REGS, 187 188 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 189 VCPU_EXREG_CR0, 190 VCPU_EXREG_CR3, 191 VCPU_EXREG_CR4, 192 VCPU_EXREG_RFLAGS, 193 VCPU_EXREG_SEGMENTS, 194 VCPU_EXREG_EXIT_INFO_1, 195 VCPU_EXREG_EXIT_INFO_2, 196 }; 197 198 enum { 199 VCPU_SREG_ES, 200 VCPU_SREG_CS, 201 VCPU_SREG_SS, 202 VCPU_SREG_DS, 203 VCPU_SREG_FS, 204 VCPU_SREG_GS, 205 VCPU_SREG_TR, 206 VCPU_SREG_LDTR, 207 }; 208 209 enum exit_fastpath_completion { 210 EXIT_FASTPATH_NONE, 211 EXIT_FASTPATH_REENTER_GUEST, 212 EXIT_FASTPATH_EXIT_HANDLED, 213 }; 214 typedef enum exit_fastpath_completion fastpath_t; 215 216 struct x86_emulate_ctxt; 217 struct x86_exception; 218 union kvm_smram; 219 enum x86_intercept; 220 enum x86_intercept_stage; 221 222 #define KVM_NR_DB_REGS 4 223 224 #define DR6_BUS_LOCK (1 << 11) 225 #define DR6_BD (1 << 13) 226 #define DR6_BS (1 << 14) 227 #define DR6_BT (1 << 15) 228 #define DR6_RTM (1 << 16) 229 /* 230 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 231 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 232 * they will never be 0 for now, but when they are defined 233 * in the future it will require no code change. 234 * 235 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 236 */ 237 #define DR6_ACTIVE_LOW 0xffff0ff0 238 #define DR6_VOLATILE 0x0001e80f 239 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 240 241 #define DR7_BP_EN_MASK 0x000000ff 242 #define DR7_GE (1 << 9) 243 #define DR7_GD (1 << 13) 244 #define DR7_FIXED_1 0x00000400 245 #define DR7_VOLATILE 0xffff2bff 246 247 #define KVM_GUESTDBG_VALID_MASK \ 248 (KVM_GUESTDBG_ENABLE | \ 249 KVM_GUESTDBG_SINGLESTEP | \ 250 KVM_GUESTDBG_USE_HW_BP | \ 251 KVM_GUESTDBG_USE_SW_BP | \ 252 KVM_GUESTDBG_INJECT_BP | \ 253 KVM_GUESTDBG_INJECT_DB | \ 254 KVM_GUESTDBG_BLOCKIRQ) 255 256 257 #define PFERR_PRESENT_BIT 0 258 #define PFERR_WRITE_BIT 1 259 #define PFERR_USER_BIT 2 260 #define PFERR_RSVD_BIT 3 261 #define PFERR_FETCH_BIT 4 262 #define PFERR_PK_BIT 5 263 #define PFERR_SGX_BIT 15 264 #define PFERR_GUEST_FINAL_BIT 32 265 #define PFERR_GUEST_PAGE_BIT 33 266 #define PFERR_IMPLICIT_ACCESS_BIT 48 267 268 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 269 #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 270 #define PFERR_USER_MASK BIT(PFERR_USER_BIT) 271 #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 272 #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 273 #define PFERR_PK_MASK BIT(PFERR_PK_BIT) 274 #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 275 #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 276 #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 277 #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 278 279 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 280 PFERR_WRITE_MASK | \ 281 PFERR_PRESENT_MASK) 282 283 /* apic attention bits */ 284 #define KVM_APIC_CHECK_VAPIC 0 285 /* 286 * The following bit is set with PV-EOI, unset on EOI. 287 * We detect PV-EOI changes by guest by comparing 288 * this bit with PV-EOI in guest memory. 289 * See the implementation in apic_update_pv_eoi. 290 */ 291 #define KVM_APIC_PV_EOI_PENDING 1 292 293 struct kvm_kernel_irq_routing_entry; 294 295 /* 296 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 297 * also includes TDP pages) to determine whether or not a page can be used in 298 * the given MMU context. This is a subset of the overall kvm_cpu_role to 299 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 300 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 301 * 302 * Upper-level shadow pages having gptes are tracked for write-protection via 303 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 304 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 305 * otherwise gfn_write_track will overflow and explosions will ensue. 306 * 307 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 308 * cannot be reused. The ability to reuse a SP is tracked by its role, which 309 * incorporates various mode bits and properties of the SP. Roughly speaking, 310 * the number of unique SPs that can theoretically be created is 2^n, where n 311 * is the number of bits that are used to compute the role. 312 * 313 * But, even though there are 19 bits in the mask below, not all combinations 314 * of modes and flags are possible: 315 * 316 * - invalid shadow pages are not accounted, so the bits are effectively 18 317 * 318 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 319 * execonly and ad_disabled are only used for nested EPT which has 320 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 321 * 322 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 323 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 324 * paging has exactly one upper level, making level completely redundant 325 * when has_4_byte_gpte=1. 326 * 327 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 328 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 329 * 330 * Therefore, the maximum number of possible upper-level shadow pages for a 331 * single gfn is a bit less than 2^13. 332 */ 333 union kvm_mmu_page_role { 334 u32 word; 335 struct { 336 unsigned level:4; 337 unsigned has_4_byte_gpte:1; 338 unsigned quadrant:2; 339 unsigned direct:1; 340 unsigned access:3; 341 unsigned invalid:1; 342 unsigned efer_nx:1; 343 unsigned cr0_wp:1; 344 unsigned smep_andnot_wp:1; 345 unsigned smap_andnot_wp:1; 346 unsigned ad_disabled:1; 347 unsigned guest_mode:1; 348 unsigned passthrough:1; 349 unsigned :5; 350 351 /* 352 * This is left at the top of the word so that 353 * kvm_memslots_for_spte_role can extract it with a 354 * simple shift. While there is room, give it a whole 355 * byte so it is also faster to load it from memory. 356 */ 357 unsigned smm:8; 358 }; 359 }; 360 361 /* 362 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 363 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 364 * including on nested transitions, if nothing in the full role changes then 365 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 366 * don't treat all-zero structure as valid data. 367 * 368 * The properties that are tracked in the extended role but not the page role 369 * are for things that either (a) do not affect the validity of the shadow page 370 * or (b) are indirectly reflected in the shadow page's role. For example, 371 * CR4.PKE only affects permission checks for software walks of the guest page 372 * tables (because KVM doesn't support Protection Keys with shadow paging), and 373 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 374 * 375 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 376 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 377 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 378 * SMAP aware regardless of CR0.WP. 379 */ 380 union kvm_mmu_extended_role { 381 u32 word; 382 struct { 383 unsigned int valid:1; 384 unsigned int execonly:1; 385 unsigned int cr4_pse:1; 386 unsigned int cr4_pke:1; 387 unsigned int cr4_smap:1; 388 unsigned int cr4_smep:1; 389 unsigned int cr4_la57:1; 390 unsigned int efer_lma:1; 391 }; 392 }; 393 394 union kvm_cpu_role { 395 u64 as_u64; 396 struct { 397 union kvm_mmu_page_role base; 398 union kvm_mmu_extended_role ext; 399 }; 400 }; 401 402 struct kvm_rmap_head { 403 unsigned long val; 404 }; 405 406 struct kvm_pio_request { 407 unsigned long linear_rip; 408 unsigned long count; 409 int in; 410 int port; 411 int size; 412 }; 413 414 #define PT64_ROOT_MAX_LEVEL 5 415 416 struct rsvd_bits_validate { 417 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 418 u64 bad_mt_xwr; 419 }; 420 421 struct kvm_mmu_root_info { 422 gpa_t pgd; 423 hpa_t hpa; 424 }; 425 426 #define KVM_MMU_ROOT_INFO_INVALID \ 427 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 428 429 #define KVM_MMU_NUM_PREV_ROOTS 3 430 431 #define KVM_MMU_ROOT_CURRENT BIT(0) 432 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 433 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 434 435 #define KVM_HAVE_MMU_RWLOCK 436 437 struct kvm_mmu_page; 438 struct kvm_page_fault; 439 440 /* 441 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 442 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 443 * current mmu mode. 444 */ 445 struct kvm_mmu { 446 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 447 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 448 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 449 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 450 struct x86_exception *fault); 451 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 452 gpa_t gva_or_gpa, u64 access, 453 struct x86_exception *exception); 454 int (*sync_spte)(struct kvm_vcpu *vcpu, 455 struct kvm_mmu_page *sp, int i); 456 struct kvm_mmu_root_info root; 457 union kvm_cpu_role cpu_role; 458 union kvm_mmu_page_role root_role; 459 460 /* 461 * The pkru_mask indicates if protection key checks are needed. It 462 * consists of 16 domains indexed by page fault error code bits [4:1], 463 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 464 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 465 */ 466 u32 pkru_mask; 467 468 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 469 470 /* 471 * Bitmap; bit set = permission fault 472 * Byte index: page fault error code [4:1] 473 * Bit index: pte permissions in ACC_* format 474 */ 475 u8 permissions[16]; 476 477 u64 *pae_root; 478 u64 *pml4_root; 479 u64 *pml5_root; 480 481 /* 482 * check zero bits on shadow page table entries, these 483 * bits include not only hardware reserved bits but also 484 * the bits spte never used. 485 */ 486 struct rsvd_bits_validate shadow_zero_check; 487 488 struct rsvd_bits_validate guest_rsvd_check; 489 490 u64 pdptrs[4]; /* pae */ 491 }; 492 493 enum pmc_type { 494 KVM_PMC_GP = 0, 495 KVM_PMC_FIXED, 496 }; 497 498 struct kvm_pmc { 499 enum pmc_type type; 500 u8 idx; 501 bool is_paused; 502 bool intr; 503 u64 counter; 504 u64 prev_counter; 505 u64 eventsel; 506 struct perf_event *perf_event; 507 struct kvm_vcpu *vcpu; 508 /* 509 * only for creating or reusing perf_event, 510 * eventsel value for general purpose counters, 511 * ctrl value for fixed counters. 512 */ 513 u64 current_config; 514 }; 515 516 /* More counters may conflict with other existing Architectural MSRs */ 517 #define KVM_INTEL_PMC_MAX_GENERIC 8 518 #define MSR_ARCH_PERFMON_PERFCTR_MAX (MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 519 #define MSR_ARCH_PERFMON_EVENTSEL_MAX (MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 520 #define KVM_PMC_MAX_FIXED 3 521 #define MSR_ARCH_PERFMON_FIXED_CTR_MAX (MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1) 522 #define KVM_AMD_PMC_MAX_GENERIC 6 523 struct kvm_pmu { 524 u8 version; 525 unsigned nr_arch_gp_counters; 526 unsigned nr_arch_fixed_counters; 527 unsigned available_event_types; 528 u64 fixed_ctr_ctrl; 529 u64 fixed_ctr_ctrl_mask; 530 u64 global_ctrl; 531 u64 global_status; 532 u64 counter_bitmask[2]; 533 u64 global_ctrl_mask; 534 u64 global_status_mask; 535 u64 reserved_bits; 536 u64 raw_event_mask; 537 struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC]; 538 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED]; 539 540 /* 541 * Overlay the bitmap with a 64-bit atomic so that all bits can be 542 * set in a single access, e.g. to reprogram all counters when the PMU 543 * filter changes. 544 */ 545 union { 546 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 547 atomic64_t __reprogram_pmi; 548 }; 549 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 550 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 551 552 u64 ds_area; 553 u64 pebs_enable; 554 u64 pebs_enable_mask; 555 u64 pebs_data_cfg; 556 u64 pebs_data_cfg_mask; 557 558 /* 559 * If a guest counter is cross-mapped to host counter with different 560 * index, its PEBS capability will be temporarily disabled. 561 * 562 * The user should make sure that this mask is updated 563 * after disabling interrupts and before perf_guest_get_msrs(); 564 */ 565 u64 host_cross_mapped_mask; 566 567 /* 568 * The gate to release perf_events not marked in 569 * pmc_in_use only once in a vcpu time slice. 570 */ 571 bool need_cleanup; 572 573 /* 574 * The total number of programmed perf_events and it helps to avoid 575 * redundant check before cleanup if guest don't use vPMU at all. 576 */ 577 u8 event_count; 578 }; 579 580 struct kvm_pmu_ops; 581 582 enum { 583 KVM_DEBUGREG_BP_ENABLED = 1, 584 KVM_DEBUGREG_WONT_EXIT = 2, 585 }; 586 587 struct kvm_mtrr_range { 588 u64 base; 589 u64 mask; 590 struct list_head node; 591 }; 592 593 struct kvm_mtrr { 594 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 595 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 596 u64 deftype; 597 598 struct list_head head; 599 }; 600 601 /* Hyper-V SynIC timer */ 602 struct kvm_vcpu_hv_stimer { 603 struct hrtimer timer; 604 int index; 605 union hv_stimer_config config; 606 u64 count; 607 u64 exp_time; 608 struct hv_message msg; 609 bool msg_pending; 610 }; 611 612 /* Hyper-V synthetic interrupt controller (SynIC)*/ 613 struct kvm_vcpu_hv_synic { 614 u64 version; 615 u64 control; 616 u64 msg_page; 617 u64 evt_page; 618 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 619 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 620 DECLARE_BITMAP(auto_eoi_bitmap, 256); 621 DECLARE_BITMAP(vec_bitmap, 256); 622 bool active; 623 bool dont_zero_synic_pages; 624 }; 625 626 /* The maximum number of entries on the TLB flush fifo. */ 627 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 628 /* 629 * Note: the following 'magic' entry is made up by KVM to avoid putting 630 * anything besides GVA on the TLB flush fifo. It is theoretically possible 631 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 632 * which will look identical. KVM's action to 'flush everything' instead of 633 * flushing these particular addresses is, however, fully legitimate as 634 * flushing more than requested is always OK. 635 */ 636 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 637 638 enum hv_tlb_flush_fifos { 639 HV_L1_TLB_FLUSH_FIFO, 640 HV_L2_TLB_FLUSH_FIFO, 641 HV_NR_TLB_FLUSH_FIFOS, 642 }; 643 644 struct kvm_vcpu_hv_tlb_flush_fifo { 645 spinlock_t write_lock; 646 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 647 }; 648 649 /* Hyper-V per vcpu emulation context */ 650 struct kvm_vcpu_hv { 651 struct kvm_vcpu *vcpu; 652 u32 vp_index; 653 u64 hv_vapic; 654 s64 runtime_offset; 655 struct kvm_vcpu_hv_synic synic; 656 struct kvm_hyperv_exit exit; 657 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 658 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 659 bool enforce_cpuid; 660 struct { 661 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 662 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 663 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 664 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 665 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 666 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 667 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 668 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 669 } cpuid_cache; 670 671 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 672 673 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 674 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 675 676 struct hv_vp_assist_page vp_assist_page; 677 678 struct { 679 u64 pa_page_gpa; 680 u64 vm_id; 681 u32 vp_id; 682 } nested; 683 }; 684 685 struct kvm_hypervisor_cpuid { 686 u32 base; 687 u32 limit; 688 }; 689 690 #ifdef CONFIG_KVM_XEN 691 /* Xen HVM per vcpu emulation context */ 692 struct kvm_vcpu_xen { 693 u64 hypercall_rip; 694 u32 current_runstate; 695 u8 upcall_vector; 696 struct gfn_to_pfn_cache vcpu_info_cache; 697 struct gfn_to_pfn_cache vcpu_time_info_cache; 698 struct gfn_to_pfn_cache runstate_cache; 699 struct gfn_to_pfn_cache runstate2_cache; 700 u64 last_steal; 701 u64 runstate_entry_time; 702 u64 runstate_times[4]; 703 unsigned long evtchn_pending_sel; 704 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 705 u32 timer_virq; 706 u64 timer_expires; /* In guest epoch */ 707 atomic_t timer_pending; 708 struct hrtimer timer; 709 int poll_evtchn; 710 struct timer_list poll_timer; 711 struct kvm_hypervisor_cpuid cpuid; 712 }; 713 #endif 714 715 struct kvm_queued_exception { 716 bool pending; 717 bool injected; 718 bool has_error_code; 719 u8 vector; 720 u32 error_code; 721 unsigned long payload; 722 bool has_payload; 723 }; 724 725 struct kvm_vcpu_arch { 726 /* 727 * rip and regs accesses must go through 728 * kvm_{register,rip}_{read,write} functions. 729 */ 730 unsigned long regs[NR_VCPU_REGS]; 731 u32 regs_avail; 732 u32 regs_dirty; 733 734 unsigned long cr0; 735 unsigned long cr0_guest_owned_bits; 736 unsigned long cr2; 737 unsigned long cr3; 738 unsigned long cr4; 739 unsigned long cr4_guest_owned_bits; 740 unsigned long cr4_guest_rsvd_bits; 741 unsigned long cr8; 742 u32 host_pkru; 743 u32 pkru; 744 u32 hflags; 745 u64 efer; 746 u64 apic_base; 747 struct kvm_lapic *apic; /* kernel irqchip context */ 748 bool load_eoi_exitmap_pending; 749 DECLARE_BITMAP(ioapic_handled_vectors, 256); 750 unsigned long apic_attention; 751 int32_t apic_arb_prio; 752 int mp_state; 753 u64 ia32_misc_enable_msr; 754 u64 smbase; 755 u64 smi_count; 756 bool at_instruction_boundary; 757 bool tpr_access_reporting; 758 bool xfd_no_write_intercept; 759 u64 ia32_xss; 760 u64 microcode_version; 761 u64 arch_capabilities; 762 u64 perf_capabilities; 763 764 /* 765 * Paging state of the vcpu 766 * 767 * If the vcpu runs in guest mode with two level paging this still saves 768 * the paging mode of the l1 guest. This context is always used to 769 * handle faults. 770 */ 771 struct kvm_mmu *mmu; 772 773 /* Non-nested MMU for L1 */ 774 struct kvm_mmu root_mmu; 775 776 /* L1 MMU when running nested */ 777 struct kvm_mmu guest_mmu; 778 779 /* 780 * Paging state of an L2 guest (used for nested npt) 781 * 782 * This context will save all necessary information to walk page tables 783 * of an L2 guest. This context is only initialized for page table 784 * walking and not for faulting since we never handle l2 page faults on 785 * the host. 786 */ 787 struct kvm_mmu nested_mmu; 788 789 /* 790 * Pointer to the mmu context currently used for 791 * gva_to_gpa translations. 792 */ 793 struct kvm_mmu *walk_mmu; 794 795 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 796 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 797 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 798 struct kvm_mmu_memory_cache mmu_page_header_cache; 799 800 /* 801 * QEMU userspace and the guest each have their own FPU state. 802 * In vcpu_run, we switch between the user and guest FPU contexts. 803 * While running a VCPU, the VCPU thread will have the guest FPU 804 * context. 805 * 806 * Note that while the PKRU state lives inside the fpu registers, 807 * it is switched out separately at VMENTER and VMEXIT time. The 808 * "guest_fpstate" state here contains the guest FPU context, with the 809 * host PRKU bits. 810 */ 811 struct fpu_guest guest_fpu; 812 813 u64 xcr0; 814 u64 guest_supported_xcr0; 815 816 struct kvm_pio_request pio; 817 void *pio_data; 818 void *sev_pio_data; 819 unsigned sev_pio_count; 820 821 u8 event_exit_inst_len; 822 823 bool exception_from_userspace; 824 825 /* Exceptions to be injected to the guest. */ 826 struct kvm_queued_exception exception; 827 /* Exception VM-Exits to be synthesized to L1. */ 828 struct kvm_queued_exception exception_vmexit; 829 830 struct kvm_queued_interrupt { 831 bool injected; 832 bool soft; 833 u8 nr; 834 } interrupt; 835 836 int halt_request; /* real mode on Intel only */ 837 838 int cpuid_nent; 839 struct kvm_cpuid_entry2 *cpuid_entries; 840 struct kvm_hypervisor_cpuid kvm_cpuid; 841 842 /* 843 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly 844 * when "struct kvm_vcpu_arch" is no longer defined in an 845 * arch/x86/include/asm header. The max is mostly arbitrary, i.e. 846 * can be increased as necessary. 847 */ 848 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG 849 850 /* 851 * Track whether or not the guest is allowed to use features that are 852 * governed by KVM, where "governed" means KVM needs to manage state 853 * and/or explicitly enable the feature in hardware. Typically, but 854 * not always, governed features can be used by the guest if and only 855 * if both KVM and userspace want to expose the feature to the guest. 856 */ 857 struct { 858 DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES); 859 } governed_features; 860 861 u64 reserved_gpa_bits; 862 int maxphyaddr; 863 864 /* emulate context */ 865 866 struct x86_emulate_ctxt *emulate_ctxt; 867 bool emulate_regs_need_sync_to_vcpu; 868 bool emulate_regs_need_sync_from_vcpu; 869 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 870 871 gpa_t time; 872 struct pvclock_vcpu_time_info hv_clock; 873 unsigned int hw_tsc_khz; 874 struct gfn_to_pfn_cache pv_time; 875 /* set guest stopped flag in pvclock flags field */ 876 bool pvclock_set_guest_stopped_request; 877 878 struct { 879 u8 preempted; 880 u64 msr_val; 881 u64 last_steal; 882 struct gfn_to_hva_cache cache; 883 } st; 884 885 u64 l1_tsc_offset; 886 u64 tsc_offset; /* current tsc offset */ 887 u64 last_guest_tsc; 888 u64 last_host_tsc; 889 u64 tsc_offset_adjustment; 890 u64 this_tsc_nsec; 891 u64 this_tsc_write; 892 u64 this_tsc_generation; 893 bool tsc_catchup; 894 bool tsc_always_catchup; 895 s8 virtual_tsc_shift; 896 u32 virtual_tsc_mult; 897 u32 virtual_tsc_khz; 898 s64 ia32_tsc_adjust_msr; 899 u64 msr_ia32_power_ctl; 900 u64 l1_tsc_scaling_ratio; 901 u64 tsc_scaling_ratio; /* current scaling ratio */ 902 903 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 904 /* Number of NMIs pending injection, not including hardware vNMIs. */ 905 unsigned int nmi_pending; 906 bool nmi_injected; /* Trying to inject an NMI this entry */ 907 bool smi_pending; /* SMI queued after currently running handler */ 908 u8 handling_intr_from_guest; 909 910 struct kvm_mtrr mtrr_state; 911 u64 pat; 912 913 unsigned switch_db_regs; 914 unsigned long db[KVM_NR_DB_REGS]; 915 unsigned long dr6; 916 unsigned long dr7; 917 unsigned long eff_db[KVM_NR_DB_REGS]; 918 unsigned long guest_debug_dr7; 919 u64 msr_platform_info; 920 u64 msr_misc_features_enables; 921 922 u64 mcg_cap; 923 u64 mcg_status; 924 u64 mcg_ctl; 925 u64 mcg_ext_ctl; 926 u64 *mce_banks; 927 u64 *mci_ctl2_banks; 928 929 /* Cache MMIO info */ 930 u64 mmio_gva; 931 unsigned mmio_access; 932 gfn_t mmio_gfn; 933 u64 mmio_gen; 934 935 struct kvm_pmu pmu; 936 937 /* used for guest single stepping over the given code position */ 938 unsigned long singlestep_rip; 939 940 bool hyperv_enabled; 941 struct kvm_vcpu_hv *hyperv; 942 #ifdef CONFIG_KVM_XEN 943 struct kvm_vcpu_xen xen; 944 #endif 945 cpumask_var_t wbinvd_dirty_mask; 946 947 unsigned long last_retry_eip; 948 unsigned long last_retry_addr; 949 950 struct { 951 bool halted; 952 gfn_t gfns[ASYNC_PF_PER_VCPU]; 953 struct gfn_to_hva_cache data; 954 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 955 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 956 u16 vec; 957 u32 id; 958 bool send_user_only; 959 u32 host_apf_flags; 960 bool delivery_as_pf_vmexit; 961 bool pageready_pending; 962 } apf; 963 964 /* OSVW MSRs (AMD only) */ 965 struct { 966 u64 length; 967 u64 status; 968 } osvw; 969 970 struct { 971 u64 msr_val; 972 struct gfn_to_hva_cache data; 973 } pv_eoi; 974 975 u64 msr_kvm_poll_control; 976 977 /* set at EPT violation at this point */ 978 unsigned long exit_qualification; 979 980 /* pv related host specific info */ 981 struct { 982 bool pv_unhalted; 983 } pv; 984 985 int pending_ioapic_eoi; 986 int pending_external_vector; 987 988 /* be preempted when it's in kernel-mode(cpl=0) */ 989 bool preempted_in_kernel; 990 991 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 992 bool l1tf_flush_l1d; 993 994 /* Host CPU on which VM-entry was most recently attempted */ 995 int last_vmentry_cpu; 996 997 /* AMD MSRC001_0015 Hardware Configuration */ 998 u64 msr_hwcr; 999 1000 /* pv related cpuid info */ 1001 struct { 1002 /* 1003 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1004 * leaf. 1005 */ 1006 u32 features; 1007 1008 /* 1009 * indicates whether pv emulation should be disabled if features 1010 * are not present in the guest's cpuid 1011 */ 1012 bool enforce; 1013 } pv_cpuid; 1014 1015 /* Protected Guests */ 1016 bool guest_state_protected; 1017 1018 /* 1019 * Set when PDPTS were loaded directly by the userspace without 1020 * reading the guest memory 1021 */ 1022 bool pdptrs_from_userspace; 1023 1024 #if IS_ENABLED(CONFIG_HYPERV) 1025 hpa_t hv_root_tdp; 1026 #endif 1027 }; 1028 1029 struct kvm_lpage_info { 1030 int disallow_lpage; 1031 }; 1032 1033 struct kvm_arch_memory_slot { 1034 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1035 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1036 unsigned short *gfn_write_track; 1037 }; 1038 1039 /* 1040 * Track the mode of the optimized logical map, as the rules for decoding the 1041 * destination vary per mode. Enabling the optimized logical map requires all 1042 * software-enabled local APIs to be in the same mode, each addressable APIC to 1043 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1044 */ 1045 enum kvm_apic_logical_mode { 1046 /* All local APICs are software disabled. */ 1047 KVM_APIC_MODE_SW_DISABLED, 1048 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1049 KVM_APIC_MODE_XAPIC_CLUSTER, 1050 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1051 KVM_APIC_MODE_XAPIC_FLAT, 1052 /* All software enabled local APICs in x2APIC mode. */ 1053 KVM_APIC_MODE_X2APIC, 1054 /* 1055 * Optimized map disabled, e.g. not all local APICs in the same logical 1056 * mode, same logical ID assigned to multiple APICs, etc. 1057 */ 1058 KVM_APIC_MODE_MAP_DISABLED, 1059 }; 1060 1061 struct kvm_apic_map { 1062 struct rcu_head rcu; 1063 enum kvm_apic_logical_mode logical_mode; 1064 u32 max_apic_id; 1065 union { 1066 struct kvm_lapic *xapic_flat_map[8]; 1067 struct kvm_lapic *xapic_cluster_map[16][4]; 1068 }; 1069 struct kvm_lapic *phys_map[]; 1070 }; 1071 1072 /* Hyper-V synthetic debugger (SynDbg)*/ 1073 struct kvm_hv_syndbg { 1074 struct { 1075 u64 control; 1076 u64 status; 1077 u64 send_page; 1078 u64 recv_page; 1079 u64 pending_page; 1080 } control; 1081 u64 options; 1082 }; 1083 1084 /* Current state of Hyper-V TSC page clocksource */ 1085 enum hv_tsc_page_status { 1086 /* TSC page was not set up or disabled */ 1087 HV_TSC_PAGE_UNSET = 0, 1088 /* TSC page MSR was written by the guest, update pending */ 1089 HV_TSC_PAGE_GUEST_CHANGED, 1090 /* TSC page update was triggered from the host side */ 1091 HV_TSC_PAGE_HOST_CHANGED, 1092 /* TSC page was properly set up and is currently active */ 1093 HV_TSC_PAGE_SET, 1094 /* TSC page was set up with an inaccessible GPA */ 1095 HV_TSC_PAGE_BROKEN, 1096 }; 1097 1098 /* Hyper-V emulation context */ 1099 struct kvm_hv { 1100 struct mutex hv_lock; 1101 u64 hv_guest_os_id; 1102 u64 hv_hypercall; 1103 u64 hv_tsc_page; 1104 enum hv_tsc_page_status hv_tsc_page_status; 1105 1106 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1107 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1108 u64 hv_crash_ctl; 1109 1110 struct ms_hyperv_tsc_page tsc_ref; 1111 1112 struct idr conn_to_evt; 1113 1114 u64 hv_reenlightenment_control; 1115 u64 hv_tsc_emulation_control; 1116 u64 hv_tsc_emulation_status; 1117 u64 hv_invtsc_control; 1118 1119 /* How many vCPUs have VP index != vCPU index */ 1120 atomic_t num_mismatched_vp_indexes; 1121 1122 /* 1123 * How many SynICs use 'AutoEOI' feature 1124 * (protected by arch.apicv_update_lock) 1125 */ 1126 unsigned int synic_auto_eoi_used; 1127 1128 struct hv_partition_assist_pg *hv_pa_pg; 1129 struct kvm_hv_syndbg hv_syndbg; 1130 }; 1131 1132 struct msr_bitmap_range { 1133 u32 flags; 1134 u32 nmsrs; 1135 u32 base; 1136 unsigned long *bitmap; 1137 }; 1138 1139 /* Xen emulation context */ 1140 struct kvm_xen { 1141 struct mutex xen_lock; 1142 u32 xen_version; 1143 bool long_mode; 1144 bool runstate_update_flag; 1145 u8 upcall_vector; 1146 struct gfn_to_pfn_cache shinfo_cache; 1147 struct idr evtchn_ports; 1148 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1149 }; 1150 1151 enum kvm_irqchip_mode { 1152 KVM_IRQCHIP_NONE, 1153 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1154 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1155 }; 1156 1157 struct kvm_x86_msr_filter { 1158 u8 count; 1159 bool default_allow:1; 1160 struct msr_bitmap_range ranges[16]; 1161 }; 1162 1163 struct kvm_x86_pmu_event_filter { 1164 __u32 action; 1165 __u32 nevents; 1166 __u32 fixed_counter_bitmap; 1167 __u32 flags; 1168 __u32 nr_includes; 1169 __u32 nr_excludes; 1170 __u64 *includes; 1171 __u64 *excludes; 1172 __u64 events[]; 1173 }; 1174 1175 enum kvm_apicv_inhibit { 1176 1177 /********************************************************************/ 1178 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1179 /********************************************************************/ 1180 1181 /* 1182 * APIC acceleration is disabled by a module parameter 1183 * and/or not supported in hardware. 1184 */ 1185 APICV_INHIBIT_REASON_DISABLE, 1186 1187 /* 1188 * APIC acceleration is inhibited because AutoEOI feature is 1189 * being used by a HyperV guest. 1190 */ 1191 APICV_INHIBIT_REASON_HYPERV, 1192 1193 /* 1194 * APIC acceleration is inhibited because the userspace didn't yet 1195 * enable the kernel/split irqchip. 1196 */ 1197 APICV_INHIBIT_REASON_ABSENT, 1198 1199 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1200 * (out of band, debug measure of blocking all interrupts on this vCPU) 1201 * was enabled, to avoid AVIC/APICv bypassing it. 1202 */ 1203 APICV_INHIBIT_REASON_BLOCKIRQ, 1204 1205 /* 1206 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1207 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1208 */ 1209 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1210 1211 /* 1212 * For simplicity, the APIC acceleration is inhibited 1213 * first time either APIC ID or APIC base are changed by the guest 1214 * from their reset values. 1215 */ 1216 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1217 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1218 1219 /******************************************************/ 1220 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1221 /******************************************************/ 1222 1223 /* 1224 * AVIC is inhibited on a vCPU because it runs a nested guest. 1225 * 1226 * This is needed because unlike APICv, the peers of this vCPU 1227 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1228 * a vCPU runs nested. 1229 */ 1230 APICV_INHIBIT_REASON_NESTED, 1231 1232 /* 1233 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1234 * which cannot be injected when the AVIC is enabled, thus AVIC 1235 * is inhibited while KVM waits for IRQ window. 1236 */ 1237 APICV_INHIBIT_REASON_IRQWIN, 1238 1239 /* 1240 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1241 * which AVIC doesn't support for edge triggered interrupts. 1242 */ 1243 APICV_INHIBIT_REASON_PIT_REINJ, 1244 1245 /* 1246 * AVIC is disabled because SEV doesn't support it. 1247 */ 1248 APICV_INHIBIT_REASON_SEV, 1249 1250 /* 1251 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1252 * mapping between logical ID and vCPU. 1253 */ 1254 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1255 }; 1256 1257 struct kvm_arch { 1258 unsigned long n_used_mmu_pages; 1259 unsigned long n_requested_mmu_pages; 1260 unsigned long n_max_mmu_pages; 1261 unsigned int indirect_shadow_pages; 1262 u8 mmu_valid_gen; 1263 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1264 struct list_head active_mmu_pages; 1265 struct list_head zapped_obsolete_pages; 1266 /* 1267 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1268 * replaced by an NX huge page. A shadow page is on this list if its 1269 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1270 * and there are no other conditions that prevent a huge page, e.g. 1271 * the backing host page is huge, dirtly logging is not enabled for its 1272 * memslot, etc... Note, zapping shadow pages on this list doesn't 1273 * guarantee an NX huge page will be created in its stead, e.g. if the 1274 * guest attempts to execute from the region then KVM obviously can't 1275 * create an NX huge page (without hanging the guest). 1276 */ 1277 struct list_head possible_nx_huge_pages; 1278 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1279 struct kvm_page_track_notifier_head track_notifier_head; 1280 #endif 1281 /* 1282 * Protects marking pages unsync during page faults, as TDP MMU page 1283 * faults only take mmu_lock for read. For simplicity, the unsync 1284 * pages lock is always taken when marking pages unsync regardless of 1285 * whether mmu_lock is held for read or write. 1286 */ 1287 spinlock_t mmu_unsync_pages_lock; 1288 1289 struct iommu_domain *iommu_domain; 1290 bool iommu_noncoherent; 1291 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1292 atomic_t noncoherent_dma_count; 1293 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1294 atomic_t assigned_device_count; 1295 struct kvm_pic *vpic; 1296 struct kvm_ioapic *vioapic; 1297 struct kvm_pit *vpit; 1298 atomic_t vapics_in_nmi_mode; 1299 struct mutex apic_map_lock; 1300 struct kvm_apic_map __rcu *apic_map; 1301 atomic_t apic_map_dirty; 1302 1303 bool apic_access_memslot_enabled; 1304 bool apic_access_memslot_inhibited; 1305 1306 /* Protects apicv_inhibit_reasons */ 1307 struct rw_semaphore apicv_update_lock; 1308 unsigned long apicv_inhibit_reasons; 1309 1310 gpa_t wall_clock; 1311 1312 bool mwait_in_guest; 1313 bool hlt_in_guest; 1314 bool pause_in_guest; 1315 bool cstate_in_guest; 1316 1317 unsigned long irq_sources_bitmap; 1318 s64 kvmclock_offset; 1319 1320 /* 1321 * This also protects nr_vcpus_matched_tsc which is read from a 1322 * preemption-disabled region, so it must be a raw spinlock. 1323 */ 1324 raw_spinlock_t tsc_write_lock; 1325 u64 last_tsc_nsec; 1326 u64 last_tsc_write; 1327 u32 last_tsc_khz; 1328 u64 last_tsc_offset; 1329 u64 cur_tsc_nsec; 1330 u64 cur_tsc_write; 1331 u64 cur_tsc_offset; 1332 u64 cur_tsc_generation; 1333 int nr_vcpus_matched_tsc; 1334 1335 u32 default_tsc_khz; 1336 bool user_set_tsc; 1337 1338 seqcount_raw_spinlock_t pvclock_sc; 1339 bool use_master_clock; 1340 u64 master_kernel_ns; 1341 u64 master_cycle_now; 1342 struct delayed_work kvmclock_update_work; 1343 struct delayed_work kvmclock_sync_work; 1344 1345 struct kvm_xen_hvm_config xen_hvm_config; 1346 1347 /* reads protected by irq_srcu, writes by irq_lock */ 1348 struct hlist_head mask_notifier_list; 1349 1350 struct kvm_hv hyperv; 1351 struct kvm_xen xen; 1352 1353 bool backwards_tsc_observed; 1354 bool boot_vcpu_runs_old_kvmclock; 1355 u32 bsp_vcpu_id; 1356 1357 u64 disabled_quirks; 1358 1359 enum kvm_irqchip_mode irqchip_mode; 1360 u8 nr_reserved_ioapic_pins; 1361 1362 bool disabled_lapic_found; 1363 1364 bool x2apic_format; 1365 bool x2apic_broadcast_quirk_disabled; 1366 1367 bool guest_can_read_msr_platform_info; 1368 bool exception_payload_enabled; 1369 1370 bool triple_fault_event; 1371 1372 bool bus_lock_detection_enabled; 1373 bool enable_pmu; 1374 1375 u32 notify_window; 1376 u32 notify_vmexit_flags; 1377 /* 1378 * If exit_on_emulation_error is set, and the in-kernel instruction 1379 * emulator fails to emulate an instruction, allow userspace 1380 * the opportunity to look at it. 1381 */ 1382 bool exit_on_emulation_error; 1383 1384 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1385 u32 user_space_msr_mask; 1386 struct kvm_x86_msr_filter __rcu *msr_filter; 1387 1388 u32 hypercall_exit_enabled; 1389 1390 /* Guest can access the SGX PROVISIONKEY. */ 1391 bool sgx_provisioning_allowed; 1392 1393 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1394 struct task_struct *nx_huge_page_recovery_thread; 1395 1396 #ifdef CONFIG_X86_64 1397 /* The number of TDP MMU pages across all roots. */ 1398 atomic64_t tdp_mmu_pages; 1399 1400 /* 1401 * List of struct kvm_mmu_pages being used as roots. 1402 * All struct kvm_mmu_pages in the list should have 1403 * tdp_mmu_page set. 1404 * 1405 * For reads, this list is protected by: 1406 * the MMU lock in read mode + RCU or 1407 * the MMU lock in write mode 1408 * 1409 * For writes, this list is protected by: 1410 * the MMU lock in read mode + the tdp_mmu_pages_lock or 1411 * the MMU lock in write mode 1412 * 1413 * Roots will remain in the list until their tdp_mmu_root_count 1414 * drops to zero, at which point the thread that decremented the 1415 * count to zero should removed the root from the list and clean 1416 * it up, freeing the root after an RCU grace period. 1417 */ 1418 struct list_head tdp_mmu_roots; 1419 1420 /* 1421 * Protects accesses to the following fields when the MMU lock 1422 * is held in read mode: 1423 * - tdp_mmu_roots (above) 1424 * - the link field of kvm_mmu_page structs used by the TDP MMU 1425 * - possible_nx_huge_pages; 1426 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1427 * by the TDP MMU 1428 * It is acceptable, but not necessary, to acquire this lock when 1429 * the thread holds the MMU lock in write mode. 1430 */ 1431 spinlock_t tdp_mmu_pages_lock; 1432 #endif /* CONFIG_X86_64 */ 1433 1434 /* 1435 * If set, at least one shadow root has been allocated. This flag 1436 * is used as one input when determining whether certain memslot 1437 * related allocations are necessary. 1438 */ 1439 bool shadow_root_allocated; 1440 1441 #if IS_ENABLED(CONFIG_HYPERV) 1442 hpa_t hv_root_tdp; 1443 spinlock_t hv_root_tdp_lock; 1444 #endif 1445 /* 1446 * VM-scope maximum vCPU ID. Used to determine the size of structures 1447 * that increase along with the maximum vCPU ID, in which case, using 1448 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1449 */ 1450 u32 max_vcpu_ids; 1451 1452 bool disable_nx_huge_pages; 1453 1454 /* 1455 * Memory caches used to allocate shadow pages when performing eager 1456 * page splitting. No need for a shadowed_info_cache since eager page 1457 * splitting only allocates direct shadow pages. 1458 * 1459 * Protected by kvm->slots_lock. 1460 */ 1461 struct kvm_mmu_memory_cache split_shadow_page_cache; 1462 struct kvm_mmu_memory_cache split_page_header_cache; 1463 1464 /* 1465 * Memory cache used to allocate pte_list_desc structs while splitting 1466 * huge pages. In the worst case, to split one huge page, 512 1467 * pte_list_desc structs are needed to add each lower level leaf sptep 1468 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1469 * page table. 1470 * 1471 * Protected by kvm->slots_lock. 1472 */ 1473 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1474 struct kvm_mmu_memory_cache split_desc_cache; 1475 }; 1476 1477 struct kvm_vm_stat { 1478 struct kvm_vm_stat_generic generic; 1479 u64 mmu_shadow_zapped; 1480 u64 mmu_pte_write; 1481 u64 mmu_pde_zapped; 1482 u64 mmu_flooded; 1483 u64 mmu_recycled; 1484 u64 mmu_cache_miss; 1485 u64 mmu_unsync; 1486 union { 1487 struct { 1488 atomic64_t pages_4k; 1489 atomic64_t pages_2m; 1490 atomic64_t pages_1g; 1491 }; 1492 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1493 }; 1494 u64 nx_lpage_splits; 1495 u64 max_mmu_page_hash_collisions; 1496 u64 max_mmu_rmap_size; 1497 }; 1498 1499 struct kvm_vcpu_stat { 1500 struct kvm_vcpu_stat_generic generic; 1501 u64 pf_taken; 1502 u64 pf_fixed; 1503 u64 pf_emulate; 1504 u64 pf_spurious; 1505 u64 pf_fast; 1506 u64 pf_mmio_spte_created; 1507 u64 pf_guest; 1508 u64 tlb_flush; 1509 u64 invlpg; 1510 1511 u64 exits; 1512 u64 io_exits; 1513 u64 mmio_exits; 1514 u64 signal_exits; 1515 u64 irq_window_exits; 1516 u64 nmi_window_exits; 1517 u64 l1d_flush; 1518 u64 halt_exits; 1519 u64 request_irq_exits; 1520 u64 irq_exits; 1521 u64 host_state_reload; 1522 u64 fpu_reload; 1523 u64 insn_emulation; 1524 u64 insn_emulation_fail; 1525 u64 hypercalls; 1526 u64 irq_injections; 1527 u64 nmi_injections; 1528 u64 req_event; 1529 u64 nested_run; 1530 u64 directed_yield_attempted; 1531 u64 directed_yield_successful; 1532 u64 preemption_reported; 1533 u64 preemption_other; 1534 u64 guest_mode; 1535 u64 notify_window_exits; 1536 }; 1537 1538 struct x86_instruction_info; 1539 1540 struct msr_data { 1541 bool host_initiated; 1542 u32 index; 1543 u64 data; 1544 }; 1545 1546 struct kvm_lapic_irq { 1547 u32 vector; 1548 u16 delivery_mode; 1549 u16 dest_mode; 1550 bool level; 1551 u16 trig_mode; 1552 u32 shorthand; 1553 u32 dest_id; 1554 bool msi_redir_hint; 1555 }; 1556 1557 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1558 { 1559 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1560 } 1561 1562 struct kvm_x86_ops { 1563 const char *name; 1564 1565 int (*check_processor_compatibility)(void); 1566 1567 int (*hardware_enable)(void); 1568 void (*hardware_disable)(void); 1569 void (*hardware_unsetup)(void); 1570 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1571 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1572 1573 unsigned int vm_size; 1574 int (*vm_init)(struct kvm *kvm); 1575 void (*vm_destroy)(struct kvm *kvm); 1576 1577 /* Create, but do not attach this VCPU */ 1578 int (*vcpu_precreate)(struct kvm *kvm); 1579 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1580 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1581 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1582 1583 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1584 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1585 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1586 1587 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1588 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1589 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1590 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1591 void (*get_segment)(struct kvm_vcpu *vcpu, 1592 struct kvm_segment *var, int seg); 1593 int (*get_cpl)(struct kvm_vcpu *vcpu); 1594 void (*set_segment)(struct kvm_vcpu *vcpu, 1595 struct kvm_segment *var, int seg); 1596 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1597 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1598 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1599 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1600 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1601 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1602 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1603 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1604 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1605 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1606 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1607 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1608 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1609 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1610 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1611 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1612 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1613 1614 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1615 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1616 int (*flush_remote_tlbs)(struct kvm *kvm); 1617 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1618 gfn_t nr_pages); 1619 1620 /* 1621 * Flush any TLB entries associated with the given GVA. 1622 * Does not need to flush GPA->HPA mappings. 1623 * Can potentially get non-canonical addresses through INVLPGs, which 1624 * the implementation may choose to ignore if appropriate. 1625 */ 1626 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1627 1628 /* 1629 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1630 * does not need to flush GPA->HPA mappings. 1631 */ 1632 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1633 1634 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1635 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu); 1636 int (*handle_exit)(struct kvm_vcpu *vcpu, 1637 enum exit_fastpath_completion exit_fastpath); 1638 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1639 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1640 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1641 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1642 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1643 unsigned char *hypercall_addr); 1644 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1645 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1646 void (*inject_exception)(struct kvm_vcpu *vcpu); 1647 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1648 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1649 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1650 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1651 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1652 /* Whether or not a virtual NMI is pending in hardware. */ 1653 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1654 /* 1655 * Attempt to pend a virtual NMI in harware. Returns %true on success 1656 * to allow using static_call_ret0 as the fallback. 1657 */ 1658 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1659 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1660 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1661 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1662 bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason); 1663 const unsigned long required_apicv_inhibits; 1664 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1665 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1666 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1667 void (*hwapic_isr_update)(int isr); 1668 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1669 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1670 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1671 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1672 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1673 int trig_mode, int vector); 1674 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1675 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1676 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1677 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1678 1679 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1680 int root_level); 1681 1682 bool (*has_wbinvd_exit)(void); 1683 1684 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1685 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1686 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1687 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1688 1689 /* 1690 * Retrieve somewhat arbitrary exit information. Intended to 1691 * be used only from within tracepoints or error paths. 1692 */ 1693 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1694 u64 *info1, u64 *info2, 1695 u32 *exit_int_info, u32 *exit_int_info_err_code); 1696 1697 int (*check_intercept)(struct kvm_vcpu *vcpu, 1698 struct x86_instruction_info *info, 1699 enum x86_intercept_stage stage, 1700 struct x86_exception *exception); 1701 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1702 1703 void (*request_immediate_exit)(struct kvm_vcpu *vcpu); 1704 1705 void (*sched_in)(struct kvm_vcpu *vcpu, int cpu); 1706 1707 /* 1708 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1709 * value indicates CPU dirty logging is unsupported or disabled. 1710 */ 1711 int cpu_dirty_log_size; 1712 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1713 1714 const struct kvm_x86_nested_ops *nested_ops; 1715 1716 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1717 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1718 1719 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1720 uint32_t guest_irq, bool set); 1721 void (*pi_start_assignment)(struct kvm *kvm); 1722 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1723 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1724 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1725 1726 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1727 bool *expired); 1728 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1729 1730 void (*setup_mce)(struct kvm_vcpu *vcpu); 1731 1732 #ifdef CONFIG_KVM_SMM 1733 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1734 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1735 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1736 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1737 #endif 1738 1739 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1740 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1741 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1742 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1743 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1744 void (*guest_memory_reclaimed)(struct kvm *kvm); 1745 1746 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1747 1748 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1749 void *insn, int insn_len); 1750 1751 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1752 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1753 1754 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1755 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1756 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1757 1758 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1759 1760 /* 1761 * Returns vCPU specific APICv inhibit reasons 1762 */ 1763 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1764 }; 1765 1766 struct kvm_x86_nested_ops { 1767 void (*leave_nested)(struct kvm_vcpu *vcpu); 1768 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1769 u32 error_code); 1770 int (*check_events)(struct kvm_vcpu *vcpu); 1771 bool (*has_events)(struct kvm_vcpu *vcpu); 1772 void (*triple_fault)(struct kvm_vcpu *vcpu); 1773 int (*get_state)(struct kvm_vcpu *vcpu, 1774 struct kvm_nested_state __user *user_kvm_nested_state, 1775 unsigned user_data_size); 1776 int (*set_state)(struct kvm_vcpu *vcpu, 1777 struct kvm_nested_state __user *user_kvm_nested_state, 1778 struct kvm_nested_state *kvm_state); 1779 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1780 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1781 1782 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1783 uint16_t *vmcs_version); 1784 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1785 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1786 }; 1787 1788 struct kvm_x86_init_ops { 1789 int (*hardware_setup)(void); 1790 unsigned int (*handle_intel_pt_intr)(void); 1791 1792 struct kvm_x86_ops *runtime_ops; 1793 struct kvm_pmu_ops *pmu_ops; 1794 }; 1795 1796 struct kvm_arch_async_pf { 1797 u32 token; 1798 gfn_t gfn; 1799 unsigned long cr3; 1800 bool direct_map; 1801 }; 1802 1803 extern u32 __read_mostly kvm_nr_uret_msrs; 1804 extern u64 __read_mostly host_efer; 1805 extern bool __read_mostly allow_smaller_maxphyaddr; 1806 extern bool __read_mostly enable_apicv; 1807 extern struct kvm_x86_ops kvm_x86_ops; 1808 1809 #define KVM_X86_OP(func) \ 1810 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1811 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1812 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1813 #include <asm/kvm-x86-ops.h> 1814 1815 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1816 void kvm_x86_vendor_exit(void); 1817 1818 #define __KVM_HAVE_ARCH_VM_ALLOC 1819 static inline struct kvm *kvm_arch_alloc_vm(void) 1820 { 1821 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1822 } 1823 1824 #define __KVM_HAVE_ARCH_VM_FREE 1825 void kvm_arch_free_vm(struct kvm *kvm); 1826 1827 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1828 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1829 { 1830 if (kvm_x86_ops.flush_remote_tlbs && 1831 !static_call(kvm_x86_flush_remote_tlbs)(kvm)) 1832 return 0; 1833 else 1834 return -ENOTSUPP; 1835 } 1836 1837 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1838 1839 #define kvm_arch_pmi_in_guest(vcpu) \ 1840 ((vcpu) && (vcpu)->arch.handling_intr_from_guest) 1841 1842 void __init kvm_mmu_x86_module_init(void); 1843 int kvm_mmu_vendor_module_init(void); 1844 void kvm_mmu_vendor_module_exit(void); 1845 1846 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1847 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1848 void kvm_mmu_init_vm(struct kvm *kvm); 1849 void kvm_mmu_uninit_vm(struct kvm *kvm); 1850 1851 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1852 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1853 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1854 const struct kvm_memory_slot *memslot, 1855 int start_level); 1856 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1857 const struct kvm_memory_slot *memslot, 1858 int target_level); 1859 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1860 const struct kvm_memory_slot *memslot, 1861 u64 start, u64 end, 1862 int target_level); 1863 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1864 const struct kvm_memory_slot *memslot); 1865 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1866 const struct kvm_memory_slot *memslot); 1867 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1868 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1869 1870 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 1871 1872 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1873 const void *val, int bytes); 1874 1875 struct kvm_irq_mask_notifier { 1876 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1877 int irq; 1878 struct hlist_node link; 1879 }; 1880 1881 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1882 struct kvm_irq_mask_notifier *kimn); 1883 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1884 struct kvm_irq_mask_notifier *kimn); 1885 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1886 bool mask); 1887 1888 extern bool tdp_enabled; 1889 1890 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1891 1892 /* 1893 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1894 * userspace I/O) to indicate that the emulation context 1895 * should be reused as is, i.e. skip initialization of 1896 * emulation context, instruction fetch and decode. 1897 * 1898 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1899 * Indicates that only select instructions (tagged with 1900 * EmulateOnUD) should be emulated (to minimize the emulator 1901 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 1902 * 1903 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 1904 * decode the instruction length. For use *only* by 1905 * kvm_x86_ops.skip_emulated_instruction() implementations if 1906 * EMULTYPE_COMPLETE_USER_EXIT is not set. 1907 * 1908 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 1909 * retry native execution under certain conditions, 1910 * Can only be set in conjunction with EMULTYPE_PF. 1911 * 1912 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 1913 * triggered by KVM's magic "force emulation" prefix, 1914 * which is opt in via module param (off by default). 1915 * Bypasses EmulateOnUD restriction despite emulating 1916 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 1917 * Used to test the full emulator from userspace. 1918 * 1919 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 1920 * backdoor emulation, which is opt in via module param. 1921 * VMware backdoor emulation handles select instructions 1922 * and reinjects the #GP for all other cases. 1923 * 1924 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 1925 * case the CR2/GPA value pass on the stack is valid. 1926 * 1927 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 1928 * state and inject single-step #DBs after skipping 1929 * an instruction (after completing userspace I/O). 1930 * 1931 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 1932 * is attempting to write a gfn that contains one or 1933 * more of the PTEs used to translate the write itself, 1934 * and the owning page table is being shadowed by KVM. 1935 * If emulation of the faulting instruction fails and 1936 * this flag is set, KVM will exit to userspace instead 1937 * of retrying emulation as KVM cannot make forward 1938 * progress. 1939 * 1940 * If emulation fails for a write to guest page tables, 1941 * KVM unprotects (zaps) the shadow page for the target 1942 * gfn and resumes the guest to retry the non-emulatable 1943 * instruction (on hardware). Unprotecting the gfn 1944 * doesn't allow forward progress for a self-changing 1945 * access because doing so also zaps the translation for 1946 * the gfn, i.e. retrying the instruction will hit a 1947 * !PRESENT fault, which results in a new shadow page 1948 * and sends KVM back to square one. 1949 */ 1950 #define EMULTYPE_NO_DECODE (1 << 0) 1951 #define EMULTYPE_TRAP_UD (1 << 1) 1952 #define EMULTYPE_SKIP (1 << 2) 1953 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 1954 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 1955 #define EMULTYPE_VMWARE_GP (1 << 5) 1956 #define EMULTYPE_PF (1 << 6) 1957 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 1958 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 1959 1960 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 1961 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 1962 void *insn, int insn_len); 1963 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 1964 u64 *data, u8 ndata); 1965 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 1966 1967 void kvm_enable_efer_bits(u64); 1968 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 1969 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 1970 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 1971 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 1972 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 1973 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 1974 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 1975 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 1976 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 1977 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 1978 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 1979 1980 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 1981 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 1982 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 1983 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 1984 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 1985 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 1986 1987 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1988 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1989 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 1990 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 1991 1992 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 1993 int reason, bool has_error_code, u32 error_code); 1994 1995 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 1996 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 1997 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 1998 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 1999 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2000 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2001 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2002 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val); 2003 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2004 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2005 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2006 2007 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2008 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2009 2010 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2011 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2012 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2013 2014 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2015 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2016 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2017 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2018 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2019 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2020 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2021 struct x86_exception *fault); 2022 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2023 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2024 2025 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2026 int irq_source_id, int level) 2027 { 2028 /* Logical OR for level trig interrupt */ 2029 if (level) 2030 __set_bit(irq_source_id, irq_state); 2031 else 2032 __clear_bit(irq_source_id, irq_state); 2033 2034 return !!(*irq_state); 2035 } 2036 2037 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2038 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2039 2040 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2041 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2042 2043 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2044 2045 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 2046 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2047 ulong roots_to_free); 2048 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2049 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2050 struct x86_exception *exception); 2051 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2052 struct x86_exception *exception); 2053 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2054 struct x86_exception *exception); 2055 2056 bool kvm_apicv_activated(struct kvm *kvm); 2057 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2058 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2059 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2060 enum kvm_apicv_inhibit reason, bool set); 2061 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2062 enum kvm_apicv_inhibit reason, bool set); 2063 2064 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2065 enum kvm_apicv_inhibit reason) 2066 { 2067 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2068 } 2069 2070 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2071 enum kvm_apicv_inhibit reason) 2072 { 2073 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2074 } 2075 2076 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 2077 2078 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2079 void *insn, int insn_len); 2080 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2081 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2082 u64 addr, unsigned long roots); 2083 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2084 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2085 2086 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2087 int tdp_max_root_level, int tdp_huge_page_level); 2088 2089 static inline u16 kvm_read_ldt(void) 2090 { 2091 u16 ldt; 2092 asm("sldt %0" : "=g"(ldt)); 2093 return ldt; 2094 } 2095 2096 static inline void kvm_load_ldt(u16 sel) 2097 { 2098 asm("lldt %0" : : "rm"(sel)); 2099 } 2100 2101 #ifdef CONFIG_X86_64 2102 static inline unsigned long read_msr(unsigned long msr) 2103 { 2104 u64 value; 2105 2106 rdmsrl(msr, value); 2107 return value; 2108 } 2109 #endif 2110 2111 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2112 { 2113 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2114 } 2115 2116 #define TSS_IOPB_BASE_OFFSET 0x66 2117 #define TSS_BASE_SIZE 0x68 2118 #define TSS_IOPB_SIZE (65536 / 8) 2119 #define TSS_REDIRECTION_SIZE (256 / 8) 2120 #define RMODE_TSS_SIZE \ 2121 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2122 2123 enum { 2124 TASK_SWITCH_CALL = 0, 2125 TASK_SWITCH_IRET = 1, 2126 TASK_SWITCH_JMP = 2, 2127 TASK_SWITCH_GATE = 3, 2128 }; 2129 2130 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2131 2132 #ifdef CONFIG_KVM_SMM 2133 #define HF_SMM_MASK (1 << 1) 2134 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2135 2136 # define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 2137 # define KVM_ADDRESS_SPACE_NUM 2 2138 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2139 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2140 #else 2141 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2142 #endif 2143 2144 #define KVM_ARCH_WANT_MMU_NOTIFIER 2145 2146 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2147 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2148 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2149 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2150 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2151 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2152 2153 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2154 unsigned long ipi_bitmap_high, u32 min, 2155 unsigned long icr, int op_64_bit); 2156 2157 int kvm_add_user_return_msr(u32 msr); 2158 int kvm_find_user_return_msr(u32 msr); 2159 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2160 2161 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2162 { 2163 return kvm_find_user_return_msr(msr) >= 0; 2164 } 2165 2166 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2167 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2168 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2169 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2170 2171 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2172 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2173 2174 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2175 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2176 unsigned long *vcpu_bitmap); 2177 2178 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2179 struct kvm_async_pf *work); 2180 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2181 struct kvm_async_pf *work); 2182 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2183 struct kvm_async_pf *work); 2184 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2185 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2186 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2187 2188 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2189 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2190 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu); 2191 2192 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2193 u32 size); 2194 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2195 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2196 2197 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2198 struct kvm_vcpu **dest_vcpu); 2199 2200 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2201 struct kvm_lapic_irq *irq); 2202 2203 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2204 { 2205 /* We can only post Fixed and LowPrio IRQs */ 2206 return (irq->delivery_mode == APIC_DM_FIXED || 2207 irq->delivery_mode == APIC_DM_LOWEST); 2208 } 2209 2210 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2211 { 2212 static_call_cond(kvm_x86_vcpu_blocking)(vcpu); 2213 } 2214 2215 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2216 { 2217 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu); 2218 } 2219 2220 static inline int kvm_cpu_get_apicid(int mps_cpu) 2221 { 2222 #ifdef CONFIG_X86_LOCAL_APIC 2223 return default_cpu_present_to_apicid(mps_cpu); 2224 #else 2225 WARN_ON_ONCE(1); 2226 return BAD_APICID; 2227 #endif 2228 } 2229 2230 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2231 2232 #define KVM_CLOCK_VALID_FLAGS \ 2233 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2234 2235 #define KVM_X86_VALID_QUIRKS \ 2236 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2237 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2238 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2239 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2240 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2241 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2242 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) 2243 2244 /* 2245 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2246 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2247 * remaining 31 lower bits must be 0 to preserve ABI. 2248 */ 2249 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2250 2251 #endif /* _ASM_X86_KVM_HOST_H */ 2252