1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/hyperv.h> 28 #include <linux/kfifo.h> 29 30 #include <asm/apic.h> 31 #include <asm/pvclock-abi.h> 32 #include <asm/desc.h> 33 #include <asm/mtrr.h> 34 #include <asm/msr-index.h> 35 #include <asm/asm.h> 36 #include <asm/kvm_page_track.h> 37 #include <asm/kvm_vcpu_regs.h> 38 #include <asm/hyperv-tlfs.h> 39 40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 41 42 /* 43 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 44 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 45 */ 46 #ifdef CONFIG_KVM_MAX_NR_VCPUS 47 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 48 #else 49 #define KVM_MAX_VCPUS 1024 50 #endif 51 52 /* 53 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 54 * might be larger than the actual number of VCPUs because the 55 * APIC ID encodes CPU topology information. 56 * 57 * In the worst case, we'll need less than one extra bit for the 58 * Core ID, and less than one extra bit for the Package (Die) ID, 59 * so ratio of 4 should be enough. 60 */ 61 #define KVM_VCPU_ID_RATIO 4 62 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 63 64 /* memory slots that are not exposed to userspace */ 65 #define KVM_INTERNAL_MEM_SLOTS 3 66 67 #define KVM_HALT_POLL_NS_DEFAULT 200000 68 69 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 70 71 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 72 KVM_DIRTY_LOG_INITIALLY_SET) 73 74 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 75 KVM_BUS_LOCK_DETECTION_EXIT) 76 77 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 78 KVM_X86_NOTIFY_VMEXIT_USER) 79 80 /* x86-specific vcpu->requests bit members */ 81 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 82 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 83 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 84 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 85 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 86 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 87 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 88 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 89 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 90 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 91 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 92 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 93 #ifdef CONFIG_KVM_SMM 94 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 95 #endif 96 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 97 #define KVM_REQ_MCLOCK_INPROGRESS \ 98 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 99 #define KVM_REQ_SCAN_IOAPIC \ 100 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 101 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 102 #define KVM_REQ_APIC_PAGE_RELOAD \ 103 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 104 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 105 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 106 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 107 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 108 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 109 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 110 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 111 #define KVM_REQ_APICV_UPDATE \ 112 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 113 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 114 #define KVM_REQ_TLB_FLUSH_GUEST \ 115 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 116 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 117 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 118 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 119 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 120 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 121 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_HV_TLB_FLUSH \ 123 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 124 125 #define CR0_RESERVED_BITS \ 126 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 127 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 128 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 129 130 #define CR4_RESERVED_BITS \ 131 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 132 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 133 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 134 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 135 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 136 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 137 | X86_CR4_LAM_SUP)) 138 139 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 140 141 142 143 #define INVALID_PAGE (~(hpa_t)0) 144 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 145 146 /* KVM Hugepage definitions for x86 */ 147 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 148 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 149 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 150 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 151 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 152 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 153 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 154 155 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 156 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 157 #define KVM_MMU_HASH_SHIFT 12 158 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 159 #define KVM_MIN_FREE_MMU_PAGES 5 160 #define KVM_REFILL_PAGES 25 161 #define KVM_MAX_CPUID_ENTRIES 256 162 #define KVM_NR_FIXED_MTRR_REGION 88 163 #define KVM_NR_VAR_MTRR 8 164 165 #define ASYNC_PF_PER_VCPU 64 166 167 enum kvm_reg { 168 VCPU_REGS_RAX = __VCPU_REGS_RAX, 169 VCPU_REGS_RCX = __VCPU_REGS_RCX, 170 VCPU_REGS_RDX = __VCPU_REGS_RDX, 171 VCPU_REGS_RBX = __VCPU_REGS_RBX, 172 VCPU_REGS_RSP = __VCPU_REGS_RSP, 173 VCPU_REGS_RBP = __VCPU_REGS_RBP, 174 VCPU_REGS_RSI = __VCPU_REGS_RSI, 175 VCPU_REGS_RDI = __VCPU_REGS_RDI, 176 #ifdef CONFIG_X86_64 177 VCPU_REGS_R8 = __VCPU_REGS_R8, 178 VCPU_REGS_R9 = __VCPU_REGS_R9, 179 VCPU_REGS_R10 = __VCPU_REGS_R10, 180 VCPU_REGS_R11 = __VCPU_REGS_R11, 181 VCPU_REGS_R12 = __VCPU_REGS_R12, 182 VCPU_REGS_R13 = __VCPU_REGS_R13, 183 VCPU_REGS_R14 = __VCPU_REGS_R14, 184 VCPU_REGS_R15 = __VCPU_REGS_R15, 185 #endif 186 VCPU_REGS_RIP, 187 NR_VCPU_REGS, 188 189 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 190 VCPU_EXREG_CR0, 191 VCPU_EXREG_CR3, 192 VCPU_EXREG_CR4, 193 VCPU_EXREG_RFLAGS, 194 VCPU_EXREG_SEGMENTS, 195 VCPU_EXREG_EXIT_INFO_1, 196 VCPU_EXREG_EXIT_INFO_2, 197 }; 198 199 enum { 200 VCPU_SREG_ES, 201 VCPU_SREG_CS, 202 VCPU_SREG_SS, 203 VCPU_SREG_DS, 204 VCPU_SREG_FS, 205 VCPU_SREG_GS, 206 VCPU_SREG_TR, 207 VCPU_SREG_LDTR, 208 }; 209 210 enum exit_fastpath_completion { 211 EXIT_FASTPATH_NONE, 212 EXIT_FASTPATH_REENTER_GUEST, 213 EXIT_FASTPATH_EXIT_HANDLED, 214 }; 215 typedef enum exit_fastpath_completion fastpath_t; 216 217 struct x86_emulate_ctxt; 218 struct x86_exception; 219 union kvm_smram; 220 enum x86_intercept; 221 enum x86_intercept_stage; 222 223 #define KVM_NR_DB_REGS 4 224 225 #define DR6_BUS_LOCK (1 << 11) 226 #define DR6_BD (1 << 13) 227 #define DR6_BS (1 << 14) 228 #define DR6_BT (1 << 15) 229 #define DR6_RTM (1 << 16) 230 /* 231 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 232 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 233 * they will never be 0 for now, but when they are defined 234 * in the future it will require no code change. 235 * 236 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 237 */ 238 #define DR6_ACTIVE_LOW 0xffff0ff0 239 #define DR6_VOLATILE 0x0001e80f 240 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 241 242 #define DR7_BP_EN_MASK 0x000000ff 243 #define DR7_GE (1 << 9) 244 #define DR7_GD (1 << 13) 245 #define DR7_FIXED_1 0x00000400 246 #define DR7_VOLATILE 0xffff2bff 247 248 #define KVM_GUESTDBG_VALID_MASK \ 249 (KVM_GUESTDBG_ENABLE | \ 250 KVM_GUESTDBG_SINGLESTEP | \ 251 KVM_GUESTDBG_USE_HW_BP | \ 252 KVM_GUESTDBG_USE_SW_BP | \ 253 KVM_GUESTDBG_INJECT_BP | \ 254 KVM_GUESTDBG_INJECT_DB | \ 255 KVM_GUESTDBG_BLOCKIRQ) 256 257 258 #define PFERR_PRESENT_BIT 0 259 #define PFERR_WRITE_BIT 1 260 #define PFERR_USER_BIT 2 261 #define PFERR_RSVD_BIT 3 262 #define PFERR_FETCH_BIT 4 263 #define PFERR_PK_BIT 5 264 #define PFERR_SGX_BIT 15 265 #define PFERR_GUEST_FINAL_BIT 32 266 #define PFERR_GUEST_PAGE_BIT 33 267 #define PFERR_IMPLICIT_ACCESS_BIT 48 268 269 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) 270 #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) 271 #define PFERR_USER_MASK BIT(PFERR_USER_BIT) 272 #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) 273 #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) 274 #define PFERR_PK_MASK BIT(PFERR_PK_BIT) 275 #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) 276 #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) 277 #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) 278 #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) 279 280 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 281 PFERR_WRITE_MASK | \ 282 PFERR_PRESENT_MASK) 283 284 /* apic attention bits */ 285 #define KVM_APIC_CHECK_VAPIC 0 286 /* 287 * The following bit is set with PV-EOI, unset on EOI. 288 * We detect PV-EOI changes by guest by comparing 289 * this bit with PV-EOI in guest memory. 290 * See the implementation in apic_update_pv_eoi. 291 */ 292 #define KVM_APIC_PV_EOI_PENDING 1 293 294 struct kvm_kernel_irq_routing_entry; 295 296 /* 297 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 298 * also includes TDP pages) to determine whether or not a page can be used in 299 * the given MMU context. This is a subset of the overall kvm_cpu_role to 300 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 301 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 302 * 303 * Upper-level shadow pages having gptes are tracked for write-protection via 304 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 305 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 306 * otherwise gfn_write_track will overflow and explosions will ensue. 307 * 308 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 309 * cannot be reused. The ability to reuse a SP is tracked by its role, which 310 * incorporates various mode bits and properties of the SP. Roughly speaking, 311 * the number of unique SPs that can theoretically be created is 2^n, where n 312 * is the number of bits that are used to compute the role. 313 * 314 * But, even though there are 19 bits in the mask below, not all combinations 315 * of modes and flags are possible: 316 * 317 * - invalid shadow pages are not accounted, so the bits are effectively 18 318 * 319 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 320 * execonly and ad_disabled are only used for nested EPT which has 321 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 322 * 323 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 324 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 325 * paging has exactly one upper level, making level completely redundant 326 * when has_4_byte_gpte=1. 327 * 328 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 329 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 330 * 331 * Therefore, the maximum number of possible upper-level shadow pages for a 332 * single gfn is a bit less than 2^13. 333 */ 334 union kvm_mmu_page_role { 335 u32 word; 336 struct { 337 unsigned level:4; 338 unsigned has_4_byte_gpte:1; 339 unsigned quadrant:2; 340 unsigned direct:1; 341 unsigned access:3; 342 unsigned invalid:1; 343 unsigned efer_nx:1; 344 unsigned cr0_wp:1; 345 unsigned smep_andnot_wp:1; 346 unsigned smap_andnot_wp:1; 347 unsigned ad_disabled:1; 348 unsigned guest_mode:1; 349 unsigned passthrough:1; 350 unsigned :5; 351 352 /* 353 * This is left at the top of the word so that 354 * kvm_memslots_for_spte_role can extract it with a 355 * simple shift. While there is room, give it a whole 356 * byte so it is also faster to load it from memory. 357 */ 358 unsigned smm:8; 359 }; 360 }; 361 362 /* 363 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 364 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 365 * including on nested transitions, if nothing in the full role changes then 366 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 367 * don't treat all-zero structure as valid data. 368 * 369 * The properties that are tracked in the extended role but not the page role 370 * are for things that either (a) do not affect the validity of the shadow page 371 * or (b) are indirectly reflected in the shadow page's role. For example, 372 * CR4.PKE only affects permission checks for software walks of the guest page 373 * tables (because KVM doesn't support Protection Keys with shadow paging), and 374 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 375 * 376 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 377 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 378 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 379 * SMAP aware regardless of CR0.WP. 380 */ 381 union kvm_mmu_extended_role { 382 u32 word; 383 struct { 384 unsigned int valid:1; 385 unsigned int execonly:1; 386 unsigned int cr4_pse:1; 387 unsigned int cr4_pke:1; 388 unsigned int cr4_smap:1; 389 unsigned int cr4_smep:1; 390 unsigned int cr4_la57:1; 391 unsigned int efer_lma:1; 392 }; 393 }; 394 395 union kvm_cpu_role { 396 u64 as_u64; 397 struct { 398 union kvm_mmu_page_role base; 399 union kvm_mmu_extended_role ext; 400 }; 401 }; 402 403 struct kvm_rmap_head { 404 unsigned long val; 405 }; 406 407 struct kvm_pio_request { 408 unsigned long linear_rip; 409 unsigned long count; 410 int in; 411 int port; 412 int size; 413 }; 414 415 #define PT64_ROOT_MAX_LEVEL 5 416 417 struct rsvd_bits_validate { 418 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 419 u64 bad_mt_xwr; 420 }; 421 422 struct kvm_mmu_root_info { 423 gpa_t pgd; 424 hpa_t hpa; 425 }; 426 427 #define KVM_MMU_ROOT_INFO_INVALID \ 428 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 429 430 #define KVM_MMU_NUM_PREV_ROOTS 3 431 432 #define KVM_MMU_ROOT_CURRENT BIT(0) 433 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 434 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 435 436 #define KVM_HAVE_MMU_RWLOCK 437 438 struct kvm_mmu_page; 439 struct kvm_page_fault; 440 441 /* 442 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 443 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 444 * current mmu mode. 445 */ 446 struct kvm_mmu { 447 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 448 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 449 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 450 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 451 struct x86_exception *fault); 452 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 453 gpa_t gva_or_gpa, u64 access, 454 struct x86_exception *exception); 455 int (*sync_spte)(struct kvm_vcpu *vcpu, 456 struct kvm_mmu_page *sp, int i); 457 struct kvm_mmu_root_info root; 458 union kvm_cpu_role cpu_role; 459 union kvm_mmu_page_role root_role; 460 461 /* 462 * The pkru_mask indicates if protection key checks are needed. It 463 * consists of 16 domains indexed by page fault error code bits [4:1], 464 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 465 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 466 */ 467 u32 pkru_mask; 468 469 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 470 471 /* 472 * Bitmap; bit set = permission fault 473 * Byte index: page fault error code [4:1] 474 * Bit index: pte permissions in ACC_* format 475 */ 476 u8 permissions[16]; 477 478 u64 *pae_root; 479 u64 *pml4_root; 480 u64 *pml5_root; 481 482 /* 483 * check zero bits on shadow page table entries, these 484 * bits include not only hardware reserved bits but also 485 * the bits spte never used. 486 */ 487 struct rsvd_bits_validate shadow_zero_check; 488 489 struct rsvd_bits_validate guest_rsvd_check; 490 491 u64 pdptrs[4]; /* pae */ 492 }; 493 494 enum pmc_type { 495 KVM_PMC_GP = 0, 496 KVM_PMC_FIXED, 497 }; 498 499 struct kvm_pmc { 500 enum pmc_type type; 501 u8 idx; 502 bool is_paused; 503 bool intr; 504 /* 505 * Base value of the PMC counter, relative to the *consumed* count in 506 * the associated perf_event. This value includes counter updates from 507 * the perf_event and emulated_count since the last time the counter 508 * was reprogrammed, but it is *not* the current value as seen by the 509 * guest or userspace. 510 * 511 * The count is relative to the associated perf_event so that KVM 512 * doesn't need to reprogram the perf_event every time the guest writes 513 * to the counter. 514 */ 515 u64 counter; 516 /* 517 * PMC events triggered by KVM emulation that haven't been fully 518 * processed, i.e. haven't undergone overflow detection. 519 */ 520 u64 emulated_counter; 521 u64 eventsel; 522 struct perf_event *perf_event; 523 struct kvm_vcpu *vcpu; 524 /* 525 * only for creating or reusing perf_event, 526 * eventsel value for general purpose counters, 527 * ctrl value for fixed counters. 528 */ 529 u64 current_config; 530 }; 531 532 /* More counters may conflict with other existing Architectural MSRs */ 533 #define KVM_INTEL_PMC_MAX_GENERIC 8 534 #define MSR_ARCH_PERFMON_PERFCTR_MAX (MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 535 #define MSR_ARCH_PERFMON_EVENTSEL_MAX (MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 536 #define KVM_PMC_MAX_FIXED 3 537 #define MSR_ARCH_PERFMON_FIXED_CTR_MAX (MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1) 538 #define KVM_AMD_PMC_MAX_GENERIC 6 539 540 struct kvm_pmu { 541 u8 version; 542 unsigned nr_arch_gp_counters; 543 unsigned nr_arch_fixed_counters; 544 unsigned available_event_types; 545 u64 fixed_ctr_ctrl; 546 u64 fixed_ctr_ctrl_mask; 547 u64 global_ctrl; 548 u64 global_status; 549 u64 counter_bitmask[2]; 550 u64 global_ctrl_mask; 551 u64 global_status_mask; 552 u64 reserved_bits; 553 u64 raw_event_mask; 554 struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC]; 555 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED]; 556 557 /* 558 * Overlay the bitmap with a 64-bit atomic so that all bits can be 559 * set in a single access, e.g. to reprogram all counters when the PMU 560 * filter changes. 561 */ 562 union { 563 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 564 atomic64_t __reprogram_pmi; 565 }; 566 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 567 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 568 569 u64 ds_area; 570 u64 pebs_enable; 571 u64 pebs_enable_mask; 572 u64 pebs_data_cfg; 573 u64 pebs_data_cfg_mask; 574 575 /* 576 * If a guest counter is cross-mapped to host counter with different 577 * index, its PEBS capability will be temporarily disabled. 578 * 579 * The user should make sure that this mask is updated 580 * after disabling interrupts and before perf_guest_get_msrs(); 581 */ 582 u64 host_cross_mapped_mask; 583 584 /* 585 * The gate to release perf_events not marked in 586 * pmc_in_use only once in a vcpu time slice. 587 */ 588 bool need_cleanup; 589 590 /* 591 * The total number of programmed perf_events and it helps to avoid 592 * redundant check before cleanup if guest don't use vPMU at all. 593 */ 594 u8 event_count; 595 }; 596 597 struct kvm_pmu_ops; 598 599 enum { 600 KVM_DEBUGREG_BP_ENABLED = 1, 601 KVM_DEBUGREG_WONT_EXIT = 2, 602 }; 603 604 struct kvm_mtrr_range { 605 u64 base; 606 u64 mask; 607 struct list_head node; 608 }; 609 610 struct kvm_mtrr { 611 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 612 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 613 u64 deftype; 614 615 struct list_head head; 616 }; 617 618 /* Hyper-V SynIC timer */ 619 struct kvm_vcpu_hv_stimer { 620 struct hrtimer timer; 621 int index; 622 union hv_stimer_config config; 623 u64 count; 624 u64 exp_time; 625 struct hv_message msg; 626 bool msg_pending; 627 }; 628 629 /* Hyper-V synthetic interrupt controller (SynIC)*/ 630 struct kvm_vcpu_hv_synic { 631 u64 version; 632 u64 control; 633 u64 msg_page; 634 u64 evt_page; 635 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 636 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 637 DECLARE_BITMAP(auto_eoi_bitmap, 256); 638 DECLARE_BITMAP(vec_bitmap, 256); 639 bool active; 640 bool dont_zero_synic_pages; 641 }; 642 643 /* The maximum number of entries on the TLB flush fifo. */ 644 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 645 /* 646 * Note: the following 'magic' entry is made up by KVM to avoid putting 647 * anything besides GVA on the TLB flush fifo. It is theoretically possible 648 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 649 * which will look identical. KVM's action to 'flush everything' instead of 650 * flushing these particular addresses is, however, fully legitimate as 651 * flushing more than requested is always OK. 652 */ 653 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 654 655 enum hv_tlb_flush_fifos { 656 HV_L1_TLB_FLUSH_FIFO, 657 HV_L2_TLB_FLUSH_FIFO, 658 HV_NR_TLB_FLUSH_FIFOS, 659 }; 660 661 struct kvm_vcpu_hv_tlb_flush_fifo { 662 spinlock_t write_lock; 663 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 664 }; 665 666 /* Hyper-V per vcpu emulation context */ 667 struct kvm_vcpu_hv { 668 struct kvm_vcpu *vcpu; 669 u32 vp_index; 670 u64 hv_vapic; 671 s64 runtime_offset; 672 struct kvm_vcpu_hv_synic synic; 673 struct kvm_hyperv_exit exit; 674 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 675 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 676 bool enforce_cpuid; 677 struct { 678 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 679 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 680 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 681 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 682 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 683 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 684 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 685 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 686 } cpuid_cache; 687 688 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 689 690 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 691 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 692 693 struct hv_vp_assist_page vp_assist_page; 694 695 struct { 696 u64 pa_page_gpa; 697 u64 vm_id; 698 u32 vp_id; 699 } nested; 700 }; 701 702 struct kvm_hypervisor_cpuid { 703 u32 base; 704 u32 limit; 705 }; 706 707 #ifdef CONFIG_KVM_XEN 708 /* Xen HVM per vcpu emulation context */ 709 struct kvm_vcpu_xen { 710 u64 hypercall_rip; 711 u32 current_runstate; 712 u8 upcall_vector; 713 struct gfn_to_pfn_cache vcpu_info_cache; 714 struct gfn_to_pfn_cache vcpu_time_info_cache; 715 struct gfn_to_pfn_cache runstate_cache; 716 struct gfn_to_pfn_cache runstate2_cache; 717 u64 last_steal; 718 u64 runstate_entry_time; 719 u64 runstate_times[4]; 720 unsigned long evtchn_pending_sel; 721 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 722 u32 timer_virq; 723 u64 timer_expires; /* In guest epoch */ 724 atomic_t timer_pending; 725 struct hrtimer timer; 726 int poll_evtchn; 727 struct timer_list poll_timer; 728 struct kvm_hypervisor_cpuid cpuid; 729 }; 730 #endif 731 732 struct kvm_queued_exception { 733 bool pending; 734 bool injected; 735 bool has_error_code; 736 u8 vector; 737 u32 error_code; 738 unsigned long payload; 739 bool has_payload; 740 }; 741 742 struct kvm_vcpu_arch { 743 /* 744 * rip and regs accesses must go through 745 * kvm_{register,rip}_{read,write} functions. 746 */ 747 unsigned long regs[NR_VCPU_REGS]; 748 u32 regs_avail; 749 u32 regs_dirty; 750 751 unsigned long cr0; 752 unsigned long cr0_guest_owned_bits; 753 unsigned long cr2; 754 unsigned long cr3; 755 unsigned long cr4; 756 unsigned long cr4_guest_owned_bits; 757 unsigned long cr4_guest_rsvd_bits; 758 unsigned long cr8; 759 u32 host_pkru; 760 u32 pkru; 761 u32 hflags; 762 u64 efer; 763 u64 apic_base; 764 struct kvm_lapic *apic; /* kernel irqchip context */ 765 bool load_eoi_exitmap_pending; 766 DECLARE_BITMAP(ioapic_handled_vectors, 256); 767 unsigned long apic_attention; 768 int32_t apic_arb_prio; 769 int mp_state; 770 u64 ia32_misc_enable_msr; 771 u64 smbase; 772 u64 smi_count; 773 bool at_instruction_boundary; 774 bool tpr_access_reporting; 775 bool xfd_no_write_intercept; 776 u64 ia32_xss; 777 u64 microcode_version; 778 u64 arch_capabilities; 779 u64 perf_capabilities; 780 781 /* 782 * Paging state of the vcpu 783 * 784 * If the vcpu runs in guest mode with two level paging this still saves 785 * the paging mode of the l1 guest. This context is always used to 786 * handle faults. 787 */ 788 struct kvm_mmu *mmu; 789 790 /* Non-nested MMU for L1 */ 791 struct kvm_mmu root_mmu; 792 793 /* L1 MMU when running nested */ 794 struct kvm_mmu guest_mmu; 795 796 /* 797 * Paging state of an L2 guest (used for nested npt) 798 * 799 * This context will save all necessary information to walk page tables 800 * of an L2 guest. This context is only initialized for page table 801 * walking and not for faulting since we never handle l2 page faults on 802 * the host. 803 */ 804 struct kvm_mmu nested_mmu; 805 806 /* 807 * Pointer to the mmu context currently used for 808 * gva_to_gpa translations. 809 */ 810 struct kvm_mmu *walk_mmu; 811 812 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 813 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 814 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 815 struct kvm_mmu_memory_cache mmu_page_header_cache; 816 817 /* 818 * QEMU userspace and the guest each have their own FPU state. 819 * In vcpu_run, we switch between the user and guest FPU contexts. 820 * While running a VCPU, the VCPU thread will have the guest FPU 821 * context. 822 * 823 * Note that while the PKRU state lives inside the fpu registers, 824 * it is switched out separately at VMENTER and VMEXIT time. The 825 * "guest_fpstate" state here contains the guest FPU context, with the 826 * host PRKU bits. 827 */ 828 struct fpu_guest guest_fpu; 829 830 u64 xcr0; 831 u64 guest_supported_xcr0; 832 833 struct kvm_pio_request pio; 834 void *pio_data; 835 void *sev_pio_data; 836 unsigned sev_pio_count; 837 838 u8 event_exit_inst_len; 839 840 bool exception_from_userspace; 841 842 /* Exceptions to be injected to the guest. */ 843 struct kvm_queued_exception exception; 844 /* Exception VM-Exits to be synthesized to L1. */ 845 struct kvm_queued_exception exception_vmexit; 846 847 struct kvm_queued_interrupt { 848 bool injected; 849 bool soft; 850 u8 nr; 851 } interrupt; 852 853 int halt_request; /* real mode on Intel only */ 854 855 int cpuid_nent; 856 struct kvm_cpuid_entry2 *cpuid_entries; 857 struct kvm_hypervisor_cpuid kvm_cpuid; 858 bool is_amd_compatible; 859 860 /* 861 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly 862 * when "struct kvm_vcpu_arch" is no longer defined in an 863 * arch/x86/include/asm header. The max is mostly arbitrary, i.e. 864 * can be increased as necessary. 865 */ 866 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG 867 868 /* 869 * Track whether or not the guest is allowed to use features that are 870 * governed by KVM, where "governed" means KVM needs to manage state 871 * and/or explicitly enable the feature in hardware. Typically, but 872 * not always, governed features can be used by the guest if and only 873 * if both KVM and userspace want to expose the feature to the guest. 874 */ 875 struct { 876 DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES); 877 } governed_features; 878 879 u64 reserved_gpa_bits; 880 int maxphyaddr; 881 882 /* emulate context */ 883 884 struct x86_emulate_ctxt *emulate_ctxt; 885 bool emulate_regs_need_sync_to_vcpu; 886 bool emulate_regs_need_sync_from_vcpu; 887 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 888 889 gpa_t time; 890 struct pvclock_vcpu_time_info hv_clock; 891 unsigned int hw_tsc_khz; 892 struct gfn_to_pfn_cache pv_time; 893 /* set guest stopped flag in pvclock flags field */ 894 bool pvclock_set_guest_stopped_request; 895 896 struct { 897 u8 preempted; 898 u64 msr_val; 899 u64 last_steal; 900 struct gfn_to_hva_cache cache; 901 } st; 902 903 u64 l1_tsc_offset; 904 u64 tsc_offset; /* current tsc offset */ 905 u64 last_guest_tsc; 906 u64 last_host_tsc; 907 u64 tsc_offset_adjustment; 908 u64 this_tsc_nsec; 909 u64 this_tsc_write; 910 u64 this_tsc_generation; 911 bool tsc_catchup; 912 bool tsc_always_catchup; 913 s8 virtual_tsc_shift; 914 u32 virtual_tsc_mult; 915 u32 virtual_tsc_khz; 916 s64 ia32_tsc_adjust_msr; 917 u64 msr_ia32_power_ctl; 918 u64 l1_tsc_scaling_ratio; 919 u64 tsc_scaling_ratio; /* current scaling ratio */ 920 921 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 922 /* Number of NMIs pending injection, not including hardware vNMIs. */ 923 unsigned int nmi_pending; 924 bool nmi_injected; /* Trying to inject an NMI this entry */ 925 bool smi_pending; /* SMI queued after currently running handler */ 926 u8 handling_intr_from_guest; 927 928 struct kvm_mtrr mtrr_state; 929 u64 pat; 930 931 unsigned switch_db_regs; 932 unsigned long db[KVM_NR_DB_REGS]; 933 unsigned long dr6; 934 unsigned long dr7; 935 unsigned long eff_db[KVM_NR_DB_REGS]; 936 unsigned long guest_debug_dr7; 937 u64 msr_platform_info; 938 u64 msr_misc_features_enables; 939 940 u64 mcg_cap; 941 u64 mcg_status; 942 u64 mcg_ctl; 943 u64 mcg_ext_ctl; 944 u64 *mce_banks; 945 u64 *mci_ctl2_banks; 946 947 /* Cache MMIO info */ 948 u64 mmio_gva; 949 unsigned mmio_access; 950 gfn_t mmio_gfn; 951 u64 mmio_gen; 952 953 struct kvm_pmu pmu; 954 955 /* used for guest single stepping over the given code position */ 956 unsigned long singlestep_rip; 957 958 #ifdef CONFIG_KVM_HYPERV 959 bool hyperv_enabled; 960 struct kvm_vcpu_hv *hyperv; 961 #endif 962 #ifdef CONFIG_KVM_XEN 963 struct kvm_vcpu_xen xen; 964 #endif 965 cpumask_var_t wbinvd_dirty_mask; 966 967 unsigned long last_retry_eip; 968 unsigned long last_retry_addr; 969 970 struct { 971 bool halted; 972 gfn_t gfns[ASYNC_PF_PER_VCPU]; 973 struct gfn_to_hva_cache data; 974 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 975 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 976 u16 vec; 977 u32 id; 978 bool send_user_only; 979 u32 host_apf_flags; 980 bool delivery_as_pf_vmexit; 981 bool pageready_pending; 982 } apf; 983 984 /* OSVW MSRs (AMD only) */ 985 struct { 986 u64 length; 987 u64 status; 988 } osvw; 989 990 struct { 991 u64 msr_val; 992 struct gfn_to_hva_cache data; 993 } pv_eoi; 994 995 u64 msr_kvm_poll_control; 996 997 /* set at EPT violation at this point */ 998 unsigned long exit_qualification; 999 1000 /* pv related host specific info */ 1001 struct { 1002 bool pv_unhalted; 1003 } pv; 1004 1005 int pending_ioapic_eoi; 1006 int pending_external_vector; 1007 1008 /* be preempted when it's in kernel-mode(cpl=0) */ 1009 bool preempted_in_kernel; 1010 1011 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1012 bool l1tf_flush_l1d; 1013 1014 /* Host CPU on which VM-entry was most recently attempted */ 1015 int last_vmentry_cpu; 1016 1017 /* AMD MSRC001_0015 Hardware Configuration */ 1018 u64 msr_hwcr; 1019 1020 /* pv related cpuid info */ 1021 struct { 1022 /* 1023 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1024 * leaf. 1025 */ 1026 u32 features; 1027 1028 /* 1029 * indicates whether pv emulation should be disabled if features 1030 * are not present in the guest's cpuid 1031 */ 1032 bool enforce; 1033 } pv_cpuid; 1034 1035 /* Protected Guests */ 1036 bool guest_state_protected; 1037 1038 /* 1039 * Set when PDPTS were loaded directly by the userspace without 1040 * reading the guest memory 1041 */ 1042 bool pdptrs_from_userspace; 1043 1044 #if IS_ENABLED(CONFIG_HYPERV) 1045 hpa_t hv_root_tdp; 1046 #endif 1047 }; 1048 1049 struct kvm_lpage_info { 1050 int disallow_lpage; 1051 }; 1052 1053 struct kvm_arch_memory_slot { 1054 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1055 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1056 unsigned short *gfn_write_track; 1057 }; 1058 1059 /* 1060 * Track the mode of the optimized logical map, as the rules for decoding the 1061 * destination vary per mode. Enabling the optimized logical map requires all 1062 * software-enabled local APIs to be in the same mode, each addressable APIC to 1063 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1064 */ 1065 enum kvm_apic_logical_mode { 1066 /* All local APICs are software disabled. */ 1067 KVM_APIC_MODE_SW_DISABLED, 1068 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1069 KVM_APIC_MODE_XAPIC_CLUSTER, 1070 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1071 KVM_APIC_MODE_XAPIC_FLAT, 1072 /* All software enabled local APICs in x2APIC mode. */ 1073 KVM_APIC_MODE_X2APIC, 1074 /* 1075 * Optimized map disabled, e.g. not all local APICs in the same logical 1076 * mode, same logical ID assigned to multiple APICs, etc. 1077 */ 1078 KVM_APIC_MODE_MAP_DISABLED, 1079 }; 1080 1081 struct kvm_apic_map { 1082 struct rcu_head rcu; 1083 enum kvm_apic_logical_mode logical_mode; 1084 u32 max_apic_id; 1085 union { 1086 struct kvm_lapic *xapic_flat_map[8]; 1087 struct kvm_lapic *xapic_cluster_map[16][4]; 1088 }; 1089 struct kvm_lapic *phys_map[]; 1090 }; 1091 1092 /* Hyper-V synthetic debugger (SynDbg)*/ 1093 struct kvm_hv_syndbg { 1094 struct { 1095 u64 control; 1096 u64 status; 1097 u64 send_page; 1098 u64 recv_page; 1099 u64 pending_page; 1100 } control; 1101 u64 options; 1102 }; 1103 1104 /* Current state of Hyper-V TSC page clocksource */ 1105 enum hv_tsc_page_status { 1106 /* TSC page was not set up or disabled */ 1107 HV_TSC_PAGE_UNSET = 0, 1108 /* TSC page MSR was written by the guest, update pending */ 1109 HV_TSC_PAGE_GUEST_CHANGED, 1110 /* TSC page update was triggered from the host side */ 1111 HV_TSC_PAGE_HOST_CHANGED, 1112 /* TSC page was properly set up and is currently active */ 1113 HV_TSC_PAGE_SET, 1114 /* TSC page was set up with an inaccessible GPA */ 1115 HV_TSC_PAGE_BROKEN, 1116 }; 1117 1118 #ifdef CONFIG_KVM_HYPERV 1119 /* Hyper-V emulation context */ 1120 struct kvm_hv { 1121 struct mutex hv_lock; 1122 u64 hv_guest_os_id; 1123 u64 hv_hypercall; 1124 u64 hv_tsc_page; 1125 enum hv_tsc_page_status hv_tsc_page_status; 1126 1127 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1128 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1129 u64 hv_crash_ctl; 1130 1131 struct ms_hyperv_tsc_page tsc_ref; 1132 1133 struct idr conn_to_evt; 1134 1135 u64 hv_reenlightenment_control; 1136 u64 hv_tsc_emulation_control; 1137 u64 hv_tsc_emulation_status; 1138 u64 hv_invtsc_control; 1139 1140 /* How many vCPUs have VP index != vCPU index */ 1141 atomic_t num_mismatched_vp_indexes; 1142 1143 /* 1144 * How many SynICs use 'AutoEOI' feature 1145 * (protected by arch.apicv_update_lock) 1146 */ 1147 unsigned int synic_auto_eoi_used; 1148 1149 struct kvm_hv_syndbg hv_syndbg; 1150 1151 bool xsaves_xsavec_checked; 1152 }; 1153 #endif 1154 1155 struct msr_bitmap_range { 1156 u32 flags; 1157 u32 nmsrs; 1158 u32 base; 1159 unsigned long *bitmap; 1160 }; 1161 1162 #ifdef CONFIG_KVM_XEN 1163 /* Xen emulation context */ 1164 struct kvm_xen { 1165 struct mutex xen_lock; 1166 u32 xen_version; 1167 bool long_mode; 1168 bool runstate_update_flag; 1169 u8 upcall_vector; 1170 struct gfn_to_pfn_cache shinfo_cache; 1171 struct idr evtchn_ports; 1172 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1173 }; 1174 #endif 1175 1176 enum kvm_irqchip_mode { 1177 KVM_IRQCHIP_NONE, 1178 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1179 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1180 }; 1181 1182 struct kvm_x86_msr_filter { 1183 u8 count; 1184 bool default_allow:1; 1185 struct msr_bitmap_range ranges[16]; 1186 }; 1187 1188 struct kvm_x86_pmu_event_filter { 1189 __u32 action; 1190 __u32 nevents; 1191 __u32 fixed_counter_bitmap; 1192 __u32 flags; 1193 __u32 nr_includes; 1194 __u32 nr_excludes; 1195 __u64 *includes; 1196 __u64 *excludes; 1197 __u64 events[]; 1198 }; 1199 1200 enum kvm_apicv_inhibit { 1201 1202 /********************************************************************/ 1203 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1204 /********************************************************************/ 1205 1206 /* 1207 * APIC acceleration is disabled by a module parameter 1208 * and/or not supported in hardware. 1209 */ 1210 APICV_INHIBIT_REASON_DISABLE, 1211 1212 /* 1213 * APIC acceleration is inhibited because AutoEOI feature is 1214 * being used by a HyperV guest. 1215 */ 1216 APICV_INHIBIT_REASON_HYPERV, 1217 1218 /* 1219 * APIC acceleration is inhibited because the userspace didn't yet 1220 * enable the kernel/split irqchip. 1221 */ 1222 APICV_INHIBIT_REASON_ABSENT, 1223 1224 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1225 * (out of band, debug measure of blocking all interrupts on this vCPU) 1226 * was enabled, to avoid AVIC/APICv bypassing it. 1227 */ 1228 APICV_INHIBIT_REASON_BLOCKIRQ, 1229 1230 /* 1231 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1232 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1233 */ 1234 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1235 1236 /* 1237 * For simplicity, the APIC acceleration is inhibited 1238 * first time either APIC ID or APIC base are changed by the guest 1239 * from their reset values. 1240 */ 1241 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1242 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1243 1244 /******************************************************/ 1245 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1246 /******************************************************/ 1247 1248 /* 1249 * AVIC is inhibited on a vCPU because it runs a nested guest. 1250 * 1251 * This is needed because unlike APICv, the peers of this vCPU 1252 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1253 * a vCPU runs nested. 1254 */ 1255 APICV_INHIBIT_REASON_NESTED, 1256 1257 /* 1258 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1259 * which cannot be injected when the AVIC is enabled, thus AVIC 1260 * is inhibited while KVM waits for IRQ window. 1261 */ 1262 APICV_INHIBIT_REASON_IRQWIN, 1263 1264 /* 1265 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1266 * which AVIC doesn't support for edge triggered interrupts. 1267 */ 1268 APICV_INHIBIT_REASON_PIT_REINJ, 1269 1270 /* 1271 * AVIC is disabled because SEV doesn't support it. 1272 */ 1273 APICV_INHIBIT_REASON_SEV, 1274 1275 /* 1276 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1277 * mapping between logical ID and vCPU. 1278 */ 1279 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1280 }; 1281 1282 struct kvm_arch { 1283 unsigned long vm_type; 1284 unsigned long n_used_mmu_pages; 1285 unsigned long n_requested_mmu_pages; 1286 unsigned long n_max_mmu_pages; 1287 unsigned int indirect_shadow_pages; 1288 u8 mmu_valid_gen; 1289 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1290 struct list_head active_mmu_pages; 1291 struct list_head zapped_obsolete_pages; 1292 /* 1293 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1294 * replaced by an NX huge page. A shadow page is on this list if its 1295 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1296 * and there are no other conditions that prevent a huge page, e.g. 1297 * the backing host page is huge, dirtly logging is not enabled for its 1298 * memslot, etc... Note, zapping shadow pages on this list doesn't 1299 * guarantee an NX huge page will be created in its stead, e.g. if the 1300 * guest attempts to execute from the region then KVM obviously can't 1301 * create an NX huge page (without hanging the guest). 1302 */ 1303 struct list_head possible_nx_huge_pages; 1304 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1305 struct kvm_page_track_notifier_head track_notifier_head; 1306 #endif 1307 /* 1308 * Protects marking pages unsync during page faults, as TDP MMU page 1309 * faults only take mmu_lock for read. For simplicity, the unsync 1310 * pages lock is always taken when marking pages unsync regardless of 1311 * whether mmu_lock is held for read or write. 1312 */ 1313 spinlock_t mmu_unsync_pages_lock; 1314 1315 struct iommu_domain *iommu_domain; 1316 bool iommu_noncoherent; 1317 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1318 atomic_t noncoherent_dma_count; 1319 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1320 atomic_t assigned_device_count; 1321 struct kvm_pic *vpic; 1322 struct kvm_ioapic *vioapic; 1323 struct kvm_pit *vpit; 1324 atomic_t vapics_in_nmi_mode; 1325 struct mutex apic_map_lock; 1326 struct kvm_apic_map __rcu *apic_map; 1327 atomic_t apic_map_dirty; 1328 1329 bool apic_access_memslot_enabled; 1330 bool apic_access_memslot_inhibited; 1331 1332 /* Protects apicv_inhibit_reasons */ 1333 struct rw_semaphore apicv_update_lock; 1334 unsigned long apicv_inhibit_reasons; 1335 1336 gpa_t wall_clock; 1337 1338 bool mwait_in_guest; 1339 bool hlt_in_guest; 1340 bool pause_in_guest; 1341 bool cstate_in_guest; 1342 1343 unsigned long irq_sources_bitmap; 1344 s64 kvmclock_offset; 1345 1346 /* 1347 * This also protects nr_vcpus_matched_tsc which is read from a 1348 * preemption-disabled region, so it must be a raw spinlock. 1349 */ 1350 raw_spinlock_t tsc_write_lock; 1351 u64 last_tsc_nsec; 1352 u64 last_tsc_write; 1353 u32 last_tsc_khz; 1354 u64 last_tsc_offset; 1355 u64 cur_tsc_nsec; 1356 u64 cur_tsc_write; 1357 u64 cur_tsc_offset; 1358 u64 cur_tsc_generation; 1359 int nr_vcpus_matched_tsc; 1360 1361 u32 default_tsc_khz; 1362 bool user_set_tsc; 1363 1364 seqcount_raw_spinlock_t pvclock_sc; 1365 bool use_master_clock; 1366 u64 master_kernel_ns; 1367 u64 master_cycle_now; 1368 struct delayed_work kvmclock_update_work; 1369 struct delayed_work kvmclock_sync_work; 1370 1371 struct kvm_xen_hvm_config xen_hvm_config; 1372 1373 /* reads protected by irq_srcu, writes by irq_lock */ 1374 struct hlist_head mask_notifier_list; 1375 1376 #ifdef CONFIG_KVM_HYPERV 1377 struct kvm_hv hyperv; 1378 #endif 1379 1380 #ifdef CONFIG_KVM_XEN 1381 struct kvm_xen xen; 1382 #endif 1383 1384 bool backwards_tsc_observed; 1385 bool boot_vcpu_runs_old_kvmclock; 1386 u32 bsp_vcpu_id; 1387 1388 u64 disabled_quirks; 1389 1390 enum kvm_irqchip_mode irqchip_mode; 1391 u8 nr_reserved_ioapic_pins; 1392 1393 bool disabled_lapic_found; 1394 1395 bool x2apic_format; 1396 bool x2apic_broadcast_quirk_disabled; 1397 1398 bool guest_can_read_msr_platform_info; 1399 bool exception_payload_enabled; 1400 1401 bool triple_fault_event; 1402 1403 bool bus_lock_detection_enabled; 1404 bool enable_pmu; 1405 1406 u32 notify_window; 1407 u32 notify_vmexit_flags; 1408 /* 1409 * If exit_on_emulation_error is set, and the in-kernel instruction 1410 * emulator fails to emulate an instruction, allow userspace 1411 * the opportunity to look at it. 1412 */ 1413 bool exit_on_emulation_error; 1414 1415 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1416 u32 user_space_msr_mask; 1417 struct kvm_x86_msr_filter __rcu *msr_filter; 1418 1419 u32 hypercall_exit_enabled; 1420 1421 /* Guest can access the SGX PROVISIONKEY. */ 1422 bool sgx_provisioning_allowed; 1423 1424 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1425 struct task_struct *nx_huge_page_recovery_thread; 1426 1427 #ifdef CONFIG_X86_64 1428 /* The number of TDP MMU pages across all roots. */ 1429 atomic64_t tdp_mmu_pages; 1430 1431 /* 1432 * List of struct kvm_mmu_pages being used as roots. 1433 * All struct kvm_mmu_pages in the list should have 1434 * tdp_mmu_page set. 1435 * 1436 * For reads, this list is protected by: 1437 * the MMU lock in read mode + RCU or 1438 * the MMU lock in write mode 1439 * 1440 * For writes, this list is protected by tdp_mmu_pages_lock; see 1441 * below for the details. 1442 * 1443 * Roots will remain in the list until their tdp_mmu_root_count 1444 * drops to zero, at which point the thread that decremented the 1445 * count to zero should removed the root from the list and clean 1446 * it up, freeing the root after an RCU grace period. 1447 */ 1448 struct list_head tdp_mmu_roots; 1449 1450 /* 1451 * Protects accesses to the following fields when the MMU lock 1452 * is held in read mode: 1453 * - tdp_mmu_roots (above) 1454 * - the link field of kvm_mmu_page structs used by the TDP MMU 1455 * - possible_nx_huge_pages; 1456 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1457 * by the TDP MMU 1458 * Because the lock is only taken within the MMU lock, strictly 1459 * speaking it is redundant to acquire this lock when the thread 1460 * holds the MMU lock in write mode. However it often simplifies 1461 * the code to do so. 1462 */ 1463 spinlock_t tdp_mmu_pages_lock; 1464 #endif /* CONFIG_X86_64 */ 1465 1466 /* 1467 * If set, at least one shadow root has been allocated. This flag 1468 * is used as one input when determining whether certain memslot 1469 * related allocations are necessary. 1470 */ 1471 bool shadow_root_allocated; 1472 1473 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1474 /* 1475 * If set, the VM has (or had) an external write tracking user, and 1476 * thus all write tracking metadata has been allocated, even if KVM 1477 * itself isn't using write tracking. 1478 */ 1479 bool external_write_tracking_enabled; 1480 #endif 1481 1482 #if IS_ENABLED(CONFIG_HYPERV) 1483 hpa_t hv_root_tdp; 1484 spinlock_t hv_root_tdp_lock; 1485 struct hv_partition_assist_pg *hv_pa_pg; 1486 #endif 1487 /* 1488 * VM-scope maximum vCPU ID. Used to determine the size of structures 1489 * that increase along with the maximum vCPU ID, in which case, using 1490 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1491 */ 1492 u32 max_vcpu_ids; 1493 1494 bool disable_nx_huge_pages; 1495 1496 /* 1497 * Memory caches used to allocate shadow pages when performing eager 1498 * page splitting. No need for a shadowed_info_cache since eager page 1499 * splitting only allocates direct shadow pages. 1500 * 1501 * Protected by kvm->slots_lock. 1502 */ 1503 struct kvm_mmu_memory_cache split_shadow_page_cache; 1504 struct kvm_mmu_memory_cache split_page_header_cache; 1505 1506 /* 1507 * Memory cache used to allocate pte_list_desc structs while splitting 1508 * huge pages. In the worst case, to split one huge page, 512 1509 * pte_list_desc structs are needed to add each lower level leaf sptep 1510 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1511 * page table. 1512 * 1513 * Protected by kvm->slots_lock. 1514 */ 1515 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1516 struct kvm_mmu_memory_cache split_desc_cache; 1517 }; 1518 1519 struct kvm_vm_stat { 1520 struct kvm_vm_stat_generic generic; 1521 u64 mmu_shadow_zapped; 1522 u64 mmu_pte_write; 1523 u64 mmu_pde_zapped; 1524 u64 mmu_flooded; 1525 u64 mmu_recycled; 1526 u64 mmu_cache_miss; 1527 u64 mmu_unsync; 1528 union { 1529 struct { 1530 atomic64_t pages_4k; 1531 atomic64_t pages_2m; 1532 atomic64_t pages_1g; 1533 }; 1534 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1535 }; 1536 u64 nx_lpage_splits; 1537 u64 max_mmu_page_hash_collisions; 1538 u64 max_mmu_rmap_size; 1539 }; 1540 1541 struct kvm_vcpu_stat { 1542 struct kvm_vcpu_stat_generic generic; 1543 u64 pf_taken; 1544 u64 pf_fixed; 1545 u64 pf_emulate; 1546 u64 pf_spurious; 1547 u64 pf_fast; 1548 u64 pf_mmio_spte_created; 1549 u64 pf_guest; 1550 u64 tlb_flush; 1551 u64 invlpg; 1552 1553 u64 exits; 1554 u64 io_exits; 1555 u64 mmio_exits; 1556 u64 signal_exits; 1557 u64 irq_window_exits; 1558 u64 nmi_window_exits; 1559 u64 l1d_flush; 1560 u64 halt_exits; 1561 u64 request_irq_exits; 1562 u64 irq_exits; 1563 u64 host_state_reload; 1564 u64 fpu_reload; 1565 u64 insn_emulation; 1566 u64 insn_emulation_fail; 1567 u64 hypercalls; 1568 u64 irq_injections; 1569 u64 nmi_injections; 1570 u64 req_event; 1571 u64 nested_run; 1572 u64 directed_yield_attempted; 1573 u64 directed_yield_successful; 1574 u64 preemption_reported; 1575 u64 preemption_other; 1576 u64 guest_mode; 1577 u64 notify_window_exits; 1578 }; 1579 1580 struct x86_instruction_info; 1581 1582 struct msr_data { 1583 bool host_initiated; 1584 u32 index; 1585 u64 data; 1586 }; 1587 1588 struct kvm_lapic_irq { 1589 u32 vector; 1590 u16 delivery_mode; 1591 u16 dest_mode; 1592 bool level; 1593 u16 trig_mode; 1594 u32 shorthand; 1595 u32 dest_id; 1596 bool msi_redir_hint; 1597 }; 1598 1599 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1600 { 1601 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1602 } 1603 1604 struct kvm_x86_ops { 1605 const char *name; 1606 1607 int (*check_processor_compatibility)(void); 1608 1609 int (*hardware_enable)(void); 1610 void (*hardware_disable)(void); 1611 void (*hardware_unsetup)(void); 1612 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1613 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1614 1615 unsigned int vm_size; 1616 int (*vm_init)(struct kvm *kvm); 1617 void (*vm_destroy)(struct kvm *kvm); 1618 1619 /* Create, but do not attach this VCPU */ 1620 int (*vcpu_precreate)(struct kvm *kvm); 1621 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1622 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1623 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1624 1625 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1626 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1627 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1628 1629 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1630 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1631 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1632 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1633 void (*get_segment)(struct kvm_vcpu *vcpu, 1634 struct kvm_segment *var, int seg); 1635 int (*get_cpl)(struct kvm_vcpu *vcpu); 1636 void (*set_segment)(struct kvm_vcpu *vcpu, 1637 struct kvm_segment *var, int seg); 1638 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1639 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1640 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1641 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1642 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1643 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1644 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1645 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1646 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1647 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1648 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1649 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1650 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1651 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1652 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1653 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1654 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1655 1656 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1657 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1658 #if IS_ENABLED(CONFIG_HYPERV) 1659 int (*flush_remote_tlbs)(struct kvm *kvm); 1660 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1661 gfn_t nr_pages); 1662 #endif 1663 1664 /* 1665 * Flush any TLB entries associated with the given GVA. 1666 * Does not need to flush GPA->HPA mappings. 1667 * Can potentially get non-canonical addresses through INVLPGs, which 1668 * the implementation may choose to ignore if appropriate. 1669 */ 1670 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1671 1672 /* 1673 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1674 * does not need to flush GPA->HPA mappings. 1675 */ 1676 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1677 1678 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1679 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1680 bool force_immediate_exit); 1681 int (*handle_exit)(struct kvm_vcpu *vcpu, 1682 enum exit_fastpath_completion exit_fastpath); 1683 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1684 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1685 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1686 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1687 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1688 unsigned char *hypercall_addr); 1689 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1690 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1691 void (*inject_exception)(struct kvm_vcpu *vcpu); 1692 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1693 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1694 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1695 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1696 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1697 /* Whether or not a virtual NMI is pending in hardware. */ 1698 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1699 /* 1700 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1701 * to allow using static_call_ret0 as the fallback. 1702 */ 1703 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1704 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1705 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1706 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1707 bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason); 1708 const unsigned long required_apicv_inhibits; 1709 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1710 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1711 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1712 void (*hwapic_isr_update)(int isr); 1713 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1714 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1715 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1716 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1717 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1718 int trig_mode, int vector); 1719 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1720 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1721 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1722 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1723 1724 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1725 int root_level); 1726 1727 bool (*has_wbinvd_exit)(void); 1728 1729 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1730 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1731 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1732 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1733 1734 /* 1735 * Retrieve somewhat arbitrary exit information. Intended to 1736 * be used only from within tracepoints or error paths. 1737 */ 1738 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1739 u64 *info1, u64 *info2, 1740 u32 *exit_int_info, u32 *exit_int_info_err_code); 1741 1742 int (*check_intercept)(struct kvm_vcpu *vcpu, 1743 struct x86_instruction_info *info, 1744 enum x86_intercept_stage stage, 1745 struct x86_exception *exception); 1746 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1747 1748 void (*sched_in)(struct kvm_vcpu *vcpu, int cpu); 1749 1750 /* 1751 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1752 * value indicates CPU dirty logging is unsupported or disabled. 1753 */ 1754 int cpu_dirty_log_size; 1755 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1756 1757 const struct kvm_x86_nested_ops *nested_ops; 1758 1759 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1760 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1761 1762 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1763 uint32_t guest_irq, bool set); 1764 void (*pi_start_assignment)(struct kvm *kvm); 1765 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1766 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1767 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1768 1769 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1770 bool *expired); 1771 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1772 1773 void (*setup_mce)(struct kvm_vcpu *vcpu); 1774 1775 #ifdef CONFIG_KVM_SMM 1776 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1777 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1778 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1779 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1780 #endif 1781 1782 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1783 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1784 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1785 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1786 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1787 void (*guest_memory_reclaimed)(struct kvm *kvm); 1788 1789 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1790 1791 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1792 void *insn, int insn_len); 1793 1794 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1795 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1796 1797 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1798 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1799 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1800 1801 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1802 1803 /* 1804 * Returns vCPU specific APICv inhibit reasons 1805 */ 1806 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1807 1808 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1809 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1810 }; 1811 1812 struct kvm_x86_nested_ops { 1813 void (*leave_nested)(struct kvm_vcpu *vcpu); 1814 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1815 u32 error_code); 1816 int (*check_events)(struct kvm_vcpu *vcpu); 1817 bool (*has_events)(struct kvm_vcpu *vcpu); 1818 void (*triple_fault)(struct kvm_vcpu *vcpu); 1819 int (*get_state)(struct kvm_vcpu *vcpu, 1820 struct kvm_nested_state __user *user_kvm_nested_state, 1821 unsigned user_data_size); 1822 int (*set_state)(struct kvm_vcpu *vcpu, 1823 struct kvm_nested_state __user *user_kvm_nested_state, 1824 struct kvm_nested_state *kvm_state); 1825 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1826 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1827 1828 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1829 uint16_t *vmcs_version); 1830 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1831 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1832 }; 1833 1834 struct kvm_x86_init_ops { 1835 int (*hardware_setup)(void); 1836 unsigned int (*handle_intel_pt_intr)(void); 1837 1838 struct kvm_x86_ops *runtime_ops; 1839 struct kvm_pmu_ops *pmu_ops; 1840 }; 1841 1842 struct kvm_arch_async_pf { 1843 u32 token; 1844 gfn_t gfn; 1845 unsigned long cr3; 1846 bool direct_map; 1847 }; 1848 1849 extern u32 __read_mostly kvm_nr_uret_msrs; 1850 extern u64 __read_mostly host_efer; 1851 extern bool __read_mostly allow_smaller_maxphyaddr; 1852 extern bool __read_mostly enable_apicv; 1853 extern struct kvm_x86_ops kvm_x86_ops; 1854 1855 #define KVM_X86_OP(func) \ 1856 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1857 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1858 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1859 #include <asm/kvm-x86-ops.h> 1860 1861 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1862 void kvm_x86_vendor_exit(void); 1863 1864 #define __KVM_HAVE_ARCH_VM_ALLOC 1865 static inline struct kvm *kvm_arch_alloc_vm(void) 1866 { 1867 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1868 } 1869 1870 #define __KVM_HAVE_ARCH_VM_FREE 1871 void kvm_arch_free_vm(struct kvm *kvm); 1872 1873 #if IS_ENABLED(CONFIG_HYPERV) 1874 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1875 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1876 { 1877 if (kvm_x86_ops.flush_remote_tlbs && 1878 !static_call(kvm_x86_flush_remote_tlbs)(kvm)) 1879 return 0; 1880 else 1881 return -ENOTSUPP; 1882 } 1883 1884 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1885 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1886 u64 nr_pages) 1887 { 1888 if (!kvm_x86_ops.flush_remote_tlbs_range) 1889 return -EOPNOTSUPP; 1890 1891 return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1892 } 1893 #endif /* CONFIG_HYPERV */ 1894 1895 enum kvm_intr_type { 1896 /* Values are arbitrary, but must be non-zero. */ 1897 KVM_HANDLING_IRQ = 1, 1898 KVM_HANDLING_NMI, 1899 }; 1900 1901 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 1902 #define kvm_arch_pmi_in_guest(vcpu) \ 1903 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 1904 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 1905 1906 void __init kvm_mmu_x86_module_init(void); 1907 int kvm_mmu_vendor_module_init(void); 1908 void kvm_mmu_vendor_module_exit(void); 1909 1910 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1911 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1912 void kvm_mmu_init_vm(struct kvm *kvm); 1913 void kvm_mmu_uninit_vm(struct kvm *kvm); 1914 1915 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 1916 struct kvm_memory_slot *slot); 1917 1918 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1919 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1920 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1921 const struct kvm_memory_slot *memslot, 1922 int start_level); 1923 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1924 const struct kvm_memory_slot *memslot, 1925 int target_level); 1926 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1927 const struct kvm_memory_slot *memslot, 1928 u64 start, u64 end, 1929 int target_level); 1930 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1931 const struct kvm_memory_slot *memslot); 1932 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1933 const struct kvm_memory_slot *memslot); 1934 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1935 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1936 1937 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 1938 1939 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1940 const void *val, int bytes); 1941 1942 struct kvm_irq_mask_notifier { 1943 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1944 int irq; 1945 struct hlist_node link; 1946 }; 1947 1948 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1949 struct kvm_irq_mask_notifier *kimn); 1950 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1951 struct kvm_irq_mask_notifier *kimn); 1952 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1953 bool mask); 1954 1955 extern bool tdp_enabled; 1956 1957 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1958 1959 /* 1960 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1961 * userspace I/O) to indicate that the emulation context 1962 * should be reused as is, i.e. skip initialization of 1963 * emulation context, instruction fetch and decode. 1964 * 1965 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1966 * Indicates that only select instructions (tagged with 1967 * EmulateOnUD) should be emulated (to minimize the emulator 1968 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 1969 * 1970 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 1971 * decode the instruction length. For use *only* by 1972 * kvm_x86_ops.skip_emulated_instruction() implementations if 1973 * EMULTYPE_COMPLETE_USER_EXIT is not set. 1974 * 1975 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 1976 * retry native execution under certain conditions, 1977 * Can only be set in conjunction with EMULTYPE_PF. 1978 * 1979 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 1980 * triggered by KVM's magic "force emulation" prefix, 1981 * which is opt in via module param (off by default). 1982 * Bypasses EmulateOnUD restriction despite emulating 1983 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 1984 * Used to test the full emulator from userspace. 1985 * 1986 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 1987 * backdoor emulation, which is opt in via module param. 1988 * VMware backdoor emulation handles select instructions 1989 * and reinjects the #GP for all other cases. 1990 * 1991 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 1992 * case the CR2/GPA value pass on the stack is valid. 1993 * 1994 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 1995 * state and inject single-step #DBs after skipping 1996 * an instruction (after completing userspace I/O). 1997 * 1998 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 1999 * is attempting to write a gfn that contains one or 2000 * more of the PTEs used to translate the write itself, 2001 * and the owning page table is being shadowed by KVM. 2002 * If emulation of the faulting instruction fails and 2003 * this flag is set, KVM will exit to userspace instead 2004 * of retrying emulation as KVM cannot make forward 2005 * progress. 2006 * 2007 * If emulation fails for a write to guest page tables, 2008 * KVM unprotects (zaps) the shadow page for the target 2009 * gfn and resumes the guest to retry the non-emulatable 2010 * instruction (on hardware). Unprotecting the gfn 2011 * doesn't allow forward progress for a self-changing 2012 * access because doing so also zaps the translation for 2013 * the gfn, i.e. retrying the instruction will hit a 2014 * !PRESENT fault, which results in a new shadow page 2015 * and sends KVM back to square one. 2016 */ 2017 #define EMULTYPE_NO_DECODE (1 << 0) 2018 #define EMULTYPE_TRAP_UD (1 << 1) 2019 #define EMULTYPE_SKIP (1 << 2) 2020 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2021 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2022 #define EMULTYPE_VMWARE_GP (1 << 5) 2023 #define EMULTYPE_PF (1 << 6) 2024 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2025 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2026 2027 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2028 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2029 void *insn, int insn_len); 2030 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2031 u64 *data, u8 ndata); 2032 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2033 2034 void kvm_enable_efer_bits(u64); 2035 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2036 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2037 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2038 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2039 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2040 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2041 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2042 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2043 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2044 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2045 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2046 2047 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2048 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2049 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2050 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2051 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2052 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2053 2054 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2055 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2056 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2057 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2058 2059 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2060 int reason, bool has_error_code, u32 error_code); 2061 2062 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2063 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2064 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2065 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2066 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2067 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2068 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2069 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2070 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2071 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2072 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2073 2074 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2075 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2076 2077 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2078 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2079 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2080 2081 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2082 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2083 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2084 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2085 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2086 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2087 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2088 struct x86_exception *fault); 2089 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2090 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2091 2092 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2093 int irq_source_id, int level) 2094 { 2095 /* Logical OR for level trig interrupt */ 2096 if (level) 2097 __set_bit(irq_source_id, irq_state); 2098 else 2099 __clear_bit(irq_source_id, irq_state); 2100 2101 return !!(*irq_state); 2102 } 2103 2104 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2105 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2106 2107 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2108 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2109 2110 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2111 2112 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 2113 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2114 ulong roots_to_free); 2115 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2116 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2117 struct x86_exception *exception); 2118 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2119 struct x86_exception *exception); 2120 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2121 struct x86_exception *exception); 2122 2123 bool kvm_apicv_activated(struct kvm *kvm); 2124 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2125 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2126 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2127 enum kvm_apicv_inhibit reason, bool set); 2128 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2129 enum kvm_apicv_inhibit reason, bool set); 2130 2131 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2132 enum kvm_apicv_inhibit reason) 2133 { 2134 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2135 } 2136 2137 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2138 enum kvm_apicv_inhibit reason) 2139 { 2140 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2141 } 2142 2143 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 2144 2145 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2146 void *insn, int insn_len); 2147 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2148 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2149 u64 addr, unsigned long roots); 2150 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2151 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2152 2153 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2154 int tdp_max_root_level, int tdp_huge_page_level); 2155 2156 #ifdef CONFIG_KVM_PRIVATE_MEM 2157 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.vm_type != KVM_X86_DEFAULT_VM) 2158 #else 2159 #define kvm_arch_has_private_mem(kvm) false 2160 #endif 2161 2162 static inline u16 kvm_read_ldt(void) 2163 { 2164 u16 ldt; 2165 asm("sldt %0" : "=g"(ldt)); 2166 return ldt; 2167 } 2168 2169 static inline void kvm_load_ldt(u16 sel) 2170 { 2171 asm("lldt %0" : : "rm"(sel)); 2172 } 2173 2174 #ifdef CONFIG_X86_64 2175 static inline unsigned long read_msr(unsigned long msr) 2176 { 2177 u64 value; 2178 2179 rdmsrl(msr, value); 2180 return value; 2181 } 2182 #endif 2183 2184 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2185 { 2186 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2187 } 2188 2189 #define TSS_IOPB_BASE_OFFSET 0x66 2190 #define TSS_BASE_SIZE 0x68 2191 #define TSS_IOPB_SIZE (65536 / 8) 2192 #define TSS_REDIRECTION_SIZE (256 / 8) 2193 #define RMODE_TSS_SIZE \ 2194 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2195 2196 enum { 2197 TASK_SWITCH_CALL = 0, 2198 TASK_SWITCH_IRET = 1, 2199 TASK_SWITCH_JMP = 2, 2200 TASK_SWITCH_GATE = 3, 2201 }; 2202 2203 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2204 2205 #ifdef CONFIG_KVM_SMM 2206 #define HF_SMM_MASK (1 << 1) 2207 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2208 2209 # define KVM_MAX_NR_ADDRESS_SPACES 2 2210 /* SMM is currently unsupported for guests with private memory. */ 2211 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2212 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2213 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2214 #else 2215 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2216 #endif 2217 2218 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2219 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2220 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2221 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2222 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2223 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2224 2225 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2226 unsigned long ipi_bitmap_high, u32 min, 2227 unsigned long icr, int op_64_bit); 2228 2229 int kvm_add_user_return_msr(u32 msr); 2230 int kvm_find_user_return_msr(u32 msr); 2231 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2232 2233 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2234 { 2235 return kvm_find_user_return_msr(msr) >= 0; 2236 } 2237 2238 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2239 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2240 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2241 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2242 2243 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2244 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2245 2246 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2247 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2248 unsigned long *vcpu_bitmap); 2249 2250 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2251 struct kvm_async_pf *work); 2252 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2253 struct kvm_async_pf *work); 2254 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2255 struct kvm_async_pf *work); 2256 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2257 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2258 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2259 2260 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2261 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2262 2263 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2264 u32 size); 2265 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2266 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2267 2268 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2269 struct kvm_vcpu **dest_vcpu); 2270 2271 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2272 struct kvm_lapic_irq *irq); 2273 2274 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2275 { 2276 /* We can only post Fixed and LowPrio IRQs */ 2277 return (irq->delivery_mode == APIC_DM_FIXED || 2278 irq->delivery_mode == APIC_DM_LOWEST); 2279 } 2280 2281 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2282 { 2283 static_call_cond(kvm_x86_vcpu_blocking)(vcpu); 2284 } 2285 2286 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2287 { 2288 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu); 2289 } 2290 2291 static inline int kvm_cpu_get_apicid(int mps_cpu) 2292 { 2293 #ifdef CONFIG_X86_LOCAL_APIC 2294 return default_cpu_present_to_apicid(mps_cpu); 2295 #else 2296 WARN_ON_ONCE(1); 2297 return BAD_APICID; 2298 #endif 2299 } 2300 2301 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2302 2303 #define KVM_CLOCK_VALID_FLAGS \ 2304 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2305 2306 #define KVM_X86_VALID_QUIRKS \ 2307 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2308 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2309 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2310 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2311 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2312 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2313 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) 2314 2315 /* 2316 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2317 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2318 * remaining 31 lower bits must be 0 to preserve ABI. 2319 */ 2320 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2321 2322 #endif /* _ASM_X86_KVM_HOST_H */ 2323