1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/hyperv.h> 28 #include <linux/kfifo.h> 29 30 #include <asm/apic.h> 31 #include <asm/pvclock-abi.h> 32 #include <asm/desc.h> 33 #include <asm/mtrr.h> 34 #include <asm/msr-index.h> 35 #include <asm/asm.h> 36 #include <asm/kvm_page_track.h> 37 #include <asm/kvm_vcpu_regs.h> 38 #include <asm/hyperv-tlfs.h> 39 40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 41 42 /* 43 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 44 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 45 */ 46 #ifdef CONFIG_KVM_MAX_NR_VCPUS 47 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 48 #else 49 #define KVM_MAX_VCPUS 1024 50 #endif 51 52 /* 53 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 54 * might be larger than the actual number of VCPUs because the 55 * APIC ID encodes CPU topology information. 56 * 57 * In the worst case, we'll need less than one extra bit for the 58 * Core ID, and less than one extra bit for the Package (Die) ID, 59 * so ratio of 4 should be enough. 60 */ 61 #define KVM_VCPU_ID_RATIO 4 62 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 63 64 /* memory slots that are not exposed to userspace */ 65 #define KVM_INTERNAL_MEM_SLOTS 3 66 67 #define KVM_HALT_POLL_NS_DEFAULT 200000 68 69 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 70 71 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 72 KVM_DIRTY_LOG_INITIALLY_SET) 73 74 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 75 KVM_BUS_LOCK_DETECTION_EXIT) 76 77 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 78 KVM_X86_NOTIFY_VMEXIT_USER) 79 80 /* x86-specific vcpu->requests bit members */ 81 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 82 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 83 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 84 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 85 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 86 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 87 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 88 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 89 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 90 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 91 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 92 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 93 #ifdef CONFIG_KVM_SMM 94 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 95 #endif 96 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 97 #define KVM_REQ_MCLOCK_INPROGRESS \ 98 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 99 #define KVM_REQ_SCAN_IOAPIC \ 100 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 101 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 102 #define KVM_REQ_APIC_PAGE_RELOAD \ 103 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 104 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 105 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 106 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 107 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 108 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 109 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 110 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 111 #define KVM_REQ_APICV_UPDATE \ 112 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 113 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 114 #define KVM_REQ_TLB_FLUSH_GUEST \ 115 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 116 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 117 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 118 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 119 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 120 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 121 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_HV_TLB_FLUSH \ 123 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 124 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE KVM_ARCH_REQ(34) 125 126 #define CR0_RESERVED_BITS \ 127 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 128 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 129 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 130 131 #define CR4_RESERVED_BITS \ 132 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 133 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 134 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 135 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 136 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 137 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 138 | X86_CR4_LAM_SUP)) 139 140 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 141 142 143 144 #define INVALID_PAGE (~(hpa_t)0) 145 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 146 147 /* KVM Hugepage definitions for x86 */ 148 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 149 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 150 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 151 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 152 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 153 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 154 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 155 156 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 157 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 158 #define KVM_MMU_HASH_SHIFT 12 159 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 160 #define KVM_MIN_FREE_MMU_PAGES 5 161 #define KVM_REFILL_PAGES 25 162 #define KVM_MAX_CPUID_ENTRIES 256 163 #define KVM_NR_VAR_MTRR 8 164 165 #define ASYNC_PF_PER_VCPU 64 166 167 enum kvm_reg { 168 VCPU_REGS_RAX = __VCPU_REGS_RAX, 169 VCPU_REGS_RCX = __VCPU_REGS_RCX, 170 VCPU_REGS_RDX = __VCPU_REGS_RDX, 171 VCPU_REGS_RBX = __VCPU_REGS_RBX, 172 VCPU_REGS_RSP = __VCPU_REGS_RSP, 173 VCPU_REGS_RBP = __VCPU_REGS_RBP, 174 VCPU_REGS_RSI = __VCPU_REGS_RSI, 175 VCPU_REGS_RDI = __VCPU_REGS_RDI, 176 #ifdef CONFIG_X86_64 177 VCPU_REGS_R8 = __VCPU_REGS_R8, 178 VCPU_REGS_R9 = __VCPU_REGS_R9, 179 VCPU_REGS_R10 = __VCPU_REGS_R10, 180 VCPU_REGS_R11 = __VCPU_REGS_R11, 181 VCPU_REGS_R12 = __VCPU_REGS_R12, 182 VCPU_REGS_R13 = __VCPU_REGS_R13, 183 VCPU_REGS_R14 = __VCPU_REGS_R14, 184 VCPU_REGS_R15 = __VCPU_REGS_R15, 185 #endif 186 VCPU_REGS_RIP, 187 NR_VCPU_REGS, 188 189 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 190 VCPU_EXREG_CR0, 191 VCPU_EXREG_CR3, 192 VCPU_EXREG_CR4, 193 VCPU_EXREG_RFLAGS, 194 VCPU_EXREG_SEGMENTS, 195 VCPU_EXREG_EXIT_INFO_1, 196 VCPU_EXREG_EXIT_INFO_2, 197 }; 198 199 enum { 200 VCPU_SREG_ES, 201 VCPU_SREG_CS, 202 VCPU_SREG_SS, 203 VCPU_SREG_DS, 204 VCPU_SREG_FS, 205 VCPU_SREG_GS, 206 VCPU_SREG_TR, 207 VCPU_SREG_LDTR, 208 }; 209 210 enum exit_fastpath_completion { 211 EXIT_FASTPATH_NONE, 212 EXIT_FASTPATH_REENTER_GUEST, 213 EXIT_FASTPATH_EXIT_HANDLED, 214 }; 215 typedef enum exit_fastpath_completion fastpath_t; 216 217 struct x86_emulate_ctxt; 218 struct x86_exception; 219 union kvm_smram; 220 enum x86_intercept; 221 enum x86_intercept_stage; 222 223 #define KVM_NR_DB_REGS 4 224 225 #define DR6_BUS_LOCK (1 << 11) 226 #define DR6_BD (1 << 13) 227 #define DR6_BS (1 << 14) 228 #define DR6_BT (1 << 15) 229 #define DR6_RTM (1 << 16) 230 /* 231 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 232 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 233 * they will never be 0 for now, but when they are defined 234 * in the future it will require no code change. 235 * 236 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 237 */ 238 #define DR6_ACTIVE_LOW 0xffff0ff0 239 #define DR6_VOLATILE 0x0001e80f 240 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 241 242 #define DR7_BP_EN_MASK 0x000000ff 243 #define DR7_GE (1 << 9) 244 #define DR7_GD (1 << 13) 245 #define DR7_FIXED_1 0x00000400 246 #define DR7_VOLATILE 0xffff2bff 247 248 #define KVM_GUESTDBG_VALID_MASK \ 249 (KVM_GUESTDBG_ENABLE | \ 250 KVM_GUESTDBG_SINGLESTEP | \ 251 KVM_GUESTDBG_USE_HW_BP | \ 252 KVM_GUESTDBG_USE_SW_BP | \ 253 KVM_GUESTDBG_INJECT_BP | \ 254 KVM_GUESTDBG_INJECT_DB | \ 255 KVM_GUESTDBG_BLOCKIRQ) 256 257 #define PFERR_PRESENT_MASK BIT(0) 258 #define PFERR_WRITE_MASK BIT(1) 259 #define PFERR_USER_MASK BIT(2) 260 #define PFERR_RSVD_MASK BIT(3) 261 #define PFERR_FETCH_MASK BIT(4) 262 #define PFERR_PK_MASK BIT(5) 263 #define PFERR_SGX_MASK BIT(15) 264 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 265 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 266 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 267 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 268 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 269 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 270 271 /* 272 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 273 * when emulating instructions that triggers implicit access. 274 */ 275 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 276 /* 277 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 278 * when the guest was accessing private memory. 279 */ 280 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 281 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 282 283 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 284 PFERR_WRITE_MASK | \ 285 PFERR_PRESENT_MASK) 286 287 /* apic attention bits */ 288 #define KVM_APIC_CHECK_VAPIC 0 289 /* 290 * The following bit is set with PV-EOI, unset on EOI. 291 * We detect PV-EOI changes by guest by comparing 292 * this bit with PV-EOI in guest memory. 293 * See the implementation in apic_update_pv_eoi. 294 */ 295 #define KVM_APIC_PV_EOI_PENDING 1 296 297 struct kvm_kernel_irq_routing_entry; 298 299 /* 300 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 301 * also includes TDP pages) to determine whether or not a page can be used in 302 * the given MMU context. This is a subset of the overall kvm_cpu_role to 303 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 304 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 305 * 306 * Upper-level shadow pages having gptes are tracked for write-protection via 307 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 308 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 309 * otherwise gfn_write_track will overflow and explosions will ensue. 310 * 311 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 312 * cannot be reused. The ability to reuse a SP is tracked by its role, which 313 * incorporates various mode bits and properties of the SP. Roughly speaking, 314 * the number of unique SPs that can theoretically be created is 2^n, where n 315 * is the number of bits that are used to compute the role. 316 * 317 * But, even though there are 19 bits in the mask below, not all combinations 318 * of modes and flags are possible: 319 * 320 * - invalid shadow pages are not accounted, so the bits are effectively 18 321 * 322 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 323 * execonly and ad_disabled are only used for nested EPT which has 324 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 325 * 326 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 327 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 328 * paging has exactly one upper level, making level completely redundant 329 * when has_4_byte_gpte=1. 330 * 331 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 332 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 333 * 334 * Therefore, the maximum number of possible upper-level shadow pages for a 335 * single gfn is a bit less than 2^13. 336 */ 337 union kvm_mmu_page_role { 338 u32 word; 339 struct { 340 unsigned level:4; 341 unsigned has_4_byte_gpte:1; 342 unsigned quadrant:2; 343 unsigned direct:1; 344 unsigned access:3; 345 unsigned invalid:1; 346 unsigned efer_nx:1; 347 unsigned cr0_wp:1; 348 unsigned smep_andnot_wp:1; 349 unsigned smap_andnot_wp:1; 350 unsigned ad_disabled:1; 351 unsigned guest_mode:1; 352 unsigned passthrough:1; 353 unsigned :5; 354 355 /* 356 * This is left at the top of the word so that 357 * kvm_memslots_for_spte_role can extract it with a 358 * simple shift. While there is room, give it a whole 359 * byte so it is also faster to load it from memory. 360 */ 361 unsigned smm:8; 362 }; 363 }; 364 365 /* 366 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 367 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 368 * including on nested transitions, if nothing in the full role changes then 369 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 370 * don't treat all-zero structure as valid data. 371 * 372 * The properties that are tracked in the extended role but not the page role 373 * are for things that either (a) do not affect the validity of the shadow page 374 * or (b) are indirectly reflected in the shadow page's role. For example, 375 * CR4.PKE only affects permission checks for software walks of the guest page 376 * tables (because KVM doesn't support Protection Keys with shadow paging), and 377 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 378 * 379 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 380 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 381 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 382 * SMAP aware regardless of CR0.WP. 383 */ 384 union kvm_mmu_extended_role { 385 u32 word; 386 struct { 387 unsigned int valid:1; 388 unsigned int execonly:1; 389 unsigned int cr4_pse:1; 390 unsigned int cr4_pke:1; 391 unsigned int cr4_smap:1; 392 unsigned int cr4_smep:1; 393 unsigned int cr4_la57:1; 394 unsigned int efer_lma:1; 395 }; 396 }; 397 398 union kvm_cpu_role { 399 u64 as_u64; 400 struct { 401 union kvm_mmu_page_role base; 402 union kvm_mmu_extended_role ext; 403 }; 404 }; 405 406 struct kvm_rmap_head { 407 unsigned long val; 408 }; 409 410 struct kvm_pio_request { 411 unsigned long linear_rip; 412 unsigned long count; 413 int in; 414 int port; 415 int size; 416 }; 417 418 #define PT64_ROOT_MAX_LEVEL 5 419 420 struct rsvd_bits_validate { 421 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 422 u64 bad_mt_xwr; 423 }; 424 425 struct kvm_mmu_root_info { 426 gpa_t pgd; 427 hpa_t hpa; 428 }; 429 430 #define KVM_MMU_ROOT_INFO_INVALID \ 431 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 432 433 #define KVM_MMU_NUM_PREV_ROOTS 3 434 435 #define KVM_MMU_ROOT_CURRENT BIT(0) 436 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 437 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 438 439 #define KVM_HAVE_MMU_RWLOCK 440 441 struct kvm_mmu_page; 442 struct kvm_page_fault; 443 444 /* 445 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 446 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 447 * current mmu mode. 448 */ 449 struct kvm_mmu { 450 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 451 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 452 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 453 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 454 struct x86_exception *fault); 455 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 456 gpa_t gva_or_gpa, u64 access, 457 struct x86_exception *exception); 458 int (*sync_spte)(struct kvm_vcpu *vcpu, 459 struct kvm_mmu_page *sp, int i); 460 struct kvm_mmu_root_info root; 461 union kvm_cpu_role cpu_role; 462 union kvm_mmu_page_role root_role; 463 464 /* 465 * The pkru_mask indicates if protection key checks are needed. It 466 * consists of 16 domains indexed by page fault error code bits [4:1], 467 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 468 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 469 */ 470 u32 pkru_mask; 471 472 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 473 474 /* 475 * Bitmap; bit set = permission fault 476 * Byte index: page fault error code [4:1] 477 * Bit index: pte permissions in ACC_* format 478 */ 479 u8 permissions[16]; 480 481 u64 *pae_root; 482 u64 *pml4_root; 483 u64 *pml5_root; 484 485 /* 486 * check zero bits on shadow page table entries, these 487 * bits include not only hardware reserved bits but also 488 * the bits spte never used. 489 */ 490 struct rsvd_bits_validate shadow_zero_check; 491 492 struct rsvd_bits_validate guest_rsvd_check; 493 494 u64 pdptrs[4]; /* pae */ 495 }; 496 497 enum pmc_type { 498 KVM_PMC_GP = 0, 499 KVM_PMC_FIXED, 500 }; 501 502 struct kvm_pmc { 503 enum pmc_type type; 504 u8 idx; 505 bool is_paused; 506 bool intr; 507 /* 508 * Base value of the PMC counter, relative to the *consumed* count in 509 * the associated perf_event. This value includes counter updates from 510 * the perf_event and emulated_count since the last time the counter 511 * was reprogrammed, but it is *not* the current value as seen by the 512 * guest or userspace. 513 * 514 * The count is relative to the associated perf_event so that KVM 515 * doesn't need to reprogram the perf_event every time the guest writes 516 * to the counter. 517 */ 518 u64 counter; 519 /* 520 * PMC events triggered by KVM emulation that haven't been fully 521 * processed, i.e. haven't undergone overflow detection. 522 */ 523 u64 emulated_counter; 524 u64 eventsel; 525 struct perf_event *perf_event; 526 struct kvm_vcpu *vcpu; 527 /* 528 * only for creating or reusing perf_event, 529 * eventsel value for general purpose counters, 530 * ctrl value for fixed counters. 531 */ 532 u64 current_config; 533 }; 534 535 /* More counters may conflict with other existing Architectural MSRs */ 536 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 537 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 538 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 539 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 540 KVM_MAX_NR_AMD_GP_COUNTERS) 541 542 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3 543 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0 544 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \ 545 KVM_MAX_NR_AMD_FIXED_COUTNERS) 546 547 struct kvm_pmu { 548 u8 version; 549 unsigned nr_arch_gp_counters; 550 unsigned nr_arch_fixed_counters; 551 unsigned available_event_types; 552 u64 fixed_ctr_ctrl; 553 u64 fixed_ctr_ctrl_rsvd; 554 u64 global_ctrl; 555 u64 global_status; 556 u64 counter_bitmask[2]; 557 u64 global_ctrl_rsvd; 558 u64 global_status_rsvd; 559 u64 reserved_bits; 560 u64 raw_event_mask; 561 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 562 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 563 564 /* 565 * Overlay the bitmap with a 64-bit atomic so that all bits can be 566 * set in a single access, e.g. to reprogram all counters when the PMU 567 * filter changes. 568 */ 569 union { 570 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 571 atomic64_t __reprogram_pmi; 572 }; 573 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 574 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 575 576 u64 ds_area; 577 u64 pebs_enable; 578 u64 pebs_enable_rsvd; 579 u64 pebs_data_cfg; 580 u64 pebs_data_cfg_rsvd; 581 582 /* 583 * If a guest counter is cross-mapped to host counter with different 584 * index, its PEBS capability will be temporarily disabled. 585 * 586 * The user should make sure that this mask is updated 587 * after disabling interrupts and before perf_guest_get_msrs(); 588 */ 589 u64 host_cross_mapped_mask; 590 591 /* 592 * The gate to release perf_events not marked in 593 * pmc_in_use only once in a vcpu time slice. 594 */ 595 bool need_cleanup; 596 597 /* 598 * The total number of programmed perf_events and it helps to avoid 599 * redundant check before cleanup if guest don't use vPMU at all. 600 */ 601 u8 event_count; 602 }; 603 604 struct kvm_pmu_ops; 605 606 enum { 607 KVM_DEBUGREG_BP_ENABLED = 1, 608 KVM_DEBUGREG_WONT_EXIT = 2, 609 }; 610 611 struct kvm_mtrr { 612 u64 var[KVM_NR_VAR_MTRR * 2]; 613 u64 fixed_64k; 614 u64 fixed_16k[2]; 615 u64 fixed_4k[8]; 616 u64 deftype; 617 }; 618 619 /* Hyper-V SynIC timer */ 620 struct kvm_vcpu_hv_stimer { 621 struct hrtimer timer; 622 int index; 623 union hv_stimer_config config; 624 u64 count; 625 u64 exp_time; 626 struct hv_message msg; 627 bool msg_pending; 628 }; 629 630 /* Hyper-V synthetic interrupt controller (SynIC)*/ 631 struct kvm_vcpu_hv_synic { 632 u64 version; 633 u64 control; 634 u64 msg_page; 635 u64 evt_page; 636 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 637 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 638 DECLARE_BITMAP(auto_eoi_bitmap, 256); 639 DECLARE_BITMAP(vec_bitmap, 256); 640 bool active; 641 bool dont_zero_synic_pages; 642 }; 643 644 /* The maximum number of entries on the TLB flush fifo. */ 645 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 646 /* 647 * Note: the following 'magic' entry is made up by KVM to avoid putting 648 * anything besides GVA on the TLB flush fifo. It is theoretically possible 649 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 650 * which will look identical. KVM's action to 'flush everything' instead of 651 * flushing these particular addresses is, however, fully legitimate as 652 * flushing more than requested is always OK. 653 */ 654 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 655 656 enum hv_tlb_flush_fifos { 657 HV_L1_TLB_FLUSH_FIFO, 658 HV_L2_TLB_FLUSH_FIFO, 659 HV_NR_TLB_FLUSH_FIFOS, 660 }; 661 662 struct kvm_vcpu_hv_tlb_flush_fifo { 663 spinlock_t write_lock; 664 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 665 }; 666 667 /* Hyper-V per vcpu emulation context */ 668 struct kvm_vcpu_hv { 669 struct kvm_vcpu *vcpu; 670 u32 vp_index; 671 u64 hv_vapic; 672 s64 runtime_offset; 673 struct kvm_vcpu_hv_synic synic; 674 struct kvm_hyperv_exit exit; 675 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 676 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 677 bool enforce_cpuid; 678 struct { 679 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 680 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 681 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 682 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 683 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 684 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 685 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 686 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 687 } cpuid_cache; 688 689 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 690 691 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 692 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 693 694 struct hv_vp_assist_page vp_assist_page; 695 696 struct { 697 u64 pa_page_gpa; 698 u64 vm_id; 699 u32 vp_id; 700 } nested; 701 }; 702 703 struct kvm_hypervisor_cpuid { 704 u32 base; 705 u32 limit; 706 }; 707 708 #ifdef CONFIG_KVM_XEN 709 /* Xen HVM per vcpu emulation context */ 710 struct kvm_vcpu_xen { 711 u64 hypercall_rip; 712 u32 current_runstate; 713 u8 upcall_vector; 714 struct gfn_to_pfn_cache vcpu_info_cache; 715 struct gfn_to_pfn_cache vcpu_time_info_cache; 716 struct gfn_to_pfn_cache runstate_cache; 717 struct gfn_to_pfn_cache runstate2_cache; 718 u64 last_steal; 719 u64 runstate_entry_time; 720 u64 runstate_times[4]; 721 unsigned long evtchn_pending_sel; 722 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 723 u32 timer_virq; 724 u64 timer_expires; /* In guest epoch */ 725 atomic_t timer_pending; 726 struct hrtimer timer; 727 int poll_evtchn; 728 struct timer_list poll_timer; 729 struct kvm_hypervisor_cpuid cpuid; 730 }; 731 #endif 732 733 struct kvm_queued_exception { 734 bool pending; 735 bool injected; 736 bool has_error_code; 737 u8 vector; 738 u32 error_code; 739 unsigned long payload; 740 bool has_payload; 741 }; 742 743 struct kvm_vcpu_arch { 744 /* 745 * rip and regs accesses must go through 746 * kvm_{register,rip}_{read,write} functions. 747 */ 748 unsigned long regs[NR_VCPU_REGS]; 749 u32 regs_avail; 750 u32 regs_dirty; 751 752 unsigned long cr0; 753 unsigned long cr0_guest_owned_bits; 754 unsigned long cr2; 755 unsigned long cr3; 756 unsigned long cr4; 757 unsigned long cr4_guest_owned_bits; 758 unsigned long cr4_guest_rsvd_bits; 759 unsigned long cr8; 760 u32 host_pkru; 761 u32 pkru; 762 u32 hflags; 763 u64 efer; 764 u64 apic_base; 765 struct kvm_lapic *apic; /* kernel irqchip context */ 766 bool load_eoi_exitmap_pending; 767 DECLARE_BITMAP(ioapic_handled_vectors, 256); 768 unsigned long apic_attention; 769 int32_t apic_arb_prio; 770 int mp_state; 771 u64 ia32_misc_enable_msr; 772 u64 smbase; 773 u64 smi_count; 774 bool at_instruction_boundary; 775 bool tpr_access_reporting; 776 bool xfd_no_write_intercept; 777 u64 ia32_xss; 778 u64 microcode_version; 779 u64 arch_capabilities; 780 u64 perf_capabilities; 781 782 /* 783 * Paging state of the vcpu 784 * 785 * If the vcpu runs in guest mode with two level paging this still saves 786 * the paging mode of the l1 guest. This context is always used to 787 * handle faults. 788 */ 789 struct kvm_mmu *mmu; 790 791 /* Non-nested MMU for L1 */ 792 struct kvm_mmu root_mmu; 793 794 /* L1 MMU when running nested */ 795 struct kvm_mmu guest_mmu; 796 797 /* 798 * Paging state of an L2 guest (used for nested npt) 799 * 800 * This context will save all necessary information to walk page tables 801 * of an L2 guest. This context is only initialized for page table 802 * walking and not for faulting since we never handle l2 page faults on 803 * the host. 804 */ 805 struct kvm_mmu nested_mmu; 806 807 /* 808 * Pointer to the mmu context currently used for 809 * gva_to_gpa translations. 810 */ 811 struct kvm_mmu *walk_mmu; 812 813 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 814 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 815 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 816 struct kvm_mmu_memory_cache mmu_page_header_cache; 817 818 /* 819 * QEMU userspace and the guest each have their own FPU state. 820 * In vcpu_run, we switch between the user and guest FPU contexts. 821 * While running a VCPU, the VCPU thread will have the guest FPU 822 * context. 823 * 824 * Note that while the PKRU state lives inside the fpu registers, 825 * it is switched out separately at VMENTER and VMEXIT time. The 826 * "guest_fpstate" state here contains the guest FPU context, with the 827 * host PRKU bits. 828 */ 829 struct fpu_guest guest_fpu; 830 831 u64 xcr0; 832 u64 guest_supported_xcr0; 833 834 struct kvm_pio_request pio; 835 void *pio_data; 836 void *sev_pio_data; 837 unsigned sev_pio_count; 838 839 u8 event_exit_inst_len; 840 841 bool exception_from_userspace; 842 843 /* Exceptions to be injected to the guest. */ 844 struct kvm_queued_exception exception; 845 /* Exception VM-Exits to be synthesized to L1. */ 846 struct kvm_queued_exception exception_vmexit; 847 848 struct kvm_queued_interrupt { 849 bool injected; 850 bool soft; 851 u8 nr; 852 } interrupt; 853 854 int halt_request; /* real mode on Intel only */ 855 856 int cpuid_nent; 857 struct kvm_cpuid_entry2 *cpuid_entries; 858 struct kvm_hypervisor_cpuid kvm_cpuid; 859 bool is_amd_compatible; 860 861 /* 862 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly 863 * when "struct kvm_vcpu_arch" is no longer defined in an 864 * arch/x86/include/asm header. The max is mostly arbitrary, i.e. 865 * can be increased as necessary. 866 */ 867 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG 868 869 /* 870 * Track whether or not the guest is allowed to use features that are 871 * governed by KVM, where "governed" means KVM needs to manage state 872 * and/or explicitly enable the feature in hardware. Typically, but 873 * not always, governed features can be used by the guest if and only 874 * if both KVM and userspace want to expose the feature to the guest. 875 */ 876 struct { 877 DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES); 878 } governed_features; 879 880 u64 reserved_gpa_bits; 881 int maxphyaddr; 882 883 /* emulate context */ 884 885 struct x86_emulate_ctxt *emulate_ctxt; 886 bool emulate_regs_need_sync_to_vcpu; 887 bool emulate_regs_need_sync_from_vcpu; 888 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 889 890 gpa_t time; 891 struct pvclock_vcpu_time_info hv_clock; 892 unsigned int hw_tsc_khz; 893 struct gfn_to_pfn_cache pv_time; 894 /* set guest stopped flag in pvclock flags field */ 895 bool pvclock_set_guest_stopped_request; 896 897 struct { 898 u8 preempted; 899 u64 msr_val; 900 u64 last_steal; 901 struct gfn_to_hva_cache cache; 902 } st; 903 904 u64 l1_tsc_offset; 905 u64 tsc_offset; /* current tsc offset */ 906 u64 last_guest_tsc; 907 u64 last_host_tsc; 908 u64 tsc_offset_adjustment; 909 u64 this_tsc_nsec; 910 u64 this_tsc_write; 911 u64 this_tsc_generation; 912 bool tsc_catchup; 913 bool tsc_always_catchup; 914 s8 virtual_tsc_shift; 915 u32 virtual_tsc_mult; 916 u32 virtual_tsc_khz; 917 s64 ia32_tsc_adjust_msr; 918 u64 msr_ia32_power_ctl; 919 u64 l1_tsc_scaling_ratio; 920 u64 tsc_scaling_ratio; /* current scaling ratio */ 921 922 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 923 /* Number of NMIs pending injection, not including hardware vNMIs. */ 924 unsigned int nmi_pending; 925 bool nmi_injected; /* Trying to inject an NMI this entry */ 926 bool smi_pending; /* SMI queued after currently running handler */ 927 u8 handling_intr_from_guest; 928 929 struct kvm_mtrr mtrr_state; 930 u64 pat; 931 932 unsigned switch_db_regs; 933 unsigned long db[KVM_NR_DB_REGS]; 934 unsigned long dr6; 935 unsigned long dr7; 936 unsigned long eff_db[KVM_NR_DB_REGS]; 937 unsigned long guest_debug_dr7; 938 u64 msr_platform_info; 939 u64 msr_misc_features_enables; 940 941 u64 mcg_cap; 942 u64 mcg_status; 943 u64 mcg_ctl; 944 u64 mcg_ext_ctl; 945 u64 *mce_banks; 946 u64 *mci_ctl2_banks; 947 948 /* Cache MMIO info */ 949 u64 mmio_gva; 950 unsigned mmio_access; 951 gfn_t mmio_gfn; 952 u64 mmio_gen; 953 954 struct kvm_pmu pmu; 955 956 /* used for guest single stepping over the given code position */ 957 unsigned long singlestep_rip; 958 959 #ifdef CONFIG_KVM_HYPERV 960 bool hyperv_enabled; 961 struct kvm_vcpu_hv *hyperv; 962 #endif 963 #ifdef CONFIG_KVM_XEN 964 struct kvm_vcpu_xen xen; 965 #endif 966 cpumask_var_t wbinvd_dirty_mask; 967 968 unsigned long last_retry_eip; 969 unsigned long last_retry_addr; 970 971 struct { 972 bool halted; 973 gfn_t gfns[ASYNC_PF_PER_VCPU]; 974 struct gfn_to_hva_cache data; 975 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 976 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 977 u16 vec; 978 u32 id; 979 bool send_user_only; 980 u32 host_apf_flags; 981 bool delivery_as_pf_vmexit; 982 bool pageready_pending; 983 } apf; 984 985 /* OSVW MSRs (AMD only) */ 986 struct { 987 u64 length; 988 u64 status; 989 } osvw; 990 991 struct { 992 u64 msr_val; 993 struct gfn_to_hva_cache data; 994 } pv_eoi; 995 996 u64 msr_kvm_poll_control; 997 998 /* pv related host specific info */ 999 struct { 1000 bool pv_unhalted; 1001 } pv; 1002 1003 int pending_ioapic_eoi; 1004 int pending_external_vector; 1005 1006 /* be preempted when it's in kernel-mode(cpl=0) */ 1007 bool preempted_in_kernel; 1008 1009 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1010 bool l1tf_flush_l1d; 1011 1012 /* Host CPU on which VM-entry was most recently attempted */ 1013 int last_vmentry_cpu; 1014 1015 /* AMD MSRC001_0015 Hardware Configuration */ 1016 u64 msr_hwcr; 1017 1018 /* pv related cpuid info */ 1019 struct { 1020 /* 1021 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1022 * leaf. 1023 */ 1024 u32 features; 1025 1026 /* 1027 * indicates whether pv emulation should be disabled if features 1028 * are not present in the guest's cpuid 1029 */ 1030 bool enforce; 1031 } pv_cpuid; 1032 1033 /* Protected Guests */ 1034 bool guest_state_protected; 1035 1036 /* 1037 * Set when PDPTS were loaded directly by the userspace without 1038 * reading the guest memory 1039 */ 1040 bool pdptrs_from_userspace; 1041 1042 #if IS_ENABLED(CONFIG_HYPERV) 1043 hpa_t hv_root_tdp; 1044 #endif 1045 }; 1046 1047 struct kvm_lpage_info { 1048 int disallow_lpage; 1049 }; 1050 1051 struct kvm_arch_memory_slot { 1052 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1053 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1054 unsigned short *gfn_write_track; 1055 }; 1056 1057 /* 1058 * Track the mode of the optimized logical map, as the rules for decoding the 1059 * destination vary per mode. Enabling the optimized logical map requires all 1060 * software-enabled local APIs to be in the same mode, each addressable APIC to 1061 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1062 */ 1063 enum kvm_apic_logical_mode { 1064 /* All local APICs are software disabled. */ 1065 KVM_APIC_MODE_SW_DISABLED, 1066 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1067 KVM_APIC_MODE_XAPIC_CLUSTER, 1068 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1069 KVM_APIC_MODE_XAPIC_FLAT, 1070 /* All software enabled local APICs in x2APIC mode. */ 1071 KVM_APIC_MODE_X2APIC, 1072 /* 1073 * Optimized map disabled, e.g. not all local APICs in the same logical 1074 * mode, same logical ID assigned to multiple APICs, etc. 1075 */ 1076 KVM_APIC_MODE_MAP_DISABLED, 1077 }; 1078 1079 struct kvm_apic_map { 1080 struct rcu_head rcu; 1081 enum kvm_apic_logical_mode logical_mode; 1082 u32 max_apic_id; 1083 union { 1084 struct kvm_lapic *xapic_flat_map[8]; 1085 struct kvm_lapic *xapic_cluster_map[16][4]; 1086 }; 1087 struct kvm_lapic *phys_map[]; 1088 }; 1089 1090 /* Hyper-V synthetic debugger (SynDbg)*/ 1091 struct kvm_hv_syndbg { 1092 struct { 1093 u64 control; 1094 u64 status; 1095 u64 send_page; 1096 u64 recv_page; 1097 u64 pending_page; 1098 } control; 1099 u64 options; 1100 }; 1101 1102 /* Current state of Hyper-V TSC page clocksource */ 1103 enum hv_tsc_page_status { 1104 /* TSC page was not set up or disabled */ 1105 HV_TSC_PAGE_UNSET = 0, 1106 /* TSC page MSR was written by the guest, update pending */ 1107 HV_TSC_PAGE_GUEST_CHANGED, 1108 /* TSC page update was triggered from the host side */ 1109 HV_TSC_PAGE_HOST_CHANGED, 1110 /* TSC page was properly set up and is currently active */ 1111 HV_TSC_PAGE_SET, 1112 /* TSC page was set up with an inaccessible GPA */ 1113 HV_TSC_PAGE_BROKEN, 1114 }; 1115 1116 #ifdef CONFIG_KVM_HYPERV 1117 /* Hyper-V emulation context */ 1118 struct kvm_hv { 1119 struct mutex hv_lock; 1120 u64 hv_guest_os_id; 1121 u64 hv_hypercall; 1122 u64 hv_tsc_page; 1123 enum hv_tsc_page_status hv_tsc_page_status; 1124 1125 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1126 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1127 u64 hv_crash_ctl; 1128 1129 struct ms_hyperv_tsc_page tsc_ref; 1130 1131 struct idr conn_to_evt; 1132 1133 u64 hv_reenlightenment_control; 1134 u64 hv_tsc_emulation_control; 1135 u64 hv_tsc_emulation_status; 1136 u64 hv_invtsc_control; 1137 1138 /* How many vCPUs have VP index != vCPU index */ 1139 atomic_t num_mismatched_vp_indexes; 1140 1141 /* 1142 * How many SynICs use 'AutoEOI' feature 1143 * (protected by arch.apicv_update_lock) 1144 */ 1145 unsigned int synic_auto_eoi_used; 1146 1147 struct kvm_hv_syndbg hv_syndbg; 1148 1149 bool xsaves_xsavec_checked; 1150 }; 1151 #endif 1152 1153 struct msr_bitmap_range { 1154 u32 flags; 1155 u32 nmsrs; 1156 u32 base; 1157 unsigned long *bitmap; 1158 }; 1159 1160 #ifdef CONFIG_KVM_XEN 1161 /* Xen emulation context */ 1162 struct kvm_xen { 1163 struct mutex xen_lock; 1164 u32 xen_version; 1165 bool long_mode; 1166 bool runstate_update_flag; 1167 u8 upcall_vector; 1168 struct gfn_to_pfn_cache shinfo_cache; 1169 struct idr evtchn_ports; 1170 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1171 }; 1172 #endif 1173 1174 enum kvm_irqchip_mode { 1175 KVM_IRQCHIP_NONE, 1176 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1177 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1178 }; 1179 1180 struct kvm_x86_msr_filter { 1181 u8 count; 1182 bool default_allow:1; 1183 struct msr_bitmap_range ranges[16]; 1184 }; 1185 1186 struct kvm_x86_pmu_event_filter { 1187 __u32 action; 1188 __u32 nevents; 1189 __u32 fixed_counter_bitmap; 1190 __u32 flags; 1191 __u32 nr_includes; 1192 __u32 nr_excludes; 1193 __u64 *includes; 1194 __u64 *excludes; 1195 __u64 events[]; 1196 }; 1197 1198 enum kvm_apicv_inhibit { 1199 1200 /********************************************************************/ 1201 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1202 /********************************************************************/ 1203 1204 /* 1205 * APIC acceleration is disabled by a module parameter 1206 * and/or not supported in hardware. 1207 */ 1208 APICV_INHIBIT_REASON_DISABLED, 1209 1210 /* 1211 * APIC acceleration is inhibited because AutoEOI feature is 1212 * being used by a HyperV guest. 1213 */ 1214 APICV_INHIBIT_REASON_HYPERV, 1215 1216 /* 1217 * APIC acceleration is inhibited because the userspace didn't yet 1218 * enable the kernel/split irqchip. 1219 */ 1220 APICV_INHIBIT_REASON_ABSENT, 1221 1222 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1223 * (out of band, debug measure of blocking all interrupts on this vCPU) 1224 * was enabled, to avoid AVIC/APICv bypassing it. 1225 */ 1226 APICV_INHIBIT_REASON_BLOCKIRQ, 1227 1228 /* 1229 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1230 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1231 */ 1232 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1233 1234 /* 1235 * For simplicity, the APIC acceleration is inhibited 1236 * first time either APIC ID or APIC base are changed by the guest 1237 * from their reset values. 1238 */ 1239 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1240 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1241 1242 /******************************************************/ 1243 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1244 /******************************************************/ 1245 1246 /* 1247 * AVIC is inhibited on a vCPU because it runs a nested guest. 1248 * 1249 * This is needed because unlike APICv, the peers of this vCPU 1250 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1251 * a vCPU runs nested. 1252 */ 1253 APICV_INHIBIT_REASON_NESTED, 1254 1255 /* 1256 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1257 * which cannot be injected when the AVIC is enabled, thus AVIC 1258 * is inhibited while KVM waits for IRQ window. 1259 */ 1260 APICV_INHIBIT_REASON_IRQWIN, 1261 1262 /* 1263 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1264 * which AVIC doesn't support for edge triggered interrupts. 1265 */ 1266 APICV_INHIBIT_REASON_PIT_REINJ, 1267 1268 /* 1269 * AVIC is disabled because SEV doesn't support it. 1270 */ 1271 APICV_INHIBIT_REASON_SEV, 1272 1273 /* 1274 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1275 * mapping between logical ID and vCPU. 1276 */ 1277 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1278 1279 NR_APICV_INHIBIT_REASONS, 1280 }; 1281 1282 #define __APICV_INHIBIT_REASON(reason) \ 1283 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1284 1285 #define APICV_INHIBIT_REASONS \ 1286 __APICV_INHIBIT_REASON(DISABLED), \ 1287 __APICV_INHIBIT_REASON(HYPERV), \ 1288 __APICV_INHIBIT_REASON(ABSENT), \ 1289 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1290 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1291 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1292 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1293 __APICV_INHIBIT_REASON(NESTED), \ 1294 __APICV_INHIBIT_REASON(IRQWIN), \ 1295 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1296 __APICV_INHIBIT_REASON(SEV), \ 1297 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED) 1298 1299 struct kvm_arch { 1300 unsigned long n_used_mmu_pages; 1301 unsigned long n_requested_mmu_pages; 1302 unsigned long n_max_mmu_pages; 1303 unsigned int indirect_shadow_pages; 1304 u8 mmu_valid_gen; 1305 u8 vm_type; 1306 bool has_private_mem; 1307 bool has_protected_state; 1308 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1309 struct list_head active_mmu_pages; 1310 struct list_head zapped_obsolete_pages; 1311 /* 1312 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1313 * replaced by an NX huge page. A shadow page is on this list if its 1314 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1315 * and there are no other conditions that prevent a huge page, e.g. 1316 * the backing host page is huge, dirtly logging is not enabled for its 1317 * memslot, etc... Note, zapping shadow pages on this list doesn't 1318 * guarantee an NX huge page will be created in its stead, e.g. if the 1319 * guest attempts to execute from the region then KVM obviously can't 1320 * create an NX huge page (without hanging the guest). 1321 */ 1322 struct list_head possible_nx_huge_pages; 1323 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1324 struct kvm_page_track_notifier_head track_notifier_head; 1325 #endif 1326 /* 1327 * Protects marking pages unsync during page faults, as TDP MMU page 1328 * faults only take mmu_lock for read. For simplicity, the unsync 1329 * pages lock is always taken when marking pages unsync regardless of 1330 * whether mmu_lock is held for read or write. 1331 */ 1332 spinlock_t mmu_unsync_pages_lock; 1333 1334 u64 shadow_mmio_value; 1335 1336 struct iommu_domain *iommu_domain; 1337 bool iommu_noncoherent; 1338 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1339 atomic_t noncoherent_dma_count; 1340 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1341 atomic_t assigned_device_count; 1342 struct kvm_pic *vpic; 1343 struct kvm_ioapic *vioapic; 1344 struct kvm_pit *vpit; 1345 atomic_t vapics_in_nmi_mode; 1346 struct mutex apic_map_lock; 1347 struct kvm_apic_map __rcu *apic_map; 1348 atomic_t apic_map_dirty; 1349 1350 bool apic_access_memslot_enabled; 1351 bool apic_access_memslot_inhibited; 1352 1353 /* Protects apicv_inhibit_reasons */ 1354 struct rw_semaphore apicv_update_lock; 1355 unsigned long apicv_inhibit_reasons; 1356 1357 gpa_t wall_clock; 1358 1359 bool mwait_in_guest; 1360 bool hlt_in_guest; 1361 bool pause_in_guest; 1362 bool cstate_in_guest; 1363 1364 unsigned long irq_sources_bitmap; 1365 s64 kvmclock_offset; 1366 1367 /* 1368 * This also protects nr_vcpus_matched_tsc which is read from a 1369 * preemption-disabled region, so it must be a raw spinlock. 1370 */ 1371 raw_spinlock_t tsc_write_lock; 1372 u64 last_tsc_nsec; 1373 u64 last_tsc_write; 1374 u32 last_tsc_khz; 1375 u64 last_tsc_offset; 1376 u64 cur_tsc_nsec; 1377 u64 cur_tsc_write; 1378 u64 cur_tsc_offset; 1379 u64 cur_tsc_generation; 1380 int nr_vcpus_matched_tsc; 1381 1382 u32 default_tsc_khz; 1383 bool user_set_tsc; 1384 u64 apic_bus_cycle_ns; 1385 1386 seqcount_raw_spinlock_t pvclock_sc; 1387 bool use_master_clock; 1388 u64 master_kernel_ns; 1389 u64 master_cycle_now; 1390 struct delayed_work kvmclock_update_work; 1391 struct delayed_work kvmclock_sync_work; 1392 1393 struct kvm_xen_hvm_config xen_hvm_config; 1394 1395 /* reads protected by irq_srcu, writes by irq_lock */ 1396 struct hlist_head mask_notifier_list; 1397 1398 #ifdef CONFIG_KVM_HYPERV 1399 struct kvm_hv hyperv; 1400 #endif 1401 1402 #ifdef CONFIG_KVM_XEN 1403 struct kvm_xen xen; 1404 #endif 1405 1406 bool backwards_tsc_observed; 1407 bool boot_vcpu_runs_old_kvmclock; 1408 u32 bsp_vcpu_id; 1409 1410 u64 disabled_quirks; 1411 1412 enum kvm_irqchip_mode irqchip_mode; 1413 u8 nr_reserved_ioapic_pins; 1414 1415 bool disabled_lapic_found; 1416 1417 bool x2apic_format; 1418 bool x2apic_broadcast_quirk_disabled; 1419 1420 bool guest_can_read_msr_platform_info; 1421 bool exception_payload_enabled; 1422 1423 bool triple_fault_event; 1424 1425 bool bus_lock_detection_enabled; 1426 bool enable_pmu; 1427 1428 u32 notify_window; 1429 u32 notify_vmexit_flags; 1430 /* 1431 * If exit_on_emulation_error is set, and the in-kernel instruction 1432 * emulator fails to emulate an instruction, allow userspace 1433 * the opportunity to look at it. 1434 */ 1435 bool exit_on_emulation_error; 1436 1437 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1438 u32 user_space_msr_mask; 1439 struct kvm_x86_msr_filter __rcu *msr_filter; 1440 1441 u32 hypercall_exit_enabled; 1442 1443 /* Guest can access the SGX PROVISIONKEY. */ 1444 bool sgx_provisioning_allowed; 1445 1446 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1447 struct task_struct *nx_huge_page_recovery_thread; 1448 1449 #ifdef CONFIG_X86_64 1450 /* The number of TDP MMU pages across all roots. */ 1451 atomic64_t tdp_mmu_pages; 1452 1453 /* 1454 * List of struct kvm_mmu_pages being used as roots. 1455 * All struct kvm_mmu_pages in the list should have 1456 * tdp_mmu_page set. 1457 * 1458 * For reads, this list is protected by: 1459 * the MMU lock in read mode + RCU or 1460 * the MMU lock in write mode 1461 * 1462 * For writes, this list is protected by tdp_mmu_pages_lock; see 1463 * below for the details. 1464 * 1465 * Roots will remain in the list until their tdp_mmu_root_count 1466 * drops to zero, at which point the thread that decremented the 1467 * count to zero should removed the root from the list and clean 1468 * it up, freeing the root after an RCU grace period. 1469 */ 1470 struct list_head tdp_mmu_roots; 1471 1472 /* 1473 * Protects accesses to the following fields when the MMU lock 1474 * is held in read mode: 1475 * - tdp_mmu_roots (above) 1476 * - the link field of kvm_mmu_page structs used by the TDP MMU 1477 * - possible_nx_huge_pages; 1478 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1479 * by the TDP MMU 1480 * Because the lock is only taken within the MMU lock, strictly 1481 * speaking it is redundant to acquire this lock when the thread 1482 * holds the MMU lock in write mode. However it often simplifies 1483 * the code to do so. 1484 */ 1485 spinlock_t tdp_mmu_pages_lock; 1486 #endif /* CONFIG_X86_64 */ 1487 1488 /* 1489 * If set, at least one shadow root has been allocated. This flag 1490 * is used as one input when determining whether certain memslot 1491 * related allocations are necessary. 1492 */ 1493 bool shadow_root_allocated; 1494 1495 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1496 /* 1497 * If set, the VM has (or had) an external write tracking user, and 1498 * thus all write tracking metadata has been allocated, even if KVM 1499 * itself isn't using write tracking. 1500 */ 1501 bool external_write_tracking_enabled; 1502 #endif 1503 1504 #if IS_ENABLED(CONFIG_HYPERV) 1505 hpa_t hv_root_tdp; 1506 spinlock_t hv_root_tdp_lock; 1507 struct hv_partition_assist_pg *hv_pa_pg; 1508 #endif 1509 /* 1510 * VM-scope maximum vCPU ID. Used to determine the size of structures 1511 * that increase along with the maximum vCPU ID, in which case, using 1512 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1513 */ 1514 u32 max_vcpu_ids; 1515 1516 bool disable_nx_huge_pages; 1517 1518 /* 1519 * Memory caches used to allocate shadow pages when performing eager 1520 * page splitting. No need for a shadowed_info_cache since eager page 1521 * splitting only allocates direct shadow pages. 1522 * 1523 * Protected by kvm->slots_lock. 1524 */ 1525 struct kvm_mmu_memory_cache split_shadow_page_cache; 1526 struct kvm_mmu_memory_cache split_page_header_cache; 1527 1528 /* 1529 * Memory cache used to allocate pte_list_desc structs while splitting 1530 * huge pages. In the worst case, to split one huge page, 512 1531 * pte_list_desc structs are needed to add each lower level leaf sptep 1532 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1533 * page table. 1534 * 1535 * Protected by kvm->slots_lock. 1536 */ 1537 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1538 struct kvm_mmu_memory_cache split_desc_cache; 1539 }; 1540 1541 struct kvm_vm_stat { 1542 struct kvm_vm_stat_generic generic; 1543 u64 mmu_shadow_zapped; 1544 u64 mmu_pte_write; 1545 u64 mmu_pde_zapped; 1546 u64 mmu_flooded; 1547 u64 mmu_recycled; 1548 u64 mmu_cache_miss; 1549 u64 mmu_unsync; 1550 union { 1551 struct { 1552 atomic64_t pages_4k; 1553 atomic64_t pages_2m; 1554 atomic64_t pages_1g; 1555 }; 1556 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1557 }; 1558 u64 nx_lpage_splits; 1559 u64 max_mmu_page_hash_collisions; 1560 u64 max_mmu_rmap_size; 1561 }; 1562 1563 struct kvm_vcpu_stat { 1564 struct kvm_vcpu_stat_generic generic; 1565 u64 pf_taken; 1566 u64 pf_fixed; 1567 u64 pf_emulate; 1568 u64 pf_spurious; 1569 u64 pf_fast; 1570 u64 pf_mmio_spte_created; 1571 u64 pf_guest; 1572 u64 tlb_flush; 1573 u64 invlpg; 1574 1575 u64 exits; 1576 u64 io_exits; 1577 u64 mmio_exits; 1578 u64 signal_exits; 1579 u64 irq_window_exits; 1580 u64 nmi_window_exits; 1581 u64 l1d_flush; 1582 u64 halt_exits; 1583 u64 request_irq_exits; 1584 u64 irq_exits; 1585 u64 host_state_reload; 1586 u64 fpu_reload; 1587 u64 insn_emulation; 1588 u64 insn_emulation_fail; 1589 u64 hypercalls; 1590 u64 irq_injections; 1591 u64 nmi_injections; 1592 u64 req_event; 1593 u64 nested_run; 1594 u64 directed_yield_attempted; 1595 u64 directed_yield_successful; 1596 u64 preemption_reported; 1597 u64 preemption_other; 1598 u64 guest_mode; 1599 u64 notify_window_exits; 1600 }; 1601 1602 struct x86_instruction_info; 1603 1604 struct msr_data { 1605 bool host_initiated; 1606 u32 index; 1607 u64 data; 1608 }; 1609 1610 struct kvm_lapic_irq { 1611 u32 vector; 1612 u16 delivery_mode; 1613 u16 dest_mode; 1614 bool level; 1615 u16 trig_mode; 1616 u32 shorthand; 1617 u32 dest_id; 1618 bool msi_redir_hint; 1619 }; 1620 1621 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1622 { 1623 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1624 } 1625 1626 struct kvm_x86_ops { 1627 const char *name; 1628 1629 int (*check_processor_compatibility)(void); 1630 1631 int (*hardware_enable)(void); 1632 void (*hardware_disable)(void); 1633 void (*hardware_unsetup)(void); 1634 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1635 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1636 1637 unsigned int vm_size; 1638 int (*vm_init)(struct kvm *kvm); 1639 void (*vm_destroy)(struct kvm *kvm); 1640 1641 /* Create, but do not attach this VCPU */ 1642 int (*vcpu_precreate)(struct kvm *kvm); 1643 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1644 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1645 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1646 1647 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1648 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1649 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1650 1651 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1652 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1653 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1654 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1655 void (*get_segment)(struct kvm_vcpu *vcpu, 1656 struct kvm_segment *var, int seg); 1657 int (*get_cpl)(struct kvm_vcpu *vcpu); 1658 void (*set_segment)(struct kvm_vcpu *vcpu, 1659 struct kvm_segment *var, int seg); 1660 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1661 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1662 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1663 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1664 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1665 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1666 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1667 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1668 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1669 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1670 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1671 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1672 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1673 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1674 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1675 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1676 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1677 1678 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1679 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1680 #if IS_ENABLED(CONFIG_HYPERV) 1681 int (*flush_remote_tlbs)(struct kvm *kvm); 1682 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1683 gfn_t nr_pages); 1684 #endif 1685 1686 /* 1687 * Flush any TLB entries associated with the given GVA. 1688 * Does not need to flush GPA->HPA mappings. 1689 * Can potentially get non-canonical addresses through INVLPGs, which 1690 * the implementation may choose to ignore if appropriate. 1691 */ 1692 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1693 1694 /* 1695 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1696 * does not need to flush GPA->HPA mappings. 1697 */ 1698 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1699 1700 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1701 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1702 bool force_immediate_exit); 1703 int (*handle_exit)(struct kvm_vcpu *vcpu, 1704 enum exit_fastpath_completion exit_fastpath); 1705 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1706 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1707 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1708 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1709 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1710 unsigned char *hypercall_addr); 1711 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1712 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1713 void (*inject_exception)(struct kvm_vcpu *vcpu); 1714 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1715 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1716 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1717 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1718 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1719 /* Whether or not a virtual NMI is pending in hardware. */ 1720 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1721 /* 1722 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1723 * to allow using static_call_ret0 as the fallback. 1724 */ 1725 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1726 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1727 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1728 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1729 const unsigned long required_apicv_inhibits; 1730 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1731 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1732 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1733 void (*hwapic_isr_update)(int isr); 1734 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1735 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1736 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1737 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1738 int trig_mode, int vector); 1739 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1740 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1741 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1742 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1743 1744 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1745 int root_level); 1746 1747 bool (*has_wbinvd_exit)(void); 1748 1749 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1750 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1751 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1752 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1753 1754 /* 1755 * Retrieve somewhat arbitrary exit information. Intended to 1756 * be used only from within tracepoints or error paths. 1757 */ 1758 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1759 u64 *info1, u64 *info2, 1760 u32 *exit_int_info, u32 *exit_int_info_err_code); 1761 1762 int (*check_intercept)(struct kvm_vcpu *vcpu, 1763 struct x86_instruction_info *info, 1764 enum x86_intercept_stage stage, 1765 struct x86_exception *exception); 1766 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1767 1768 /* 1769 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1770 * value indicates CPU dirty logging is unsupported or disabled. 1771 */ 1772 int cpu_dirty_log_size; 1773 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1774 1775 const struct kvm_x86_nested_ops *nested_ops; 1776 1777 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1778 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1779 1780 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1781 uint32_t guest_irq, bool set); 1782 void (*pi_start_assignment)(struct kvm *kvm); 1783 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1784 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1785 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1786 1787 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1788 bool *expired); 1789 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1790 1791 void (*setup_mce)(struct kvm_vcpu *vcpu); 1792 1793 #ifdef CONFIG_KVM_SMM 1794 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1795 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1796 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1797 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1798 #endif 1799 1800 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1801 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1802 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1803 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1804 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1805 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1806 void (*guest_memory_reclaimed)(struct kvm *kvm); 1807 1808 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1809 1810 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1811 void *insn, int insn_len); 1812 1813 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1814 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1815 1816 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1817 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1818 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1819 1820 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1821 1822 /* 1823 * Returns vCPU specific APICv inhibit reasons 1824 */ 1825 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1826 1827 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1828 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1829 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1830 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1831 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn); 1832 }; 1833 1834 struct kvm_x86_nested_ops { 1835 void (*leave_nested)(struct kvm_vcpu *vcpu); 1836 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1837 u32 error_code); 1838 int (*check_events)(struct kvm_vcpu *vcpu); 1839 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1840 void (*triple_fault)(struct kvm_vcpu *vcpu); 1841 int (*get_state)(struct kvm_vcpu *vcpu, 1842 struct kvm_nested_state __user *user_kvm_nested_state, 1843 unsigned user_data_size); 1844 int (*set_state)(struct kvm_vcpu *vcpu, 1845 struct kvm_nested_state __user *user_kvm_nested_state, 1846 struct kvm_nested_state *kvm_state); 1847 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1848 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1849 1850 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1851 uint16_t *vmcs_version); 1852 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1853 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1854 }; 1855 1856 struct kvm_x86_init_ops { 1857 int (*hardware_setup)(void); 1858 unsigned int (*handle_intel_pt_intr)(void); 1859 1860 struct kvm_x86_ops *runtime_ops; 1861 struct kvm_pmu_ops *pmu_ops; 1862 }; 1863 1864 struct kvm_arch_async_pf { 1865 u32 token; 1866 gfn_t gfn; 1867 unsigned long cr3; 1868 bool direct_map; 1869 u64 error_code; 1870 }; 1871 1872 extern u32 __read_mostly kvm_nr_uret_msrs; 1873 extern bool __read_mostly allow_smaller_maxphyaddr; 1874 extern bool __read_mostly enable_apicv; 1875 extern struct kvm_x86_ops kvm_x86_ops; 1876 1877 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1878 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1879 1880 #define KVM_X86_OP(func) \ 1881 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1882 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1883 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1884 #include <asm/kvm-x86-ops.h> 1885 1886 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1887 void kvm_x86_vendor_exit(void); 1888 1889 #define __KVM_HAVE_ARCH_VM_ALLOC 1890 static inline struct kvm *kvm_arch_alloc_vm(void) 1891 { 1892 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1893 } 1894 1895 #define __KVM_HAVE_ARCH_VM_FREE 1896 void kvm_arch_free_vm(struct kvm *kvm); 1897 1898 #if IS_ENABLED(CONFIG_HYPERV) 1899 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1900 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1901 { 1902 if (kvm_x86_ops.flush_remote_tlbs && 1903 !kvm_x86_call(flush_remote_tlbs)(kvm)) 1904 return 0; 1905 else 1906 return -ENOTSUPP; 1907 } 1908 1909 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1910 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1911 u64 nr_pages) 1912 { 1913 if (!kvm_x86_ops.flush_remote_tlbs_range) 1914 return -EOPNOTSUPP; 1915 1916 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1917 } 1918 #endif /* CONFIG_HYPERV */ 1919 1920 enum kvm_intr_type { 1921 /* Values are arbitrary, but must be non-zero. */ 1922 KVM_HANDLING_IRQ = 1, 1923 KVM_HANDLING_NMI, 1924 }; 1925 1926 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 1927 #define kvm_arch_pmi_in_guest(vcpu) \ 1928 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 1929 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 1930 1931 void __init kvm_mmu_x86_module_init(void); 1932 int kvm_mmu_vendor_module_init(void); 1933 void kvm_mmu_vendor_module_exit(void); 1934 1935 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1936 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1937 void kvm_mmu_init_vm(struct kvm *kvm); 1938 void kvm_mmu_uninit_vm(struct kvm *kvm); 1939 1940 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 1941 struct kvm_memory_slot *slot); 1942 1943 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1944 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1945 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1946 const struct kvm_memory_slot *memslot, 1947 int start_level); 1948 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1949 const struct kvm_memory_slot *memslot, 1950 int target_level); 1951 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1952 const struct kvm_memory_slot *memslot, 1953 u64 start, u64 end, 1954 int target_level); 1955 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1956 const struct kvm_memory_slot *memslot); 1957 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1958 const struct kvm_memory_slot *memslot); 1959 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1960 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1961 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 1962 1963 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 1964 1965 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1966 const void *val, int bytes); 1967 1968 struct kvm_irq_mask_notifier { 1969 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1970 int irq; 1971 struct hlist_node link; 1972 }; 1973 1974 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1975 struct kvm_irq_mask_notifier *kimn); 1976 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1977 struct kvm_irq_mask_notifier *kimn); 1978 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1979 bool mask); 1980 1981 extern bool tdp_enabled; 1982 1983 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1984 1985 /* 1986 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1987 * userspace I/O) to indicate that the emulation context 1988 * should be reused as is, i.e. skip initialization of 1989 * emulation context, instruction fetch and decode. 1990 * 1991 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1992 * Indicates that only select instructions (tagged with 1993 * EmulateOnUD) should be emulated (to minimize the emulator 1994 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 1995 * 1996 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 1997 * decode the instruction length. For use *only* by 1998 * kvm_x86_ops.skip_emulated_instruction() implementations if 1999 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2000 * 2001 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2002 * retry native execution under certain conditions, 2003 * Can only be set in conjunction with EMULTYPE_PF. 2004 * 2005 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2006 * triggered by KVM's magic "force emulation" prefix, 2007 * which is opt in via module param (off by default). 2008 * Bypasses EmulateOnUD restriction despite emulating 2009 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2010 * Used to test the full emulator from userspace. 2011 * 2012 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2013 * backdoor emulation, which is opt in via module param. 2014 * VMware backdoor emulation handles select instructions 2015 * and reinjects the #GP for all other cases. 2016 * 2017 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 2018 * case the CR2/GPA value pass on the stack is valid. 2019 * 2020 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2021 * state and inject single-step #DBs after skipping 2022 * an instruction (after completing userspace I/O). 2023 * 2024 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2025 * is attempting to write a gfn that contains one or 2026 * more of the PTEs used to translate the write itself, 2027 * and the owning page table is being shadowed by KVM. 2028 * If emulation of the faulting instruction fails and 2029 * this flag is set, KVM will exit to userspace instead 2030 * of retrying emulation as KVM cannot make forward 2031 * progress. 2032 * 2033 * If emulation fails for a write to guest page tables, 2034 * KVM unprotects (zaps) the shadow page for the target 2035 * gfn and resumes the guest to retry the non-emulatable 2036 * instruction (on hardware). Unprotecting the gfn 2037 * doesn't allow forward progress for a self-changing 2038 * access because doing so also zaps the translation for 2039 * the gfn, i.e. retrying the instruction will hit a 2040 * !PRESENT fault, which results in a new shadow page 2041 * and sends KVM back to square one. 2042 */ 2043 #define EMULTYPE_NO_DECODE (1 << 0) 2044 #define EMULTYPE_TRAP_UD (1 << 1) 2045 #define EMULTYPE_SKIP (1 << 2) 2046 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2047 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2048 #define EMULTYPE_VMWARE_GP (1 << 5) 2049 #define EMULTYPE_PF (1 << 6) 2050 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2051 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2052 2053 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2054 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2055 void *insn, int insn_len); 2056 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2057 u64 *data, u8 ndata); 2058 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2059 2060 void kvm_enable_efer_bits(u64); 2061 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2062 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2063 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2064 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2065 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2066 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2067 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2068 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2069 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2070 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2071 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2072 2073 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2074 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2075 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2076 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2077 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2078 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2079 2080 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2081 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2082 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2083 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2084 2085 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2086 int reason, bool has_error_code, u32 error_code); 2087 2088 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2089 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2090 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2091 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2092 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2093 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2094 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2095 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2096 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2097 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2098 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2099 2100 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2101 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2102 2103 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2104 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2105 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2106 2107 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2108 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2109 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2110 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2111 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2112 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2113 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2114 struct x86_exception *fault); 2115 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2116 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2117 2118 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2119 int irq_source_id, int level) 2120 { 2121 /* Logical OR for level trig interrupt */ 2122 if (level) 2123 __set_bit(irq_source_id, irq_state); 2124 else 2125 __clear_bit(irq_source_id, irq_state); 2126 2127 return !!(*irq_state); 2128 } 2129 2130 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2131 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2132 2133 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2134 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2135 2136 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2137 2138 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 2139 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2140 ulong roots_to_free); 2141 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2142 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2143 struct x86_exception *exception); 2144 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2145 struct x86_exception *exception); 2146 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2147 struct x86_exception *exception); 2148 2149 bool kvm_apicv_activated(struct kvm *kvm); 2150 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2151 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2152 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2153 enum kvm_apicv_inhibit reason, bool set); 2154 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2155 enum kvm_apicv_inhibit reason, bool set); 2156 2157 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2158 enum kvm_apicv_inhibit reason) 2159 { 2160 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2161 } 2162 2163 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2164 enum kvm_apicv_inhibit reason) 2165 { 2166 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2167 } 2168 2169 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr, 2170 unsigned long a0, unsigned long a1, 2171 unsigned long a2, unsigned long a3, 2172 int op_64_bit, int cpl); 2173 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 2174 2175 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2176 void *insn, int insn_len); 2177 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2178 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2179 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2180 u64 addr, unsigned long roots); 2181 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2182 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2183 2184 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2185 int tdp_max_root_level, int tdp_huge_page_level); 2186 2187 2188 #ifdef CONFIG_KVM_PRIVATE_MEM 2189 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2190 #else 2191 #define kvm_arch_has_private_mem(kvm) false 2192 #endif 2193 2194 static inline u16 kvm_read_ldt(void) 2195 { 2196 u16 ldt; 2197 asm("sldt %0" : "=g"(ldt)); 2198 return ldt; 2199 } 2200 2201 static inline void kvm_load_ldt(u16 sel) 2202 { 2203 asm("lldt %0" : : "rm"(sel)); 2204 } 2205 2206 #ifdef CONFIG_X86_64 2207 static inline unsigned long read_msr(unsigned long msr) 2208 { 2209 u64 value; 2210 2211 rdmsrl(msr, value); 2212 return value; 2213 } 2214 #endif 2215 2216 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2217 { 2218 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2219 } 2220 2221 #define TSS_IOPB_BASE_OFFSET 0x66 2222 #define TSS_BASE_SIZE 0x68 2223 #define TSS_IOPB_SIZE (65536 / 8) 2224 #define TSS_REDIRECTION_SIZE (256 / 8) 2225 #define RMODE_TSS_SIZE \ 2226 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2227 2228 enum { 2229 TASK_SWITCH_CALL = 0, 2230 TASK_SWITCH_IRET = 1, 2231 TASK_SWITCH_JMP = 2, 2232 TASK_SWITCH_GATE = 3, 2233 }; 2234 2235 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2236 2237 #ifdef CONFIG_KVM_SMM 2238 #define HF_SMM_MASK (1 << 1) 2239 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2240 2241 # define KVM_MAX_NR_ADDRESS_SPACES 2 2242 /* SMM is currently unsupported for guests with private memory. */ 2243 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2244 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2245 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2246 #else 2247 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2248 #endif 2249 2250 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2251 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2252 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2253 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2254 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2255 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2256 2257 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2258 unsigned long ipi_bitmap_high, u32 min, 2259 unsigned long icr, int op_64_bit); 2260 2261 int kvm_add_user_return_msr(u32 msr); 2262 int kvm_find_user_return_msr(u32 msr); 2263 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2264 2265 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2266 { 2267 return kvm_find_user_return_msr(msr) >= 0; 2268 } 2269 2270 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2271 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2272 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2273 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2274 2275 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2276 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2277 2278 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2279 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2280 unsigned long *vcpu_bitmap); 2281 2282 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2283 struct kvm_async_pf *work); 2284 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2285 struct kvm_async_pf *work); 2286 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2287 struct kvm_async_pf *work); 2288 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2289 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2290 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2291 2292 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2293 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2294 2295 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2296 u32 size); 2297 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2298 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2299 2300 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2301 struct kvm_vcpu **dest_vcpu); 2302 2303 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2304 struct kvm_lapic_irq *irq); 2305 2306 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2307 { 2308 /* We can only post Fixed and LowPrio IRQs */ 2309 return (irq->delivery_mode == APIC_DM_FIXED || 2310 irq->delivery_mode == APIC_DM_LOWEST); 2311 } 2312 2313 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2314 { 2315 kvm_x86_call(vcpu_blocking)(vcpu); 2316 } 2317 2318 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2319 { 2320 kvm_x86_call(vcpu_unblocking)(vcpu); 2321 } 2322 2323 static inline int kvm_cpu_get_apicid(int mps_cpu) 2324 { 2325 #ifdef CONFIG_X86_LOCAL_APIC 2326 return default_cpu_present_to_apicid(mps_cpu); 2327 #else 2328 WARN_ON_ONCE(1); 2329 return BAD_APICID; 2330 #endif 2331 } 2332 2333 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2334 2335 #define KVM_CLOCK_VALID_FLAGS \ 2336 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2337 2338 #define KVM_X86_VALID_QUIRKS \ 2339 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2340 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2341 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2342 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2343 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2344 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2345 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) 2346 2347 /* 2348 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2349 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2350 * remaining 31 lower bits must be 0 to preserve ABI. 2351 */ 2352 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2353 2354 #endif /* _ASM_X86_KVM_HOST_H */ 2355