xref: /linux/arch/x86/include/asm/kvm_host.h (revision 4e9427aeb9572a4023b42e64ca2cd2ca3cbf7e20)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
28 #include <linux/kfifo.h>
29 #include <linux/sched/vhost_task.h>
30 
31 #include <asm/apic.h>
32 #include <asm/pvclock-abi.h>
33 #include <asm/desc.h>
34 #include <asm/mtrr.h>
35 #include <asm/msr-index.h>
36 #include <asm/asm.h>
37 #include <asm/kvm_page_track.h>
38 #include <asm/kvm_vcpu_regs.h>
39 #include <asm/hyperv-tlfs.h>
40 #include <asm/reboot.h>
41 
42 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
43 
44 /*
45  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
46  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
47  */
48 #ifdef CONFIG_KVM_MAX_NR_VCPUS
49 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
50 #else
51 #define KVM_MAX_VCPUS 1024
52 #endif
53 
54 /*
55  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
56  * might be larger than the actual number of VCPUs because the
57  * APIC ID encodes CPU topology information.
58  *
59  * In the worst case, we'll need less than one extra bit for the
60  * Core ID, and less than one extra bit for the Package (Die) ID,
61  * so ratio of 4 should be enough.
62  */
63 #define KVM_VCPU_ID_RATIO 4
64 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
65 
66 /* memory slots that are not exposed to userspace */
67 #define KVM_INTERNAL_MEM_SLOTS 3
68 
69 #define KVM_HALT_POLL_NS_DEFAULT 200000
70 
71 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
72 
73 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
74 					KVM_DIRTY_LOG_INITIALLY_SET)
75 
76 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
77 						 KVM_BUS_LOCK_DETECTION_EXIT)
78 
79 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
80 						 KVM_X86_NOTIFY_VMEXIT_USER)
81 
82 /* x86-specific vcpu->requests bit members */
83 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
84 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
85 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
86 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
87 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
88 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
89 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
90 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
91 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
92 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
93 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
94 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
95 #ifdef CONFIG_KVM_SMM
96 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
97 #endif
98 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
99 #define KVM_REQ_MCLOCK_INPROGRESS \
100 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
101 #define KVM_REQ_SCAN_IOAPIC \
102 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
103 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
104 #define KVM_REQ_APIC_PAGE_RELOAD \
105 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
106 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
107 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
108 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
109 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
110 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
111 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
112 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
113 #define KVM_REQ_APICV_UPDATE \
114 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
115 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
116 #define KVM_REQ_TLB_FLUSH_GUEST \
117 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
118 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
119 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
120 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
121 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
123 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
124 #define KVM_REQ_HV_TLB_FLUSH \
125 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE	KVM_ARCH_REQ(34)
127 
128 #define CR0_RESERVED_BITS                                               \
129 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
130 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
131 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
132 
133 #define CR4_RESERVED_BITS                                               \
134 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
135 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
136 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
137 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
138 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
139 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
140 			  | X86_CR4_LAM_SUP))
141 
142 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
143 
144 
145 
146 #define INVALID_PAGE (~(hpa_t)0)
147 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
148 
149 /* KVM Hugepage definitions for x86 */
150 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
151 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
152 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
153 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
154 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
155 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
156 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
157 
158 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
159 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
160 #define KVM_MMU_HASH_SHIFT 12
161 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
162 #define KVM_MIN_FREE_MMU_PAGES 5
163 #define KVM_REFILL_PAGES 25
164 #define KVM_MAX_CPUID_ENTRIES 256
165 #define KVM_NR_VAR_MTRR 8
166 
167 #define ASYNC_PF_PER_VCPU 64
168 
169 enum kvm_reg {
170 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
171 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
172 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
173 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
174 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
175 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
176 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
177 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
178 #ifdef CONFIG_X86_64
179 	VCPU_REGS_R8  = __VCPU_REGS_R8,
180 	VCPU_REGS_R9  = __VCPU_REGS_R9,
181 	VCPU_REGS_R10 = __VCPU_REGS_R10,
182 	VCPU_REGS_R11 = __VCPU_REGS_R11,
183 	VCPU_REGS_R12 = __VCPU_REGS_R12,
184 	VCPU_REGS_R13 = __VCPU_REGS_R13,
185 	VCPU_REGS_R14 = __VCPU_REGS_R14,
186 	VCPU_REGS_R15 = __VCPU_REGS_R15,
187 #endif
188 	VCPU_REGS_RIP,
189 	NR_VCPU_REGS,
190 
191 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
192 	VCPU_EXREG_CR0,
193 	VCPU_EXREG_CR3,
194 	VCPU_EXREG_CR4,
195 	VCPU_EXREG_RFLAGS,
196 	VCPU_EXREG_SEGMENTS,
197 	VCPU_EXREG_EXIT_INFO_1,
198 	VCPU_EXREG_EXIT_INFO_2,
199 };
200 
201 enum {
202 	VCPU_SREG_ES,
203 	VCPU_SREG_CS,
204 	VCPU_SREG_SS,
205 	VCPU_SREG_DS,
206 	VCPU_SREG_FS,
207 	VCPU_SREG_GS,
208 	VCPU_SREG_TR,
209 	VCPU_SREG_LDTR,
210 };
211 
212 enum exit_fastpath_completion {
213 	EXIT_FASTPATH_NONE,
214 	EXIT_FASTPATH_REENTER_GUEST,
215 	EXIT_FASTPATH_EXIT_HANDLED,
216 	EXIT_FASTPATH_EXIT_USERSPACE,
217 };
218 typedef enum exit_fastpath_completion fastpath_t;
219 
220 struct x86_emulate_ctxt;
221 struct x86_exception;
222 union kvm_smram;
223 enum x86_intercept;
224 enum x86_intercept_stage;
225 
226 #define KVM_NR_DB_REGS	4
227 
228 #define DR6_BUS_LOCK   (1 << 11)
229 #define DR6_BD		(1 << 13)
230 #define DR6_BS		(1 << 14)
231 #define DR6_BT		(1 << 15)
232 #define DR6_RTM		(1 << 16)
233 /*
234  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
235  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
236  * they will never be 0 for now, but when they are defined
237  * in the future it will require no code change.
238  *
239  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
240  */
241 #define DR6_ACTIVE_LOW	0xffff0ff0
242 #define DR6_VOLATILE	0x0001e80f
243 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
244 
245 #define DR7_BP_EN_MASK	0x000000ff
246 #define DR7_GE		(1 << 9)
247 #define DR7_GD		(1 << 13)
248 #define DR7_FIXED_1	0x00000400
249 #define DR7_VOLATILE	0xffff2bff
250 
251 #define KVM_GUESTDBG_VALID_MASK \
252 	(KVM_GUESTDBG_ENABLE | \
253 	KVM_GUESTDBG_SINGLESTEP | \
254 	KVM_GUESTDBG_USE_HW_BP | \
255 	KVM_GUESTDBG_USE_SW_BP | \
256 	KVM_GUESTDBG_INJECT_BP | \
257 	KVM_GUESTDBG_INJECT_DB | \
258 	KVM_GUESTDBG_BLOCKIRQ)
259 
260 #define PFERR_PRESENT_MASK	BIT(0)
261 #define PFERR_WRITE_MASK	BIT(1)
262 #define PFERR_USER_MASK		BIT(2)
263 #define PFERR_RSVD_MASK		BIT(3)
264 #define PFERR_FETCH_MASK	BIT(4)
265 #define PFERR_PK_MASK		BIT(5)
266 #define PFERR_SGX_MASK		BIT(15)
267 #define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
268 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
269 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
270 #define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
271 #define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
272 #define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
273 
274 /*
275  * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
276  * when emulating instructions that triggers implicit access.
277  */
278 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
279 /*
280  * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
281  * when the guest was accessing private memory.
282  */
283 #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
284 #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
285 
286 /* apic attention bits */
287 #define KVM_APIC_CHECK_VAPIC	0
288 /*
289  * The following bit is set with PV-EOI, unset on EOI.
290  * We detect PV-EOI changes by guest by comparing
291  * this bit with PV-EOI in guest memory.
292  * See the implementation in apic_update_pv_eoi.
293  */
294 #define KVM_APIC_PV_EOI_PENDING	1
295 
296 struct kvm_kernel_irq_routing_entry;
297 
298 /*
299  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
300  * also includes TDP pages) to determine whether or not a page can be used in
301  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
302  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
303  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
304  *
305  * Upper-level shadow pages having gptes are tracked for write-protection via
306  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
307  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
308  * otherwise gfn_write_track will overflow and explosions will ensue.
309  *
310  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
311  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
312  * incorporates various mode bits and properties of the SP.  Roughly speaking,
313  * the number of unique SPs that can theoretically be created is 2^n, where n
314  * is the number of bits that are used to compute the role.
315  *
316  * But, even though there are 19 bits in the mask below, not all combinations
317  * of modes and flags are possible:
318  *
319  *   - invalid shadow pages are not accounted, so the bits are effectively 18
320  *
321  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
322  *     execonly and ad_disabled are only used for nested EPT which has
323  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
324  *
325  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
326  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
327  *     paging has exactly one upper level, making level completely redundant
328  *     when has_4_byte_gpte=1.
329  *
330  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
331  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
332  *
333  * Therefore, the maximum number of possible upper-level shadow pages for a
334  * single gfn is a bit less than 2^13.
335  */
336 union kvm_mmu_page_role {
337 	u32 word;
338 	struct {
339 		unsigned level:4;
340 		unsigned has_4_byte_gpte:1;
341 		unsigned quadrant:2;
342 		unsigned direct:1;
343 		unsigned access:3;
344 		unsigned invalid:1;
345 		unsigned efer_nx:1;
346 		unsigned cr0_wp:1;
347 		unsigned smep_andnot_wp:1;
348 		unsigned smap_andnot_wp:1;
349 		unsigned ad_disabled:1;
350 		unsigned guest_mode:1;
351 		unsigned passthrough:1;
352 		unsigned :5;
353 
354 		/*
355 		 * This is left at the top of the word so that
356 		 * kvm_memslots_for_spte_role can extract it with a
357 		 * simple shift.  While there is room, give it a whole
358 		 * byte so it is also faster to load it from memory.
359 		 */
360 		unsigned smm:8;
361 	};
362 };
363 
364 /*
365  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
366  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
367  * including on nested transitions, if nothing in the full role changes then
368  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
369  * don't treat all-zero structure as valid data.
370  *
371  * The properties that are tracked in the extended role but not the page role
372  * are for things that either (a) do not affect the validity of the shadow page
373  * or (b) are indirectly reflected in the shadow page's role.  For example,
374  * CR4.PKE only affects permission checks for software walks of the guest page
375  * tables (because KVM doesn't support Protection Keys with shadow paging), and
376  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
377  *
378  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
379  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
380  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
381  * SMAP aware regardless of CR0.WP.
382  */
383 union kvm_mmu_extended_role {
384 	u32 word;
385 	struct {
386 		unsigned int valid:1;
387 		unsigned int execonly:1;
388 		unsigned int cr4_pse:1;
389 		unsigned int cr4_pke:1;
390 		unsigned int cr4_smap:1;
391 		unsigned int cr4_smep:1;
392 		unsigned int cr4_la57:1;
393 		unsigned int efer_lma:1;
394 	};
395 };
396 
397 union kvm_cpu_role {
398 	u64 as_u64;
399 	struct {
400 		union kvm_mmu_page_role base;
401 		union kvm_mmu_extended_role ext;
402 	};
403 };
404 
405 struct kvm_rmap_head {
406 	unsigned long val;
407 };
408 
409 struct kvm_pio_request {
410 	unsigned long linear_rip;
411 	unsigned long count;
412 	int in;
413 	int port;
414 	int size;
415 };
416 
417 #define PT64_ROOT_MAX_LEVEL 5
418 
419 struct rsvd_bits_validate {
420 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
421 	u64 bad_mt_xwr;
422 };
423 
424 struct kvm_mmu_root_info {
425 	gpa_t pgd;
426 	hpa_t hpa;
427 };
428 
429 #define KVM_MMU_ROOT_INFO_INVALID \
430 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
431 
432 #define KVM_MMU_NUM_PREV_ROOTS 3
433 
434 #define KVM_MMU_ROOT_CURRENT		BIT(0)
435 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
436 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
437 
438 #define KVM_HAVE_MMU_RWLOCK
439 
440 struct kvm_mmu_page;
441 struct kvm_page_fault;
442 
443 /*
444  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
445  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
446  * current mmu mode.
447  */
448 struct kvm_mmu {
449 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
450 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
451 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
452 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
453 				  struct x86_exception *fault);
454 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
455 			    gpa_t gva_or_gpa, u64 access,
456 			    struct x86_exception *exception);
457 	int (*sync_spte)(struct kvm_vcpu *vcpu,
458 			 struct kvm_mmu_page *sp, int i);
459 	struct kvm_mmu_root_info root;
460 	union kvm_cpu_role cpu_role;
461 	union kvm_mmu_page_role root_role;
462 
463 	/*
464 	* The pkru_mask indicates if protection key checks are needed.  It
465 	* consists of 16 domains indexed by page fault error code bits [4:1],
466 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
467 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
468 	*/
469 	u32 pkru_mask;
470 
471 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
472 
473 	/*
474 	 * Bitmap; bit set = permission fault
475 	 * Byte index: page fault error code [4:1]
476 	 * Bit index: pte permissions in ACC_* format
477 	 */
478 	u8 permissions[16];
479 
480 	u64 *pae_root;
481 	u64 *pml4_root;
482 	u64 *pml5_root;
483 
484 	/*
485 	 * check zero bits on shadow page table entries, these
486 	 * bits include not only hardware reserved bits but also
487 	 * the bits spte never used.
488 	 */
489 	struct rsvd_bits_validate shadow_zero_check;
490 
491 	struct rsvd_bits_validate guest_rsvd_check;
492 
493 	u64 pdptrs[4]; /* pae */
494 };
495 
496 enum pmc_type {
497 	KVM_PMC_GP = 0,
498 	KVM_PMC_FIXED,
499 };
500 
501 struct kvm_pmc {
502 	enum pmc_type type;
503 	u8 idx;
504 	bool is_paused;
505 	bool intr;
506 	/*
507 	 * Base value of the PMC counter, relative to the *consumed* count in
508 	 * the associated perf_event.  This value includes counter updates from
509 	 * the perf_event and emulated_count since the last time the counter
510 	 * was reprogrammed, but it is *not* the current value as seen by the
511 	 * guest or userspace.
512 	 *
513 	 * The count is relative to the associated perf_event so that KVM
514 	 * doesn't need to reprogram the perf_event every time the guest writes
515 	 * to the counter.
516 	 */
517 	u64 counter;
518 	/*
519 	 * PMC events triggered by KVM emulation that haven't been fully
520 	 * processed, i.e. haven't undergone overflow detection.
521 	 */
522 	u64 emulated_counter;
523 	u64 eventsel;
524 	struct perf_event *perf_event;
525 	struct kvm_vcpu *vcpu;
526 	/*
527 	 * only for creating or reusing perf_event,
528 	 * eventsel value for general purpose counters,
529 	 * ctrl value for fixed counters.
530 	 */
531 	u64 current_config;
532 };
533 
534 /* More counters may conflict with other existing Architectural MSRs */
535 #define KVM_MAX(a, b)	((a) >= (b) ? (a) : (b))
536 #define KVM_MAX_NR_INTEL_GP_COUNTERS	8
537 #define KVM_MAX_NR_AMD_GP_COUNTERS	6
538 #define KVM_MAX_NR_GP_COUNTERS		KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
539 						KVM_MAX_NR_AMD_GP_COUNTERS)
540 
541 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS	3
542 #define KVM_MAX_NR_AMD_FIXED_COUTNERS	0
543 #define KVM_MAX_NR_FIXED_COUNTERS	KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
544 						KVM_MAX_NR_AMD_FIXED_COUTNERS)
545 
546 struct kvm_pmu {
547 	u8 version;
548 	unsigned nr_arch_gp_counters;
549 	unsigned nr_arch_fixed_counters;
550 	unsigned available_event_types;
551 	u64 fixed_ctr_ctrl;
552 	u64 fixed_ctr_ctrl_rsvd;
553 	u64 global_ctrl;
554 	u64 global_status;
555 	u64 counter_bitmask[2];
556 	u64 global_ctrl_rsvd;
557 	u64 global_status_rsvd;
558 	u64 reserved_bits;
559 	u64 raw_event_mask;
560 	struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
561 	struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
562 
563 	/*
564 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
565 	 * set in a single access, e.g. to reprogram all counters when the PMU
566 	 * filter changes.
567 	 */
568 	union {
569 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
570 		atomic64_t __reprogram_pmi;
571 	};
572 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
573 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
574 
575 	u64 ds_area;
576 	u64 pebs_enable;
577 	u64 pebs_enable_rsvd;
578 	u64 pebs_data_cfg;
579 	u64 pebs_data_cfg_rsvd;
580 
581 	/*
582 	 * If a guest counter is cross-mapped to host counter with different
583 	 * index, its PEBS capability will be temporarily disabled.
584 	 *
585 	 * The user should make sure that this mask is updated
586 	 * after disabling interrupts and before perf_guest_get_msrs();
587 	 */
588 	u64 host_cross_mapped_mask;
589 
590 	/*
591 	 * The gate to release perf_events not marked in
592 	 * pmc_in_use only once in a vcpu time slice.
593 	 */
594 	bool need_cleanup;
595 
596 	/*
597 	 * The total number of programmed perf_events and it helps to avoid
598 	 * redundant check before cleanup if guest don't use vPMU at all.
599 	 */
600 	u8 event_count;
601 };
602 
603 struct kvm_pmu_ops;
604 
605 enum {
606 	KVM_DEBUGREG_BP_ENABLED = 1,
607 	KVM_DEBUGREG_WONT_EXIT = 2,
608 };
609 
610 struct kvm_mtrr {
611 	u64 var[KVM_NR_VAR_MTRR * 2];
612 	u64 fixed_64k;
613 	u64 fixed_16k[2];
614 	u64 fixed_4k[8];
615 	u64 deftype;
616 };
617 
618 /* Hyper-V SynIC timer */
619 struct kvm_vcpu_hv_stimer {
620 	struct hrtimer timer;
621 	int index;
622 	union hv_stimer_config config;
623 	u64 count;
624 	u64 exp_time;
625 	struct hv_message msg;
626 	bool msg_pending;
627 };
628 
629 /* Hyper-V synthetic interrupt controller (SynIC)*/
630 struct kvm_vcpu_hv_synic {
631 	u64 version;
632 	u64 control;
633 	u64 msg_page;
634 	u64 evt_page;
635 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
636 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
637 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
638 	DECLARE_BITMAP(vec_bitmap, 256);
639 	bool active;
640 	bool dont_zero_synic_pages;
641 };
642 
643 /* The maximum number of entries on the TLB flush fifo. */
644 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
645 /*
646  * Note: the following 'magic' entry is made up by KVM to avoid putting
647  * anything besides GVA on the TLB flush fifo. It is theoretically possible
648  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
649  * which will look identical. KVM's action to 'flush everything' instead of
650  * flushing these particular addresses is, however, fully legitimate as
651  * flushing more than requested is always OK.
652  */
653 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
654 
655 enum hv_tlb_flush_fifos {
656 	HV_L1_TLB_FLUSH_FIFO,
657 	HV_L2_TLB_FLUSH_FIFO,
658 	HV_NR_TLB_FLUSH_FIFOS,
659 };
660 
661 struct kvm_vcpu_hv_tlb_flush_fifo {
662 	spinlock_t write_lock;
663 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
664 };
665 
666 /* Hyper-V per vcpu emulation context */
667 struct kvm_vcpu_hv {
668 	struct kvm_vcpu *vcpu;
669 	u32 vp_index;
670 	u64 hv_vapic;
671 	s64 runtime_offset;
672 	struct kvm_vcpu_hv_synic synic;
673 	struct kvm_hyperv_exit exit;
674 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
675 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
676 	bool enforce_cpuid;
677 	struct {
678 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
679 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
680 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
681 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
682 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
683 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
684 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
685 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
686 	} cpuid_cache;
687 
688 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
689 
690 	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
691 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
692 
693 	struct hv_vp_assist_page vp_assist_page;
694 
695 	struct {
696 		u64 pa_page_gpa;
697 		u64 vm_id;
698 		u32 vp_id;
699 	} nested;
700 };
701 
702 struct kvm_hypervisor_cpuid {
703 	u32 base;
704 	u32 limit;
705 };
706 
707 #ifdef CONFIG_KVM_XEN
708 /* Xen HVM per vcpu emulation context */
709 struct kvm_vcpu_xen {
710 	u64 hypercall_rip;
711 	u32 current_runstate;
712 	u8 upcall_vector;
713 	struct gfn_to_pfn_cache vcpu_info_cache;
714 	struct gfn_to_pfn_cache vcpu_time_info_cache;
715 	struct gfn_to_pfn_cache runstate_cache;
716 	struct gfn_to_pfn_cache runstate2_cache;
717 	u64 last_steal;
718 	u64 runstate_entry_time;
719 	u64 runstate_times[4];
720 	unsigned long evtchn_pending_sel;
721 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
722 	u32 timer_virq;
723 	u64 timer_expires; /* In guest epoch */
724 	atomic_t timer_pending;
725 	struct hrtimer timer;
726 	int poll_evtchn;
727 	struct timer_list poll_timer;
728 	struct kvm_hypervisor_cpuid cpuid;
729 };
730 #endif
731 
732 struct kvm_queued_exception {
733 	bool pending;
734 	bool injected;
735 	bool has_error_code;
736 	u8 vector;
737 	u32 error_code;
738 	unsigned long payload;
739 	bool has_payload;
740 };
741 
742 /*
743  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
744  * unknown to the kernel, but need to be directly used by KVM.  Note, these
745  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
746  */
747 enum kvm_only_cpuid_leafs {
748 	CPUID_12_EAX	 = NCAPINTS,
749 	CPUID_7_1_EDX,
750 	CPUID_8000_0007_EDX,
751 	CPUID_8000_0022_EAX,
752 	CPUID_7_2_EDX,
753 	CPUID_24_0_EBX,
754 	NR_KVM_CPU_CAPS,
755 
756 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
757 };
758 
759 struct kvm_vcpu_arch {
760 	/*
761 	 * rip and regs accesses must go through
762 	 * kvm_{register,rip}_{read,write} functions.
763 	 */
764 	unsigned long regs[NR_VCPU_REGS];
765 	u32 regs_avail;
766 	u32 regs_dirty;
767 
768 	unsigned long cr0;
769 	unsigned long cr0_guest_owned_bits;
770 	unsigned long cr2;
771 	unsigned long cr3;
772 	unsigned long cr4;
773 	unsigned long cr4_guest_owned_bits;
774 	unsigned long cr4_guest_rsvd_bits;
775 	unsigned long cr8;
776 	u32 host_pkru;
777 	u32 pkru;
778 	u32 hflags;
779 	u64 efer;
780 	u64 apic_base;
781 	struct kvm_lapic *apic;    /* kernel irqchip context */
782 	bool load_eoi_exitmap_pending;
783 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
784 	unsigned long apic_attention;
785 	int32_t apic_arb_prio;
786 	int mp_state;
787 	u64 ia32_misc_enable_msr;
788 	u64 smbase;
789 	u64 smi_count;
790 	bool at_instruction_boundary;
791 	bool tpr_access_reporting;
792 	bool xfd_no_write_intercept;
793 	u64 ia32_xss;
794 	u64 microcode_version;
795 	u64 arch_capabilities;
796 	u64 perf_capabilities;
797 
798 	/*
799 	 * Paging state of the vcpu
800 	 *
801 	 * If the vcpu runs in guest mode with two level paging this still saves
802 	 * the paging mode of the l1 guest. This context is always used to
803 	 * handle faults.
804 	 */
805 	struct kvm_mmu *mmu;
806 
807 	/* Non-nested MMU for L1 */
808 	struct kvm_mmu root_mmu;
809 
810 	/* L1 MMU when running nested */
811 	struct kvm_mmu guest_mmu;
812 
813 	/*
814 	 * Paging state of an L2 guest (used for nested npt)
815 	 *
816 	 * This context will save all necessary information to walk page tables
817 	 * of an L2 guest. This context is only initialized for page table
818 	 * walking and not for faulting since we never handle l2 page faults on
819 	 * the host.
820 	 */
821 	struct kvm_mmu nested_mmu;
822 
823 	/*
824 	 * Pointer to the mmu context currently used for
825 	 * gva_to_gpa translations.
826 	 */
827 	struct kvm_mmu *walk_mmu;
828 
829 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
830 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
831 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
832 	struct kvm_mmu_memory_cache mmu_page_header_cache;
833 
834 	/*
835 	 * QEMU userspace and the guest each have their own FPU state.
836 	 * In vcpu_run, we switch between the user and guest FPU contexts.
837 	 * While running a VCPU, the VCPU thread will have the guest FPU
838 	 * context.
839 	 *
840 	 * Note that while the PKRU state lives inside the fpu registers,
841 	 * it is switched out separately at VMENTER and VMEXIT time. The
842 	 * "guest_fpstate" state here contains the guest FPU context, with the
843 	 * host PRKU bits.
844 	 */
845 	struct fpu_guest guest_fpu;
846 
847 	u64 xcr0;
848 	u64 guest_supported_xcr0;
849 
850 	struct kvm_pio_request pio;
851 	void *pio_data;
852 	void *sev_pio_data;
853 	unsigned sev_pio_count;
854 
855 	u8 event_exit_inst_len;
856 
857 	bool exception_from_userspace;
858 
859 	/* Exceptions to be injected to the guest. */
860 	struct kvm_queued_exception exception;
861 	/* Exception VM-Exits to be synthesized to L1. */
862 	struct kvm_queued_exception exception_vmexit;
863 
864 	struct kvm_queued_interrupt {
865 		bool injected;
866 		bool soft;
867 		u8 nr;
868 	} interrupt;
869 
870 	int halt_request; /* real mode on Intel only */
871 
872 	int cpuid_nent;
873 	struct kvm_cpuid_entry2 *cpuid_entries;
874 	bool is_amd_compatible;
875 
876 	/*
877 	 * cpu_caps holds the effective guest capabilities, i.e. the features
878 	 * the vCPU is allowed to use.  Typically, but not always, features can
879 	 * be used by the guest if and only if both KVM and userspace want to
880 	 * expose the feature to the guest.
881 	 *
882 	 * A common exception is for virtualization holes, i.e. when KVM can't
883 	 * prevent the guest from using a feature, in which case the vCPU "has"
884 	 * the feature regardless of what KVM or userspace desires.
885 	 *
886 	 * Note, features that don't require KVM involvement in any way are
887 	 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
888 	 * guest CPUID provided by userspace.
889 	 */
890 	u32 cpu_caps[NR_KVM_CPU_CAPS];
891 
892 	u64 reserved_gpa_bits;
893 	int maxphyaddr;
894 
895 	/* emulate context */
896 
897 	struct x86_emulate_ctxt *emulate_ctxt;
898 	bool emulate_regs_need_sync_to_vcpu;
899 	bool emulate_regs_need_sync_from_vcpu;
900 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
901 
902 	gpa_t time;
903 	struct pvclock_vcpu_time_info hv_clock;
904 	unsigned int hw_tsc_khz;
905 	struct gfn_to_pfn_cache pv_time;
906 	/* set guest stopped flag in pvclock flags field */
907 	bool pvclock_set_guest_stopped_request;
908 
909 	struct {
910 		u8 preempted;
911 		u64 msr_val;
912 		u64 last_steal;
913 		struct gfn_to_hva_cache cache;
914 	} st;
915 
916 	u64 l1_tsc_offset;
917 	u64 tsc_offset; /* current tsc offset */
918 	u64 last_guest_tsc;
919 	u64 last_host_tsc;
920 	u64 tsc_offset_adjustment;
921 	u64 this_tsc_nsec;
922 	u64 this_tsc_write;
923 	u64 this_tsc_generation;
924 	bool tsc_catchup;
925 	bool tsc_always_catchup;
926 	s8 virtual_tsc_shift;
927 	u32 virtual_tsc_mult;
928 	u32 virtual_tsc_khz;
929 	s64 ia32_tsc_adjust_msr;
930 	u64 msr_ia32_power_ctl;
931 	u64 l1_tsc_scaling_ratio;
932 	u64 tsc_scaling_ratio; /* current scaling ratio */
933 
934 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
935 	/* Number of NMIs pending injection, not including hardware vNMIs. */
936 	unsigned int nmi_pending;
937 	bool nmi_injected;    /* Trying to inject an NMI this entry */
938 	bool smi_pending;    /* SMI queued after currently running handler */
939 	u8 handling_intr_from_guest;
940 
941 	struct kvm_mtrr mtrr_state;
942 	u64 pat;
943 
944 	unsigned switch_db_regs;
945 	unsigned long db[KVM_NR_DB_REGS];
946 	unsigned long dr6;
947 	unsigned long dr7;
948 	unsigned long eff_db[KVM_NR_DB_REGS];
949 	unsigned long guest_debug_dr7;
950 	u64 msr_platform_info;
951 	u64 msr_misc_features_enables;
952 
953 	u64 mcg_cap;
954 	u64 mcg_status;
955 	u64 mcg_ctl;
956 	u64 mcg_ext_ctl;
957 	u64 *mce_banks;
958 	u64 *mci_ctl2_banks;
959 
960 	/* Cache MMIO info */
961 	u64 mmio_gva;
962 	unsigned mmio_access;
963 	gfn_t mmio_gfn;
964 	u64 mmio_gen;
965 
966 	struct kvm_pmu pmu;
967 
968 	/* used for guest single stepping over the given code position */
969 	unsigned long singlestep_rip;
970 
971 #ifdef CONFIG_KVM_HYPERV
972 	bool hyperv_enabled;
973 	struct kvm_vcpu_hv *hyperv;
974 #endif
975 #ifdef CONFIG_KVM_XEN
976 	struct kvm_vcpu_xen xen;
977 #endif
978 	cpumask_var_t wbinvd_dirty_mask;
979 
980 	unsigned long last_retry_eip;
981 	unsigned long last_retry_addr;
982 
983 	struct {
984 		bool halted;
985 		gfn_t gfns[ASYNC_PF_PER_VCPU];
986 		struct gfn_to_hva_cache data;
987 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
988 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
989 		u16 vec;
990 		u32 id;
991 		bool send_user_only;
992 		u32 host_apf_flags;
993 		bool delivery_as_pf_vmexit;
994 		bool pageready_pending;
995 	} apf;
996 
997 	/* OSVW MSRs (AMD only) */
998 	struct {
999 		u64 length;
1000 		u64 status;
1001 	} osvw;
1002 
1003 	struct {
1004 		u64 msr_val;
1005 		struct gfn_to_hva_cache data;
1006 	} pv_eoi;
1007 
1008 	u64 msr_kvm_poll_control;
1009 
1010 	/* pv related host specific info */
1011 	struct {
1012 		bool pv_unhalted;
1013 	} pv;
1014 
1015 	int pending_ioapic_eoi;
1016 	int pending_external_vector;
1017 
1018 	/* be preempted when it's in kernel-mode(cpl=0) */
1019 	bool preempted_in_kernel;
1020 
1021 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1022 	bool l1tf_flush_l1d;
1023 
1024 	/* Host CPU on which VM-entry was most recently attempted */
1025 	int last_vmentry_cpu;
1026 
1027 	/* AMD MSRC001_0015 Hardware Configuration */
1028 	u64 msr_hwcr;
1029 
1030 	/* pv related cpuid info */
1031 	struct {
1032 		/*
1033 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1034 		 * leaf.
1035 		 */
1036 		u32 features;
1037 
1038 		/*
1039 		 * indicates whether pv emulation should be disabled if features
1040 		 * are not present in the guest's cpuid
1041 		 */
1042 		bool enforce;
1043 	} pv_cpuid;
1044 
1045 	/* Protected Guests */
1046 	bool guest_state_protected;
1047 
1048 	/*
1049 	 * Set when PDPTS were loaded directly by the userspace without
1050 	 * reading the guest memory
1051 	 */
1052 	bool pdptrs_from_userspace;
1053 
1054 #if IS_ENABLED(CONFIG_HYPERV)
1055 	hpa_t hv_root_tdp;
1056 #endif
1057 };
1058 
1059 struct kvm_lpage_info {
1060 	int disallow_lpage;
1061 };
1062 
1063 struct kvm_arch_memory_slot {
1064 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1065 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1066 	unsigned short *gfn_write_track;
1067 };
1068 
1069 /*
1070  * Track the mode of the optimized logical map, as the rules for decoding the
1071  * destination vary per mode.  Enabling the optimized logical map requires all
1072  * software-enabled local APIs to be in the same mode, each addressable APIC to
1073  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1074  */
1075 enum kvm_apic_logical_mode {
1076 	/* All local APICs are software disabled. */
1077 	KVM_APIC_MODE_SW_DISABLED,
1078 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1079 	KVM_APIC_MODE_XAPIC_CLUSTER,
1080 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1081 	KVM_APIC_MODE_XAPIC_FLAT,
1082 	/* All software enabled local APICs in x2APIC mode. */
1083 	KVM_APIC_MODE_X2APIC,
1084 	/*
1085 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1086 	 * mode, same logical ID assigned to multiple APICs, etc.
1087 	 */
1088 	KVM_APIC_MODE_MAP_DISABLED,
1089 };
1090 
1091 struct kvm_apic_map {
1092 	struct rcu_head rcu;
1093 	enum kvm_apic_logical_mode logical_mode;
1094 	u32 max_apic_id;
1095 	union {
1096 		struct kvm_lapic *xapic_flat_map[8];
1097 		struct kvm_lapic *xapic_cluster_map[16][4];
1098 	};
1099 	struct kvm_lapic *phys_map[];
1100 };
1101 
1102 /* Hyper-V synthetic debugger (SynDbg)*/
1103 struct kvm_hv_syndbg {
1104 	struct {
1105 		u64 control;
1106 		u64 status;
1107 		u64 send_page;
1108 		u64 recv_page;
1109 		u64 pending_page;
1110 	} control;
1111 	u64 options;
1112 };
1113 
1114 /* Current state of Hyper-V TSC page clocksource */
1115 enum hv_tsc_page_status {
1116 	/* TSC page was not set up or disabled */
1117 	HV_TSC_PAGE_UNSET = 0,
1118 	/* TSC page MSR was written by the guest, update pending */
1119 	HV_TSC_PAGE_GUEST_CHANGED,
1120 	/* TSC page update was triggered from the host side */
1121 	HV_TSC_PAGE_HOST_CHANGED,
1122 	/* TSC page was properly set up and is currently active  */
1123 	HV_TSC_PAGE_SET,
1124 	/* TSC page was set up with an inaccessible GPA */
1125 	HV_TSC_PAGE_BROKEN,
1126 };
1127 
1128 #ifdef CONFIG_KVM_HYPERV
1129 /* Hyper-V emulation context */
1130 struct kvm_hv {
1131 	struct mutex hv_lock;
1132 	u64 hv_guest_os_id;
1133 	u64 hv_hypercall;
1134 	u64 hv_tsc_page;
1135 	enum hv_tsc_page_status hv_tsc_page_status;
1136 
1137 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1138 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1139 	u64 hv_crash_ctl;
1140 
1141 	struct ms_hyperv_tsc_page tsc_ref;
1142 
1143 	struct idr conn_to_evt;
1144 
1145 	u64 hv_reenlightenment_control;
1146 	u64 hv_tsc_emulation_control;
1147 	u64 hv_tsc_emulation_status;
1148 	u64 hv_invtsc_control;
1149 
1150 	/* How many vCPUs have VP index != vCPU index */
1151 	atomic_t num_mismatched_vp_indexes;
1152 
1153 	/*
1154 	 * How many SynICs use 'AutoEOI' feature
1155 	 * (protected by arch.apicv_update_lock)
1156 	 */
1157 	unsigned int synic_auto_eoi_used;
1158 
1159 	struct kvm_hv_syndbg hv_syndbg;
1160 
1161 	bool xsaves_xsavec_checked;
1162 };
1163 #endif
1164 
1165 struct msr_bitmap_range {
1166 	u32 flags;
1167 	u32 nmsrs;
1168 	u32 base;
1169 	unsigned long *bitmap;
1170 };
1171 
1172 #ifdef CONFIG_KVM_XEN
1173 /* Xen emulation context */
1174 struct kvm_xen {
1175 	struct mutex xen_lock;
1176 	u32 xen_version;
1177 	bool long_mode;
1178 	bool runstate_update_flag;
1179 	u8 upcall_vector;
1180 	struct gfn_to_pfn_cache shinfo_cache;
1181 	struct idr evtchn_ports;
1182 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1183 };
1184 #endif
1185 
1186 enum kvm_irqchip_mode {
1187 	KVM_IRQCHIP_NONE,
1188 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1189 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1190 };
1191 
1192 struct kvm_x86_msr_filter {
1193 	u8 count;
1194 	bool default_allow:1;
1195 	struct msr_bitmap_range ranges[16];
1196 };
1197 
1198 struct kvm_x86_pmu_event_filter {
1199 	__u32 action;
1200 	__u32 nevents;
1201 	__u32 fixed_counter_bitmap;
1202 	__u32 flags;
1203 	__u32 nr_includes;
1204 	__u32 nr_excludes;
1205 	__u64 *includes;
1206 	__u64 *excludes;
1207 	__u64 events[];
1208 };
1209 
1210 enum kvm_apicv_inhibit {
1211 
1212 	/********************************************************************/
1213 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1214 	/********************************************************************/
1215 
1216 	/*
1217 	 * APIC acceleration is disabled by a module parameter
1218 	 * and/or not supported in hardware.
1219 	 */
1220 	APICV_INHIBIT_REASON_DISABLED,
1221 
1222 	/*
1223 	 * APIC acceleration is inhibited because AutoEOI feature is
1224 	 * being used by a HyperV guest.
1225 	 */
1226 	APICV_INHIBIT_REASON_HYPERV,
1227 
1228 	/*
1229 	 * APIC acceleration is inhibited because the userspace didn't yet
1230 	 * enable the kernel/split irqchip.
1231 	 */
1232 	APICV_INHIBIT_REASON_ABSENT,
1233 
1234 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1235 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1236 	 * was enabled, to avoid AVIC/APICv bypassing it.
1237 	 */
1238 	APICV_INHIBIT_REASON_BLOCKIRQ,
1239 
1240 	/*
1241 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1242 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1243 	 */
1244 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1245 
1246 	/*
1247 	 * For simplicity, the APIC acceleration is inhibited
1248 	 * first time either APIC ID or APIC base are changed by the guest
1249 	 * from their reset values.
1250 	 */
1251 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1252 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1253 
1254 	/******************************************************/
1255 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1256 	/******************************************************/
1257 
1258 	/*
1259 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1260 	 *
1261 	 * This is needed because unlike APICv, the peers of this vCPU
1262 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1263 	 * a vCPU runs nested.
1264 	 */
1265 	APICV_INHIBIT_REASON_NESTED,
1266 
1267 	/*
1268 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1269 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1270 	 * is inhibited while KVM waits for IRQ window.
1271 	 */
1272 	APICV_INHIBIT_REASON_IRQWIN,
1273 
1274 	/*
1275 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1276 	 * which AVIC doesn't support for edge triggered interrupts.
1277 	 */
1278 	APICV_INHIBIT_REASON_PIT_REINJ,
1279 
1280 	/*
1281 	 * AVIC is disabled because SEV doesn't support it.
1282 	 */
1283 	APICV_INHIBIT_REASON_SEV,
1284 
1285 	/*
1286 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1287 	 * mapping between logical ID and vCPU.
1288 	 */
1289 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1290 
1291 	NR_APICV_INHIBIT_REASONS,
1292 };
1293 
1294 #define __APICV_INHIBIT_REASON(reason)			\
1295 	{ BIT(APICV_INHIBIT_REASON_##reason), #reason }
1296 
1297 #define APICV_INHIBIT_REASONS				\
1298 	__APICV_INHIBIT_REASON(DISABLED),		\
1299 	__APICV_INHIBIT_REASON(HYPERV),			\
1300 	__APICV_INHIBIT_REASON(ABSENT),			\
1301 	__APICV_INHIBIT_REASON(BLOCKIRQ),		\
1302 	__APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED),	\
1303 	__APICV_INHIBIT_REASON(APIC_ID_MODIFIED),	\
1304 	__APICV_INHIBIT_REASON(APIC_BASE_MODIFIED),	\
1305 	__APICV_INHIBIT_REASON(NESTED),			\
1306 	__APICV_INHIBIT_REASON(IRQWIN),			\
1307 	__APICV_INHIBIT_REASON(PIT_REINJ),		\
1308 	__APICV_INHIBIT_REASON(SEV),			\
1309 	__APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1310 
1311 struct kvm_arch {
1312 	unsigned long n_used_mmu_pages;
1313 	unsigned long n_requested_mmu_pages;
1314 	unsigned long n_max_mmu_pages;
1315 	unsigned int indirect_shadow_pages;
1316 	u8 mmu_valid_gen;
1317 	u8 vm_type;
1318 	bool has_private_mem;
1319 	bool has_protected_state;
1320 	bool pre_fault_allowed;
1321 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1322 	struct list_head active_mmu_pages;
1323 	/*
1324 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1325 	 * replaced by an NX huge page.  A shadow page is on this list if its
1326 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1327 	 * and there are no other conditions that prevent a huge page, e.g.
1328 	 * the backing host page is huge, dirtly logging is not enabled for its
1329 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1330 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1331 	 * guest attempts to execute from the region then KVM obviously can't
1332 	 * create an NX huge page (without hanging the guest).
1333 	 */
1334 	struct list_head possible_nx_huge_pages;
1335 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1336 	struct kvm_page_track_notifier_head track_notifier_head;
1337 #endif
1338 	/*
1339 	 * Protects marking pages unsync during page faults, as TDP MMU page
1340 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1341 	 * pages lock is always taken when marking pages unsync regardless of
1342 	 * whether mmu_lock is held for read or write.
1343 	 */
1344 	spinlock_t mmu_unsync_pages_lock;
1345 
1346 	u64 shadow_mmio_value;
1347 
1348 	struct iommu_domain *iommu_domain;
1349 	bool iommu_noncoherent;
1350 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1351 	atomic_t noncoherent_dma_count;
1352 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1353 	atomic_t assigned_device_count;
1354 	struct kvm_pic *vpic;
1355 	struct kvm_ioapic *vioapic;
1356 	struct kvm_pit *vpit;
1357 	atomic_t vapics_in_nmi_mode;
1358 	struct mutex apic_map_lock;
1359 	struct kvm_apic_map __rcu *apic_map;
1360 	atomic_t apic_map_dirty;
1361 
1362 	bool apic_access_memslot_enabled;
1363 	bool apic_access_memslot_inhibited;
1364 
1365 	/* Protects apicv_inhibit_reasons */
1366 	struct rw_semaphore apicv_update_lock;
1367 	unsigned long apicv_inhibit_reasons;
1368 
1369 	gpa_t wall_clock;
1370 
1371 	bool mwait_in_guest;
1372 	bool hlt_in_guest;
1373 	bool pause_in_guest;
1374 	bool cstate_in_guest;
1375 
1376 	unsigned long irq_sources_bitmap;
1377 	s64 kvmclock_offset;
1378 
1379 	/*
1380 	 * This also protects nr_vcpus_matched_tsc which is read from a
1381 	 * preemption-disabled region, so it must be a raw spinlock.
1382 	 */
1383 	raw_spinlock_t tsc_write_lock;
1384 	u64 last_tsc_nsec;
1385 	u64 last_tsc_write;
1386 	u32 last_tsc_khz;
1387 	u64 last_tsc_offset;
1388 	u64 cur_tsc_nsec;
1389 	u64 cur_tsc_write;
1390 	u64 cur_tsc_offset;
1391 	u64 cur_tsc_generation;
1392 	int nr_vcpus_matched_tsc;
1393 
1394 	u32 default_tsc_khz;
1395 	bool user_set_tsc;
1396 	u64 apic_bus_cycle_ns;
1397 
1398 	seqcount_raw_spinlock_t pvclock_sc;
1399 	bool use_master_clock;
1400 	u64 master_kernel_ns;
1401 	u64 master_cycle_now;
1402 	struct delayed_work kvmclock_update_work;
1403 	struct delayed_work kvmclock_sync_work;
1404 
1405 	struct kvm_xen_hvm_config xen_hvm_config;
1406 
1407 	/* reads protected by irq_srcu, writes by irq_lock */
1408 	struct hlist_head mask_notifier_list;
1409 
1410 #ifdef CONFIG_KVM_HYPERV
1411 	struct kvm_hv hyperv;
1412 #endif
1413 
1414 #ifdef CONFIG_KVM_XEN
1415 	struct kvm_xen xen;
1416 #endif
1417 
1418 	bool backwards_tsc_observed;
1419 	bool boot_vcpu_runs_old_kvmclock;
1420 	u32 bsp_vcpu_id;
1421 
1422 	u64 disabled_quirks;
1423 
1424 	enum kvm_irqchip_mode irqchip_mode;
1425 	u8 nr_reserved_ioapic_pins;
1426 
1427 	bool disabled_lapic_found;
1428 
1429 	bool x2apic_format;
1430 	bool x2apic_broadcast_quirk_disabled;
1431 
1432 	bool guest_can_read_msr_platform_info;
1433 	bool exception_payload_enabled;
1434 
1435 	bool triple_fault_event;
1436 
1437 	bool bus_lock_detection_enabled;
1438 	bool enable_pmu;
1439 
1440 	u32 notify_window;
1441 	u32 notify_vmexit_flags;
1442 	/*
1443 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1444 	 * emulator fails to emulate an instruction, allow userspace
1445 	 * the opportunity to look at it.
1446 	 */
1447 	bool exit_on_emulation_error;
1448 
1449 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1450 	u32 user_space_msr_mask;
1451 	struct kvm_x86_msr_filter __rcu *msr_filter;
1452 
1453 	u32 hypercall_exit_enabled;
1454 
1455 	/* Guest can access the SGX PROVISIONKEY. */
1456 	bool sgx_provisioning_allowed;
1457 
1458 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1459 	struct vhost_task *nx_huge_page_recovery_thread;
1460 	u64 nx_huge_page_last;
1461 
1462 #ifdef CONFIG_X86_64
1463 	/* The number of TDP MMU pages across all roots. */
1464 	atomic64_t tdp_mmu_pages;
1465 
1466 	/*
1467 	 * List of struct kvm_mmu_pages being used as roots.
1468 	 * All struct kvm_mmu_pages in the list should have
1469 	 * tdp_mmu_page set.
1470 	 *
1471 	 * For reads, this list is protected by:
1472 	 *	the MMU lock in read mode + RCU or
1473 	 *	the MMU lock in write mode
1474 	 *
1475 	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1476 	 * below for the details.
1477 	 *
1478 	 * Roots will remain in the list until their tdp_mmu_root_count
1479 	 * drops to zero, at which point the thread that decremented the
1480 	 * count to zero should removed the root from the list and clean
1481 	 * it up, freeing the root after an RCU grace period.
1482 	 */
1483 	struct list_head tdp_mmu_roots;
1484 
1485 	/*
1486 	 * Protects accesses to the following fields when the MMU lock
1487 	 * is held in read mode:
1488 	 *  - tdp_mmu_roots (above)
1489 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1490 	 *  - possible_nx_huge_pages;
1491 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1492 	 *    by the TDP MMU
1493 	 * Because the lock is only taken within the MMU lock, strictly
1494 	 * speaking it is redundant to acquire this lock when the thread
1495 	 * holds the MMU lock in write mode.  However it often simplifies
1496 	 * the code to do so.
1497 	 */
1498 	spinlock_t tdp_mmu_pages_lock;
1499 #endif /* CONFIG_X86_64 */
1500 
1501 	/*
1502 	 * If set, at least one shadow root has been allocated. This flag
1503 	 * is used as one input when determining whether certain memslot
1504 	 * related allocations are necessary.
1505 	 */
1506 	bool shadow_root_allocated;
1507 
1508 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1509 	/*
1510 	 * If set, the VM has (or had) an external write tracking user, and
1511 	 * thus all write tracking metadata has been allocated, even if KVM
1512 	 * itself isn't using write tracking.
1513 	 */
1514 	bool external_write_tracking_enabled;
1515 #endif
1516 
1517 #if IS_ENABLED(CONFIG_HYPERV)
1518 	hpa_t	hv_root_tdp;
1519 	spinlock_t hv_root_tdp_lock;
1520 	struct hv_partition_assist_pg *hv_pa_pg;
1521 #endif
1522 	/*
1523 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1524 	 * that increase along with the maximum vCPU ID, in which case, using
1525 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1526 	 */
1527 	u32 max_vcpu_ids;
1528 
1529 	bool disable_nx_huge_pages;
1530 
1531 	/*
1532 	 * Memory caches used to allocate shadow pages when performing eager
1533 	 * page splitting. No need for a shadowed_info_cache since eager page
1534 	 * splitting only allocates direct shadow pages.
1535 	 *
1536 	 * Protected by kvm->slots_lock.
1537 	 */
1538 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1539 	struct kvm_mmu_memory_cache split_page_header_cache;
1540 
1541 	/*
1542 	 * Memory cache used to allocate pte_list_desc structs while splitting
1543 	 * huge pages. In the worst case, to split one huge page, 512
1544 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1545 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1546 	 * page table.
1547 	 *
1548 	 * Protected by kvm->slots_lock.
1549 	 */
1550 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1551 	struct kvm_mmu_memory_cache split_desc_cache;
1552 };
1553 
1554 struct kvm_vm_stat {
1555 	struct kvm_vm_stat_generic generic;
1556 	u64 mmu_shadow_zapped;
1557 	u64 mmu_pte_write;
1558 	u64 mmu_pde_zapped;
1559 	u64 mmu_flooded;
1560 	u64 mmu_recycled;
1561 	u64 mmu_cache_miss;
1562 	u64 mmu_unsync;
1563 	union {
1564 		struct {
1565 			atomic64_t pages_4k;
1566 			atomic64_t pages_2m;
1567 			atomic64_t pages_1g;
1568 		};
1569 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1570 	};
1571 	u64 nx_lpage_splits;
1572 	u64 max_mmu_page_hash_collisions;
1573 	u64 max_mmu_rmap_size;
1574 };
1575 
1576 struct kvm_vcpu_stat {
1577 	struct kvm_vcpu_stat_generic generic;
1578 	u64 pf_taken;
1579 	u64 pf_fixed;
1580 	u64 pf_emulate;
1581 	u64 pf_spurious;
1582 	u64 pf_fast;
1583 	u64 pf_mmio_spte_created;
1584 	u64 pf_guest;
1585 	u64 tlb_flush;
1586 	u64 invlpg;
1587 
1588 	u64 exits;
1589 	u64 io_exits;
1590 	u64 mmio_exits;
1591 	u64 signal_exits;
1592 	u64 irq_window_exits;
1593 	u64 nmi_window_exits;
1594 	u64 l1d_flush;
1595 	u64 halt_exits;
1596 	u64 request_irq_exits;
1597 	u64 irq_exits;
1598 	u64 host_state_reload;
1599 	u64 fpu_reload;
1600 	u64 insn_emulation;
1601 	u64 insn_emulation_fail;
1602 	u64 hypercalls;
1603 	u64 irq_injections;
1604 	u64 nmi_injections;
1605 	u64 req_event;
1606 	u64 nested_run;
1607 	u64 directed_yield_attempted;
1608 	u64 directed_yield_successful;
1609 	u64 preemption_reported;
1610 	u64 preemption_other;
1611 	u64 guest_mode;
1612 	u64 notify_window_exits;
1613 };
1614 
1615 struct x86_instruction_info;
1616 
1617 struct msr_data {
1618 	bool host_initiated;
1619 	u32 index;
1620 	u64 data;
1621 };
1622 
1623 struct kvm_lapic_irq {
1624 	u32 vector;
1625 	u16 delivery_mode;
1626 	u16 dest_mode;
1627 	bool level;
1628 	u16 trig_mode;
1629 	u32 shorthand;
1630 	u32 dest_id;
1631 	bool msi_redir_hint;
1632 };
1633 
1634 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1635 {
1636 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1637 }
1638 
1639 struct kvm_x86_ops {
1640 	const char *name;
1641 
1642 	int (*check_processor_compatibility)(void);
1643 
1644 	int (*enable_virtualization_cpu)(void);
1645 	void (*disable_virtualization_cpu)(void);
1646 	cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1647 
1648 	void (*hardware_unsetup)(void);
1649 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1650 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1651 
1652 	unsigned int vm_size;
1653 	int (*vm_init)(struct kvm *kvm);
1654 	void (*vm_destroy)(struct kvm *kvm);
1655 
1656 	/* Create, but do not attach this VCPU */
1657 	int (*vcpu_precreate)(struct kvm *kvm);
1658 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1659 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1660 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1661 
1662 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1663 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1664 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1665 
1666 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1667 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1668 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1669 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1670 	void (*get_segment)(struct kvm_vcpu *vcpu,
1671 			    struct kvm_segment *var, int seg);
1672 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1673 	int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1674 	void (*set_segment)(struct kvm_vcpu *vcpu,
1675 			    struct kvm_segment *var, int seg);
1676 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1677 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1678 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1679 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1680 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1681 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1682 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1683 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1684 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1685 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1686 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1687 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1688 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1689 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1690 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1691 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1692 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1693 
1694 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1695 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1696 #if IS_ENABLED(CONFIG_HYPERV)
1697 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1698 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1699 					gfn_t nr_pages);
1700 #endif
1701 
1702 	/*
1703 	 * Flush any TLB entries associated with the given GVA.
1704 	 * Does not need to flush GPA->HPA mappings.
1705 	 * Can potentially get non-canonical addresses through INVLPGs, which
1706 	 * the implementation may choose to ignore if appropriate.
1707 	 */
1708 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1709 
1710 	/*
1711 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1712 	 * does not need to flush GPA->HPA mappings.
1713 	 */
1714 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1715 
1716 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1717 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1718 						  bool force_immediate_exit);
1719 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1720 		enum exit_fastpath_completion exit_fastpath);
1721 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1722 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1723 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1724 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1725 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1726 				unsigned char *hypercall_addr);
1727 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1728 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1729 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1730 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1731 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1732 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1733 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1734 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1735 	/* Whether or not a virtual NMI is pending in hardware. */
1736 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1737 	/*
1738 	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1739 	 * to allow using static_call_ret0 as the fallback.
1740 	 */
1741 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1742 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1743 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1744 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1745 
1746 	const bool x2apic_icr_is_split;
1747 	const unsigned long required_apicv_inhibits;
1748 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1749 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1750 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1751 	void (*hwapic_isr_update)(int isr);
1752 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1753 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1754 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1755 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1756 				  int trig_mode, int vector);
1757 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1758 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1759 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1760 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1761 
1762 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1763 			     int root_level);
1764 
1765 	bool (*has_wbinvd_exit)(void);
1766 
1767 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1768 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1769 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1770 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1771 
1772 	/*
1773 	 * Retrieve somewhat arbitrary exit information.  Intended to
1774 	 * be used only from within tracepoints or error paths.
1775 	 */
1776 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1777 			      u64 *info1, u64 *info2,
1778 			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1779 
1780 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1781 			       struct x86_instruction_info *info,
1782 			       enum x86_intercept_stage stage,
1783 			       struct x86_exception *exception);
1784 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1785 
1786 	/*
1787 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1788 	 * value indicates CPU dirty logging is unsupported or disabled.
1789 	 */
1790 	int cpu_dirty_log_size;
1791 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1792 
1793 	const struct kvm_x86_nested_ops *nested_ops;
1794 
1795 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1796 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1797 
1798 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1799 			      uint32_t guest_irq, bool set);
1800 	void (*pi_start_assignment)(struct kvm *kvm);
1801 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1802 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1803 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1804 
1805 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1806 			    bool *expired);
1807 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1808 
1809 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1810 
1811 #ifdef CONFIG_KVM_SMM
1812 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1813 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1814 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1815 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1816 #endif
1817 
1818 	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1819 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1820 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1821 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1822 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1823 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1824 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1825 
1826 	int (*get_feature_msr)(u32 msr, u64 *data);
1827 
1828 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1829 					 void *insn, int insn_len);
1830 
1831 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1832 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1833 
1834 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1835 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1836 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1837 
1838 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1839 
1840 	/*
1841 	 * Returns vCPU specific APICv inhibit reasons
1842 	 */
1843 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1844 
1845 	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1846 	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1847 	int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1848 	void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1849 	int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1850 };
1851 
1852 struct kvm_x86_nested_ops {
1853 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1854 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1855 				    u32 error_code);
1856 	int (*check_events)(struct kvm_vcpu *vcpu);
1857 	bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1858 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1859 	int (*get_state)(struct kvm_vcpu *vcpu,
1860 			 struct kvm_nested_state __user *user_kvm_nested_state,
1861 			 unsigned user_data_size);
1862 	int (*set_state)(struct kvm_vcpu *vcpu,
1863 			 struct kvm_nested_state __user *user_kvm_nested_state,
1864 			 struct kvm_nested_state *kvm_state);
1865 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1866 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1867 
1868 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1869 			    uint16_t *vmcs_version);
1870 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1871 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1872 };
1873 
1874 struct kvm_x86_init_ops {
1875 	int (*hardware_setup)(void);
1876 	unsigned int (*handle_intel_pt_intr)(void);
1877 
1878 	struct kvm_x86_ops *runtime_ops;
1879 	struct kvm_pmu_ops *pmu_ops;
1880 };
1881 
1882 struct kvm_arch_async_pf {
1883 	u32 token;
1884 	gfn_t gfn;
1885 	unsigned long cr3;
1886 	bool direct_map;
1887 	u64 error_code;
1888 };
1889 
1890 extern u32 __read_mostly kvm_nr_uret_msrs;
1891 extern bool __read_mostly allow_smaller_maxphyaddr;
1892 extern bool __read_mostly enable_apicv;
1893 extern struct kvm_x86_ops kvm_x86_ops;
1894 
1895 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1896 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1897 
1898 #define KVM_X86_OP(func) \
1899 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1900 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1901 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1902 #include <asm/kvm-x86-ops.h>
1903 
1904 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1905 void kvm_x86_vendor_exit(void);
1906 
1907 #define __KVM_HAVE_ARCH_VM_ALLOC
1908 static inline struct kvm *kvm_arch_alloc_vm(void)
1909 {
1910 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1911 }
1912 
1913 #define __KVM_HAVE_ARCH_VM_FREE
1914 void kvm_arch_free_vm(struct kvm *kvm);
1915 
1916 #if IS_ENABLED(CONFIG_HYPERV)
1917 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1918 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1919 {
1920 	if (kvm_x86_ops.flush_remote_tlbs &&
1921 	    !kvm_x86_call(flush_remote_tlbs)(kvm))
1922 		return 0;
1923 	else
1924 		return -ENOTSUPP;
1925 }
1926 
1927 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1928 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1929 						   u64 nr_pages)
1930 {
1931 	if (!kvm_x86_ops.flush_remote_tlbs_range)
1932 		return -EOPNOTSUPP;
1933 
1934 	return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1935 }
1936 #endif /* CONFIG_HYPERV */
1937 
1938 enum kvm_intr_type {
1939 	/* Values are arbitrary, but must be non-zero. */
1940 	KVM_HANDLING_IRQ = 1,
1941 	KVM_HANDLING_NMI,
1942 };
1943 
1944 /* Enable perf NMI and timer modes to work, and minimise false positives. */
1945 #define kvm_arch_pmi_in_guest(vcpu) \
1946 	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1947 	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
1948 
1949 void __init kvm_mmu_x86_module_init(void);
1950 int kvm_mmu_vendor_module_init(void);
1951 void kvm_mmu_vendor_module_exit(void);
1952 
1953 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1954 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1955 void kvm_mmu_init_vm(struct kvm *kvm);
1956 void kvm_mmu_uninit_vm(struct kvm *kvm);
1957 
1958 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1959 					    struct kvm_memory_slot *slot);
1960 
1961 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1962 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1963 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1964 				      const struct kvm_memory_slot *memslot,
1965 				      int start_level);
1966 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1967 				       const struct kvm_memory_slot *memslot,
1968 				       int target_level);
1969 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1970 				  const struct kvm_memory_slot *memslot,
1971 				  u64 start, u64 end,
1972 				  int target_level);
1973 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
1974 				const struct kvm_memory_slot *memslot);
1975 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1976 				   const struct kvm_memory_slot *memslot);
1977 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1978 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1979 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
1980 
1981 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1982 
1983 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1984 			  const void *val, int bytes);
1985 
1986 struct kvm_irq_mask_notifier {
1987 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1988 	int irq;
1989 	struct hlist_node link;
1990 };
1991 
1992 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1993 				    struct kvm_irq_mask_notifier *kimn);
1994 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1995 				      struct kvm_irq_mask_notifier *kimn);
1996 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1997 			     bool mask);
1998 
1999 extern bool tdp_enabled;
2000 
2001 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2002 
2003 /*
2004  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2005  *			userspace I/O) to indicate that the emulation context
2006  *			should be reused as is, i.e. skip initialization of
2007  *			emulation context, instruction fetch and decode.
2008  *
2009  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2010  *		      Indicates that only select instructions (tagged with
2011  *		      EmulateOnUD) should be emulated (to minimize the emulator
2012  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
2013  *
2014  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2015  *		   decode the instruction length.  For use *only* by
2016  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
2017  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
2018  *
2019  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2020  *			     retry native execution under certain conditions,
2021  *			     Can only be set in conjunction with EMULTYPE_PF.
2022  *
2023  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2024  *			     triggered by KVM's magic "force emulation" prefix,
2025  *			     which is opt in via module param (off by default).
2026  *			     Bypasses EmulateOnUD restriction despite emulating
2027  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2028  *			     Used to test the full emulator from userspace.
2029  *
2030  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2031  *			backdoor emulation, which is opt in via module param.
2032  *			VMware backdoor emulation handles select instructions
2033  *			and reinjects the #GP for all other cases.
2034  *
2035  * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2036  *		 the CR2/GPA value pass on the stack is valid.
2037  *
2038  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2039  *				 state and inject single-step #DBs after skipping
2040  *				 an instruction (after completing userspace I/O).
2041  *
2042  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2043  *			     is attempting to write a gfn that contains one or
2044  *			     more of the PTEs used to translate the write itself,
2045  *			     and the owning page table is being shadowed by KVM.
2046  *			     If emulation of the faulting instruction fails and
2047  *			     this flag is set, KVM will exit to userspace instead
2048  *			     of retrying emulation as KVM cannot make forward
2049  *			     progress.
2050  *
2051  *			     If emulation fails for a write to guest page tables,
2052  *			     KVM unprotects (zaps) the shadow page for the target
2053  *			     gfn and resumes the guest to retry the non-emulatable
2054  *			     instruction (on hardware).  Unprotecting the gfn
2055  *			     doesn't allow forward progress for a self-changing
2056  *			     access because doing so also zaps the translation for
2057  *			     the gfn, i.e. retrying the instruction will hit a
2058  *			     !PRESENT fault, which results in a new shadow page
2059  *			     and sends KVM back to square one.
2060  */
2061 #define EMULTYPE_NO_DECODE	    (1 << 0)
2062 #define EMULTYPE_TRAP_UD	    (1 << 1)
2063 #define EMULTYPE_SKIP		    (1 << 2)
2064 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2065 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2066 #define EMULTYPE_VMWARE_GP	    (1 << 5)
2067 #define EMULTYPE_PF		    (1 << 6)
2068 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2069 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2070 
2071 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2072 {
2073 	return !(emul_type & EMULTYPE_PF);
2074 }
2075 
2076 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2077 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2078 					void *insn, int insn_len);
2079 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2080 					  u64 *data, u8 ndata);
2081 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2082 
2083 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2084 
2085 void kvm_enable_efer_bits(u64);
2086 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2087 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2088 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2089 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2090 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2091 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2092 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2093 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2094 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2095 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2096 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2097 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2098 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2099 
2100 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2101 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2102 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2103 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2104 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2105 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2106 
2107 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2108 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2109 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2110 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2111 
2112 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2113 		    int reason, bool has_error_code, u32 error_code);
2114 
2115 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2116 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2117 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2118 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2119 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2120 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2121 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2122 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2123 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2124 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2125 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2126 
2127 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2128 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2129 
2130 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2131 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2132 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2133 
2134 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2135 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2136 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2137 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2138 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2139 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2140 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2141 				    struct x86_exception *fault);
2142 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2143 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2144 
2145 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2146 				       int irq_source_id, int level)
2147 {
2148 	/* Logical OR for level trig interrupt */
2149 	if (level)
2150 		__set_bit(irq_source_id, irq_state);
2151 	else
2152 		__clear_bit(irq_source_id, irq_state);
2153 
2154 	return !!(*irq_state);
2155 }
2156 
2157 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2158 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2159 
2160 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2161 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2162 
2163 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2164 
2165 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2166 				       bool always_retry);
2167 
2168 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2169 						   gpa_t cr2_or_gpa)
2170 {
2171 	return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2172 }
2173 
2174 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2175 			ulong roots_to_free);
2176 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2177 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2178 			      struct x86_exception *exception);
2179 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2180 			       struct x86_exception *exception);
2181 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2182 				struct x86_exception *exception);
2183 
2184 bool kvm_apicv_activated(struct kvm *kvm);
2185 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2186 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2187 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2188 				      enum kvm_apicv_inhibit reason, bool set);
2189 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2190 				    enum kvm_apicv_inhibit reason, bool set);
2191 
2192 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2193 					 enum kvm_apicv_inhibit reason)
2194 {
2195 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2196 }
2197 
2198 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2199 					   enum kvm_apicv_inhibit reason)
2200 {
2201 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2202 }
2203 
2204 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
2205 				      unsigned long a0, unsigned long a1,
2206 				      unsigned long a2, unsigned long a3,
2207 				      int op_64_bit, int cpl);
2208 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2209 
2210 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2211 		       void *insn, int insn_len);
2212 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2213 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2214 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2215 			     u64 addr, unsigned long roots);
2216 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2217 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2218 
2219 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2220 		       int tdp_max_root_level, int tdp_huge_page_level);
2221 
2222 
2223 #ifdef CONFIG_KVM_PRIVATE_MEM
2224 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2225 #else
2226 #define kvm_arch_has_private_mem(kvm) false
2227 #endif
2228 
2229 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2230 
2231 static inline u16 kvm_read_ldt(void)
2232 {
2233 	u16 ldt;
2234 	asm("sldt %0" : "=g"(ldt));
2235 	return ldt;
2236 }
2237 
2238 static inline void kvm_load_ldt(u16 sel)
2239 {
2240 	asm("lldt %0" : : "rm"(sel));
2241 }
2242 
2243 #ifdef CONFIG_X86_64
2244 static inline unsigned long read_msr(unsigned long msr)
2245 {
2246 	u64 value;
2247 
2248 	rdmsrl(msr, value);
2249 	return value;
2250 }
2251 #endif
2252 
2253 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2254 {
2255 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2256 }
2257 
2258 #define TSS_IOPB_BASE_OFFSET 0x66
2259 #define TSS_BASE_SIZE 0x68
2260 #define TSS_IOPB_SIZE (65536 / 8)
2261 #define TSS_REDIRECTION_SIZE (256 / 8)
2262 #define RMODE_TSS_SIZE							\
2263 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2264 
2265 enum {
2266 	TASK_SWITCH_CALL = 0,
2267 	TASK_SWITCH_IRET = 1,
2268 	TASK_SWITCH_JMP = 2,
2269 	TASK_SWITCH_GATE = 3,
2270 };
2271 
2272 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2273 
2274 #ifdef CONFIG_KVM_SMM
2275 #define HF_SMM_MASK		(1 << 1)
2276 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2277 
2278 # define KVM_MAX_NR_ADDRESS_SPACES	2
2279 /* SMM is currently unsupported for guests with private memory. */
2280 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2281 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2282 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2283 #else
2284 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2285 #endif
2286 
2287 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2288 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2289 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2290 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2291 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2292 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2293 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2294 
2295 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2296 		    unsigned long ipi_bitmap_high, u32 min,
2297 		    unsigned long icr, int op_64_bit);
2298 
2299 int kvm_add_user_return_msr(u32 msr);
2300 int kvm_find_user_return_msr(u32 msr);
2301 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2302 
2303 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2304 {
2305 	return kvm_find_user_return_msr(msr) >= 0;
2306 }
2307 
2308 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2309 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2310 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2311 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2312 
2313 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2314 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2315 
2316 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2317 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2318 				       unsigned long *vcpu_bitmap);
2319 
2320 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2321 				     struct kvm_async_pf *work);
2322 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2323 				 struct kvm_async_pf *work);
2324 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2325 			       struct kvm_async_pf *work);
2326 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2327 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2328 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2329 
2330 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2331 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2332 
2333 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2334 				     u32 size);
2335 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2336 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2337 
2338 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2339 			     struct kvm_vcpu **dest_vcpu);
2340 
2341 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2342 		     struct kvm_lapic_irq *irq);
2343 
2344 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2345 {
2346 	/* We can only post Fixed and LowPrio IRQs */
2347 	return (irq->delivery_mode == APIC_DM_FIXED ||
2348 		irq->delivery_mode == APIC_DM_LOWEST);
2349 }
2350 
2351 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2352 {
2353 	kvm_x86_call(vcpu_blocking)(vcpu);
2354 }
2355 
2356 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2357 {
2358 	kvm_x86_call(vcpu_unblocking)(vcpu);
2359 }
2360 
2361 static inline int kvm_cpu_get_apicid(int mps_cpu)
2362 {
2363 #ifdef CONFIG_X86_LOCAL_APIC
2364 	return default_cpu_present_to_apicid(mps_cpu);
2365 #else
2366 	WARN_ON_ONCE(1);
2367 	return BAD_APICID;
2368 #endif
2369 }
2370 
2371 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2372 
2373 #define KVM_CLOCK_VALID_FLAGS						\
2374 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2375 
2376 #define KVM_X86_VALID_QUIRKS			\
2377 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2378 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2379 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2380 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2381 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2382 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2383 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS |	\
2384 	 KVM_X86_QUIRK_SLOT_ZAP_ALL |		\
2385 	 KVM_X86_QUIRK_STUFF_FEATURE_MSRS)
2386 
2387 /*
2388  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2389  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2390  * remaining 31 lower bits must be 0 to preserve ABI.
2391  */
2392 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2393 
2394 #endif /* _ASM_X86_KVM_HOST_H */
2395