1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/hyperv.h> 28 #include <linux/kfifo.h> 29 30 #include <asm/apic.h> 31 #include <asm/pvclock-abi.h> 32 #include <asm/desc.h> 33 #include <asm/mtrr.h> 34 #include <asm/msr-index.h> 35 #include <asm/asm.h> 36 #include <asm/kvm_page_track.h> 37 #include <asm/kvm_vcpu_regs.h> 38 #include <asm/hyperv-tlfs.h> 39 40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 41 42 #define KVM_MAX_VCPUS 1024 43 44 /* 45 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 46 * might be larger than the actual number of VCPUs because the 47 * APIC ID encodes CPU topology information. 48 * 49 * In the worst case, we'll need less than one extra bit for the 50 * Core ID, and less than one extra bit for the Package (Die) ID, 51 * so ratio of 4 should be enough. 52 */ 53 #define KVM_VCPU_ID_RATIO 4 54 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 55 56 /* memory slots that are not exposed to userspace */ 57 #define KVM_INTERNAL_MEM_SLOTS 3 58 59 #define KVM_HALT_POLL_NS_DEFAULT 200000 60 61 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 62 63 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 64 KVM_DIRTY_LOG_INITIALLY_SET) 65 66 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 67 KVM_BUS_LOCK_DETECTION_EXIT) 68 69 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 70 KVM_X86_NOTIFY_VMEXIT_USER) 71 72 /* x86-specific vcpu->requests bit members */ 73 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 74 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 75 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 76 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 77 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 78 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 79 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 80 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 81 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 82 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 83 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 84 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 85 #ifdef CONFIG_KVM_SMM 86 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 87 #endif 88 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 89 #define KVM_REQ_MCLOCK_INPROGRESS \ 90 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 91 #define KVM_REQ_SCAN_IOAPIC \ 92 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 93 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 94 #define KVM_REQ_APIC_PAGE_RELOAD \ 95 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 96 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 97 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 98 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 99 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 100 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 101 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 102 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 103 #define KVM_REQ_APICV_UPDATE \ 104 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 105 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 106 #define KVM_REQ_TLB_FLUSH_GUEST \ 107 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 108 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 109 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 110 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 111 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 112 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 113 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 114 #define KVM_REQ_HV_TLB_FLUSH \ 115 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 116 117 #define CR0_RESERVED_BITS \ 118 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 119 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 120 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 121 122 #define CR4_RESERVED_BITS \ 123 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 124 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 125 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 126 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 127 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 128 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP)) 129 130 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 131 132 133 134 #define INVALID_PAGE (~(hpa_t)0) 135 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 136 137 /* KVM Hugepage definitions for x86 */ 138 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 139 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 140 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 141 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 142 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 143 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 144 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 145 146 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 147 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 148 #define KVM_MMU_HASH_SHIFT 12 149 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 150 #define KVM_MIN_FREE_MMU_PAGES 5 151 #define KVM_REFILL_PAGES 25 152 #define KVM_MAX_CPUID_ENTRIES 256 153 #define KVM_NR_FIXED_MTRR_REGION 88 154 #define KVM_NR_VAR_MTRR 8 155 156 #define ASYNC_PF_PER_VCPU 64 157 158 enum kvm_reg { 159 VCPU_REGS_RAX = __VCPU_REGS_RAX, 160 VCPU_REGS_RCX = __VCPU_REGS_RCX, 161 VCPU_REGS_RDX = __VCPU_REGS_RDX, 162 VCPU_REGS_RBX = __VCPU_REGS_RBX, 163 VCPU_REGS_RSP = __VCPU_REGS_RSP, 164 VCPU_REGS_RBP = __VCPU_REGS_RBP, 165 VCPU_REGS_RSI = __VCPU_REGS_RSI, 166 VCPU_REGS_RDI = __VCPU_REGS_RDI, 167 #ifdef CONFIG_X86_64 168 VCPU_REGS_R8 = __VCPU_REGS_R8, 169 VCPU_REGS_R9 = __VCPU_REGS_R9, 170 VCPU_REGS_R10 = __VCPU_REGS_R10, 171 VCPU_REGS_R11 = __VCPU_REGS_R11, 172 VCPU_REGS_R12 = __VCPU_REGS_R12, 173 VCPU_REGS_R13 = __VCPU_REGS_R13, 174 VCPU_REGS_R14 = __VCPU_REGS_R14, 175 VCPU_REGS_R15 = __VCPU_REGS_R15, 176 #endif 177 VCPU_REGS_RIP, 178 NR_VCPU_REGS, 179 180 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 181 VCPU_EXREG_CR0, 182 VCPU_EXREG_CR3, 183 VCPU_EXREG_CR4, 184 VCPU_EXREG_RFLAGS, 185 VCPU_EXREG_SEGMENTS, 186 VCPU_EXREG_EXIT_INFO_1, 187 VCPU_EXREG_EXIT_INFO_2, 188 }; 189 190 enum { 191 VCPU_SREG_ES, 192 VCPU_SREG_CS, 193 VCPU_SREG_SS, 194 VCPU_SREG_DS, 195 VCPU_SREG_FS, 196 VCPU_SREG_GS, 197 VCPU_SREG_TR, 198 VCPU_SREG_LDTR, 199 }; 200 201 enum exit_fastpath_completion { 202 EXIT_FASTPATH_NONE, 203 EXIT_FASTPATH_REENTER_GUEST, 204 EXIT_FASTPATH_EXIT_HANDLED, 205 }; 206 typedef enum exit_fastpath_completion fastpath_t; 207 208 struct x86_emulate_ctxt; 209 struct x86_exception; 210 union kvm_smram; 211 enum x86_intercept; 212 enum x86_intercept_stage; 213 214 #define KVM_NR_DB_REGS 4 215 216 #define DR6_BUS_LOCK (1 << 11) 217 #define DR6_BD (1 << 13) 218 #define DR6_BS (1 << 14) 219 #define DR6_BT (1 << 15) 220 #define DR6_RTM (1 << 16) 221 /* 222 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 223 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 224 * they will never be 0 for now, but when they are defined 225 * in the future it will require no code change. 226 * 227 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 228 */ 229 #define DR6_ACTIVE_LOW 0xffff0ff0 230 #define DR6_VOLATILE 0x0001e80f 231 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 232 233 #define DR7_BP_EN_MASK 0x000000ff 234 #define DR7_GE (1 << 9) 235 #define DR7_GD (1 << 13) 236 #define DR7_FIXED_1 0x00000400 237 #define DR7_VOLATILE 0xffff2bff 238 239 #define KVM_GUESTDBG_VALID_MASK \ 240 (KVM_GUESTDBG_ENABLE | \ 241 KVM_GUESTDBG_SINGLESTEP | \ 242 KVM_GUESTDBG_USE_HW_BP | \ 243 KVM_GUESTDBG_USE_SW_BP | \ 244 KVM_GUESTDBG_INJECT_BP | \ 245 KVM_GUESTDBG_INJECT_DB | \ 246 KVM_GUESTDBG_BLOCKIRQ) 247 248 249 #define PFERR_PRESENT_BIT 0 250 #define PFERR_WRITE_BIT 1 251 #define PFERR_USER_BIT 2 252 #define PFERR_RSVD_BIT 3 253 #define PFERR_FETCH_BIT 4 254 #define PFERR_PK_BIT 5 255 #define PFERR_SGX_BIT 15 256 #define PFERR_GUEST_FINAL_BIT 32 257 #define PFERR_GUEST_PAGE_BIT 33 258 #define PFERR_IMPLICIT_ACCESS_BIT 48 259 260 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 261 #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 262 #define PFERR_USER_MASK BIT(PFERR_USER_BIT) 263 #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 264 #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 265 #define PFERR_PK_MASK BIT(PFERR_PK_BIT) 266 #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 267 #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 268 #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 269 #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 270 271 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 272 PFERR_WRITE_MASK | \ 273 PFERR_PRESENT_MASK) 274 275 /* apic attention bits */ 276 #define KVM_APIC_CHECK_VAPIC 0 277 /* 278 * The following bit is set with PV-EOI, unset on EOI. 279 * We detect PV-EOI changes by guest by comparing 280 * this bit with PV-EOI in guest memory. 281 * See the implementation in apic_update_pv_eoi. 282 */ 283 #define KVM_APIC_PV_EOI_PENDING 1 284 285 struct kvm_kernel_irq_routing_entry; 286 287 /* 288 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 289 * also includes TDP pages) to determine whether or not a page can be used in 290 * the given MMU context. This is a subset of the overall kvm_cpu_role to 291 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 292 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 293 * 294 * Upper-level shadow pages having gptes are tracked for write-protection via 295 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 296 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 297 * otherwise gfn_write_track will overflow and explosions will ensue. 298 * 299 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 300 * cannot be reused. The ability to reuse a SP is tracked by its role, which 301 * incorporates various mode bits and properties of the SP. Roughly speaking, 302 * the number of unique SPs that can theoretically be created is 2^n, where n 303 * is the number of bits that are used to compute the role. 304 * 305 * But, even though there are 19 bits in the mask below, not all combinations 306 * of modes and flags are possible: 307 * 308 * - invalid shadow pages are not accounted, so the bits are effectively 18 309 * 310 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 311 * execonly and ad_disabled are only used for nested EPT which has 312 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 313 * 314 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 315 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 316 * paging has exactly one upper level, making level completely redundant 317 * when has_4_byte_gpte=1. 318 * 319 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 320 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 321 * 322 * Therefore, the maximum number of possible upper-level shadow pages for a 323 * single gfn is a bit less than 2^13. 324 */ 325 union kvm_mmu_page_role { 326 u32 word; 327 struct { 328 unsigned level:4; 329 unsigned has_4_byte_gpte:1; 330 unsigned quadrant:2; 331 unsigned direct:1; 332 unsigned access:3; 333 unsigned invalid:1; 334 unsigned efer_nx:1; 335 unsigned cr0_wp:1; 336 unsigned smep_andnot_wp:1; 337 unsigned smap_andnot_wp:1; 338 unsigned ad_disabled:1; 339 unsigned guest_mode:1; 340 unsigned passthrough:1; 341 unsigned :5; 342 343 /* 344 * This is left at the top of the word so that 345 * kvm_memslots_for_spte_role can extract it with a 346 * simple shift. While there is room, give it a whole 347 * byte so it is also faster to load it from memory. 348 */ 349 unsigned smm:8; 350 }; 351 }; 352 353 /* 354 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 355 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 356 * including on nested transitions, if nothing in the full role changes then 357 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 358 * don't treat all-zero structure as valid data. 359 * 360 * The properties that are tracked in the extended role but not the page role 361 * are for things that either (a) do not affect the validity of the shadow page 362 * or (b) are indirectly reflected in the shadow page's role. For example, 363 * CR4.PKE only affects permission checks for software walks of the guest page 364 * tables (because KVM doesn't support Protection Keys with shadow paging), and 365 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 366 * 367 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 368 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 369 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 370 * SMAP aware regardless of CR0.WP. 371 */ 372 union kvm_mmu_extended_role { 373 u32 word; 374 struct { 375 unsigned int valid:1; 376 unsigned int execonly:1; 377 unsigned int cr4_pse:1; 378 unsigned int cr4_pke:1; 379 unsigned int cr4_smap:1; 380 unsigned int cr4_smep:1; 381 unsigned int cr4_la57:1; 382 unsigned int efer_lma:1; 383 }; 384 }; 385 386 union kvm_cpu_role { 387 u64 as_u64; 388 struct { 389 union kvm_mmu_page_role base; 390 union kvm_mmu_extended_role ext; 391 }; 392 }; 393 394 struct kvm_rmap_head { 395 unsigned long val; 396 }; 397 398 struct kvm_pio_request { 399 unsigned long linear_rip; 400 unsigned long count; 401 int in; 402 int port; 403 int size; 404 }; 405 406 #define PT64_ROOT_MAX_LEVEL 5 407 408 struct rsvd_bits_validate { 409 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 410 u64 bad_mt_xwr; 411 }; 412 413 struct kvm_mmu_root_info { 414 gpa_t pgd; 415 hpa_t hpa; 416 }; 417 418 #define KVM_MMU_ROOT_INFO_INVALID \ 419 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 420 421 #define KVM_MMU_NUM_PREV_ROOTS 3 422 423 #define KVM_MMU_ROOT_CURRENT BIT(0) 424 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 425 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 426 427 #define KVM_HAVE_MMU_RWLOCK 428 429 struct kvm_mmu_page; 430 struct kvm_page_fault; 431 432 /* 433 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 434 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 435 * current mmu mode. 436 */ 437 struct kvm_mmu { 438 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 439 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 440 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 441 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 442 struct x86_exception *fault); 443 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 444 gpa_t gva_or_gpa, u64 access, 445 struct x86_exception *exception); 446 int (*sync_spte)(struct kvm_vcpu *vcpu, 447 struct kvm_mmu_page *sp, int i); 448 struct kvm_mmu_root_info root; 449 union kvm_cpu_role cpu_role; 450 union kvm_mmu_page_role root_role; 451 452 /* 453 * The pkru_mask indicates if protection key checks are needed. It 454 * consists of 16 domains indexed by page fault error code bits [4:1], 455 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 456 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 457 */ 458 u32 pkru_mask; 459 460 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 461 462 /* 463 * Bitmap; bit set = permission fault 464 * Byte index: page fault error code [4:1] 465 * Bit index: pte permissions in ACC_* format 466 */ 467 u8 permissions[16]; 468 469 u64 *pae_root; 470 u64 *pml4_root; 471 u64 *pml5_root; 472 473 /* 474 * check zero bits on shadow page table entries, these 475 * bits include not only hardware reserved bits but also 476 * the bits spte never used. 477 */ 478 struct rsvd_bits_validate shadow_zero_check; 479 480 struct rsvd_bits_validate guest_rsvd_check; 481 482 u64 pdptrs[4]; /* pae */ 483 }; 484 485 enum pmc_type { 486 KVM_PMC_GP = 0, 487 KVM_PMC_FIXED, 488 }; 489 490 struct kvm_pmc { 491 enum pmc_type type; 492 u8 idx; 493 bool is_paused; 494 bool intr; 495 u64 counter; 496 u64 prev_counter; 497 u64 eventsel; 498 struct perf_event *perf_event; 499 struct kvm_vcpu *vcpu; 500 /* 501 * only for creating or reusing perf_event, 502 * eventsel value for general purpose counters, 503 * ctrl value for fixed counters. 504 */ 505 u64 current_config; 506 }; 507 508 /* More counters may conflict with other existing Architectural MSRs */ 509 #define KVM_INTEL_PMC_MAX_GENERIC 8 510 #define MSR_ARCH_PERFMON_PERFCTR_MAX (MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 511 #define MSR_ARCH_PERFMON_EVENTSEL_MAX (MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 512 #define KVM_PMC_MAX_FIXED 3 513 #define MSR_ARCH_PERFMON_FIXED_CTR_MAX (MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1) 514 #define KVM_AMD_PMC_MAX_GENERIC 6 515 struct kvm_pmu { 516 u8 version; 517 unsigned nr_arch_gp_counters; 518 unsigned nr_arch_fixed_counters; 519 unsigned available_event_types; 520 u64 fixed_ctr_ctrl; 521 u64 fixed_ctr_ctrl_mask; 522 u64 global_ctrl; 523 u64 global_status; 524 u64 counter_bitmask[2]; 525 u64 global_ctrl_mask; 526 u64 global_status_mask; 527 u64 reserved_bits; 528 u64 raw_event_mask; 529 struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC]; 530 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED]; 531 struct irq_work irq_work; 532 533 /* 534 * Overlay the bitmap with a 64-bit atomic so that all bits can be 535 * set in a single access, e.g. to reprogram all counters when the PMU 536 * filter changes. 537 */ 538 union { 539 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 540 atomic64_t __reprogram_pmi; 541 }; 542 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 543 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 544 545 u64 ds_area; 546 u64 pebs_enable; 547 u64 pebs_enable_mask; 548 u64 pebs_data_cfg; 549 u64 pebs_data_cfg_mask; 550 551 /* 552 * If a guest counter is cross-mapped to host counter with different 553 * index, its PEBS capability will be temporarily disabled. 554 * 555 * The user should make sure that this mask is updated 556 * after disabling interrupts and before perf_guest_get_msrs(); 557 */ 558 u64 host_cross_mapped_mask; 559 560 /* 561 * The gate to release perf_events not marked in 562 * pmc_in_use only once in a vcpu time slice. 563 */ 564 bool need_cleanup; 565 566 /* 567 * The total number of programmed perf_events and it helps to avoid 568 * redundant check before cleanup if guest don't use vPMU at all. 569 */ 570 u8 event_count; 571 }; 572 573 struct kvm_pmu_ops; 574 575 enum { 576 KVM_DEBUGREG_BP_ENABLED = 1, 577 KVM_DEBUGREG_WONT_EXIT = 2, 578 }; 579 580 struct kvm_mtrr_range { 581 u64 base; 582 u64 mask; 583 struct list_head node; 584 }; 585 586 struct kvm_mtrr { 587 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 588 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 589 u64 deftype; 590 591 struct list_head head; 592 }; 593 594 /* Hyper-V SynIC timer */ 595 struct kvm_vcpu_hv_stimer { 596 struct hrtimer timer; 597 int index; 598 union hv_stimer_config config; 599 u64 count; 600 u64 exp_time; 601 struct hv_message msg; 602 bool msg_pending; 603 }; 604 605 /* Hyper-V synthetic interrupt controller (SynIC)*/ 606 struct kvm_vcpu_hv_synic { 607 u64 version; 608 u64 control; 609 u64 msg_page; 610 u64 evt_page; 611 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 612 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 613 DECLARE_BITMAP(auto_eoi_bitmap, 256); 614 DECLARE_BITMAP(vec_bitmap, 256); 615 bool active; 616 bool dont_zero_synic_pages; 617 }; 618 619 /* The maximum number of entries on the TLB flush fifo. */ 620 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 621 /* 622 * Note: the following 'magic' entry is made up by KVM to avoid putting 623 * anything besides GVA on the TLB flush fifo. It is theoretically possible 624 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 625 * which will look identical. KVM's action to 'flush everything' instead of 626 * flushing these particular addresses is, however, fully legitimate as 627 * flushing more than requested is always OK. 628 */ 629 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 630 631 enum hv_tlb_flush_fifos { 632 HV_L1_TLB_FLUSH_FIFO, 633 HV_L2_TLB_FLUSH_FIFO, 634 HV_NR_TLB_FLUSH_FIFOS, 635 }; 636 637 struct kvm_vcpu_hv_tlb_flush_fifo { 638 spinlock_t write_lock; 639 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 640 }; 641 642 /* Hyper-V per vcpu emulation context */ 643 struct kvm_vcpu_hv { 644 struct kvm_vcpu *vcpu; 645 u32 vp_index; 646 u64 hv_vapic; 647 s64 runtime_offset; 648 struct kvm_vcpu_hv_synic synic; 649 struct kvm_hyperv_exit exit; 650 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 651 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 652 bool enforce_cpuid; 653 struct { 654 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 655 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 656 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 657 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 658 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 659 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 660 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 661 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 662 } cpuid_cache; 663 664 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 665 666 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 667 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 668 669 struct hv_vp_assist_page vp_assist_page; 670 671 struct { 672 u64 pa_page_gpa; 673 u64 vm_id; 674 u32 vp_id; 675 } nested; 676 }; 677 678 struct kvm_hypervisor_cpuid { 679 u32 base; 680 u32 limit; 681 }; 682 683 /* Xen HVM per vcpu emulation context */ 684 struct kvm_vcpu_xen { 685 u64 hypercall_rip; 686 u32 current_runstate; 687 u8 upcall_vector; 688 struct gfn_to_pfn_cache vcpu_info_cache; 689 struct gfn_to_pfn_cache vcpu_time_info_cache; 690 struct gfn_to_pfn_cache runstate_cache; 691 struct gfn_to_pfn_cache runstate2_cache; 692 u64 last_steal; 693 u64 runstate_entry_time; 694 u64 runstate_times[4]; 695 unsigned long evtchn_pending_sel; 696 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 697 u32 timer_virq; 698 u64 timer_expires; /* In guest epoch */ 699 atomic_t timer_pending; 700 struct hrtimer timer; 701 int poll_evtchn; 702 struct timer_list poll_timer; 703 struct kvm_hypervisor_cpuid cpuid; 704 }; 705 706 struct kvm_queued_exception { 707 bool pending; 708 bool injected; 709 bool has_error_code; 710 u8 vector; 711 u32 error_code; 712 unsigned long payload; 713 bool has_payload; 714 }; 715 716 struct kvm_vcpu_arch { 717 /* 718 * rip and regs accesses must go through 719 * kvm_{register,rip}_{read,write} functions. 720 */ 721 unsigned long regs[NR_VCPU_REGS]; 722 u32 regs_avail; 723 u32 regs_dirty; 724 725 unsigned long cr0; 726 unsigned long cr0_guest_owned_bits; 727 unsigned long cr2; 728 unsigned long cr3; 729 unsigned long cr4; 730 unsigned long cr4_guest_owned_bits; 731 unsigned long cr4_guest_rsvd_bits; 732 unsigned long cr8; 733 u32 host_pkru; 734 u32 pkru; 735 u32 hflags; 736 u64 efer; 737 u64 apic_base; 738 struct kvm_lapic *apic; /* kernel irqchip context */ 739 bool load_eoi_exitmap_pending; 740 DECLARE_BITMAP(ioapic_handled_vectors, 256); 741 unsigned long apic_attention; 742 int32_t apic_arb_prio; 743 int mp_state; 744 u64 ia32_misc_enable_msr; 745 u64 smbase; 746 u64 smi_count; 747 bool at_instruction_boundary; 748 bool tpr_access_reporting; 749 bool xfd_no_write_intercept; 750 u64 ia32_xss; 751 u64 microcode_version; 752 u64 arch_capabilities; 753 u64 perf_capabilities; 754 755 /* 756 * Paging state of the vcpu 757 * 758 * If the vcpu runs in guest mode with two level paging this still saves 759 * the paging mode of the l1 guest. This context is always used to 760 * handle faults. 761 */ 762 struct kvm_mmu *mmu; 763 764 /* Non-nested MMU for L1 */ 765 struct kvm_mmu root_mmu; 766 767 /* L1 MMU when running nested */ 768 struct kvm_mmu guest_mmu; 769 770 /* 771 * Paging state of an L2 guest (used for nested npt) 772 * 773 * This context will save all necessary information to walk page tables 774 * of an L2 guest. This context is only initialized for page table 775 * walking and not for faulting since we never handle l2 page faults on 776 * the host. 777 */ 778 struct kvm_mmu nested_mmu; 779 780 /* 781 * Pointer to the mmu context currently used for 782 * gva_to_gpa translations. 783 */ 784 struct kvm_mmu *walk_mmu; 785 786 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 787 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 788 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 789 struct kvm_mmu_memory_cache mmu_page_header_cache; 790 791 /* 792 * QEMU userspace and the guest each have their own FPU state. 793 * In vcpu_run, we switch between the user and guest FPU contexts. 794 * While running a VCPU, the VCPU thread will have the guest FPU 795 * context. 796 * 797 * Note that while the PKRU state lives inside the fpu registers, 798 * it is switched out separately at VMENTER and VMEXIT time. The 799 * "guest_fpstate" state here contains the guest FPU context, with the 800 * host PRKU bits. 801 */ 802 struct fpu_guest guest_fpu; 803 804 u64 xcr0; 805 u64 guest_supported_xcr0; 806 807 struct kvm_pio_request pio; 808 void *pio_data; 809 void *sev_pio_data; 810 unsigned sev_pio_count; 811 812 u8 event_exit_inst_len; 813 814 bool exception_from_userspace; 815 816 /* Exceptions to be injected to the guest. */ 817 struct kvm_queued_exception exception; 818 /* Exception VM-Exits to be synthesized to L1. */ 819 struct kvm_queued_exception exception_vmexit; 820 821 struct kvm_queued_interrupt { 822 bool injected; 823 bool soft; 824 u8 nr; 825 } interrupt; 826 827 int halt_request; /* real mode on Intel only */ 828 829 int cpuid_nent; 830 struct kvm_cpuid_entry2 *cpuid_entries; 831 struct kvm_hypervisor_cpuid kvm_cpuid; 832 833 /* 834 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly 835 * when "struct kvm_vcpu_arch" is no longer defined in an 836 * arch/x86/include/asm header. The max is mostly arbitrary, i.e. 837 * can be increased as necessary. 838 */ 839 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG 840 841 /* 842 * Track whether or not the guest is allowed to use features that are 843 * governed by KVM, where "governed" means KVM needs to manage state 844 * and/or explicitly enable the feature in hardware. Typically, but 845 * not always, governed features can be used by the guest if and only 846 * if both KVM and userspace want to expose the feature to the guest. 847 */ 848 struct { 849 DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES); 850 } governed_features; 851 852 u64 reserved_gpa_bits; 853 int maxphyaddr; 854 855 /* emulate context */ 856 857 struct x86_emulate_ctxt *emulate_ctxt; 858 bool emulate_regs_need_sync_to_vcpu; 859 bool emulate_regs_need_sync_from_vcpu; 860 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 861 862 gpa_t time; 863 struct pvclock_vcpu_time_info hv_clock; 864 unsigned int hw_tsc_khz; 865 struct gfn_to_pfn_cache pv_time; 866 /* set guest stopped flag in pvclock flags field */ 867 bool pvclock_set_guest_stopped_request; 868 869 struct { 870 u8 preempted; 871 u64 msr_val; 872 u64 last_steal; 873 struct gfn_to_hva_cache cache; 874 } st; 875 876 u64 l1_tsc_offset; 877 u64 tsc_offset; /* current tsc offset */ 878 u64 last_guest_tsc; 879 u64 last_host_tsc; 880 u64 tsc_offset_adjustment; 881 u64 this_tsc_nsec; 882 u64 this_tsc_write; 883 u64 this_tsc_generation; 884 bool tsc_catchup; 885 bool tsc_always_catchup; 886 s8 virtual_tsc_shift; 887 u32 virtual_tsc_mult; 888 u32 virtual_tsc_khz; 889 s64 ia32_tsc_adjust_msr; 890 u64 msr_ia32_power_ctl; 891 u64 l1_tsc_scaling_ratio; 892 u64 tsc_scaling_ratio; /* current scaling ratio */ 893 894 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 895 /* Number of NMIs pending injection, not including hardware vNMIs. */ 896 unsigned int nmi_pending; 897 bool nmi_injected; /* Trying to inject an NMI this entry */ 898 bool smi_pending; /* SMI queued after currently running handler */ 899 u8 handling_intr_from_guest; 900 901 struct kvm_mtrr mtrr_state; 902 u64 pat; 903 904 unsigned switch_db_regs; 905 unsigned long db[KVM_NR_DB_REGS]; 906 unsigned long dr6; 907 unsigned long dr7; 908 unsigned long eff_db[KVM_NR_DB_REGS]; 909 unsigned long guest_debug_dr7; 910 u64 msr_platform_info; 911 u64 msr_misc_features_enables; 912 913 u64 mcg_cap; 914 u64 mcg_status; 915 u64 mcg_ctl; 916 u64 mcg_ext_ctl; 917 u64 *mce_banks; 918 u64 *mci_ctl2_banks; 919 920 /* Cache MMIO info */ 921 u64 mmio_gva; 922 unsigned mmio_access; 923 gfn_t mmio_gfn; 924 u64 mmio_gen; 925 926 struct kvm_pmu pmu; 927 928 /* used for guest single stepping over the given code position */ 929 unsigned long singlestep_rip; 930 931 bool hyperv_enabled; 932 struct kvm_vcpu_hv *hyperv; 933 struct kvm_vcpu_xen xen; 934 935 cpumask_var_t wbinvd_dirty_mask; 936 937 unsigned long last_retry_eip; 938 unsigned long last_retry_addr; 939 940 struct { 941 bool halted; 942 gfn_t gfns[ASYNC_PF_PER_VCPU]; 943 struct gfn_to_hva_cache data; 944 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 945 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 946 u16 vec; 947 u32 id; 948 bool send_user_only; 949 u32 host_apf_flags; 950 bool delivery_as_pf_vmexit; 951 bool pageready_pending; 952 } apf; 953 954 /* OSVW MSRs (AMD only) */ 955 struct { 956 u64 length; 957 u64 status; 958 } osvw; 959 960 struct { 961 u64 msr_val; 962 struct gfn_to_hva_cache data; 963 } pv_eoi; 964 965 u64 msr_kvm_poll_control; 966 967 /* set at EPT violation at this point */ 968 unsigned long exit_qualification; 969 970 /* pv related host specific info */ 971 struct { 972 bool pv_unhalted; 973 } pv; 974 975 int pending_ioapic_eoi; 976 int pending_external_vector; 977 978 /* be preempted when it's in kernel-mode(cpl=0) */ 979 bool preempted_in_kernel; 980 981 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 982 bool l1tf_flush_l1d; 983 984 /* Host CPU on which VM-entry was most recently attempted */ 985 int last_vmentry_cpu; 986 987 /* AMD MSRC001_0015 Hardware Configuration */ 988 u64 msr_hwcr; 989 990 /* pv related cpuid info */ 991 struct { 992 /* 993 * value of the eax register in the KVM_CPUID_FEATURES CPUID 994 * leaf. 995 */ 996 u32 features; 997 998 /* 999 * indicates whether pv emulation should be disabled if features 1000 * are not present in the guest's cpuid 1001 */ 1002 bool enforce; 1003 } pv_cpuid; 1004 1005 /* Protected Guests */ 1006 bool guest_state_protected; 1007 1008 /* 1009 * Set when PDPTS were loaded directly by the userspace without 1010 * reading the guest memory 1011 */ 1012 bool pdptrs_from_userspace; 1013 1014 #if IS_ENABLED(CONFIG_HYPERV) 1015 hpa_t hv_root_tdp; 1016 #endif 1017 }; 1018 1019 struct kvm_lpage_info { 1020 int disallow_lpage; 1021 }; 1022 1023 struct kvm_arch_memory_slot { 1024 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1025 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1026 unsigned short *gfn_write_track; 1027 }; 1028 1029 /* 1030 * Track the mode of the optimized logical map, as the rules for decoding the 1031 * destination vary per mode. Enabling the optimized logical map requires all 1032 * software-enabled local APIs to be in the same mode, each addressable APIC to 1033 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1034 */ 1035 enum kvm_apic_logical_mode { 1036 /* All local APICs are software disabled. */ 1037 KVM_APIC_MODE_SW_DISABLED, 1038 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1039 KVM_APIC_MODE_XAPIC_CLUSTER, 1040 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1041 KVM_APIC_MODE_XAPIC_FLAT, 1042 /* All software enabled local APICs in x2APIC mode. */ 1043 KVM_APIC_MODE_X2APIC, 1044 /* 1045 * Optimized map disabled, e.g. not all local APICs in the same logical 1046 * mode, same logical ID assigned to multiple APICs, etc. 1047 */ 1048 KVM_APIC_MODE_MAP_DISABLED, 1049 }; 1050 1051 struct kvm_apic_map { 1052 struct rcu_head rcu; 1053 enum kvm_apic_logical_mode logical_mode; 1054 u32 max_apic_id; 1055 union { 1056 struct kvm_lapic *xapic_flat_map[8]; 1057 struct kvm_lapic *xapic_cluster_map[16][4]; 1058 }; 1059 struct kvm_lapic *phys_map[]; 1060 }; 1061 1062 /* Hyper-V synthetic debugger (SynDbg)*/ 1063 struct kvm_hv_syndbg { 1064 struct { 1065 u64 control; 1066 u64 status; 1067 u64 send_page; 1068 u64 recv_page; 1069 u64 pending_page; 1070 } control; 1071 u64 options; 1072 }; 1073 1074 /* Current state of Hyper-V TSC page clocksource */ 1075 enum hv_tsc_page_status { 1076 /* TSC page was not set up or disabled */ 1077 HV_TSC_PAGE_UNSET = 0, 1078 /* TSC page MSR was written by the guest, update pending */ 1079 HV_TSC_PAGE_GUEST_CHANGED, 1080 /* TSC page update was triggered from the host side */ 1081 HV_TSC_PAGE_HOST_CHANGED, 1082 /* TSC page was properly set up and is currently active */ 1083 HV_TSC_PAGE_SET, 1084 /* TSC page was set up with an inaccessible GPA */ 1085 HV_TSC_PAGE_BROKEN, 1086 }; 1087 1088 /* Hyper-V emulation context */ 1089 struct kvm_hv { 1090 struct mutex hv_lock; 1091 u64 hv_guest_os_id; 1092 u64 hv_hypercall; 1093 u64 hv_tsc_page; 1094 enum hv_tsc_page_status hv_tsc_page_status; 1095 1096 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1097 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1098 u64 hv_crash_ctl; 1099 1100 struct ms_hyperv_tsc_page tsc_ref; 1101 1102 struct idr conn_to_evt; 1103 1104 u64 hv_reenlightenment_control; 1105 u64 hv_tsc_emulation_control; 1106 u64 hv_tsc_emulation_status; 1107 u64 hv_invtsc_control; 1108 1109 /* How many vCPUs have VP index != vCPU index */ 1110 atomic_t num_mismatched_vp_indexes; 1111 1112 /* 1113 * How many SynICs use 'AutoEOI' feature 1114 * (protected by arch.apicv_update_lock) 1115 */ 1116 unsigned int synic_auto_eoi_used; 1117 1118 struct hv_partition_assist_pg *hv_pa_pg; 1119 struct kvm_hv_syndbg hv_syndbg; 1120 }; 1121 1122 struct msr_bitmap_range { 1123 u32 flags; 1124 u32 nmsrs; 1125 u32 base; 1126 unsigned long *bitmap; 1127 }; 1128 1129 /* Xen emulation context */ 1130 struct kvm_xen { 1131 struct mutex xen_lock; 1132 u32 xen_version; 1133 bool long_mode; 1134 bool runstate_update_flag; 1135 u8 upcall_vector; 1136 struct gfn_to_pfn_cache shinfo_cache; 1137 struct idr evtchn_ports; 1138 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1139 }; 1140 1141 enum kvm_irqchip_mode { 1142 KVM_IRQCHIP_NONE, 1143 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1144 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1145 }; 1146 1147 struct kvm_x86_msr_filter { 1148 u8 count; 1149 bool default_allow:1; 1150 struct msr_bitmap_range ranges[16]; 1151 }; 1152 1153 struct kvm_x86_pmu_event_filter { 1154 __u32 action; 1155 __u32 nevents; 1156 __u32 fixed_counter_bitmap; 1157 __u32 flags; 1158 __u32 nr_includes; 1159 __u32 nr_excludes; 1160 __u64 *includes; 1161 __u64 *excludes; 1162 __u64 events[]; 1163 }; 1164 1165 enum kvm_apicv_inhibit { 1166 1167 /********************************************************************/ 1168 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1169 /********************************************************************/ 1170 1171 /* 1172 * APIC acceleration is disabled by a module parameter 1173 * and/or not supported in hardware. 1174 */ 1175 APICV_INHIBIT_REASON_DISABLE, 1176 1177 /* 1178 * APIC acceleration is inhibited because AutoEOI feature is 1179 * being used by a HyperV guest. 1180 */ 1181 APICV_INHIBIT_REASON_HYPERV, 1182 1183 /* 1184 * APIC acceleration is inhibited because the userspace didn't yet 1185 * enable the kernel/split irqchip. 1186 */ 1187 APICV_INHIBIT_REASON_ABSENT, 1188 1189 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1190 * (out of band, debug measure of blocking all interrupts on this vCPU) 1191 * was enabled, to avoid AVIC/APICv bypassing it. 1192 */ 1193 APICV_INHIBIT_REASON_BLOCKIRQ, 1194 1195 /* 1196 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1197 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1198 */ 1199 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1200 1201 /* 1202 * For simplicity, the APIC acceleration is inhibited 1203 * first time either APIC ID or APIC base are changed by the guest 1204 * from their reset values. 1205 */ 1206 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1207 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1208 1209 /******************************************************/ 1210 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1211 /******************************************************/ 1212 1213 /* 1214 * AVIC is inhibited on a vCPU because it runs a nested guest. 1215 * 1216 * This is needed because unlike APICv, the peers of this vCPU 1217 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1218 * a vCPU runs nested. 1219 */ 1220 APICV_INHIBIT_REASON_NESTED, 1221 1222 /* 1223 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1224 * which cannot be injected when the AVIC is enabled, thus AVIC 1225 * is inhibited while KVM waits for IRQ window. 1226 */ 1227 APICV_INHIBIT_REASON_IRQWIN, 1228 1229 /* 1230 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1231 * which AVIC doesn't support for edge triggered interrupts. 1232 */ 1233 APICV_INHIBIT_REASON_PIT_REINJ, 1234 1235 /* 1236 * AVIC is disabled because SEV doesn't support it. 1237 */ 1238 APICV_INHIBIT_REASON_SEV, 1239 1240 /* 1241 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1242 * mapping between logical ID and vCPU. 1243 */ 1244 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1245 }; 1246 1247 struct kvm_arch { 1248 unsigned long n_used_mmu_pages; 1249 unsigned long n_requested_mmu_pages; 1250 unsigned long n_max_mmu_pages; 1251 unsigned int indirect_shadow_pages; 1252 u8 mmu_valid_gen; 1253 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1254 struct list_head active_mmu_pages; 1255 struct list_head zapped_obsolete_pages; 1256 /* 1257 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1258 * replaced by an NX huge page. A shadow page is on this list if its 1259 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1260 * and there are no other conditions that prevent a huge page, e.g. 1261 * the backing host page is huge, dirtly logging is not enabled for its 1262 * memslot, etc... Note, zapping shadow pages on this list doesn't 1263 * guarantee an NX huge page will be created in its stead, e.g. if the 1264 * guest attempts to execute from the region then KVM obviously can't 1265 * create an NX huge page (without hanging the guest). 1266 */ 1267 struct list_head possible_nx_huge_pages; 1268 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1269 struct kvm_page_track_notifier_head track_notifier_head; 1270 #endif 1271 /* 1272 * Protects marking pages unsync during page faults, as TDP MMU page 1273 * faults only take mmu_lock for read. For simplicity, the unsync 1274 * pages lock is always taken when marking pages unsync regardless of 1275 * whether mmu_lock is held for read or write. 1276 */ 1277 spinlock_t mmu_unsync_pages_lock; 1278 1279 struct list_head assigned_dev_head; 1280 struct iommu_domain *iommu_domain; 1281 bool iommu_noncoherent; 1282 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1283 atomic_t noncoherent_dma_count; 1284 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1285 atomic_t assigned_device_count; 1286 struct kvm_pic *vpic; 1287 struct kvm_ioapic *vioapic; 1288 struct kvm_pit *vpit; 1289 atomic_t vapics_in_nmi_mode; 1290 struct mutex apic_map_lock; 1291 struct kvm_apic_map __rcu *apic_map; 1292 atomic_t apic_map_dirty; 1293 1294 bool apic_access_memslot_enabled; 1295 bool apic_access_memslot_inhibited; 1296 1297 /* Protects apicv_inhibit_reasons */ 1298 struct rw_semaphore apicv_update_lock; 1299 unsigned long apicv_inhibit_reasons; 1300 1301 gpa_t wall_clock; 1302 1303 bool mwait_in_guest; 1304 bool hlt_in_guest; 1305 bool pause_in_guest; 1306 bool cstate_in_guest; 1307 1308 unsigned long irq_sources_bitmap; 1309 s64 kvmclock_offset; 1310 1311 /* 1312 * This also protects nr_vcpus_matched_tsc which is read from a 1313 * preemption-disabled region, so it must be a raw spinlock. 1314 */ 1315 raw_spinlock_t tsc_write_lock; 1316 u64 last_tsc_nsec; 1317 u64 last_tsc_write; 1318 u32 last_tsc_khz; 1319 u64 last_tsc_offset; 1320 u64 cur_tsc_nsec; 1321 u64 cur_tsc_write; 1322 u64 cur_tsc_offset; 1323 u64 cur_tsc_generation; 1324 int nr_vcpus_matched_tsc; 1325 1326 u32 default_tsc_khz; 1327 1328 seqcount_raw_spinlock_t pvclock_sc; 1329 bool use_master_clock; 1330 u64 master_kernel_ns; 1331 u64 master_cycle_now; 1332 struct delayed_work kvmclock_update_work; 1333 struct delayed_work kvmclock_sync_work; 1334 1335 struct kvm_xen_hvm_config xen_hvm_config; 1336 1337 /* reads protected by irq_srcu, writes by irq_lock */ 1338 struct hlist_head mask_notifier_list; 1339 1340 struct kvm_hv hyperv; 1341 struct kvm_xen xen; 1342 1343 bool backwards_tsc_observed; 1344 bool boot_vcpu_runs_old_kvmclock; 1345 u32 bsp_vcpu_id; 1346 1347 u64 disabled_quirks; 1348 1349 enum kvm_irqchip_mode irqchip_mode; 1350 u8 nr_reserved_ioapic_pins; 1351 1352 bool disabled_lapic_found; 1353 1354 bool x2apic_format; 1355 bool x2apic_broadcast_quirk_disabled; 1356 1357 bool guest_can_read_msr_platform_info; 1358 bool exception_payload_enabled; 1359 1360 bool triple_fault_event; 1361 1362 bool bus_lock_detection_enabled; 1363 bool enable_pmu; 1364 1365 u32 notify_window; 1366 u32 notify_vmexit_flags; 1367 /* 1368 * If exit_on_emulation_error is set, and the in-kernel instruction 1369 * emulator fails to emulate an instruction, allow userspace 1370 * the opportunity to look at it. 1371 */ 1372 bool exit_on_emulation_error; 1373 1374 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1375 u32 user_space_msr_mask; 1376 struct kvm_x86_msr_filter __rcu *msr_filter; 1377 1378 u32 hypercall_exit_enabled; 1379 1380 /* Guest can access the SGX PROVISIONKEY. */ 1381 bool sgx_provisioning_allowed; 1382 1383 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1384 struct task_struct *nx_huge_page_recovery_thread; 1385 1386 #ifdef CONFIG_X86_64 1387 /* The number of TDP MMU pages across all roots. */ 1388 atomic64_t tdp_mmu_pages; 1389 1390 /* 1391 * List of struct kvm_mmu_pages being used as roots. 1392 * All struct kvm_mmu_pages in the list should have 1393 * tdp_mmu_page set. 1394 * 1395 * For reads, this list is protected by: 1396 * the MMU lock in read mode + RCU or 1397 * the MMU lock in write mode 1398 * 1399 * For writes, this list is protected by: 1400 * the MMU lock in read mode + the tdp_mmu_pages_lock or 1401 * the MMU lock in write mode 1402 * 1403 * Roots will remain in the list until their tdp_mmu_root_count 1404 * drops to zero, at which point the thread that decremented the 1405 * count to zero should removed the root from the list and clean 1406 * it up, freeing the root after an RCU grace period. 1407 */ 1408 struct list_head tdp_mmu_roots; 1409 1410 /* 1411 * Protects accesses to the following fields when the MMU lock 1412 * is held in read mode: 1413 * - tdp_mmu_roots (above) 1414 * - the link field of kvm_mmu_page structs used by the TDP MMU 1415 * - possible_nx_huge_pages; 1416 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1417 * by the TDP MMU 1418 * It is acceptable, but not necessary, to acquire this lock when 1419 * the thread holds the MMU lock in write mode. 1420 */ 1421 spinlock_t tdp_mmu_pages_lock; 1422 #endif /* CONFIG_X86_64 */ 1423 1424 /* 1425 * If set, at least one shadow root has been allocated. This flag 1426 * is used as one input when determining whether certain memslot 1427 * related allocations are necessary. 1428 */ 1429 bool shadow_root_allocated; 1430 1431 #if IS_ENABLED(CONFIG_HYPERV) 1432 hpa_t hv_root_tdp; 1433 spinlock_t hv_root_tdp_lock; 1434 #endif 1435 /* 1436 * VM-scope maximum vCPU ID. Used to determine the size of structures 1437 * that increase along with the maximum vCPU ID, in which case, using 1438 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1439 */ 1440 u32 max_vcpu_ids; 1441 1442 bool disable_nx_huge_pages; 1443 1444 /* 1445 * Memory caches used to allocate shadow pages when performing eager 1446 * page splitting. No need for a shadowed_info_cache since eager page 1447 * splitting only allocates direct shadow pages. 1448 * 1449 * Protected by kvm->slots_lock. 1450 */ 1451 struct kvm_mmu_memory_cache split_shadow_page_cache; 1452 struct kvm_mmu_memory_cache split_page_header_cache; 1453 1454 /* 1455 * Memory cache used to allocate pte_list_desc structs while splitting 1456 * huge pages. In the worst case, to split one huge page, 512 1457 * pte_list_desc structs are needed to add each lower level leaf sptep 1458 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1459 * page table. 1460 * 1461 * Protected by kvm->slots_lock. 1462 */ 1463 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1464 struct kvm_mmu_memory_cache split_desc_cache; 1465 }; 1466 1467 struct kvm_vm_stat { 1468 struct kvm_vm_stat_generic generic; 1469 u64 mmu_shadow_zapped; 1470 u64 mmu_pte_write; 1471 u64 mmu_pde_zapped; 1472 u64 mmu_flooded; 1473 u64 mmu_recycled; 1474 u64 mmu_cache_miss; 1475 u64 mmu_unsync; 1476 union { 1477 struct { 1478 atomic64_t pages_4k; 1479 atomic64_t pages_2m; 1480 atomic64_t pages_1g; 1481 }; 1482 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1483 }; 1484 u64 nx_lpage_splits; 1485 u64 max_mmu_page_hash_collisions; 1486 u64 max_mmu_rmap_size; 1487 }; 1488 1489 struct kvm_vcpu_stat { 1490 struct kvm_vcpu_stat_generic generic; 1491 u64 pf_taken; 1492 u64 pf_fixed; 1493 u64 pf_emulate; 1494 u64 pf_spurious; 1495 u64 pf_fast; 1496 u64 pf_mmio_spte_created; 1497 u64 pf_guest; 1498 u64 tlb_flush; 1499 u64 invlpg; 1500 1501 u64 exits; 1502 u64 io_exits; 1503 u64 mmio_exits; 1504 u64 signal_exits; 1505 u64 irq_window_exits; 1506 u64 nmi_window_exits; 1507 u64 l1d_flush; 1508 u64 halt_exits; 1509 u64 request_irq_exits; 1510 u64 irq_exits; 1511 u64 host_state_reload; 1512 u64 fpu_reload; 1513 u64 insn_emulation; 1514 u64 insn_emulation_fail; 1515 u64 hypercalls; 1516 u64 irq_injections; 1517 u64 nmi_injections; 1518 u64 req_event; 1519 u64 nested_run; 1520 u64 directed_yield_attempted; 1521 u64 directed_yield_successful; 1522 u64 preemption_reported; 1523 u64 preemption_other; 1524 u64 guest_mode; 1525 u64 notify_window_exits; 1526 }; 1527 1528 struct x86_instruction_info; 1529 1530 struct msr_data { 1531 bool host_initiated; 1532 u32 index; 1533 u64 data; 1534 }; 1535 1536 struct kvm_lapic_irq { 1537 u32 vector; 1538 u16 delivery_mode; 1539 u16 dest_mode; 1540 bool level; 1541 u16 trig_mode; 1542 u32 shorthand; 1543 u32 dest_id; 1544 bool msi_redir_hint; 1545 }; 1546 1547 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1548 { 1549 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1550 } 1551 1552 struct kvm_x86_ops { 1553 const char *name; 1554 1555 int (*check_processor_compatibility)(void); 1556 1557 int (*hardware_enable)(void); 1558 void (*hardware_disable)(void); 1559 void (*hardware_unsetup)(void); 1560 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1561 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1562 1563 unsigned int vm_size; 1564 int (*vm_init)(struct kvm *kvm); 1565 void (*vm_destroy)(struct kvm *kvm); 1566 1567 /* Create, but do not attach this VCPU */ 1568 int (*vcpu_precreate)(struct kvm *kvm); 1569 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1570 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1571 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1572 1573 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1574 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1575 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1576 1577 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1578 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1579 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1580 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1581 void (*get_segment)(struct kvm_vcpu *vcpu, 1582 struct kvm_segment *var, int seg); 1583 int (*get_cpl)(struct kvm_vcpu *vcpu); 1584 void (*set_segment)(struct kvm_vcpu *vcpu, 1585 struct kvm_segment *var, int seg); 1586 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1587 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1588 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1589 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1590 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1591 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1592 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1593 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1594 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1595 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1596 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1597 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1598 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1599 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1600 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1601 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1602 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1603 1604 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1605 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1606 int (*flush_remote_tlbs)(struct kvm *kvm); 1607 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1608 gfn_t nr_pages); 1609 1610 /* 1611 * Flush any TLB entries associated with the given GVA. 1612 * Does not need to flush GPA->HPA mappings. 1613 * Can potentially get non-canonical addresses through INVLPGs, which 1614 * the implementation may choose to ignore if appropriate. 1615 */ 1616 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1617 1618 /* 1619 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1620 * does not need to flush GPA->HPA mappings. 1621 */ 1622 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1623 1624 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1625 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu); 1626 int (*handle_exit)(struct kvm_vcpu *vcpu, 1627 enum exit_fastpath_completion exit_fastpath); 1628 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1629 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1630 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1631 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1632 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1633 unsigned char *hypercall_addr); 1634 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1635 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1636 void (*inject_exception)(struct kvm_vcpu *vcpu); 1637 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1638 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1639 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1640 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1641 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1642 /* Whether or not a virtual NMI is pending in hardware. */ 1643 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1644 /* 1645 * Attempt to pend a virtual NMI in harware. Returns %true on success 1646 * to allow using static_call_ret0 as the fallback. 1647 */ 1648 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1649 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1650 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1651 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1652 bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason); 1653 const unsigned long required_apicv_inhibits; 1654 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1655 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1656 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1657 void (*hwapic_isr_update)(int isr); 1658 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1659 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1660 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1661 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1662 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1663 int trig_mode, int vector); 1664 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1665 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1666 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1667 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1668 1669 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1670 int root_level); 1671 1672 bool (*has_wbinvd_exit)(void); 1673 1674 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1675 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1676 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1677 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1678 1679 /* 1680 * Retrieve somewhat arbitrary exit information. Intended to 1681 * be used only from within tracepoints or error paths. 1682 */ 1683 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1684 u64 *info1, u64 *info2, 1685 u32 *exit_int_info, u32 *exit_int_info_err_code); 1686 1687 int (*check_intercept)(struct kvm_vcpu *vcpu, 1688 struct x86_instruction_info *info, 1689 enum x86_intercept_stage stage, 1690 struct x86_exception *exception); 1691 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1692 1693 void (*request_immediate_exit)(struct kvm_vcpu *vcpu); 1694 1695 void (*sched_in)(struct kvm_vcpu *kvm, int cpu); 1696 1697 /* 1698 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1699 * value indicates CPU dirty logging is unsupported or disabled. 1700 */ 1701 int cpu_dirty_log_size; 1702 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1703 1704 const struct kvm_x86_nested_ops *nested_ops; 1705 1706 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1707 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1708 1709 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1710 uint32_t guest_irq, bool set); 1711 void (*pi_start_assignment)(struct kvm *kvm); 1712 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1713 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1714 1715 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1716 bool *expired); 1717 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1718 1719 void (*setup_mce)(struct kvm_vcpu *vcpu); 1720 1721 #ifdef CONFIG_KVM_SMM 1722 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1723 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1724 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1725 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1726 #endif 1727 1728 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1729 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1730 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1731 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1732 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1733 void (*guest_memory_reclaimed)(struct kvm *kvm); 1734 1735 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1736 1737 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1738 void *insn, int insn_len); 1739 1740 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1741 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1742 1743 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1744 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1745 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1746 1747 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1748 1749 /* 1750 * Returns vCPU specific APICv inhibit reasons 1751 */ 1752 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1753 }; 1754 1755 struct kvm_x86_nested_ops { 1756 void (*leave_nested)(struct kvm_vcpu *vcpu); 1757 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1758 u32 error_code); 1759 int (*check_events)(struct kvm_vcpu *vcpu); 1760 bool (*has_events)(struct kvm_vcpu *vcpu); 1761 void (*triple_fault)(struct kvm_vcpu *vcpu); 1762 int (*get_state)(struct kvm_vcpu *vcpu, 1763 struct kvm_nested_state __user *user_kvm_nested_state, 1764 unsigned user_data_size); 1765 int (*set_state)(struct kvm_vcpu *vcpu, 1766 struct kvm_nested_state __user *user_kvm_nested_state, 1767 struct kvm_nested_state *kvm_state); 1768 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1769 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1770 1771 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1772 uint16_t *vmcs_version); 1773 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1774 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1775 }; 1776 1777 struct kvm_x86_init_ops { 1778 int (*hardware_setup)(void); 1779 unsigned int (*handle_intel_pt_intr)(void); 1780 1781 struct kvm_x86_ops *runtime_ops; 1782 struct kvm_pmu_ops *pmu_ops; 1783 }; 1784 1785 struct kvm_arch_async_pf { 1786 u32 token; 1787 gfn_t gfn; 1788 unsigned long cr3; 1789 bool direct_map; 1790 }; 1791 1792 extern u32 __read_mostly kvm_nr_uret_msrs; 1793 extern u64 __read_mostly host_efer; 1794 extern bool __read_mostly allow_smaller_maxphyaddr; 1795 extern bool __read_mostly enable_apicv; 1796 extern struct kvm_x86_ops kvm_x86_ops; 1797 1798 #define KVM_X86_OP(func) \ 1799 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1800 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1801 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1802 #include <asm/kvm-x86-ops.h> 1803 1804 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1805 void kvm_x86_vendor_exit(void); 1806 1807 #define __KVM_HAVE_ARCH_VM_ALLOC 1808 static inline struct kvm *kvm_arch_alloc_vm(void) 1809 { 1810 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1811 } 1812 1813 #define __KVM_HAVE_ARCH_VM_FREE 1814 void kvm_arch_free_vm(struct kvm *kvm); 1815 1816 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1817 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1818 { 1819 if (kvm_x86_ops.flush_remote_tlbs && 1820 !static_call(kvm_x86_flush_remote_tlbs)(kvm)) 1821 return 0; 1822 else 1823 return -ENOTSUPP; 1824 } 1825 1826 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1827 1828 #define kvm_arch_pmi_in_guest(vcpu) \ 1829 ((vcpu) && (vcpu)->arch.handling_intr_from_guest) 1830 1831 void __init kvm_mmu_x86_module_init(void); 1832 int kvm_mmu_vendor_module_init(void); 1833 void kvm_mmu_vendor_module_exit(void); 1834 1835 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1836 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1837 void kvm_mmu_init_vm(struct kvm *kvm); 1838 void kvm_mmu_uninit_vm(struct kvm *kvm); 1839 1840 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1841 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1842 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1843 const struct kvm_memory_slot *memslot, 1844 int start_level); 1845 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1846 const struct kvm_memory_slot *memslot, 1847 int target_level); 1848 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1849 const struct kvm_memory_slot *memslot, 1850 u64 start, u64 end, 1851 int target_level); 1852 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1853 const struct kvm_memory_slot *memslot); 1854 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1855 const struct kvm_memory_slot *memslot); 1856 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1857 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1858 1859 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 1860 1861 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1862 const void *val, int bytes); 1863 1864 struct kvm_irq_mask_notifier { 1865 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1866 int irq; 1867 struct hlist_node link; 1868 }; 1869 1870 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1871 struct kvm_irq_mask_notifier *kimn); 1872 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1873 struct kvm_irq_mask_notifier *kimn); 1874 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1875 bool mask); 1876 1877 extern bool tdp_enabled; 1878 1879 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1880 1881 /* 1882 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1883 * userspace I/O) to indicate that the emulation context 1884 * should be reused as is, i.e. skip initialization of 1885 * emulation context, instruction fetch and decode. 1886 * 1887 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1888 * Indicates that only select instructions (tagged with 1889 * EmulateOnUD) should be emulated (to minimize the emulator 1890 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 1891 * 1892 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 1893 * decode the instruction length. For use *only* by 1894 * kvm_x86_ops.skip_emulated_instruction() implementations if 1895 * EMULTYPE_COMPLETE_USER_EXIT is not set. 1896 * 1897 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 1898 * retry native execution under certain conditions, 1899 * Can only be set in conjunction with EMULTYPE_PF. 1900 * 1901 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 1902 * triggered by KVM's magic "force emulation" prefix, 1903 * which is opt in via module param (off by default). 1904 * Bypasses EmulateOnUD restriction despite emulating 1905 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 1906 * Used to test the full emulator from userspace. 1907 * 1908 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 1909 * backdoor emulation, which is opt in via module param. 1910 * VMware backdoor emulation handles select instructions 1911 * and reinjects the #GP for all other cases. 1912 * 1913 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 1914 * case the CR2/GPA value pass on the stack is valid. 1915 * 1916 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 1917 * state and inject single-step #DBs after skipping 1918 * an instruction (after completing userspace I/O). 1919 * 1920 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 1921 * is attempting to write a gfn that contains one or 1922 * more of the PTEs used to translate the write itself, 1923 * and the owning page table is being shadowed by KVM. 1924 * If emulation of the faulting instruction fails and 1925 * this flag is set, KVM will exit to userspace instead 1926 * of retrying emulation as KVM cannot make forward 1927 * progress. 1928 * 1929 * If emulation fails for a write to guest page tables, 1930 * KVM unprotects (zaps) the shadow page for the target 1931 * gfn and resumes the guest to retry the non-emulatable 1932 * instruction (on hardware). Unprotecting the gfn 1933 * doesn't allow forward progress for a self-changing 1934 * access because doing so also zaps the translation for 1935 * the gfn, i.e. retrying the instruction will hit a 1936 * !PRESENT fault, which results in a new shadow page 1937 * and sends KVM back to square one. 1938 */ 1939 #define EMULTYPE_NO_DECODE (1 << 0) 1940 #define EMULTYPE_TRAP_UD (1 << 1) 1941 #define EMULTYPE_SKIP (1 << 2) 1942 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 1943 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 1944 #define EMULTYPE_VMWARE_GP (1 << 5) 1945 #define EMULTYPE_PF (1 << 6) 1946 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 1947 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 1948 1949 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 1950 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 1951 void *insn, int insn_len); 1952 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 1953 u64 *data, u8 ndata); 1954 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 1955 1956 void kvm_enable_efer_bits(u64); 1957 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 1958 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 1959 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 1960 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 1961 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 1962 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 1963 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 1964 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 1965 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 1966 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 1967 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 1968 1969 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 1970 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 1971 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 1972 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 1973 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 1974 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 1975 1976 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1977 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 1978 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 1979 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 1980 1981 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 1982 int reason, bool has_error_code, u32 error_code); 1983 1984 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 1985 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 1986 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 1987 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 1988 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 1989 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 1990 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 1991 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val); 1992 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 1993 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 1994 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 1995 1996 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1997 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 1998 1999 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2000 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2001 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2002 2003 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2004 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2005 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2006 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2007 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2008 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2009 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2010 struct x86_exception *fault); 2011 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2012 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2013 2014 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2015 int irq_source_id, int level) 2016 { 2017 /* Logical OR for level trig interrupt */ 2018 if (level) 2019 __set_bit(irq_source_id, irq_state); 2020 else 2021 __clear_bit(irq_source_id, irq_state); 2022 2023 return !!(*irq_state); 2024 } 2025 2026 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2027 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2028 2029 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2030 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2031 2032 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2033 2034 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 2035 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2036 ulong roots_to_free); 2037 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2038 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2039 struct x86_exception *exception); 2040 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2041 struct x86_exception *exception); 2042 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2043 struct x86_exception *exception); 2044 2045 bool kvm_apicv_activated(struct kvm *kvm); 2046 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2047 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2048 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2049 enum kvm_apicv_inhibit reason, bool set); 2050 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2051 enum kvm_apicv_inhibit reason, bool set); 2052 2053 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2054 enum kvm_apicv_inhibit reason) 2055 { 2056 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2057 } 2058 2059 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2060 enum kvm_apicv_inhibit reason) 2061 { 2062 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2063 } 2064 2065 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 2066 2067 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2068 void *insn, int insn_len); 2069 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2070 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2071 u64 addr, unsigned long roots); 2072 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2073 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2074 2075 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2076 int tdp_max_root_level, int tdp_huge_page_level); 2077 2078 static inline u16 kvm_read_ldt(void) 2079 { 2080 u16 ldt; 2081 asm("sldt %0" : "=g"(ldt)); 2082 return ldt; 2083 } 2084 2085 static inline void kvm_load_ldt(u16 sel) 2086 { 2087 asm("lldt %0" : : "rm"(sel)); 2088 } 2089 2090 #ifdef CONFIG_X86_64 2091 static inline unsigned long read_msr(unsigned long msr) 2092 { 2093 u64 value; 2094 2095 rdmsrl(msr, value); 2096 return value; 2097 } 2098 #endif 2099 2100 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2101 { 2102 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2103 } 2104 2105 #define TSS_IOPB_BASE_OFFSET 0x66 2106 #define TSS_BASE_SIZE 0x68 2107 #define TSS_IOPB_SIZE (65536 / 8) 2108 #define TSS_REDIRECTION_SIZE (256 / 8) 2109 #define RMODE_TSS_SIZE \ 2110 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2111 2112 enum { 2113 TASK_SWITCH_CALL = 0, 2114 TASK_SWITCH_IRET = 1, 2115 TASK_SWITCH_JMP = 2, 2116 TASK_SWITCH_GATE = 3, 2117 }; 2118 2119 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2120 2121 #ifdef CONFIG_KVM_SMM 2122 #define HF_SMM_MASK (1 << 1) 2123 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2124 2125 # define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 2126 # define KVM_ADDRESS_SPACE_NUM 2 2127 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2128 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2129 #else 2130 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2131 #endif 2132 2133 #define KVM_ARCH_WANT_MMU_NOTIFIER 2134 2135 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2136 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2137 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2138 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2139 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2140 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2141 2142 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2143 unsigned long ipi_bitmap_high, u32 min, 2144 unsigned long icr, int op_64_bit); 2145 2146 int kvm_add_user_return_msr(u32 msr); 2147 int kvm_find_user_return_msr(u32 msr); 2148 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2149 2150 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2151 { 2152 return kvm_find_user_return_msr(msr) >= 0; 2153 } 2154 2155 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2156 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2157 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2158 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2159 2160 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2161 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2162 2163 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2164 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2165 unsigned long *vcpu_bitmap); 2166 2167 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2168 struct kvm_async_pf *work); 2169 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2170 struct kvm_async_pf *work); 2171 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2172 struct kvm_async_pf *work); 2173 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2174 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2175 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2176 2177 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2178 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2179 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu); 2180 2181 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2182 u32 size); 2183 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2184 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2185 2186 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2187 struct kvm_vcpu **dest_vcpu); 2188 2189 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2190 struct kvm_lapic_irq *irq); 2191 2192 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2193 { 2194 /* We can only post Fixed and LowPrio IRQs */ 2195 return (irq->delivery_mode == APIC_DM_FIXED || 2196 irq->delivery_mode == APIC_DM_LOWEST); 2197 } 2198 2199 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2200 { 2201 static_call_cond(kvm_x86_vcpu_blocking)(vcpu); 2202 } 2203 2204 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2205 { 2206 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu); 2207 } 2208 2209 static inline int kvm_cpu_get_apicid(int mps_cpu) 2210 { 2211 #ifdef CONFIG_X86_LOCAL_APIC 2212 return default_cpu_present_to_apicid(mps_cpu); 2213 #else 2214 WARN_ON_ONCE(1); 2215 return BAD_APICID; 2216 #endif 2217 } 2218 2219 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2220 2221 #define KVM_CLOCK_VALID_FLAGS \ 2222 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2223 2224 #define KVM_X86_VALID_QUIRKS \ 2225 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2226 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2227 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2228 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2229 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2230 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2231 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) 2232 2233 /* 2234 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2235 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2236 * remaining 31 lower bits must be 0 to preserve ABI. 2237 */ 2238 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2239 2240 #endif /* _ASM_X86_KVM_HOST_H */ 2241