xref: /linux/arch/x86/include/asm/kvm_host.h (revision 4eca0ef49af9b2b0c52ef2b58e045ab34629796b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
28 #include <linux/kfifo.h>
29 
30 #include <asm/apic.h>
31 #include <asm/pvclock-abi.h>
32 #include <asm/desc.h>
33 #include <asm/mtrr.h>
34 #include <asm/msr-index.h>
35 #include <asm/asm.h>
36 #include <asm/kvm_page_track.h>
37 #include <asm/kvm_vcpu_regs.h>
38 #include <asm/hyperv-tlfs.h>
39 
40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
41 
42 /*
43  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
44  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
45  */
46 #ifdef CONFIG_KVM_MAX_NR_VCPUS
47 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
48 #else
49 #define KVM_MAX_VCPUS 1024
50 #endif
51 
52 /*
53  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
54  * might be larger than the actual number of VCPUs because the
55  * APIC ID encodes CPU topology information.
56  *
57  * In the worst case, we'll need less than one extra bit for the
58  * Core ID, and less than one extra bit for the Package (Die) ID,
59  * so ratio of 4 should be enough.
60  */
61 #define KVM_VCPU_ID_RATIO 4
62 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
63 
64 /* memory slots that are not exposed to userspace */
65 #define KVM_INTERNAL_MEM_SLOTS 3
66 
67 #define KVM_HALT_POLL_NS_DEFAULT 200000
68 
69 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
70 
71 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
72 					KVM_DIRTY_LOG_INITIALLY_SET)
73 
74 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
75 						 KVM_BUS_LOCK_DETECTION_EXIT)
76 
77 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
78 						 KVM_X86_NOTIFY_VMEXIT_USER)
79 
80 /* x86-specific vcpu->requests bit members */
81 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
82 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
83 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
84 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
85 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
86 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
87 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
88 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
89 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
90 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
91 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
92 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
93 #ifdef CONFIG_KVM_SMM
94 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
95 #endif
96 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
97 #define KVM_REQ_MCLOCK_INPROGRESS \
98 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
99 #define KVM_REQ_SCAN_IOAPIC \
100 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
101 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
102 #define KVM_REQ_APIC_PAGE_RELOAD \
103 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
104 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
105 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
106 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
107 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
108 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
109 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
110 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
111 #define KVM_REQ_APICV_UPDATE \
112 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
113 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
114 #define KVM_REQ_TLB_FLUSH_GUEST \
115 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
116 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
117 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
118 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
119 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
120 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
121 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_HV_TLB_FLUSH \
123 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
124 
125 #define CR0_RESERVED_BITS                                               \
126 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
127 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
128 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
129 
130 #define CR4_RESERVED_BITS                                               \
131 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
132 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
133 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
134 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
135 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
136 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
137 
138 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
139 
140 
141 
142 #define INVALID_PAGE (~(hpa_t)0)
143 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
144 
145 /* KVM Hugepage definitions for x86 */
146 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
147 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
148 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
149 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
150 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
151 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
152 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
153 
154 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
155 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
156 #define KVM_MMU_HASH_SHIFT 12
157 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
158 #define KVM_MIN_FREE_MMU_PAGES 5
159 #define KVM_REFILL_PAGES 25
160 #define KVM_MAX_CPUID_ENTRIES 256
161 #define KVM_NR_FIXED_MTRR_REGION 88
162 #define KVM_NR_VAR_MTRR 8
163 
164 #define ASYNC_PF_PER_VCPU 64
165 
166 enum kvm_reg {
167 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
168 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
169 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
170 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
171 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
172 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
173 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
174 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
175 #ifdef CONFIG_X86_64
176 	VCPU_REGS_R8  = __VCPU_REGS_R8,
177 	VCPU_REGS_R9  = __VCPU_REGS_R9,
178 	VCPU_REGS_R10 = __VCPU_REGS_R10,
179 	VCPU_REGS_R11 = __VCPU_REGS_R11,
180 	VCPU_REGS_R12 = __VCPU_REGS_R12,
181 	VCPU_REGS_R13 = __VCPU_REGS_R13,
182 	VCPU_REGS_R14 = __VCPU_REGS_R14,
183 	VCPU_REGS_R15 = __VCPU_REGS_R15,
184 #endif
185 	VCPU_REGS_RIP,
186 	NR_VCPU_REGS,
187 
188 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
189 	VCPU_EXREG_CR0,
190 	VCPU_EXREG_CR3,
191 	VCPU_EXREG_CR4,
192 	VCPU_EXREG_RFLAGS,
193 	VCPU_EXREG_SEGMENTS,
194 	VCPU_EXREG_EXIT_INFO_1,
195 	VCPU_EXREG_EXIT_INFO_2,
196 };
197 
198 enum {
199 	VCPU_SREG_ES,
200 	VCPU_SREG_CS,
201 	VCPU_SREG_SS,
202 	VCPU_SREG_DS,
203 	VCPU_SREG_FS,
204 	VCPU_SREG_GS,
205 	VCPU_SREG_TR,
206 	VCPU_SREG_LDTR,
207 };
208 
209 enum exit_fastpath_completion {
210 	EXIT_FASTPATH_NONE,
211 	EXIT_FASTPATH_REENTER_GUEST,
212 	EXIT_FASTPATH_EXIT_HANDLED,
213 };
214 typedef enum exit_fastpath_completion fastpath_t;
215 
216 struct x86_emulate_ctxt;
217 struct x86_exception;
218 union kvm_smram;
219 enum x86_intercept;
220 enum x86_intercept_stage;
221 
222 #define KVM_NR_DB_REGS	4
223 
224 #define DR6_BUS_LOCK   (1 << 11)
225 #define DR6_BD		(1 << 13)
226 #define DR6_BS		(1 << 14)
227 #define DR6_BT		(1 << 15)
228 #define DR6_RTM		(1 << 16)
229 /*
230  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
231  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
232  * they will never be 0 for now, but when they are defined
233  * in the future it will require no code change.
234  *
235  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
236  */
237 #define DR6_ACTIVE_LOW	0xffff0ff0
238 #define DR6_VOLATILE	0x0001e80f
239 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
240 
241 #define DR7_BP_EN_MASK	0x000000ff
242 #define DR7_GE		(1 << 9)
243 #define DR7_GD		(1 << 13)
244 #define DR7_FIXED_1	0x00000400
245 #define DR7_VOLATILE	0xffff2bff
246 
247 #define KVM_GUESTDBG_VALID_MASK \
248 	(KVM_GUESTDBG_ENABLE | \
249 	KVM_GUESTDBG_SINGLESTEP | \
250 	KVM_GUESTDBG_USE_HW_BP | \
251 	KVM_GUESTDBG_USE_SW_BP | \
252 	KVM_GUESTDBG_INJECT_BP | \
253 	KVM_GUESTDBG_INJECT_DB | \
254 	KVM_GUESTDBG_BLOCKIRQ)
255 
256 
257 #define PFERR_PRESENT_BIT 0
258 #define PFERR_WRITE_BIT 1
259 #define PFERR_USER_BIT 2
260 #define PFERR_RSVD_BIT 3
261 #define PFERR_FETCH_BIT 4
262 #define PFERR_PK_BIT 5
263 #define PFERR_SGX_BIT 15
264 #define PFERR_GUEST_FINAL_BIT 32
265 #define PFERR_GUEST_PAGE_BIT 33
266 #define PFERR_IMPLICIT_ACCESS_BIT 48
267 
268 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
269 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
270 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
271 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
272 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
273 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
274 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
275 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
276 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
277 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
278 
279 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
280 				 PFERR_WRITE_MASK |		\
281 				 PFERR_PRESENT_MASK)
282 
283 /* apic attention bits */
284 #define KVM_APIC_CHECK_VAPIC	0
285 /*
286  * The following bit is set with PV-EOI, unset on EOI.
287  * We detect PV-EOI changes by guest by comparing
288  * this bit with PV-EOI in guest memory.
289  * See the implementation in apic_update_pv_eoi.
290  */
291 #define KVM_APIC_PV_EOI_PENDING	1
292 
293 struct kvm_kernel_irq_routing_entry;
294 
295 /*
296  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
297  * also includes TDP pages) to determine whether or not a page can be used in
298  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
299  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
300  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
301  *
302  * Upper-level shadow pages having gptes are tracked for write-protection via
303  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
304  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
305  * otherwise gfn_write_track will overflow and explosions will ensue.
306  *
307  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
308  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
309  * incorporates various mode bits and properties of the SP.  Roughly speaking,
310  * the number of unique SPs that can theoretically be created is 2^n, where n
311  * is the number of bits that are used to compute the role.
312  *
313  * But, even though there are 19 bits in the mask below, not all combinations
314  * of modes and flags are possible:
315  *
316  *   - invalid shadow pages are not accounted, so the bits are effectively 18
317  *
318  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
319  *     execonly and ad_disabled are only used for nested EPT which has
320  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
321  *
322  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
323  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
324  *     paging has exactly one upper level, making level completely redundant
325  *     when has_4_byte_gpte=1.
326  *
327  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
328  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
329  *
330  * Therefore, the maximum number of possible upper-level shadow pages for a
331  * single gfn is a bit less than 2^13.
332  */
333 union kvm_mmu_page_role {
334 	u32 word;
335 	struct {
336 		unsigned level:4;
337 		unsigned has_4_byte_gpte:1;
338 		unsigned quadrant:2;
339 		unsigned direct:1;
340 		unsigned access:3;
341 		unsigned invalid:1;
342 		unsigned efer_nx:1;
343 		unsigned cr0_wp:1;
344 		unsigned smep_andnot_wp:1;
345 		unsigned smap_andnot_wp:1;
346 		unsigned ad_disabled:1;
347 		unsigned guest_mode:1;
348 		unsigned passthrough:1;
349 		unsigned :5;
350 
351 		/*
352 		 * This is left at the top of the word so that
353 		 * kvm_memslots_for_spte_role can extract it with a
354 		 * simple shift.  While there is room, give it a whole
355 		 * byte so it is also faster to load it from memory.
356 		 */
357 		unsigned smm:8;
358 	};
359 };
360 
361 /*
362  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
363  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
364  * including on nested transitions, if nothing in the full role changes then
365  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
366  * don't treat all-zero structure as valid data.
367  *
368  * The properties that are tracked in the extended role but not the page role
369  * are for things that either (a) do not affect the validity of the shadow page
370  * or (b) are indirectly reflected in the shadow page's role.  For example,
371  * CR4.PKE only affects permission checks for software walks of the guest page
372  * tables (because KVM doesn't support Protection Keys with shadow paging), and
373  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
374  *
375  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
376  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
377  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
378  * SMAP aware regardless of CR0.WP.
379  */
380 union kvm_mmu_extended_role {
381 	u32 word;
382 	struct {
383 		unsigned int valid:1;
384 		unsigned int execonly:1;
385 		unsigned int cr4_pse:1;
386 		unsigned int cr4_pke:1;
387 		unsigned int cr4_smap:1;
388 		unsigned int cr4_smep:1;
389 		unsigned int cr4_la57:1;
390 		unsigned int efer_lma:1;
391 	};
392 };
393 
394 union kvm_cpu_role {
395 	u64 as_u64;
396 	struct {
397 		union kvm_mmu_page_role base;
398 		union kvm_mmu_extended_role ext;
399 	};
400 };
401 
402 struct kvm_rmap_head {
403 	unsigned long val;
404 };
405 
406 struct kvm_pio_request {
407 	unsigned long linear_rip;
408 	unsigned long count;
409 	int in;
410 	int port;
411 	int size;
412 };
413 
414 #define PT64_ROOT_MAX_LEVEL 5
415 
416 struct rsvd_bits_validate {
417 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
418 	u64 bad_mt_xwr;
419 };
420 
421 struct kvm_mmu_root_info {
422 	gpa_t pgd;
423 	hpa_t hpa;
424 };
425 
426 #define KVM_MMU_ROOT_INFO_INVALID \
427 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
428 
429 #define KVM_MMU_NUM_PREV_ROOTS 3
430 
431 #define KVM_MMU_ROOT_CURRENT		BIT(0)
432 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
433 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
434 
435 #define KVM_HAVE_MMU_RWLOCK
436 
437 struct kvm_mmu_page;
438 struct kvm_page_fault;
439 
440 /*
441  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
442  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
443  * current mmu mode.
444  */
445 struct kvm_mmu {
446 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
447 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
448 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
449 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
450 				  struct x86_exception *fault);
451 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
452 			    gpa_t gva_or_gpa, u64 access,
453 			    struct x86_exception *exception);
454 	int (*sync_spte)(struct kvm_vcpu *vcpu,
455 			 struct kvm_mmu_page *sp, int i);
456 	struct kvm_mmu_root_info root;
457 	union kvm_cpu_role cpu_role;
458 	union kvm_mmu_page_role root_role;
459 
460 	/*
461 	* The pkru_mask indicates if protection key checks are needed.  It
462 	* consists of 16 domains indexed by page fault error code bits [4:1],
463 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
464 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
465 	*/
466 	u32 pkru_mask;
467 
468 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
469 
470 	/*
471 	 * Bitmap; bit set = permission fault
472 	 * Byte index: page fault error code [4:1]
473 	 * Bit index: pte permissions in ACC_* format
474 	 */
475 	u8 permissions[16];
476 
477 	u64 *pae_root;
478 	u64 *pml4_root;
479 	u64 *pml5_root;
480 
481 	/*
482 	 * check zero bits on shadow page table entries, these
483 	 * bits include not only hardware reserved bits but also
484 	 * the bits spte never used.
485 	 */
486 	struct rsvd_bits_validate shadow_zero_check;
487 
488 	struct rsvd_bits_validate guest_rsvd_check;
489 
490 	u64 pdptrs[4]; /* pae */
491 };
492 
493 enum pmc_type {
494 	KVM_PMC_GP = 0,
495 	KVM_PMC_FIXED,
496 };
497 
498 struct kvm_pmc {
499 	enum pmc_type type;
500 	u8 idx;
501 	bool is_paused;
502 	bool intr;
503 	u64 counter;
504 	u64 prev_counter;
505 	u64 eventsel;
506 	struct perf_event *perf_event;
507 	struct kvm_vcpu *vcpu;
508 	/*
509 	 * only for creating or reusing perf_event,
510 	 * eventsel value for general purpose counters,
511 	 * ctrl value for fixed counters.
512 	 */
513 	u64 current_config;
514 };
515 
516 /* More counters may conflict with other existing Architectural MSRs */
517 #define KVM_INTEL_PMC_MAX_GENERIC	8
518 #define MSR_ARCH_PERFMON_PERFCTR_MAX	(MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
519 #define MSR_ARCH_PERFMON_EVENTSEL_MAX	(MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
520 #define KVM_PMC_MAX_FIXED	3
521 #define MSR_ARCH_PERFMON_FIXED_CTR_MAX	(MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1)
522 #define KVM_AMD_PMC_MAX_GENERIC	6
523 struct kvm_pmu {
524 	u8 version;
525 	unsigned nr_arch_gp_counters;
526 	unsigned nr_arch_fixed_counters;
527 	unsigned available_event_types;
528 	u64 fixed_ctr_ctrl;
529 	u64 fixed_ctr_ctrl_mask;
530 	u64 global_ctrl;
531 	u64 global_status;
532 	u64 counter_bitmask[2];
533 	u64 global_ctrl_mask;
534 	u64 global_status_mask;
535 	u64 reserved_bits;
536 	u64 raw_event_mask;
537 	struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC];
538 	struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
539 
540 	/*
541 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
542 	 * set in a single access, e.g. to reprogram all counters when the PMU
543 	 * filter changes.
544 	 */
545 	union {
546 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
547 		atomic64_t __reprogram_pmi;
548 	};
549 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
550 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
551 
552 	u64 ds_area;
553 	u64 pebs_enable;
554 	u64 pebs_enable_mask;
555 	u64 pebs_data_cfg;
556 	u64 pebs_data_cfg_mask;
557 
558 	/*
559 	 * If a guest counter is cross-mapped to host counter with different
560 	 * index, its PEBS capability will be temporarily disabled.
561 	 *
562 	 * The user should make sure that this mask is updated
563 	 * after disabling interrupts and before perf_guest_get_msrs();
564 	 */
565 	u64 host_cross_mapped_mask;
566 
567 	/*
568 	 * The gate to release perf_events not marked in
569 	 * pmc_in_use only once in a vcpu time slice.
570 	 */
571 	bool need_cleanup;
572 
573 	/*
574 	 * The total number of programmed perf_events and it helps to avoid
575 	 * redundant check before cleanup if guest don't use vPMU at all.
576 	 */
577 	u8 event_count;
578 };
579 
580 struct kvm_pmu_ops;
581 
582 enum {
583 	KVM_DEBUGREG_BP_ENABLED = 1,
584 	KVM_DEBUGREG_WONT_EXIT = 2,
585 };
586 
587 struct kvm_mtrr_range {
588 	u64 base;
589 	u64 mask;
590 	struct list_head node;
591 };
592 
593 struct kvm_mtrr {
594 	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
595 	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
596 	u64 deftype;
597 
598 	struct list_head head;
599 };
600 
601 /* Hyper-V SynIC timer */
602 struct kvm_vcpu_hv_stimer {
603 	struct hrtimer timer;
604 	int index;
605 	union hv_stimer_config config;
606 	u64 count;
607 	u64 exp_time;
608 	struct hv_message msg;
609 	bool msg_pending;
610 };
611 
612 /* Hyper-V synthetic interrupt controller (SynIC)*/
613 struct kvm_vcpu_hv_synic {
614 	u64 version;
615 	u64 control;
616 	u64 msg_page;
617 	u64 evt_page;
618 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
619 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
620 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
621 	DECLARE_BITMAP(vec_bitmap, 256);
622 	bool active;
623 	bool dont_zero_synic_pages;
624 };
625 
626 /* The maximum number of entries on the TLB flush fifo. */
627 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
628 /*
629  * Note: the following 'magic' entry is made up by KVM to avoid putting
630  * anything besides GVA on the TLB flush fifo. It is theoretically possible
631  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
632  * which will look identical. KVM's action to 'flush everything' instead of
633  * flushing these particular addresses is, however, fully legitimate as
634  * flushing more than requested is always OK.
635  */
636 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
637 
638 enum hv_tlb_flush_fifos {
639 	HV_L1_TLB_FLUSH_FIFO,
640 	HV_L2_TLB_FLUSH_FIFO,
641 	HV_NR_TLB_FLUSH_FIFOS,
642 };
643 
644 struct kvm_vcpu_hv_tlb_flush_fifo {
645 	spinlock_t write_lock;
646 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
647 };
648 
649 /* Hyper-V per vcpu emulation context */
650 struct kvm_vcpu_hv {
651 	struct kvm_vcpu *vcpu;
652 	u32 vp_index;
653 	u64 hv_vapic;
654 	s64 runtime_offset;
655 	struct kvm_vcpu_hv_synic synic;
656 	struct kvm_hyperv_exit exit;
657 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
658 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
659 	bool enforce_cpuid;
660 	struct {
661 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
662 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
663 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
664 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
665 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
666 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
667 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
668 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
669 	} cpuid_cache;
670 
671 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
672 
673 	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
674 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
675 
676 	struct hv_vp_assist_page vp_assist_page;
677 
678 	struct {
679 		u64 pa_page_gpa;
680 		u64 vm_id;
681 		u32 vp_id;
682 	} nested;
683 };
684 
685 struct kvm_hypervisor_cpuid {
686 	u32 base;
687 	u32 limit;
688 };
689 
690 #ifdef CONFIG_KVM_XEN
691 /* Xen HVM per vcpu emulation context */
692 struct kvm_vcpu_xen {
693 	u64 hypercall_rip;
694 	u32 current_runstate;
695 	u8 upcall_vector;
696 	struct gfn_to_pfn_cache vcpu_info_cache;
697 	struct gfn_to_pfn_cache vcpu_time_info_cache;
698 	struct gfn_to_pfn_cache runstate_cache;
699 	struct gfn_to_pfn_cache runstate2_cache;
700 	u64 last_steal;
701 	u64 runstate_entry_time;
702 	u64 runstate_times[4];
703 	unsigned long evtchn_pending_sel;
704 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
705 	u32 timer_virq;
706 	u64 timer_expires; /* In guest epoch */
707 	atomic_t timer_pending;
708 	struct hrtimer timer;
709 	int poll_evtchn;
710 	struct timer_list poll_timer;
711 	struct kvm_hypervisor_cpuid cpuid;
712 };
713 #endif
714 
715 struct kvm_queued_exception {
716 	bool pending;
717 	bool injected;
718 	bool has_error_code;
719 	u8 vector;
720 	u32 error_code;
721 	unsigned long payload;
722 	bool has_payload;
723 };
724 
725 struct kvm_vcpu_arch {
726 	/*
727 	 * rip and regs accesses must go through
728 	 * kvm_{register,rip}_{read,write} functions.
729 	 */
730 	unsigned long regs[NR_VCPU_REGS];
731 	u32 regs_avail;
732 	u32 regs_dirty;
733 
734 	unsigned long cr0;
735 	unsigned long cr0_guest_owned_bits;
736 	unsigned long cr2;
737 	unsigned long cr3;
738 	unsigned long cr4;
739 	unsigned long cr4_guest_owned_bits;
740 	unsigned long cr4_guest_rsvd_bits;
741 	unsigned long cr8;
742 	u32 host_pkru;
743 	u32 pkru;
744 	u32 hflags;
745 	u64 efer;
746 	u64 apic_base;
747 	struct kvm_lapic *apic;    /* kernel irqchip context */
748 	bool load_eoi_exitmap_pending;
749 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
750 	unsigned long apic_attention;
751 	int32_t apic_arb_prio;
752 	int mp_state;
753 	u64 ia32_misc_enable_msr;
754 	u64 smbase;
755 	u64 smi_count;
756 	bool at_instruction_boundary;
757 	bool tpr_access_reporting;
758 	bool xfd_no_write_intercept;
759 	u64 ia32_xss;
760 	u64 microcode_version;
761 	u64 arch_capabilities;
762 	u64 perf_capabilities;
763 
764 	/*
765 	 * Paging state of the vcpu
766 	 *
767 	 * If the vcpu runs in guest mode with two level paging this still saves
768 	 * the paging mode of the l1 guest. This context is always used to
769 	 * handle faults.
770 	 */
771 	struct kvm_mmu *mmu;
772 
773 	/* Non-nested MMU for L1 */
774 	struct kvm_mmu root_mmu;
775 
776 	/* L1 MMU when running nested */
777 	struct kvm_mmu guest_mmu;
778 
779 	/*
780 	 * Paging state of an L2 guest (used for nested npt)
781 	 *
782 	 * This context will save all necessary information to walk page tables
783 	 * of an L2 guest. This context is only initialized for page table
784 	 * walking and not for faulting since we never handle l2 page faults on
785 	 * the host.
786 	 */
787 	struct kvm_mmu nested_mmu;
788 
789 	/*
790 	 * Pointer to the mmu context currently used for
791 	 * gva_to_gpa translations.
792 	 */
793 	struct kvm_mmu *walk_mmu;
794 
795 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
796 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
797 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
798 	struct kvm_mmu_memory_cache mmu_page_header_cache;
799 
800 	/*
801 	 * QEMU userspace and the guest each have their own FPU state.
802 	 * In vcpu_run, we switch between the user and guest FPU contexts.
803 	 * While running a VCPU, the VCPU thread will have the guest FPU
804 	 * context.
805 	 *
806 	 * Note that while the PKRU state lives inside the fpu registers,
807 	 * it is switched out separately at VMENTER and VMEXIT time. The
808 	 * "guest_fpstate" state here contains the guest FPU context, with the
809 	 * host PRKU bits.
810 	 */
811 	struct fpu_guest guest_fpu;
812 
813 	u64 xcr0;
814 	u64 guest_supported_xcr0;
815 
816 	struct kvm_pio_request pio;
817 	void *pio_data;
818 	void *sev_pio_data;
819 	unsigned sev_pio_count;
820 
821 	u8 event_exit_inst_len;
822 
823 	bool exception_from_userspace;
824 
825 	/* Exceptions to be injected to the guest. */
826 	struct kvm_queued_exception exception;
827 	/* Exception VM-Exits to be synthesized to L1. */
828 	struct kvm_queued_exception exception_vmexit;
829 
830 	struct kvm_queued_interrupt {
831 		bool injected;
832 		bool soft;
833 		u8 nr;
834 	} interrupt;
835 
836 	int halt_request; /* real mode on Intel only */
837 
838 	int cpuid_nent;
839 	struct kvm_cpuid_entry2 *cpuid_entries;
840 	struct kvm_hypervisor_cpuid kvm_cpuid;
841 
842 	/*
843 	 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly
844 	 * when "struct kvm_vcpu_arch" is no longer defined in an
845 	 * arch/x86/include/asm header.  The max is mostly arbitrary, i.e.
846 	 * can be increased as necessary.
847 	 */
848 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG
849 
850 	/*
851 	 * Track whether or not the guest is allowed to use features that are
852 	 * governed by KVM, where "governed" means KVM needs to manage state
853 	 * and/or explicitly enable the feature in hardware.  Typically, but
854 	 * not always, governed features can be used by the guest if and only
855 	 * if both KVM and userspace want to expose the feature to the guest.
856 	 */
857 	struct {
858 		DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES);
859 	} governed_features;
860 
861 	u64 reserved_gpa_bits;
862 	int maxphyaddr;
863 
864 	/* emulate context */
865 
866 	struct x86_emulate_ctxt *emulate_ctxt;
867 	bool emulate_regs_need_sync_to_vcpu;
868 	bool emulate_regs_need_sync_from_vcpu;
869 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
870 
871 	gpa_t time;
872 	struct pvclock_vcpu_time_info hv_clock;
873 	unsigned int hw_tsc_khz;
874 	struct gfn_to_pfn_cache pv_time;
875 	/* set guest stopped flag in pvclock flags field */
876 	bool pvclock_set_guest_stopped_request;
877 
878 	struct {
879 		u8 preempted;
880 		u64 msr_val;
881 		u64 last_steal;
882 		struct gfn_to_hva_cache cache;
883 	} st;
884 
885 	u64 l1_tsc_offset;
886 	u64 tsc_offset; /* current tsc offset */
887 	u64 last_guest_tsc;
888 	u64 last_host_tsc;
889 	u64 tsc_offset_adjustment;
890 	u64 this_tsc_nsec;
891 	u64 this_tsc_write;
892 	u64 this_tsc_generation;
893 	bool tsc_catchup;
894 	bool tsc_always_catchup;
895 	s8 virtual_tsc_shift;
896 	u32 virtual_tsc_mult;
897 	u32 virtual_tsc_khz;
898 	s64 ia32_tsc_adjust_msr;
899 	u64 msr_ia32_power_ctl;
900 	u64 l1_tsc_scaling_ratio;
901 	u64 tsc_scaling_ratio; /* current scaling ratio */
902 
903 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
904 	/* Number of NMIs pending injection, not including hardware vNMIs. */
905 	unsigned int nmi_pending;
906 	bool nmi_injected;    /* Trying to inject an NMI this entry */
907 	bool smi_pending;    /* SMI queued after currently running handler */
908 	u8 handling_intr_from_guest;
909 
910 	struct kvm_mtrr mtrr_state;
911 	u64 pat;
912 
913 	unsigned switch_db_regs;
914 	unsigned long db[KVM_NR_DB_REGS];
915 	unsigned long dr6;
916 	unsigned long dr7;
917 	unsigned long eff_db[KVM_NR_DB_REGS];
918 	unsigned long guest_debug_dr7;
919 	u64 msr_platform_info;
920 	u64 msr_misc_features_enables;
921 
922 	u64 mcg_cap;
923 	u64 mcg_status;
924 	u64 mcg_ctl;
925 	u64 mcg_ext_ctl;
926 	u64 *mce_banks;
927 	u64 *mci_ctl2_banks;
928 
929 	/* Cache MMIO info */
930 	u64 mmio_gva;
931 	unsigned mmio_access;
932 	gfn_t mmio_gfn;
933 	u64 mmio_gen;
934 
935 	struct kvm_pmu pmu;
936 
937 	/* used for guest single stepping over the given code position */
938 	unsigned long singlestep_rip;
939 
940 	bool hyperv_enabled;
941 	struct kvm_vcpu_hv *hyperv;
942 #ifdef CONFIG_KVM_XEN
943 	struct kvm_vcpu_xen xen;
944 #endif
945 	cpumask_var_t wbinvd_dirty_mask;
946 
947 	unsigned long last_retry_eip;
948 	unsigned long last_retry_addr;
949 
950 	struct {
951 		bool halted;
952 		gfn_t gfns[ASYNC_PF_PER_VCPU];
953 		struct gfn_to_hva_cache data;
954 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
955 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
956 		u16 vec;
957 		u32 id;
958 		bool send_user_only;
959 		u32 host_apf_flags;
960 		bool delivery_as_pf_vmexit;
961 		bool pageready_pending;
962 	} apf;
963 
964 	/* OSVW MSRs (AMD only) */
965 	struct {
966 		u64 length;
967 		u64 status;
968 	} osvw;
969 
970 	struct {
971 		u64 msr_val;
972 		struct gfn_to_hva_cache data;
973 	} pv_eoi;
974 
975 	u64 msr_kvm_poll_control;
976 
977 	/* set at EPT violation at this point */
978 	unsigned long exit_qualification;
979 
980 	/* pv related host specific info */
981 	struct {
982 		bool pv_unhalted;
983 	} pv;
984 
985 	int pending_ioapic_eoi;
986 	int pending_external_vector;
987 
988 	/* be preempted when it's in kernel-mode(cpl=0) */
989 	bool preempted_in_kernel;
990 
991 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
992 	bool l1tf_flush_l1d;
993 
994 	/* Host CPU on which VM-entry was most recently attempted */
995 	int last_vmentry_cpu;
996 
997 	/* AMD MSRC001_0015 Hardware Configuration */
998 	u64 msr_hwcr;
999 
1000 	/* pv related cpuid info */
1001 	struct {
1002 		/*
1003 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1004 		 * leaf.
1005 		 */
1006 		u32 features;
1007 
1008 		/*
1009 		 * indicates whether pv emulation should be disabled if features
1010 		 * are not present in the guest's cpuid
1011 		 */
1012 		bool enforce;
1013 	} pv_cpuid;
1014 
1015 	/* Protected Guests */
1016 	bool guest_state_protected;
1017 
1018 	/*
1019 	 * Set when PDPTS were loaded directly by the userspace without
1020 	 * reading the guest memory
1021 	 */
1022 	bool pdptrs_from_userspace;
1023 
1024 #if IS_ENABLED(CONFIG_HYPERV)
1025 	hpa_t hv_root_tdp;
1026 #endif
1027 };
1028 
1029 struct kvm_lpage_info {
1030 	int disallow_lpage;
1031 };
1032 
1033 struct kvm_arch_memory_slot {
1034 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1035 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1036 	unsigned short *gfn_write_track;
1037 };
1038 
1039 /*
1040  * Track the mode of the optimized logical map, as the rules for decoding the
1041  * destination vary per mode.  Enabling the optimized logical map requires all
1042  * software-enabled local APIs to be in the same mode, each addressable APIC to
1043  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1044  */
1045 enum kvm_apic_logical_mode {
1046 	/* All local APICs are software disabled. */
1047 	KVM_APIC_MODE_SW_DISABLED,
1048 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1049 	KVM_APIC_MODE_XAPIC_CLUSTER,
1050 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1051 	KVM_APIC_MODE_XAPIC_FLAT,
1052 	/* All software enabled local APICs in x2APIC mode. */
1053 	KVM_APIC_MODE_X2APIC,
1054 	/*
1055 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1056 	 * mode, same logical ID assigned to multiple APICs, etc.
1057 	 */
1058 	KVM_APIC_MODE_MAP_DISABLED,
1059 };
1060 
1061 struct kvm_apic_map {
1062 	struct rcu_head rcu;
1063 	enum kvm_apic_logical_mode logical_mode;
1064 	u32 max_apic_id;
1065 	union {
1066 		struct kvm_lapic *xapic_flat_map[8];
1067 		struct kvm_lapic *xapic_cluster_map[16][4];
1068 	};
1069 	struct kvm_lapic *phys_map[];
1070 };
1071 
1072 /* Hyper-V synthetic debugger (SynDbg)*/
1073 struct kvm_hv_syndbg {
1074 	struct {
1075 		u64 control;
1076 		u64 status;
1077 		u64 send_page;
1078 		u64 recv_page;
1079 		u64 pending_page;
1080 	} control;
1081 	u64 options;
1082 };
1083 
1084 /* Current state of Hyper-V TSC page clocksource */
1085 enum hv_tsc_page_status {
1086 	/* TSC page was not set up or disabled */
1087 	HV_TSC_PAGE_UNSET = 0,
1088 	/* TSC page MSR was written by the guest, update pending */
1089 	HV_TSC_PAGE_GUEST_CHANGED,
1090 	/* TSC page update was triggered from the host side */
1091 	HV_TSC_PAGE_HOST_CHANGED,
1092 	/* TSC page was properly set up and is currently active  */
1093 	HV_TSC_PAGE_SET,
1094 	/* TSC page was set up with an inaccessible GPA */
1095 	HV_TSC_PAGE_BROKEN,
1096 };
1097 
1098 /* Hyper-V emulation context */
1099 struct kvm_hv {
1100 	struct mutex hv_lock;
1101 	u64 hv_guest_os_id;
1102 	u64 hv_hypercall;
1103 	u64 hv_tsc_page;
1104 	enum hv_tsc_page_status hv_tsc_page_status;
1105 
1106 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1107 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1108 	u64 hv_crash_ctl;
1109 
1110 	struct ms_hyperv_tsc_page tsc_ref;
1111 
1112 	struct idr conn_to_evt;
1113 
1114 	u64 hv_reenlightenment_control;
1115 	u64 hv_tsc_emulation_control;
1116 	u64 hv_tsc_emulation_status;
1117 	u64 hv_invtsc_control;
1118 
1119 	/* How many vCPUs have VP index != vCPU index */
1120 	atomic_t num_mismatched_vp_indexes;
1121 
1122 	/*
1123 	 * How many SynICs use 'AutoEOI' feature
1124 	 * (protected by arch.apicv_update_lock)
1125 	 */
1126 	unsigned int synic_auto_eoi_used;
1127 
1128 	struct hv_partition_assist_pg *hv_pa_pg;
1129 	struct kvm_hv_syndbg hv_syndbg;
1130 };
1131 
1132 struct msr_bitmap_range {
1133 	u32 flags;
1134 	u32 nmsrs;
1135 	u32 base;
1136 	unsigned long *bitmap;
1137 };
1138 
1139 /* Xen emulation context */
1140 struct kvm_xen {
1141 	struct mutex xen_lock;
1142 	u32 xen_version;
1143 	bool long_mode;
1144 	bool runstate_update_flag;
1145 	u8 upcall_vector;
1146 	struct gfn_to_pfn_cache shinfo_cache;
1147 	struct idr evtchn_ports;
1148 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1149 };
1150 
1151 enum kvm_irqchip_mode {
1152 	KVM_IRQCHIP_NONE,
1153 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1154 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1155 };
1156 
1157 struct kvm_x86_msr_filter {
1158 	u8 count;
1159 	bool default_allow:1;
1160 	struct msr_bitmap_range ranges[16];
1161 };
1162 
1163 struct kvm_x86_pmu_event_filter {
1164 	__u32 action;
1165 	__u32 nevents;
1166 	__u32 fixed_counter_bitmap;
1167 	__u32 flags;
1168 	__u32 nr_includes;
1169 	__u32 nr_excludes;
1170 	__u64 *includes;
1171 	__u64 *excludes;
1172 	__u64 events[];
1173 };
1174 
1175 enum kvm_apicv_inhibit {
1176 
1177 	/********************************************************************/
1178 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1179 	/********************************************************************/
1180 
1181 	/*
1182 	 * APIC acceleration is disabled by a module parameter
1183 	 * and/or not supported in hardware.
1184 	 */
1185 	APICV_INHIBIT_REASON_DISABLE,
1186 
1187 	/*
1188 	 * APIC acceleration is inhibited because AutoEOI feature is
1189 	 * being used by a HyperV guest.
1190 	 */
1191 	APICV_INHIBIT_REASON_HYPERV,
1192 
1193 	/*
1194 	 * APIC acceleration is inhibited because the userspace didn't yet
1195 	 * enable the kernel/split irqchip.
1196 	 */
1197 	APICV_INHIBIT_REASON_ABSENT,
1198 
1199 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1200 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1201 	 * was enabled, to avoid AVIC/APICv bypassing it.
1202 	 */
1203 	APICV_INHIBIT_REASON_BLOCKIRQ,
1204 
1205 	/*
1206 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1207 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1208 	 */
1209 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1210 
1211 	/*
1212 	 * For simplicity, the APIC acceleration is inhibited
1213 	 * first time either APIC ID or APIC base are changed by the guest
1214 	 * from their reset values.
1215 	 */
1216 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1217 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1218 
1219 	/******************************************************/
1220 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1221 	/******************************************************/
1222 
1223 	/*
1224 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1225 	 *
1226 	 * This is needed because unlike APICv, the peers of this vCPU
1227 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1228 	 * a vCPU runs nested.
1229 	 */
1230 	APICV_INHIBIT_REASON_NESTED,
1231 
1232 	/*
1233 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1234 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1235 	 * is inhibited while KVM waits for IRQ window.
1236 	 */
1237 	APICV_INHIBIT_REASON_IRQWIN,
1238 
1239 	/*
1240 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1241 	 * which AVIC doesn't support for edge triggered interrupts.
1242 	 */
1243 	APICV_INHIBIT_REASON_PIT_REINJ,
1244 
1245 	/*
1246 	 * AVIC is disabled because SEV doesn't support it.
1247 	 */
1248 	APICV_INHIBIT_REASON_SEV,
1249 
1250 	/*
1251 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1252 	 * mapping between logical ID and vCPU.
1253 	 */
1254 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1255 };
1256 
1257 struct kvm_arch {
1258 	unsigned long n_used_mmu_pages;
1259 	unsigned long n_requested_mmu_pages;
1260 	unsigned long n_max_mmu_pages;
1261 	unsigned int indirect_shadow_pages;
1262 	u8 mmu_valid_gen;
1263 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1264 	struct list_head active_mmu_pages;
1265 	struct list_head zapped_obsolete_pages;
1266 	/*
1267 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1268 	 * replaced by an NX huge page.  A shadow page is on this list if its
1269 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1270 	 * and there are no other conditions that prevent a huge page, e.g.
1271 	 * the backing host page is huge, dirtly logging is not enabled for its
1272 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1273 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1274 	 * guest attempts to execute from the region then KVM obviously can't
1275 	 * create an NX huge page (without hanging the guest).
1276 	 */
1277 	struct list_head possible_nx_huge_pages;
1278 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1279 	struct kvm_page_track_notifier_head track_notifier_head;
1280 #endif
1281 	/*
1282 	 * Protects marking pages unsync during page faults, as TDP MMU page
1283 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1284 	 * pages lock is always taken when marking pages unsync regardless of
1285 	 * whether mmu_lock is held for read or write.
1286 	 */
1287 	spinlock_t mmu_unsync_pages_lock;
1288 
1289 	struct iommu_domain *iommu_domain;
1290 	bool iommu_noncoherent;
1291 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1292 	atomic_t noncoherent_dma_count;
1293 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1294 	atomic_t assigned_device_count;
1295 	struct kvm_pic *vpic;
1296 	struct kvm_ioapic *vioapic;
1297 	struct kvm_pit *vpit;
1298 	atomic_t vapics_in_nmi_mode;
1299 	struct mutex apic_map_lock;
1300 	struct kvm_apic_map __rcu *apic_map;
1301 	atomic_t apic_map_dirty;
1302 
1303 	bool apic_access_memslot_enabled;
1304 	bool apic_access_memslot_inhibited;
1305 
1306 	/* Protects apicv_inhibit_reasons */
1307 	struct rw_semaphore apicv_update_lock;
1308 	unsigned long apicv_inhibit_reasons;
1309 
1310 	gpa_t wall_clock;
1311 
1312 	bool mwait_in_guest;
1313 	bool hlt_in_guest;
1314 	bool pause_in_guest;
1315 	bool cstate_in_guest;
1316 
1317 	unsigned long irq_sources_bitmap;
1318 	s64 kvmclock_offset;
1319 
1320 	/*
1321 	 * This also protects nr_vcpus_matched_tsc which is read from a
1322 	 * preemption-disabled region, so it must be a raw spinlock.
1323 	 */
1324 	raw_spinlock_t tsc_write_lock;
1325 	u64 last_tsc_nsec;
1326 	u64 last_tsc_write;
1327 	u32 last_tsc_khz;
1328 	u64 last_tsc_offset;
1329 	u64 cur_tsc_nsec;
1330 	u64 cur_tsc_write;
1331 	u64 cur_tsc_offset;
1332 	u64 cur_tsc_generation;
1333 	int nr_vcpus_matched_tsc;
1334 
1335 	u32 default_tsc_khz;
1336 	bool user_set_tsc;
1337 
1338 	seqcount_raw_spinlock_t pvclock_sc;
1339 	bool use_master_clock;
1340 	u64 master_kernel_ns;
1341 	u64 master_cycle_now;
1342 	struct delayed_work kvmclock_update_work;
1343 	struct delayed_work kvmclock_sync_work;
1344 
1345 	struct kvm_xen_hvm_config xen_hvm_config;
1346 
1347 	/* reads protected by irq_srcu, writes by irq_lock */
1348 	struct hlist_head mask_notifier_list;
1349 
1350 	struct kvm_hv hyperv;
1351 	struct kvm_xen xen;
1352 
1353 	bool backwards_tsc_observed;
1354 	bool boot_vcpu_runs_old_kvmclock;
1355 	u32 bsp_vcpu_id;
1356 
1357 	u64 disabled_quirks;
1358 
1359 	enum kvm_irqchip_mode irqchip_mode;
1360 	u8 nr_reserved_ioapic_pins;
1361 
1362 	bool disabled_lapic_found;
1363 
1364 	bool x2apic_format;
1365 	bool x2apic_broadcast_quirk_disabled;
1366 
1367 	bool guest_can_read_msr_platform_info;
1368 	bool exception_payload_enabled;
1369 
1370 	bool triple_fault_event;
1371 
1372 	bool bus_lock_detection_enabled;
1373 	bool enable_pmu;
1374 
1375 	u32 notify_window;
1376 	u32 notify_vmexit_flags;
1377 	/*
1378 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1379 	 * emulator fails to emulate an instruction, allow userspace
1380 	 * the opportunity to look at it.
1381 	 */
1382 	bool exit_on_emulation_error;
1383 
1384 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1385 	u32 user_space_msr_mask;
1386 	struct kvm_x86_msr_filter __rcu *msr_filter;
1387 
1388 	u32 hypercall_exit_enabled;
1389 
1390 	/* Guest can access the SGX PROVISIONKEY. */
1391 	bool sgx_provisioning_allowed;
1392 
1393 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1394 	struct task_struct *nx_huge_page_recovery_thread;
1395 
1396 #ifdef CONFIG_X86_64
1397 	/* The number of TDP MMU pages across all roots. */
1398 	atomic64_t tdp_mmu_pages;
1399 
1400 	/*
1401 	 * List of struct kvm_mmu_pages being used as roots.
1402 	 * All struct kvm_mmu_pages in the list should have
1403 	 * tdp_mmu_page set.
1404 	 *
1405 	 * For reads, this list is protected by:
1406 	 *	the MMU lock in read mode + RCU or
1407 	 *	the MMU lock in write mode
1408 	 *
1409 	 * For writes, this list is protected by:
1410 	 *	the MMU lock in read mode + the tdp_mmu_pages_lock or
1411 	 *	the MMU lock in write mode
1412 	 *
1413 	 * Roots will remain in the list until their tdp_mmu_root_count
1414 	 * drops to zero, at which point the thread that decremented the
1415 	 * count to zero should removed the root from the list and clean
1416 	 * it up, freeing the root after an RCU grace period.
1417 	 */
1418 	struct list_head tdp_mmu_roots;
1419 
1420 	/*
1421 	 * Protects accesses to the following fields when the MMU lock
1422 	 * is held in read mode:
1423 	 *  - tdp_mmu_roots (above)
1424 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1425 	 *  - possible_nx_huge_pages;
1426 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1427 	 *    by the TDP MMU
1428 	 * It is acceptable, but not necessary, to acquire this lock when
1429 	 * the thread holds the MMU lock in write mode.
1430 	 */
1431 	spinlock_t tdp_mmu_pages_lock;
1432 #endif /* CONFIG_X86_64 */
1433 
1434 	/*
1435 	 * If set, at least one shadow root has been allocated. This flag
1436 	 * is used as one input when determining whether certain memslot
1437 	 * related allocations are necessary.
1438 	 */
1439 	bool shadow_root_allocated;
1440 
1441 #if IS_ENABLED(CONFIG_HYPERV)
1442 	hpa_t	hv_root_tdp;
1443 	spinlock_t hv_root_tdp_lock;
1444 #endif
1445 	/*
1446 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1447 	 * that increase along with the maximum vCPU ID, in which case, using
1448 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1449 	 */
1450 	u32 max_vcpu_ids;
1451 
1452 	bool disable_nx_huge_pages;
1453 
1454 	/*
1455 	 * Memory caches used to allocate shadow pages when performing eager
1456 	 * page splitting. No need for a shadowed_info_cache since eager page
1457 	 * splitting only allocates direct shadow pages.
1458 	 *
1459 	 * Protected by kvm->slots_lock.
1460 	 */
1461 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1462 	struct kvm_mmu_memory_cache split_page_header_cache;
1463 
1464 	/*
1465 	 * Memory cache used to allocate pte_list_desc structs while splitting
1466 	 * huge pages. In the worst case, to split one huge page, 512
1467 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1468 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1469 	 * page table.
1470 	 *
1471 	 * Protected by kvm->slots_lock.
1472 	 */
1473 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1474 	struct kvm_mmu_memory_cache split_desc_cache;
1475 };
1476 
1477 struct kvm_vm_stat {
1478 	struct kvm_vm_stat_generic generic;
1479 	u64 mmu_shadow_zapped;
1480 	u64 mmu_pte_write;
1481 	u64 mmu_pde_zapped;
1482 	u64 mmu_flooded;
1483 	u64 mmu_recycled;
1484 	u64 mmu_cache_miss;
1485 	u64 mmu_unsync;
1486 	union {
1487 		struct {
1488 			atomic64_t pages_4k;
1489 			atomic64_t pages_2m;
1490 			atomic64_t pages_1g;
1491 		};
1492 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1493 	};
1494 	u64 nx_lpage_splits;
1495 	u64 max_mmu_page_hash_collisions;
1496 	u64 max_mmu_rmap_size;
1497 };
1498 
1499 struct kvm_vcpu_stat {
1500 	struct kvm_vcpu_stat_generic generic;
1501 	u64 pf_taken;
1502 	u64 pf_fixed;
1503 	u64 pf_emulate;
1504 	u64 pf_spurious;
1505 	u64 pf_fast;
1506 	u64 pf_mmio_spte_created;
1507 	u64 pf_guest;
1508 	u64 tlb_flush;
1509 	u64 invlpg;
1510 
1511 	u64 exits;
1512 	u64 io_exits;
1513 	u64 mmio_exits;
1514 	u64 signal_exits;
1515 	u64 irq_window_exits;
1516 	u64 nmi_window_exits;
1517 	u64 l1d_flush;
1518 	u64 halt_exits;
1519 	u64 request_irq_exits;
1520 	u64 irq_exits;
1521 	u64 host_state_reload;
1522 	u64 fpu_reload;
1523 	u64 insn_emulation;
1524 	u64 insn_emulation_fail;
1525 	u64 hypercalls;
1526 	u64 irq_injections;
1527 	u64 nmi_injections;
1528 	u64 req_event;
1529 	u64 nested_run;
1530 	u64 directed_yield_attempted;
1531 	u64 directed_yield_successful;
1532 	u64 preemption_reported;
1533 	u64 preemption_other;
1534 	u64 guest_mode;
1535 	u64 notify_window_exits;
1536 };
1537 
1538 struct x86_instruction_info;
1539 
1540 struct msr_data {
1541 	bool host_initiated;
1542 	u32 index;
1543 	u64 data;
1544 };
1545 
1546 struct kvm_lapic_irq {
1547 	u32 vector;
1548 	u16 delivery_mode;
1549 	u16 dest_mode;
1550 	bool level;
1551 	u16 trig_mode;
1552 	u32 shorthand;
1553 	u32 dest_id;
1554 	bool msi_redir_hint;
1555 };
1556 
1557 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1558 {
1559 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1560 }
1561 
1562 struct kvm_x86_ops {
1563 	const char *name;
1564 
1565 	int (*check_processor_compatibility)(void);
1566 
1567 	int (*hardware_enable)(void);
1568 	void (*hardware_disable)(void);
1569 	void (*hardware_unsetup)(void);
1570 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1571 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1572 
1573 	unsigned int vm_size;
1574 	int (*vm_init)(struct kvm *kvm);
1575 	void (*vm_destroy)(struct kvm *kvm);
1576 
1577 	/* Create, but do not attach this VCPU */
1578 	int (*vcpu_precreate)(struct kvm *kvm);
1579 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1580 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1581 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1582 
1583 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1584 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1585 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1586 
1587 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1588 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1589 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1590 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1591 	void (*get_segment)(struct kvm_vcpu *vcpu,
1592 			    struct kvm_segment *var, int seg);
1593 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1594 	void (*set_segment)(struct kvm_vcpu *vcpu,
1595 			    struct kvm_segment *var, int seg);
1596 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1597 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1598 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1599 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1600 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1601 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1602 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1603 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1604 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1605 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1606 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1607 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1608 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1609 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1610 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1611 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1612 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1613 
1614 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1615 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1616 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1617 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1618 					gfn_t nr_pages);
1619 
1620 	/*
1621 	 * Flush any TLB entries associated with the given GVA.
1622 	 * Does not need to flush GPA->HPA mappings.
1623 	 * Can potentially get non-canonical addresses through INVLPGs, which
1624 	 * the implementation may choose to ignore if appropriate.
1625 	 */
1626 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1627 
1628 	/*
1629 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1630 	 * does not need to flush GPA->HPA mappings.
1631 	 */
1632 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1633 
1634 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1635 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
1636 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1637 		enum exit_fastpath_completion exit_fastpath);
1638 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1639 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1640 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1641 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1642 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1643 				unsigned char *hypercall_addr);
1644 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1645 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1646 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1647 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1648 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1649 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1650 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1651 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1652 	/* Whether or not a virtual NMI is pending in hardware. */
1653 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1654 	/*
1655 	 * Attempt to pend a virtual NMI in harware.  Returns %true on success
1656 	 * to allow using static_call_ret0 as the fallback.
1657 	 */
1658 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1659 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1660 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1661 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1662 	bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1663 	const unsigned long required_apicv_inhibits;
1664 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1665 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1666 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1667 	void (*hwapic_isr_update)(int isr);
1668 	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1669 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1670 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1671 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1672 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1673 				  int trig_mode, int vector);
1674 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1675 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1676 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1677 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1678 
1679 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1680 			     int root_level);
1681 
1682 	bool (*has_wbinvd_exit)(void);
1683 
1684 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1685 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1686 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1687 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1688 
1689 	/*
1690 	 * Retrieve somewhat arbitrary exit information.  Intended to
1691 	 * be used only from within tracepoints or error paths.
1692 	 */
1693 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1694 			      u64 *info1, u64 *info2,
1695 			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1696 
1697 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1698 			       struct x86_instruction_info *info,
1699 			       enum x86_intercept_stage stage,
1700 			       struct x86_exception *exception);
1701 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1702 
1703 	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1704 
1705 	void (*sched_in)(struct kvm_vcpu *vcpu, int cpu);
1706 
1707 	/*
1708 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1709 	 * value indicates CPU dirty logging is unsupported or disabled.
1710 	 */
1711 	int cpu_dirty_log_size;
1712 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1713 
1714 	const struct kvm_x86_nested_ops *nested_ops;
1715 
1716 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1717 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1718 
1719 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1720 			      uint32_t guest_irq, bool set);
1721 	void (*pi_start_assignment)(struct kvm *kvm);
1722 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1723 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1724 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1725 
1726 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1727 			    bool *expired);
1728 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1729 
1730 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1731 
1732 #ifdef CONFIG_KVM_SMM
1733 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1734 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1735 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1736 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1737 #endif
1738 
1739 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1740 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1741 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1742 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1743 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1744 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1745 
1746 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1747 
1748 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1749 					 void *insn, int insn_len);
1750 
1751 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1752 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1753 
1754 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1755 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1756 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1757 
1758 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1759 
1760 	/*
1761 	 * Returns vCPU specific APICv inhibit reasons
1762 	 */
1763 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1764 };
1765 
1766 struct kvm_x86_nested_ops {
1767 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1768 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1769 				    u32 error_code);
1770 	int (*check_events)(struct kvm_vcpu *vcpu);
1771 	bool (*has_events)(struct kvm_vcpu *vcpu);
1772 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1773 	int (*get_state)(struct kvm_vcpu *vcpu,
1774 			 struct kvm_nested_state __user *user_kvm_nested_state,
1775 			 unsigned user_data_size);
1776 	int (*set_state)(struct kvm_vcpu *vcpu,
1777 			 struct kvm_nested_state __user *user_kvm_nested_state,
1778 			 struct kvm_nested_state *kvm_state);
1779 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1780 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1781 
1782 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1783 			    uint16_t *vmcs_version);
1784 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1785 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1786 };
1787 
1788 struct kvm_x86_init_ops {
1789 	int (*hardware_setup)(void);
1790 	unsigned int (*handle_intel_pt_intr)(void);
1791 
1792 	struct kvm_x86_ops *runtime_ops;
1793 	struct kvm_pmu_ops *pmu_ops;
1794 };
1795 
1796 struct kvm_arch_async_pf {
1797 	u32 token;
1798 	gfn_t gfn;
1799 	unsigned long cr3;
1800 	bool direct_map;
1801 };
1802 
1803 extern u32 __read_mostly kvm_nr_uret_msrs;
1804 extern u64 __read_mostly host_efer;
1805 extern bool __read_mostly allow_smaller_maxphyaddr;
1806 extern bool __read_mostly enable_apicv;
1807 extern struct kvm_x86_ops kvm_x86_ops;
1808 
1809 #define KVM_X86_OP(func) \
1810 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1811 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1812 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1813 #include <asm/kvm-x86-ops.h>
1814 
1815 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1816 void kvm_x86_vendor_exit(void);
1817 
1818 #define __KVM_HAVE_ARCH_VM_ALLOC
1819 static inline struct kvm *kvm_arch_alloc_vm(void)
1820 {
1821 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1822 }
1823 
1824 #define __KVM_HAVE_ARCH_VM_FREE
1825 void kvm_arch_free_vm(struct kvm *kvm);
1826 
1827 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1828 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1829 {
1830 	if (kvm_x86_ops.flush_remote_tlbs &&
1831 	    !static_call(kvm_x86_flush_remote_tlbs)(kvm))
1832 		return 0;
1833 	else
1834 		return -ENOTSUPP;
1835 }
1836 
1837 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1838 
1839 #define kvm_arch_pmi_in_guest(vcpu) \
1840 	((vcpu) && (vcpu)->arch.handling_intr_from_guest)
1841 
1842 void __init kvm_mmu_x86_module_init(void);
1843 int kvm_mmu_vendor_module_init(void);
1844 void kvm_mmu_vendor_module_exit(void);
1845 
1846 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1847 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1848 void kvm_mmu_init_vm(struct kvm *kvm);
1849 void kvm_mmu_uninit_vm(struct kvm *kvm);
1850 
1851 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1852 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1853 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1854 				      const struct kvm_memory_slot *memslot,
1855 				      int start_level);
1856 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1857 				       const struct kvm_memory_slot *memslot,
1858 				       int target_level);
1859 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1860 				  const struct kvm_memory_slot *memslot,
1861 				  u64 start, u64 end,
1862 				  int target_level);
1863 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1864 				   const struct kvm_memory_slot *memslot);
1865 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1866 				   const struct kvm_memory_slot *memslot);
1867 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1868 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1869 
1870 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1871 
1872 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1873 			  const void *val, int bytes);
1874 
1875 struct kvm_irq_mask_notifier {
1876 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1877 	int irq;
1878 	struct hlist_node link;
1879 };
1880 
1881 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1882 				    struct kvm_irq_mask_notifier *kimn);
1883 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1884 				      struct kvm_irq_mask_notifier *kimn);
1885 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1886 			     bool mask);
1887 
1888 extern bool tdp_enabled;
1889 
1890 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1891 
1892 /*
1893  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1894  *			userspace I/O) to indicate that the emulation context
1895  *			should be reused as is, i.e. skip initialization of
1896  *			emulation context, instruction fetch and decode.
1897  *
1898  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1899  *		      Indicates that only select instructions (tagged with
1900  *		      EmulateOnUD) should be emulated (to minimize the emulator
1901  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1902  *
1903  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1904  *		   decode the instruction length.  For use *only* by
1905  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
1906  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
1907  *
1908  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1909  *			     retry native execution under certain conditions,
1910  *			     Can only be set in conjunction with EMULTYPE_PF.
1911  *
1912  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1913  *			     triggered by KVM's magic "force emulation" prefix,
1914  *			     which is opt in via module param (off by default).
1915  *			     Bypasses EmulateOnUD restriction despite emulating
1916  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1917  *			     Used to test the full emulator from userspace.
1918  *
1919  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1920  *			backdoor emulation, which is opt in via module param.
1921  *			VMware backdoor emulation handles select instructions
1922  *			and reinjects the #GP for all other cases.
1923  *
1924  * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1925  *		 case the CR2/GPA value pass on the stack is valid.
1926  *
1927  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1928  *				 state and inject single-step #DBs after skipping
1929  *				 an instruction (after completing userspace I/O).
1930  *
1931  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
1932  *			     is attempting to write a gfn that contains one or
1933  *			     more of the PTEs used to translate the write itself,
1934  *			     and the owning page table is being shadowed by KVM.
1935  *			     If emulation of the faulting instruction fails and
1936  *			     this flag is set, KVM will exit to userspace instead
1937  *			     of retrying emulation as KVM cannot make forward
1938  *			     progress.
1939  *
1940  *			     If emulation fails for a write to guest page tables,
1941  *			     KVM unprotects (zaps) the shadow page for the target
1942  *			     gfn and resumes the guest to retry the non-emulatable
1943  *			     instruction (on hardware).  Unprotecting the gfn
1944  *			     doesn't allow forward progress for a self-changing
1945  *			     access because doing so also zaps the translation for
1946  *			     the gfn, i.e. retrying the instruction will hit a
1947  *			     !PRESENT fault, which results in a new shadow page
1948  *			     and sends KVM back to square one.
1949  */
1950 #define EMULTYPE_NO_DECODE	    (1 << 0)
1951 #define EMULTYPE_TRAP_UD	    (1 << 1)
1952 #define EMULTYPE_SKIP		    (1 << 2)
1953 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
1954 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
1955 #define EMULTYPE_VMWARE_GP	    (1 << 5)
1956 #define EMULTYPE_PF		    (1 << 6)
1957 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
1958 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
1959 
1960 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1961 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1962 					void *insn, int insn_len);
1963 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
1964 					  u64 *data, u8 ndata);
1965 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
1966 
1967 void kvm_enable_efer_bits(u64);
1968 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1969 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1970 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1971 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1972 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1973 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1974 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1975 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1976 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1977 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1978 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1979 
1980 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1981 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1982 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1983 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
1984 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1985 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1986 
1987 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1988 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1989 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1990 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1991 
1992 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1993 		    int reason, bool has_error_code, u32 error_code);
1994 
1995 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1996 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1997 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1998 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1999 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2000 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2001 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2002 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
2003 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2004 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2005 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2006 
2007 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2008 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2009 
2010 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2011 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2012 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2013 
2014 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2015 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2016 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2017 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2018 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2019 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2020 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2021 				    struct x86_exception *fault);
2022 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2023 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2024 
2025 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2026 				       int irq_source_id, int level)
2027 {
2028 	/* Logical OR for level trig interrupt */
2029 	if (level)
2030 		__set_bit(irq_source_id, irq_state);
2031 	else
2032 		__clear_bit(irq_source_id, irq_state);
2033 
2034 	return !!(*irq_state);
2035 }
2036 
2037 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2038 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2039 
2040 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2041 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2042 
2043 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2044 
2045 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
2046 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2047 			ulong roots_to_free);
2048 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2049 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2050 			      struct x86_exception *exception);
2051 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2052 			       struct x86_exception *exception);
2053 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2054 				struct x86_exception *exception);
2055 
2056 bool kvm_apicv_activated(struct kvm *kvm);
2057 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2058 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2059 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2060 				      enum kvm_apicv_inhibit reason, bool set);
2061 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2062 				    enum kvm_apicv_inhibit reason, bool set);
2063 
2064 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2065 					 enum kvm_apicv_inhibit reason)
2066 {
2067 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2068 }
2069 
2070 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2071 					   enum kvm_apicv_inhibit reason)
2072 {
2073 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2074 }
2075 
2076 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2077 
2078 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2079 		       void *insn, int insn_len);
2080 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2081 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2082 			     u64 addr, unsigned long roots);
2083 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2084 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2085 
2086 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2087 		       int tdp_max_root_level, int tdp_huge_page_level);
2088 
2089 static inline u16 kvm_read_ldt(void)
2090 {
2091 	u16 ldt;
2092 	asm("sldt %0" : "=g"(ldt));
2093 	return ldt;
2094 }
2095 
2096 static inline void kvm_load_ldt(u16 sel)
2097 {
2098 	asm("lldt %0" : : "rm"(sel));
2099 }
2100 
2101 #ifdef CONFIG_X86_64
2102 static inline unsigned long read_msr(unsigned long msr)
2103 {
2104 	u64 value;
2105 
2106 	rdmsrl(msr, value);
2107 	return value;
2108 }
2109 #endif
2110 
2111 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2112 {
2113 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2114 }
2115 
2116 #define TSS_IOPB_BASE_OFFSET 0x66
2117 #define TSS_BASE_SIZE 0x68
2118 #define TSS_IOPB_SIZE (65536 / 8)
2119 #define TSS_REDIRECTION_SIZE (256 / 8)
2120 #define RMODE_TSS_SIZE							\
2121 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2122 
2123 enum {
2124 	TASK_SWITCH_CALL = 0,
2125 	TASK_SWITCH_IRET = 1,
2126 	TASK_SWITCH_JMP = 2,
2127 	TASK_SWITCH_GATE = 3,
2128 };
2129 
2130 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2131 
2132 #ifdef CONFIG_KVM_SMM
2133 #define HF_SMM_MASK		(1 << 1)
2134 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2135 
2136 # define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
2137 # define KVM_ADDRESS_SPACE_NUM 2
2138 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2139 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2140 #else
2141 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2142 #endif
2143 
2144 #define KVM_ARCH_WANT_MMU_NOTIFIER
2145 
2146 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2147 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2148 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2149 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2150 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2151 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2152 
2153 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2154 		    unsigned long ipi_bitmap_high, u32 min,
2155 		    unsigned long icr, int op_64_bit);
2156 
2157 int kvm_add_user_return_msr(u32 msr);
2158 int kvm_find_user_return_msr(u32 msr);
2159 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2160 
2161 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2162 {
2163 	return kvm_find_user_return_msr(msr) >= 0;
2164 }
2165 
2166 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2167 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2168 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2169 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2170 
2171 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2172 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2173 
2174 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2175 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2176 				       unsigned long *vcpu_bitmap);
2177 
2178 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2179 				     struct kvm_async_pf *work);
2180 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2181 				 struct kvm_async_pf *work);
2182 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2183 			       struct kvm_async_pf *work);
2184 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2185 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2186 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2187 
2188 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2189 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2190 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
2191 
2192 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2193 				     u32 size);
2194 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2195 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2196 
2197 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2198 			     struct kvm_vcpu **dest_vcpu);
2199 
2200 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2201 		     struct kvm_lapic_irq *irq);
2202 
2203 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2204 {
2205 	/* We can only post Fixed and LowPrio IRQs */
2206 	return (irq->delivery_mode == APIC_DM_FIXED ||
2207 		irq->delivery_mode == APIC_DM_LOWEST);
2208 }
2209 
2210 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2211 {
2212 	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2213 }
2214 
2215 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2216 {
2217 	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2218 }
2219 
2220 static inline int kvm_cpu_get_apicid(int mps_cpu)
2221 {
2222 #ifdef CONFIG_X86_LOCAL_APIC
2223 	return default_cpu_present_to_apicid(mps_cpu);
2224 #else
2225 	WARN_ON_ONCE(1);
2226 	return BAD_APICID;
2227 #endif
2228 }
2229 
2230 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2231 
2232 #define KVM_CLOCK_VALID_FLAGS						\
2233 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2234 
2235 #define KVM_X86_VALID_QUIRKS			\
2236 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2237 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2238 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2239 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2240 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2241 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2242 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2243 
2244 /*
2245  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2246  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2247  * remaining 31 lower bits must be 0 to preserve ABI.
2248  */
2249 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2250 
2251 #endif /* _ASM_X86_KVM_HOST_H */
2252