xref: /linux/arch/x86/include/asm/kvm_host.h (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
28 #include <linux/kfifo.h>
29 
30 #include <asm/apic.h>
31 #include <asm/pvclock-abi.h>
32 #include <asm/desc.h>
33 #include <asm/mtrr.h>
34 #include <asm/msr-index.h>
35 #include <asm/asm.h>
36 #include <asm/kvm_page_track.h>
37 #include <asm/kvm_vcpu_regs.h>
38 #include <asm/hyperv-tlfs.h>
39 
40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
41 
42 /*
43  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
44  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
45  */
46 #ifdef CONFIG_KVM_MAX_NR_VCPUS
47 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
48 #else
49 #define KVM_MAX_VCPUS 1024
50 #endif
51 
52 /*
53  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
54  * might be larger than the actual number of VCPUs because the
55  * APIC ID encodes CPU topology information.
56  *
57  * In the worst case, we'll need less than one extra bit for the
58  * Core ID, and less than one extra bit for the Package (Die) ID,
59  * so ratio of 4 should be enough.
60  */
61 #define KVM_VCPU_ID_RATIO 4
62 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
63 
64 /* memory slots that are not exposed to userspace */
65 #define KVM_INTERNAL_MEM_SLOTS 3
66 
67 #define KVM_HALT_POLL_NS_DEFAULT 200000
68 
69 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
70 
71 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
72 					KVM_DIRTY_LOG_INITIALLY_SET)
73 
74 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
75 						 KVM_BUS_LOCK_DETECTION_EXIT)
76 
77 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
78 						 KVM_X86_NOTIFY_VMEXIT_USER)
79 
80 /* x86-specific vcpu->requests bit members */
81 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
82 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
83 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
84 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
85 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
86 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
87 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
88 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
89 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
90 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
91 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
92 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
93 #ifdef CONFIG_KVM_SMM
94 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
95 #endif
96 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
97 #define KVM_REQ_MCLOCK_INPROGRESS \
98 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
99 #define KVM_REQ_SCAN_IOAPIC \
100 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
101 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
102 #define KVM_REQ_APIC_PAGE_RELOAD \
103 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
104 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
105 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
106 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
107 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
108 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
109 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
110 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
111 #define KVM_REQ_APICV_UPDATE \
112 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
113 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
114 #define KVM_REQ_TLB_FLUSH_GUEST \
115 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
116 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
117 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
118 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
119 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
120 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
121 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_HV_TLB_FLUSH \
123 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
124 
125 #define CR0_RESERVED_BITS                                               \
126 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
127 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
128 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
129 
130 #define CR4_RESERVED_BITS                                               \
131 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
132 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
133 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
134 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
135 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
136 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
137 			  | X86_CR4_LAM_SUP))
138 
139 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
140 
141 
142 
143 #define INVALID_PAGE (~(hpa_t)0)
144 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
145 
146 /* KVM Hugepage definitions for x86 */
147 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
148 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
149 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
150 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
151 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
152 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
153 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
154 
155 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
156 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
157 #define KVM_MMU_HASH_SHIFT 12
158 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
159 #define KVM_MIN_FREE_MMU_PAGES 5
160 #define KVM_REFILL_PAGES 25
161 #define KVM_MAX_CPUID_ENTRIES 256
162 #define KVM_NR_FIXED_MTRR_REGION 88
163 #define KVM_NR_VAR_MTRR 8
164 
165 #define ASYNC_PF_PER_VCPU 64
166 
167 enum kvm_reg {
168 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
169 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
170 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
171 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
172 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
173 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
174 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
175 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
176 #ifdef CONFIG_X86_64
177 	VCPU_REGS_R8  = __VCPU_REGS_R8,
178 	VCPU_REGS_R9  = __VCPU_REGS_R9,
179 	VCPU_REGS_R10 = __VCPU_REGS_R10,
180 	VCPU_REGS_R11 = __VCPU_REGS_R11,
181 	VCPU_REGS_R12 = __VCPU_REGS_R12,
182 	VCPU_REGS_R13 = __VCPU_REGS_R13,
183 	VCPU_REGS_R14 = __VCPU_REGS_R14,
184 	VCPU_REGS_R15 = __VCPU_REGS_R15,
185 #endif
186 	VCPU_REGS_RIP,
187 	NR_VCPU_REGS,
188 
189 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
190 	VCPU_EXREG_CR0,
191 	VCPU_EXREG_CR3,
192 	VCPU_EXREG_CR4,
193 	VCPU_EXREG_RFLAGS,
194 	VCPU_EXREG_SEGMENTS,
195 	VCPU_EXREG_EXIT_INFO_1,
196 	VCPU_EXREG_EXIT_INFO_2,
197 };
198 
199 enum {
200 	VCPU_SREG_ES,
201 	VCPU_SREG_CS,
202 	VCPU_SREG_SS,
203 	VCPU_SREG_DS,
204 	VCPU_SREG_FS,
205 	VCPU_SREG_GS,
206 	VCPU_SREG_TR,
207 	VCPU_SREG_LDTR,
208 };
209 
210 enum exit_fastpath_completion {
211 	EXIT_FASTPATH_NONE,
212 	EXIT_FASTPATH_REENTER_GUEST,
213 	EXIT_FASTPATH_EXIT_HANDLED,
214 };
215 typedef enum exit_fastpath_completion fastpath_t;
216 
217 struct x86_emulate_ctxt;
218 struct x86_exception;
219 union kvm_smram;
220 enum x86_intercept;
221 enum x86_intercept_stage;
222 
223 #define KVM_NR_DB_REGS	4
224 
225 #define DR6_BUS_LOCK   (1 << 11)
226 #define DR6_BD		(1 << 13)
227 #define DR6_BS		(1 << 14)
228 #define DR6_BT		(1 << 15)
229 #define DR6_RTM		(1 << 16)
230 /*
231  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
232  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
233  * they will never be 0 for now, but when they are defined
234  * in the future it will require no code change.
235  *
236  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
237  */
238 #define DR6_ACTIVE_LOW	0xffff0ff0
239 #define DR6_VOLATILE	0x0001e80f
240 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
241 
242 #define DR7_BP_EN_MASK	0x000000ff
243 #define DR7_GE		(1 << 9)
244 #define DR7_GD		(1 << 13)
245 #define DR7_FIXED_1	0x00000400
246 #define DR7_VOLATILE	0xffff2bff
247 
248 #define KVM_GUESTDBG_VALID_MASK \
249 	(KVM_GUESTDBG_ENABLE | \
250 	KVM_GUESTDBG_SINGLESTEP | \
251 	KVM_GUESTDBG_USE_HW_BP | \
252 	KVM_GUESTDBG_USE_SW_BP | \
253 	KVM_GUESTDBG_INJECT_BP | \
254 	KVM_GUESTDBG_INJECT_DB | \
255 	KVM_GUESTDBG_BLOCKIRQ)
256 
257 #define PFERR_PRESENT_MASK	BIT(0)
258 #define PFERR_WRITE_MASK	BIT(1)
259 #define PFERR_USER_MASK		BIT(2)
260 #define PFERR_RSVD_MASK		BIT(3)
261 #define PFERR_FETCH_MASK	BIT(4)
262 #define PFERR_PK_MASK		BIT(5)
263 #define PFERR_SGX_MASK		BIT(15)
264 #define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
265 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
266 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
267 #define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
268 #define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
269 #define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
270 
271 /*
272  * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
273  * when emulating instructions that triggers implicit access.
274  */
275 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
276 /*
277  * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
278  * when the guest was accessing private memory.
279  */
280 #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
281 #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
282 
283 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
284 				 PFERR_WRITE_MASK |		\
285 				 PFERR_PRESENT_MASK)
286 
287 /* apic attention bits */
288 #define KVM_APIC_CHECK_VAPIC	0
289 /*
290  * The following bit is set with PV-EOI, unset on EOI.
291  * We detect PV-EOI changes by guest by comparing
292  * this bit with PV-EOI in guest memory.
293  * See the implementation in apic_update_pv_eoi.
294  */
295 #define KVM_APIC_PV_EOI_PENDING	1
296 
297 struct kvm_kernel_irq_routing_entry;
298 
299 /*
300  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
301  * also includes TDP pages) to determine whether or not a page can be used in
302  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
303  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
304  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
305  *
306  * Upper-level shadow pages having gptes are tracked for write-protection via
307  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
308  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
309  * otherwise gfn_write_track will overflow and explosions will ensue.
310  *
311  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
312  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
313  * incorporates various mode bits and properties of the SP.  Roughly speaking,
314  * the number of unique SPs that can theoretically be created is 2^n, where n
315  * is the number of bits that are used to compute the role.
316  *
317  * But, even though there are 19 bits in the mask below, not all combinations
318  * of modes and flags are possible:
319  *
320  *   - invalid shadow pages are not accounted, so the bits are effectively 18
321  *
322  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
323  *     execonly and ad_disabled are only used for nested EPT which has
324  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
325  *
326  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
327  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
328  *     paging has exactly one upper level, making level completely redundant
329  *     when has_4_byte_gpte=1.
330  *
331  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
332  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
333  *
334  * Therefore, the maximum number of possible upper-level shadow pages for a
335  * single gfn is a bit less than 2^13.
336  */
337 union kvm_mmu_page_role {
338 	u32 word;
339 	struct {
340 		unsigned level:4;
341 		unsigned has_4_byte_gpte:1;
342 		unsigned quadrant:2;
343 		unsigned direct:1;
344 		unsigned access:3;
345 		unsigned invalid:1;
346 		unsigned efer_nx:1;
347 		unsigned cr0_wp:1;
348 		unsigned smep_andnot_wp:1;
349 		unsigned smap_andnot_wp:1;
350 		unsigned ad_disabled:1;
351 		unsigned guest_mode:1;
352 		unsigned passthrough:1;
353 		unsigned :5;
354 
355 		/*
356 		 * This is left at the top of the word so that
357 		 * kvm_memslots_for_spte_role can extract it with a
358 		 * simple shift.  While there is room, give it a whole
359 		 * byte so it is also faster to load it from memory.
360 		 */
361 		unsigned smm:8;
362 	};
363 };
364 
365 /*
366  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
367  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
368  * including on nested transitions, if nothing in the full role changes then
369  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
370  * don't treat all-zero structure as valid data.
371  *
372  * The properties that are tracked in the extended role but not the page role
373  * are for things that either (a) do not affect the validity of the shadow page
374  * or (b) are indirectly reflected in the shadow page's role.  For example,
375  * CR4.PKE only affects permission checks for software walks of the guest page
376  * tables (because KVM doesn't support Protection Keys with shadow paging), and
377  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
378  *
379  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
380  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
381  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
382  * SMAP aware regardless of CR0.WP.
383  */
384 union kvm_mmu_extended_role {
385 	u32 word;
386 	struct {
387 		unsigned int valid:1;
388 		unsigned int execonly:1;
389 		unsigned int cr4_pse:1;
390 		unsigned int cr4_pke:1;
391 		unsigned int cr4_smap:1;
392 		unsigned int cr4_smep:1;
393 		unsigned int cr4_la57:1;
394 		unsigned int efer_lma:1;
395 	};
396 };
397 
398 union kvm_cpu_role {
399 	u64 as_u64;
400 	struct {
401 		union kvm_mmu_page_role base;
402 		union kvm_mmu_extended_role ext;
403 	};
404 };
405 
406 struct kvm_rmap_head {
407 	unsigned long val;
408 };
409 
410 struct kvm_pio_request {
411 	unsigned long linear_rip;
412 	unsigned long count;
413 	int in;
414 	int port;
415 	int size;
416 };
417 
418 #define PT64_ROOT_MAX_LEVEL 5
419 
420 struct rsvd_bits_validate {
421 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
422 	u64 bad_mt_xwr;
423 };
424 
425 struct kvm_mmu_root_info {
426 	gpa_t pgd;
427 	hpa_t hpa;
428 };
429 
430 #define KVM_MMU_ROOT_INFO_INVALID \
431 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
432 
433 #define KVM_MMU_NUM_PREV_ROOTS 3
434 
435 #define KVM_MMU_ROOT_CURRENT		BIT(0)
436 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
437 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
438 
439 #define KVM_HAVE_MMU_RWLOCK
440 
441 struct kvm_mmu_page;
442 struct kvm_page_fault;
443 
444 /*
445  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
446  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
447  * current mmu mode.
448  */
449 struct kvm_mmu {
450 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
451 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
452 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
453 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
454 				  struct x86_exception *fault);
455 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
456 			    gpa_t gva_or_gpa, u64 access,
457 			    struct x86_exception *exception);
458 	int (*sync_spte)(struct kvm_vcpu *vcpu,
459 			 struct kvm_mmu_page *sp, int i);
460 	struct kvm_mmu_root_info root;
461 	union kvm_cpu_role cpu_role;
462 	union kvm_mmu_page_role root_role;
463 
464 	/*
465 	* The pkru_mask indicates if protection key checks are needed.  It
466 	* consists of 16 domains indexed by page fault error code bits [4:1],
467 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
468 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
469 	*/
470 	u32 pkru_mask;
471 
472 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
473 
474 	/*
475 	 * Bitmap; bit set = permission fault
476 	 * Byte index: page fault error code [4:1]
477 	 * Bit index: pte permissions in ACC_* format
478 	 */
479 	u8 permissions[16];
480 
481 	u64 *pae_root;
482 	u64 *pml4_root;
483 	u64 *pml5_root;
484 
485 	/*
486 	 * check zero bits on shadow page table entries, these
487 	 * bits include not only hardware reserved bits but also
488 	 * the bits spte never used.
489 	 */
490 	struct rsvd_bits_validate shadow_zero_check;
491 
492 	struct rsvd_bits_validate guest_rsvd_check;
493 
494 	u64 pdptrs[4]; /* pae */
495 };
496 
497 enum pmc_type {
498 	KVM_PMC_GP = 0,
499 	KVM_PMC_FIXED,
500 };
501 
502 struct kvm_pmc {
503 	enum pmc_type type;
504 	u8 idx;
505 	bool is_paused;
506 	bool intr;
507 	/*
508 	 * Base value of the PMC counter, relative to the *consumed* count in
509 	 * the associated perf_event.  This value includes counter updates from
510 	 * the perf_event and emulated_count since the last time the counter
511 	 * was reprogrammed, but it is *not* the current value as seen by the
512 	 * guest or userspace.
513 	 *
514 	 * The count is relative to the associated perf_event so that KVM
515 	 * doesn't need to reprogram the perf_event every time the guest writes
516 	 * to the counter.
517 	 */
518 	u64 counter;
519 	/*
520 	 * PMC events triggered by KVM emulation that haven't been fully
521 	 * processed, i.e. haven't undergone overflow detection.
522 	 */
523 	u64 emulated_counter;
524 	u64 eventsel;
525 	struct perf_event *perf_event;
526 	struct kvm_vcpu *vcpu;
527 	/*
528 	 * only for creating or reusing perf_event,
529 	 * eventsel value for general purpose counters,
530 	 * ctrl value for fixed counters.
531 	 */
532 	u64 current_config;
533 };
534 
535 /* More counters may conflict with other existing Architectural MSRs */
536 #define KVM_INTEL_PMC_MAX_GENERIC	8
537 #define MSR_ARCH_PERFMON_PERFCTR_MAX	(MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
538 #define MSR_ARCH_PERFMON_EVENTSEL_MAX	(MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
539 #define KVM_PMC_MAX_FIXED	3
540 #define MSR_ARCH_PERFMON_FIXED_CTR_MAX	(MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1)
541 #define KVM_AMD_PMC_MAX_GENERIC	6
542 
543 struct kvm_pmu {
544 	u8 version;
545 	unsigned nr_arch_gp_counters;
546 	unsigned nr_arch_fixed_counters;
547 	unsigned available_event_types;
548 	u64 fixed_ctr_ctrl;
549 	u64 fixed_ctr_ctrl_mask;
550 	u64 global_ctrl;
551 	u64 global_status;
552 	u64 counter_bitmask[2];
553 	u64 global_ctrl_mask;
554 	u64 global_status_mask;
555 	u64 reserved_bits;
556 	u64 raw_event_mask;
557 	struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC];
558 	struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
559 
560 	/*
561 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
562 	 * set in a single access, e.g. to reprogram all counters when the PMU
563 	 * filter changes.
564 	 */
565 	union {
566 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
567 		atomic64_t __reprogram_pmi;
568 	};
569 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
570 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
571 
572 	u64 ds_area;
573 	u64 pebs_enable;
574 	u64 pebs_enable_mask;
575 	u64 pebs_data_cfg;
576 	u64 pebs_data_cfg_mask;
577 
578 	/*
579 	 * If a guest counter is cross-mapped to host counter with different
580 	 * index, its PEBS capability will be temporarily disabled.
581 	 *
582 	 * The user should make sure that this mask is updated
583 	 * after disabling interrupts and before perf_guest_get_msrs();
584 	 */
585 	u64 host_cross_mapped_mask;
586 
587 	/*
588 	 * The gate to release perf_events not marked in
589 	 * pmc_in_use only once in a vcpu time slice.
590 	 */
591 	bool need_cleanup;
592 
593 	/*
594 	 * The total number of programmed perf_events and it helps to avoid
595 	 * redundant check before cleanup if guest don't use vPMU at all.
596 	 */
597 	u8 event_count;
598 };
599 
600 struct kvm_pmu_ops;
601 
602 enum {
603 	KVM_DEBUGREG_BP_ENABLED = 1,
604 	KVM_DEBUGREG_WONT_EXIT = 2,
605 };
606 
607 struct kvm_mtrr_range {
608 	u64 base;
609 	u64 mask;
610 	struct list_head node;
611 };
612 
613 struct kvm_mtrr {
614 	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
615 	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
616 	u64 deftype;
617 
618 	struct list_head head;
619 };
620 
621 /* Hyper-V SynIC timer */
622 struct kvm_vcpu_hv_stimer {
623 	struct hrtimer timer;
624 	int index;
625 	union hv_stimer_config config;
626 	u64 count;
627 	u64 exp_time;
628 	struct hv_message msg;
629 	bool msg_pending;
630 };
631 
632 /* Hyper-V synthetic interrupt controller (SynIC)*/
633 struct kvm_vcpu_hv_synic {
634 	u64 version;
635 	u64 control;
636 	u64 msg_page;
637 	u64 evt_page;
638 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
639 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
640 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
641 	DECLARE_BITMAP(vec_bitmap, 256);
642 	bool active;
643 	bool dont_zero_synic_pages;
644 };
645 
646 /* The maximum number of entries on the TLB flush fifo. */
647 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
648 /*
649  * Note: the following 'magic' entry is made up by KVM to avoid putting
650  * anything besides GVA on the TLB flush fifo. It is theoretically possible
651  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
652  * which will look identical. KVM's action to 'flush everything' instead of
653  * flushing these particular addresses is, however, fully legitimate as
654  * flushing more than requested is always OK.
655  */
656 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
657 
658 enum hv_tlb_flush_fifos {
659 	HV_L1_TLB_FLUSH_FIFO,
660 	HV_L2_TLB_FLUSH_FIFO,
661 	HV_NR_TLB_FLUSH_FIFOS,
662 };
663 
664 struct kvm_vcpu_hv_tlb_flush_fifo {
665 	spinlock_t write_lock;
666 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
667 };
668 
669 /* Hyper-V per vcpu emulation context */
670 struct kvm_vcpu_hv {
671 	struct kvm_vcpu *vcpu;
672 	u32 vp_index;
673 	u64 hv_vapic;
674 	s64 runtime_offset;
675 	struct kvm_vcpu_hv_synic synic;
676 	struct kvm_hyperv_exit exit;
677 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
678 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
679 	bool enforce_cpuid;
680 	struct {
681 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
682 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
683 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
684 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
685 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
686 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
687 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
688 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
689 	} cpuid_cache;
690 
691 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
692 
693 	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
694 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
695 
696 	struct hv_vp_assist_page vp_assist_page;
697 
698 	struct {
699 		u64 pa_page_gpa;
700 		u64 vm_id;
701 		u32 vp_id;
702 	} nested;
703 };
704 
705 struct kvm_hypervisor_cpuid {
706 	u32 base;
707 	u32 limit;
708 };
709 
710 #ifdef CONFIG_KVM_XEN
711 /* Xen HVM per vcpu emulation context */
712 struct kvm_vcpu_xen {
713 	u64 hypercall_rip;
714 	u32 current_runstate;
715 	u8 upcall_vector;
716 	struct gfn_to_pfn_cache vcpu_info_cache;
717 	struct gfn_to_pfn_cache vcpu_time_info_cache;
718 	struct gfn_to_pfn_cache runstate_cache;
719 	struct gfn_to_pfn_cache runstate2_cache;
720 	u64 last_steal;
721 	u64 runstate_entry_time;
722 	u64 runstate_times[4];
723 	unsigned long evtchn_pending_sel;
724 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
725 	u32 timer_virq;
726 	u64 timer_expires; /* In guest epoch */
727 	atomic_t timer_pending;
728 	struct hrtimer timer;
729 	int poll_evtchn;
730 	struct timer_list poll_timer;
731 	struct kvm_hypervisor_cpuid cpuid;
732 };
733 #endif
734 
735 struct kvm_queued_exception {
736 	bool pending;
737 	bool injected;
738 	bool has_error_code;
739 	u8 vector;
740 	u32 error_code;
741 	unsigned long payload;
742 	bool has_payload;
743 };
744 
745 struct kvm_vcpu_arch {
746 	/*
747 	 * rip and regs accesses must go through
748 	 * kvm_{register,rip}_{read,write} functions.
749 	 */
750 	unsigned long regs[NR_VCPU_REGS];
751 	u32 regs_avail;
752 	u32 regs_dirty;
753 
754 	unsigned long cr0;
755 	unsigned long cr0_guest_owned_bits;
756 	unsigned long cr2;
757 	unsigned long cr3;
758 	unsigned long cr4;
759 	unsigned long cr4_guest_owned_bits;
760 	unsigned long cr4_guest_rsvd_bits;
761 	unsigned long cr8;
762 	u32 host_pkru;
763 	u32 pkru;
764 	u32 hflags;
765 	u64 efer;
766 	u64 apic_base;
767 	struct kvm_lapic *apic;    /* kernel irqchip context */
768 	bool load_eoi_exitmap_pending;
769 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
770 	unsigned long apic_attention;
771 	int32_t apic_arb_prio;
772 	int mp_state;
773 	u64 ia32_misc_enable_msr;
774 	u64 smbase;
775 	u64 smi_count;
776 	bool at_instruction_boundary;
777 	bool tpr_access_reporting;
778 	bool xfd_no_write_intercept;
779 	u64 ia32_xss;
780 	u64 microcode_version;
781 	u64 arch_capabilities;
782 	u64 perf_capabilities;
783 
784 	/*
785 	 * Paging state of the vcpu
786 	 *
787 	 * If the vcpu runs in guest mode with two level paging this still saves
788 	 * the paging mode of the l1 guest. This context is always used to
789 	 * handle faults.
790 	 */
791 	struct kvm_mmu *mmu;
792 
793 	/* Non-nested MMU for L1 */
794 	struct kvm_mmu root_mmu;
795 
796 	/* L1 MMU when running nested */
797 	struct kvm_mmu guest_mmu;
798 
799 	/*
800 	 * Paging state of an L2 guest (used for nested npt)
801 	 *
802 	 * This context will save all necessary information to walk page tables
803 	 * of an L2 guest. This context is only initialized for page table
804 	 * walking and not for faulting since we never handle l2 page faults on
805 	 * the host.
806 	 */
807 	struct kvm_mmu nested_mmu;
808 
809 	/*
810 	 * Pointer to the mmu context currently used for
811 	 * gva_to_gpa translations.
812 	 */
813 	struct kvm_mmu *walk_mmu;
814 
815 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
816 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
817 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
818 	struct kvm_mmu_memory_cache mmu_page_header_cache;
819 
820 	/*
821 	 * QEMU userspace and the guest each have their own FPU state.
822 	 * In vcpu_run, we switch between the user and guest FPU contexts.
823 	 * While running a VCPU, the VCPU thread will have the guest FPU
824 	 * context.
825 	 *
826 	 * Note that while the PKRU state lives inside the fpu registers,
827 	 * it is switched out separately at VMENTER and VMEXIT time. The
828 	 * "guest_fpstate" state here contains the guest FPU context, with the
829 	 * host PRKU bits.
830 	 */
831 	struct fpu_guest guest_fpu;
832 
833 	u64 xcr0;
834 	u64 guest_supported_xcr0;
835 
836 	struct kvm_pio_request pio;
837 	void *pio_data;
838 	void *sev_pio_data;
839 	unsigned sev_pio_count;
840 
841 	u8 event_exit_inst_len;
842 
843 	bool exception_from_userspace;
844 
845 	/* Exceptions to be injected to the guest. */
846 	struct kvm_queued_exception exception;
847 	/* Exception VM-Exits to be synthesized to L1. */
848 	struct kvm_queued_exception exception_vmexit;
849 
850 	struct kvm_queued_interrupt {
851 		bool injected;
852 		bool soft;
853 		u8 nr;
854 	} interrupt;
855 
856 	int halt_request; /* real mode on Intel only */
857 
858 	int cpuid_nent;
859 	struct kvm_cpuid_entry2 *cpuid_entries;
860 	struct kvm_hypervisor_cpuid kvm_cpuid;
861 	bool is_amd_compatible;
862 
863 	/*
864 	 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly
865 	 * when "struct kvm_vcpu_arch" is no longer defined in an
866 	 * arch/x86/include/asm header.  The max is mostly arbitrary, i.e.
867 	 * can be increased as necessary.
868 	 */
869 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG
870 
871 	/*
872 	 * Track whether or not the guest is allowed to use features that are
873 	 * governed by KVM, where "governed" means KVM needs to manage state
874 	 * and/or explicitly enable the feature in hardware.  Typically, but
875 	 * not always, governed features can be used by the guest if and only
876 	 * if both KVM and userspace want to expose the feature to the guest.
877 	 */
878 	struct {
879 		DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES);
880 	} governed_features;
881 
882 	u64 reserved_gpa_bits;
883 	int maxphyaddr;
884 
885 	/* emulate context */
886 
887 	struct x86_emulate_ctxt *emulate_ctxt;
888 	bool emulate_regs_need_sync_to_vcpu;
889 	bool emulate_regs_need_sync_from_vcpu;
890 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
891 
892 	gpa_t time;
893 	struct pvclock_vcpu_time_info hv_clock;
894 	unsigned int hw_tsc_khz;
895 	struct gfn_to_pfn_cache pv_time;
896 	/* set guest stopped flag in pvclock flags field */
897 	bool pvclock_set_guest_stopped_request;
898 
899 	struct {
900 		u8 preempted;
901 		u64 msr_val;
902 		u64 last_steal;
903 		struct gfn_to_hva_cache cache;
904 	} st;
905 
906 	u64 l1_tsc_offset;
907 	u64 tsc_offset; /* current tsc offset */
908 	u64 last_guest_tsc;
909 	u64 last_host_tsc;
910 	u64 tsc_offset_adjustment;
911 	u64 this_tsc_nsec;
912 	u64 this_tsc_write;
913 	u64 this_tsc_generation;
914 	bool tsc_catchup;
915 	bool tsc_always_catchup;
916 	s8 virtual_tsc_shift;
917 	u32 virtual_tsc_mult;
918 	u32 virtual_tsc_khz;
919 	s64 ia32_tsc_adjust_msr;
920 	u64 msr_ia32_power_ctl;
921 	u64 l1_tsc_scaling_ratio;
922 	u64 tsc_scaling_ratio; /* current scaling ratio */
923 
924 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
925 	/* Number of NMIs pending injection, not including hardware vNMIs. */
926 	unsigned int nmi_pending;
927 	bool nmi_injected;    /* Trying to inject an NMI this entry */
928 	bool smi_pending;    /* SMI queued after currently running handler */
929 	u8 handling_intr_from_guest;
930 
931 	struct kvm_mtrr mtrr_state;
932 	u64 pat;
933 
934 	unsigned switch_db_regs;
935 	unsigned long db[KVM_NR_DB_REGS];
936 	unsigned long dr6;
937 	unsigned long dr7;
938 	unsigned long eff_db[KVM_NR_DB_REGS];
939 	unsigned long guest_debug_dr7;
940 	u64 msr_platform_info;
941 	u64 msr_misc_features_enables;
942 
943 	u64 mcg_cap;
944 	u64 mcg_status;
945 	u64 mcg_ctl;
946 	u64 mcg_ext_ctl;
947 	u64 *mce_banks;
948 	u64 *mci_ctl2_banks;
949 
950 	/* Cache MMIO info */
951 	u64 mmio_gva;
952 	unsigned mmio_access;
953 	gfn_t mmio_gfn;
954 	u64 mmio_gen;
955 
956 	struct kvm_pmu pmu;
957 
958 	/* used for guest single stepping over the given code position */
959 	unsigned long singlestep_rip;
960 
961 #ifdef CONFIG_KVM_HYPERV
962 	bool hyperv_enabled;
963 	struct kvm_vcpu_hv *hyperv;
964 #endif
965 #ifdef CONFIG_KVM_XEN
966 	struct kvm_vcpu_xen xen;
967 #endif
968 	cpumask_var_t wbinvd_dirty_mask;
969 
970 	unsigned long last_retry_eip;
971 	unsigned long last_retry_addr;
972 
973 	struct {
974 		bool halted;
975 		gfn_t gfns[ASYNC_PF_PER_VCPU];
976 		struct gfn_to_hva_cache data;
977 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
978 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
979 		u16 vec;
980 		u32 id;
981 		bool send_user_only;
982 		u32 host_apf_flags;
983 		bool delivery_as_pf_vmexit;
984 		bool pageready_pending;
985 	} apf;
986 
987 	/* OSVW MSRs (AMD only) */
988 	struct {
989 		u64 length;
990 		u64 status;
991 	} osvw;
992 
993 	struct {
994 		u64 msr_val;
995 		struct gfn_to_hva_cache data;
996 	} pv_eoi;
997 
998 	u64 msr_kvm_poll_control;
999 
1000 	/* pv related host specific info */
1001 	struct {
1002 		bool pv_unhalted;
1003 	} pv;
1004 
1005 	int pending_ioapic_eoi;
1006 	int pending_external_vector;
1007 
1008 	/* be preempted when it's in kernel-mode(cpl=0) */
1009 	bool preempted_in_kernel;
1010 
1011 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1012 	bool l1tf_flush_l1d;
1013 
1014 	/* Host CPU on which VM-entry was most recently attempted */
1015 	int last_vmentry_cpu;
1016 
1017 	/* AMD MSRC001_0015 Hardware Configuration */
1018 	u64 msr_hwcr;
1019 
1020 	/* pv related cpuid info */
1021 	struct {
1022 		/*
1023 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1024 		 * leaf.
1025 		 */
1026 		u32 features;
1027 
1028 		/*
1029 		 * indicates whether pv emulation should be disabled if features
1030 		 * are not present in the guest's cpuid
1031 		 */
1032 		bool enforce;
1033 	} pv_cpuid;
1034 
1035 	/* Protected Guests */
1036 	bool guest_state_protected;
1037 
1038 	/*
1039 	 * Set when PDPTS were loaded directly by the userspace without
1040 	 * reading the guest memory
1041 	 */
1042 	bool pdptrs_from_userspace;
1043 
1044 #if IS_ENABLED(CONFIG_HYPERV)
1045 	hpa_t hv_root_tdp;
1046 #endif
1047 };
1048 
1049 struct kvm_lpage_info {
1050 	int disallow_lpage;
1051 };
1052 
1053 struct kvm_arch_memory_slot {
1054 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1055 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1056 	unsigned short *gfn_write_track;
1057 };
1058 
1059 /*
1060  * Track the mode of the optimized logical map, as the rules for decoding the
1061  * destination vary per mode.  Enabling the optimized logical map requires all
1062  * software-enabled local APIs to be in the same mode, each addressable APIC to
1063  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1064  */
1065 enum kvm_apic_logical_mode {
1066 	/* All local APICs are software disabled. */
1067 	KVM_APIC_MODE_SW_DISABLED,
1068 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1069 	KVM_APIC_MODE_XAPIC_CLUSTER,
1070 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1071 	KVM_APIC_MODE_XAPIC_FLAT,
1072 	/* All software enabled local APICs in x2APIC mode. */
1073 	KVM_APIC_MODE_X2APIC,
1074 	/*
1075 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1076 	 * mode, same logical ID assigned to multiple APICs, etc.
1077 	 */
1078 	KVM_APIC_MODE_MAP_DISABLED,
1079 };
1080 
1081 struct kvm_apic_map {
1082 	struct rcu_head rcu;
1083 	enum kvm_apic_logical_mode logical_mode;
1084 	u32 max_apic_id;
1085 	union {
1086 		struct kvm_lapic *xapic_flat_map[8];
1087 		struct kvm_lapic *xapic_cluster_map[16][4];
1088 	};
1089 	struct kvm_lapic *phys_map[];
1090 };
1091 
1092 /* Hyper-V synthetic debugger (SynDbg)*/
1093 struct kvm_hv_syndbg {
1094 	struct {
1095 		u64 control;
1096 		u64 status;
1097 		u64 send_page;
1098 		u64 recv_page;
1099 		u64 pending_page;
1100 	} control;
1101 	u64 options;
1102 };
1103 
1104 /* Current state of Hyper-V TSC page clocksource */
1105 enum hv_tsc_page_status {
1106 	/* TSC page was not set up or disabled */
1107 	HV_TSC_PAGE_UNSET = 0,
1108 	/* TSC page MSR was written by the guest, update pending */
1109 	HV_TSC_PAGE_GUEST_CHANGED,
1110 	/* TSC page update was triggered from the host side */
1111 	HV_TSC_PAGE_HOST_CHANGED,
1112 	/* TSC page was properly set up and is currently active  */
1113 	HV_TSC_PAGE_SET,
1114 	/* TSC page was set up with an inaccessible GPA */
1115 	HV_TSC_PAGE_BROKEN,
1116 };
1117 
1118 #ifdef CONFIG_KVM_HYPERV
1119 /* Hyper-V emulation context */
1120 struct kvm_hv {
1121 	struct mutex hv_lock;
1122 	u64 hv_guest_os_id;
1123 	u64 hv_hypercall;
1124 	u64 hv_tsc_page;
1125 	enum hv_tsc_page_status hv_tsc_page_status;
1126 
1127 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1128 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1129 	u64 hv_crash_ctl;
1130 
1131 	struct ms_hyperv_tsc_page tsc_ref;
1132 
1133 	struct idr conn_to_evt;
1134 
1135 	u64 hv_reenlightenment_control;
1136 	u64 hv_tsc_emulation_control;
1137 	u64 hv_tsc_emulation_status;
1138 	u64 hv_invtsc_control;
1139 
1140 	/* How many vCPUs have VP index != vCPU index */
1141 	atomic_t num_mismatched_vp_indexes;
1142 
1143 	/*
1144 	 * How many SynICs use 'AutoEOI' feature
1145 	 * (protected by arch.apicv_update_lock)
1146 	 */
1147 	unsigned int synic_auto_eoi_used;
1148 
1149 	struct kvm_hv_syndbg hv_syndbg;
1150 
1151 	bool xsaves_xsavec_checked;
1152 };
1153 #endif
1154 
1155 struct msr_bitmap_range {
1156 	u32 flags;
1157 	u32 nmsrs;
1158 	u32 base;
1159 	unsigned long *bitmap;
1160 };
1161 
1162 #ifdef CONFIG_KVM_XEN
1163 /* Xen emulation context */
1164 struct kvm_xen {
1165 	struct mutex xen_lock;
1166 	u32 xen_version;
1167 	bool long_mode;
1168 	bool runstate_update_flag;
1169 	u8 upcall_vector;
1170 	struct gfn_to_pfn_cache shinfo_cache;
1171 	struct idr evtchn_ports;
1172 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1173 };
1174 #endif
1175 
1176 enum kvm_irqchip_mode {
1177 	KVM_IRQCHIP_NONE,
1178 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1179 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1180 };
1181 
1182 struct kvm_x86_msr_filter {
1183 	u8 count;
1184 	bool default_allow:1;
1185 	struct msr_bitmap_range ranges[16];
1186 };
1187 
1188 struct kvm_x86_pmu_event_filter {
1189 	__u32 action;
1190 	__u32 nevents;
1191 	__u32 fixed_counter_bitmap;
1192 	__u32 flags;
1193 	__u32 nr_includes;
1194 	__u32 nr_excludes;
1195 	__u64 *includes;
1196 	__u64 *excludes;
1197 	__u64 events[];
1198 };
1199 
1200 enum kvm_apicv_inhibit {
1201 
1202 	/********************************************************************/
1203 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1204 	/********************************************************************/
1205 
1206 	/*
1207 	 * APIC acceleration is disabled by a module parameter
1208 	 * and/or not supported in hardware.
1209 	 */
1210 	APICV_INHIBIT_REASON_DISABLE,
1211 
1212 	/*
1213 	 * APIC acceleration is inhibited because AutoEOI feature is
1214 	 * being used by a HyperV guest.
1215 	 */
1216 	APICV_INHIBIT_REASON_HYPERV,
1217 
1218 	/*
1219 	 * APIC acceleration is inhibited because the userspace didn't yet
1220 	 * enable the kernel/split irqchip.
1221 	 */
1222 	APICV_INHIBIT_REASON_ABSENT,
1223 
1224 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1225 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1226 	 * was enabled, to avoid AVIC/APICv bypassing it.
1227 	 */
1228 	APICV_INHIBIT_REASON_BLOCKIRQ,
1229 
1230 	/*
1231 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1232 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1233 	 */
1234 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1235 
1236 	/*
1237 	 * For simplicity, the APIC acceleration is inhibited
1238 	 * first time either APIC ID or APIC base are changed by the guest
1239 	 * from their reset values.
1240 	 */
1241 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1242 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1243 
1244 	/******************************************************/
1245 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1246 	/******************************************************/
1247 
1248 	/*
1249 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1250 	 *
1251 	 * This is needed because unlike APICv, the peers of this vCPU
1252 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1253 	 * a vCPU runs nested.
1254 	 */
1255 	APICV_INHIBIT_REASON_NESTED,
1256 
1257 	/*
1258 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1259 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1260 	 * is inhibited while KVM waits for IRQ window.
1261 	 */
1262 	APICV_INHIBIT_REASON_IRQWIN,
1263 
1264 	/*
1265 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1266 	 * which AVIC doesn't support for edge triggered interrupts.
1267 	 */
1268 	APICV_INHIBIT_REASON_PIT_REINJ,
1269 
1270 	/*
1271 	 * AVIC is disabled because SEV doesn't support it.
1272 	 */
1273 	APICV_INHIBIT_REASON_SEV,
1274 
1275 	/*
1276 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1277 	 * mapping between logical ID and vCPU.
1278 	 */
1279 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1280 };
1281 
1282 struct kvm_arch {
1283 	unsigned long n_used_mmu_pages;
1284 	unsigned long n_requested_mmu_pages;
1285 	unsigned long n_max_mmu_pages;
1286 	unsigned int indirect_shadow_pages;
1287 	u8 mmu_valid_gen;
1288 	u8 vm_type;
1289 	bool has_private_mem;
1290 	bool has_protected_state;
1291 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1292 	struct list_head active_mmu_pages;
1293 	struct list_head zapped_obsolete_pages;
1294 	/*
1295 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1296 	 * replaced by an NX huge page.  A shadow page is on this list if its
1297 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1298 	 * and there are no other conditions that prevent a huge page, e.g.
1299 	 * the backing host page is huge, dirtly logging is not enabled for its
1300 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1301 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1302 	 * guest attempts to execute from the region then KVM obviously can't
1303 	 * create an NX huge page (without hanging the guest).
1304 	 */
1305 	struct list_head possible_nx_huge_pages;
1306 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1307 	struct kvm_page_track_notifier_head track_notifier_head;
1308 #endif
1309 	/*
1310 	 * Protects marking pages unsync during page faults, as TDP MMU page
1311 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1312 	 * pages lock is always taken when marking pages unsync regardless of
1313 	 * whether mmu_lock is held for read or write.
1314 	 */
1315 	spinlock_t mmu_unsync_pages_lock;
1316 
1317 	u64 shadow_mmio_value;
1318 
1319 	struct iommu_domain *iommu_domain;
1320 	bool iommu_noncoherent;
1321 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1322 	atomic_t noncoherent_dma_count;
1323 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1324 	atomic_t assigned_device_count;
1325 	struct kvm_pic *vpic;
1326 	struct kvm_ioapic *vioapic;
1327 	struct kvm_pit *vpit;
1328 	atomic_t vapics_in_nmi_mode;
1329 	struct mutex apic_map_lock;
1330 	struct kvm_apic_map __rcu *apic_map;
1331 	atomic_t apic_map_dirty;
1332 
1333 	bool apic_access_memslot_enabled;
1334 	bool apic_access_memslot_inhibited;
1335 
1336 	/* Protects apicv_inhibit_reasons */
1337 	struct rw_semaphore apicv_update_lock;
1338 	unsigned long apicv_inhibit_reasons;
1339 
1340 	gpa_t wall_clock;
1341 
1342 	bool mwait_in_guest;
1343 	bool hlt_in_guest;
1344 	bool pause_in_guest;
1345 	bool cstate_in_guest;
1346 
1347 	unsigned long irq_sources_bitmap;
1348 	s64 kvmclock_offset;
1349 
1350 	/*
1351 	 * This also protects nr_vcpus_matched_tsc which is read from a
1352 	 * preemption-disabled region, so it must be a raw spinlock.
1353 	 */
1354 	raw_spinlock_t tsc_write_lock;
1355 	u64 last_tsc_nsec;
1356 	u64 last_tsc_write;
1357 	u32 last_tsc_khz;
1358 	u64 last_tsc_offset;
1359 	u64 cur_tsc_nsec;
1360 	u64 cur_tsc_write;
1361 	u64 cur_tsc_offset;
1362 	u64 cur_tsc_generation;
1363 	int nr_vcpus_matched_tsc;
1364 
1365 	u32 default_tsc_khz;
1366 	bool user_set_tsc;
1367 
1368 	seqcount_raw_spinlock_t pvclock_sc;
1369 	bool use_master_clock;
1370 	u64 master_kernel_ns;
1371 	u64 master_cycle_now;
1372 	struct delayed_work kvmclock_update_work;
1373 	struct delayed_work kvmclock_sync_work;
1374 
1375 	struct kvm_xen_hvm_config xen_hvm_config;
1376 
1377 	/* reads protected by irq_srcu, writes by irq_lock */
1378 	struct hlist_head mask_notifier_list;
1379 
1380 #ifdef CONFIG_KVM_HYPERV
1381 	struct kvm_hv hyperv;
1382 #endif
1383 
1384 #ifdef CONFIG_KVM_XEN
1385 	struct kvm_xen xen;
1386 #endif
1387 
1388 	bool backwards_tsc_observed;
1389 	bool boot_vcpu_runs_old_kvmclock;
1390 	u32 bsp_vcpu_id;
1391 
1392 	u64 disabled_quirks;
1393 
1394 	enum kvm_irqchip_mode irqchip_mode;
1395 	u8 nr_reserved_ioapic_pins;
1396 
1397 	bool disabled_lapic_found;
1398 
1399 	bool x2apic_format;
1400 	bool x2apic_broadcast_quirk_disabled;
1401 
1402 	bool guest_can_read_msr_platform_info;
1403 	bool exception_payload_enabled;
1404 
1405 	bool triple_fault_event;
1406 
1407 	bool bus_lock_detection_enabled;
1408 	bool enable_pmu;
1409 
1410 	u32 notify_window;
1411 	u32 notify_vmexit_flags;
1412 	/*
1413 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1414 	 * emulator fails to emulate an instruction, allow userspace
1415 	 * the opportunity to look at it.
1416 	 */
1417 	bool exit_on_emulation_error;
1418 
1419 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1420 	u32 user_space_msr_mask;
1421 	struct kvm_x86_msr_filter __rcu *msr_filter;
1422 
1423 	u32 hypercall_exit_enabled;
1424 
1425 	/* Guest can access the SGX PROVISIONKEY. */
1426 	bool sgx_provisioning_allowed;
1427 
1428 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1429 	struct task_struct *nx_huge_page_recovery_thread;
1430 
1431 #ifdef CONFIG_X86_64
1432 	/* The number of TDP MMU pages across all roots. */
1433 	atomic64_t tdp_mmu_pages;
1434 
1435 	/*
1436 	 * List of struct kvm_mmu_pages being used as roots.
1437 	 * All struct kvm_mmu_pages in the list should have
1438 	 * tdp_mmu_page set.
1439 	 *
1440 	 * For reads, this list is protected by:
1441 	 *	the MMU lock in read mode + RCU or
1442 	 *	the MMU lock in write mode
1443 	 *
1444 	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1445 	 * below for the details.
1446 	 *
1447 	 * Roots will remain in the list until their tdp_mmu_root_count
1448 	 * drops to zero, at which point the thread that decremented the
1449 	 * count to zero should removed the root from the list and clean
1450 	 * it up, freeing the root after an RCU grace period.
1451 	 */
1452 	struct list_head tdp_mmu_roots;
1453 
1454 	/*
1455 	 * Protects accesses to the following fields when the MMU lock
1456 	 * is held in read mode:
1457 	 *  - tdp_mmu_roots (above)
1458 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1459 	 *  - possible_nx_huge_pages;
1460 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1461 	 *    by the TDP MMU
1462 	 * Because the lock is only taken within the MMU lock, strictly
1463 	 * speaking it is redundant to acquire this lock when the thread
1464 	 * holds the MMU lock in write mode.  However it often simplifies
1465 	 * the code to do so.
1466 	 */
1467 	spinlock_t tdp_mmu_pages_lock;
1468 #endif /* CONFIG_X86_64 */
1469 
1470 	/*
1471 	 * If set, at least one shadow root has been allocated. This flag
1472 	 * is used as one input when determining whether certain memslot
1473 	 * related allocations are necessary.
1474 	 */
1475 	bool shadow_root_allocated;
1476 
1477 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1478 	/*
1479 	 * If set, the VM has (or had) an external write tracking user, and
1480 	 * thus all write tracking metadata has been allocated, even if KVM
1481 	 * itself isn't using write tracking.
1482 	 */
1483 	bool external_write_tracking_enabled;
1484 #endif
1485 
1486 #if IS_ENABLED(CONFIG_HYPERV)
1487 	hpa_t	hv_root_tdp;
1488 	spinlock_t hv_root_tdp_lock;
1489 	struct hv_partition_assist_pg *hv_pa_pg;
1490 #endif
1491 	/*
1492 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1493 	 * that increase along with the maximum vCPU ID, in which case, using
1494 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1495 	 */
1496 	u32 max_vcpu_ids;
1497 
1498 	bool disable_nx_huge_pages;
1499 
1500 	/*
1501 	 * Memory caches used to allocate shadow pages when performing eager
1502 	 * page splitting. No need for a shadowed_info_cache since eager page
1503 	 * splitting only allocates direct shadow pages.
1504 	 *
1505 	 * Protected by kvm->slots_lock.
1506 	 */
1507 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1508 	struct kvm_mmu_memory_cache split_page_header_cache;
1509 
1510 	/*
1511 	 * Memory cache used to allocate pte_list_desc structs while splitting
1512 	 * huge pages. In the worst case, to split one huge page, 512
1513 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1514 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1515 	 * page table.
1516 	 *
1517 	 * Protected by kvm->slots_lock.
1518 	 */
1519 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1520 	struct kvm_mmu_memory_cache split_desc_cache;
1521 };
1522 
1523 struct kvm_vm_stat {
1524 	struct kvm_vm_stat_generic generic;
1525 	u64 mmu_shadow_zapped;
1526 	u64 mmu_pte_write;
1527 	u64 mmu_pde_zapped;
1528 	u64 mmu_flooded;
1529 	u64 mmu_recycled;
1530 	u64 mmu_cache_miss;
1531 	u64 mmu_unsync;
1532 	union {
1533 		struct {
1534 			atomic64_t pages_4k;
1535 			atomic64_t pages_2m;
1536 			atomic64_t pages_1g;
1537 		};
1538 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1539 	};
1540 	u64 nx_lpage_splits;
1541 	u64 max_mmu_page_hash_collisions;
1542 	u64 max_mmu_rmap_size;
1543 };
1544 
1545 struct kvm_vcpu_stat {
1546 	struct kvm_vcpu_stat_generic generic;
1547 	u64 pf_taken;
1548 	u64 pf_fixed;
1549 	u64 pf_emulate;
1550 	u64 pf_spurious;
1551 	u64 pf_fast;
1552 	u64 pf_mmio_spte_created;
1553 	u64 pf_guest;
1554 	u64 tlb_flush;
1555 	u64 invlpg;
1556 
1557 	u64 exits;
1558 	u64 io_exits;
1559 	u64 mmio_exits;
1560 	u64 signal_exits;
1561 	u64 irq_window_exits;
1562 	u64 nmi_window_exits;
1563 	u64 l1d_flush;
1564 	u64 halt_exits;
1565 	u64 request_irq_exits;
1566 	u64 irq_exits;
1567 	u64 host_state_reload;
1568 	u64 fpu_reload;
1569 	u64 insn_emulation;
1570 	u64 insn_emulation_fail;
1571 	u64 hypercalls;
1572 	u64 irq_injections;
1573 	u64 nmi_injections;
1574 	u64 req_event;
1575 	u64 nested_run;
1576 	u64 directed_yield_attempted;
1577 	u64 directed_yield_successful;
1578 	u64 preemption_reported;
1579 	u64 preemption_other;
1580 	u64 guest_mode;
1581 	u64 notify_window_exits;
1582 };
1583 
1584 struct x86_instruction_info;
1585 
1586 struct msr_data {
1587 	bool host_initiated;
1588 	u32 index;
1589 	u64 data;
1590 };
1591 
1592 struct kvm_lapic_irq {
1593 	u32 vector;
1594 	u16 delivery_mode;
1595 	u16 dest_mode;
1596 	bool level;
1597 	u16 trig_mode;
1598 	u32 shorthand;
1599 	u32 dest_id;
1600 	bool msi_redir_hint;
1601 };
1602 
1603 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1604 {
1605 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1606 }
1607 
1608 struct kvm_x86_ops {
1609 	const char *name;
1610 
1611 	int (*check_processor_compatibility)(void);
1612 
1613 	int (*hardware_enable)(void);
1614 	void (*hardware_disable)(void);
1615 	void (*hardware_unsetup)(void);
1616 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1617 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1618 
1619 	unsigned int vm_size;
1620 	int (*vm_init)(struct kvm *kvm);
1621 	void (*vm_destroy)(struct kvm *kvm);
1622 
1623 	/* Create, but do not attach this VCPU */
1624 	int (*vcpu_precreate)(struct kvm *kvm);
1625 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1626 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1627 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1628 
1629 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1630 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1631 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1632 
1633 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1634 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1635 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1636 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1637 	void (*get_segment)(struct kvm_vcpu *vcpu,
1638 			    struct kvm_segment *var, int seg);
1639 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1640 	void (*set_segment)(struct kvm_vcpu *vcpu,
1641 			    struct kvm_segment *var, int seg);
1642 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1643 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1644 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1645 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1646 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1647 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1648 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1649 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1650 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1651 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1652 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1653 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1654 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1655 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1656 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1657 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1658 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1659 
1660 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1661 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1662 #if IS_ENABLED(CONFIG_HYPERV)
1663 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1664 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1665 					gfn_t nr_pages);
1666 #endif
1667 
1668 	/*
1669 	 * Flush any TLB entries associated with the given GVA.
1670 	 * Does not need to flush GPA->HPA mappings.
1671 	 * Can potentially get non-canonical addresses through INVLPGs, which
1672 	 * the implementation may choose to ignore if appropriate.
1673 	 */
1674 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1675 
1676 	/*
1677 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1678 	 * does not need to flush GPA->HPA mappings.
1679 	 */
1680 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1681 
1682 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1683 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1684 						  bool force_immediate_exit);
1685 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1686 		enum exit_fastpath_completion exit_fastpath);
1687 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1688 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1689 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1690 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1691 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1692 				unsigned char *hypercall_addr);
1693 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1694 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1695 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1696 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1697 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1698 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1699 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1700 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1701 	/* Whether or not a virtual NMI is pending in hardware. */
1702 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1703 	/*
1704 	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1705 	 * to allow using static_call_ret0 as the fallback.
1706 	 */
1707 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1708 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1709 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1710 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1711 	bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1712 	const unsigned long required_apicv_inhibits;
1713 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1714 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1715 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1716 	void (*hwapic_isr_update)(int isr);
1717 	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1718 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1719 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1720 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1721 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1722 				  int trig_mode, int vector);
1723 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1724 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1725 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1726 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1727 
1728 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1729 			     int root_level);
1730 
1731 	bool (*has_wbinvd_exit)(void);
1732 
1733 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1734 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1735 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1736 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1737 
1738 	/*
1739 	 * Retrieve somewhat arbitrary exit information.  Intended to
1740 	 * be used only from within tracepoints or error paths.
1741 	 */
1742 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1743 			      u64 *info1, u64 *info2,
1744 			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1745 
1746 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1747 			       struct x86_instruction_info *info,
1748 			       enum x86_intercept_stage stage,
1749 			       struct x86_exception *exception);
1750 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1751 
1752 	void (*sched_in)(struct kvm_vcpu *vcpu, int cpu);
1753 
1754 	/*
1755 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1756 	 * value indicates CPU dirty logging is unsupported or disabled.
1757 	 */
1758 	int cpu_dirty_log_size;
1759 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1760 
1761 	const struct kvm_x86_nested_ops *nested_ops;
1762 
1763 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1764 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1765 
1766 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1767 			      uint32_t guest_irq, bool set);
1768 	void (*pi_start_assignment)(struct kvm *kvm);
1769 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1770 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1771 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1772 
1773 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1774 			    bool *expired);
1775 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1776 
1777 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1778 
1779 #ifdef CONFIG_KVM_SMM
1780 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1781 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1782 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1783 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1784 #endif
1785 
1786 	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1787 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1788 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1789 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1790 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1791 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1792 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1793 
1794 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1795 
1796 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1797 					 void *insn, int insn_len);
1798 
1799 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1800 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1801 
1802 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1803 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1804 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1805 
1806 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1807 
1808 	/*
1809 	 * Returns vCPU specific APICv inhibit reasons
1810 	 */
1811 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1812 
1813 	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1814 	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1815 };
1816 
1817 struct kvm_x86_nested_ops {
1818 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1819 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1820 				    u32 error_code);
1821 	int (*check_events)(struct kvm_vcpu *vcpu);
1822 	bool (*has_events)(struct kvm_vcpu *vcpu);
1823 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1824 	int (*get_state)(struct kvm_vcpu *vcpu,
1825 			 struct kvm_nested_state __user *user_kvm_nested_state,
1826 			 unsigned user_data_size);
1827 	int (*set_state)(struct kvm_vcpu *vcpu,
1828 			 struct kvm_nested_state __user *user_kvm_nested_state,
1829 			 struct kvm_nested_state *kvm_state);
1830 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1831 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1832 
1833 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1834 			    uint16_t *vmcs_version);
1835 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1836 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1837 };
1838 
1839 struct kvm_x86_init_ops {
1840 	int (*hardware_setup)(void);
1841 	unsigned int (*handle_intel_pt_intr)(void);
1842 
1843 	struct kvm_x86_ops *runtime_ops;
1844 	struct kvm_pmu_ops *pmu_ops;
1845 };
1846 
1847 struct kvm_arch_async_pf {
1848 	u32 token;
1849 	gfn_t gfn;
1850 	unsigned long cr3;
1851 	bool direct_map;
1852 	u64 error_code;
1853 };
1854 
1855 extern u32 __read_mostly kvm_nr_uret_msrs;
1856 extern u64 __read_mostly host_efer;
1857 extern bool __read_mostly allow_smaller_maxphyaddr;
1858 extern bool __read_mostly enable_apicv;
1859 extern struct kvm_x86_ops kvm_x86_ops;
1860 
1861 #define KVM_X86_OP(func) \
1862 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1863 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1864 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1865 #include <asm/kvm-x86-ops.h>
1866 
1867 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1868 void kvm_x86_vendor_exit(void);
1869 
1870 #define __KVM_HAVE_ARCH_VM_ALLOC
1871 static inline struct kvm *kvm_arch_alloc_vm(void)
1872 {
1873 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1874 }
1875 
1876 #define __KVM_HAVE_ARCH_VM_FREE
1877 void kvm_arch_free_vm(struct kvm *kvm);
1878 
1879 #if IS_ENABLED(CONFIG_HYPERV)
1880 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1881 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1882 {
1883 	if (kvm_x86_ops.flush_remote_tlbs &&
1884 	    !static_call(kvm_x86_flush_remote_tlbs)(kvm))
1885 		return 0;
1886 	else
1887 		return -ENOTSUPP;
1888 }
1889 
1890 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1891 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1892 						   u64 nr_pages)
1893 {
1894 	if (!kvm_x86_ops.flush_remote_tlbs_range)
1895 		return -EOPNOTSUPP;
1896 
1897 	return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1898 }
1899 #endif /* CONFIG_HYPERV */
1900 
1901 enum kvm_intr_type {
1902 	/* Values are arbitrary, but must be non-zero. */
1903 	KVM_HANDLING_IRQ = 1,
1904 	KVM_HANDLING_NMI,
1905 };
1906 
1907 /* Enable perf NMI and timer modes to work, and minimise false positives. */
1908 #define kvm_arch_pmi_in_guest(vcpu) \
1909 	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1910 	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
1911 
1912 void __init kvm_mmu_x86_module_init(void);
1913 int kvm_mmu_vendor_module_init(void);
1914 void kvm_mmu_vendor_module_exit(void);
1915 
1916 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1917 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1918 void kvm_mmu_init_vm(struct kvm *kvm);
1919 void kvm_mmu_uninit_vm(struct kvm *kvm);
1920 
1921 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1922 					    struct kvm_memory_slot *slot);
1923 
1924 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1925 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1926 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1927 				      const struct kvm_memory_slot *memslot,
1928 				      int start_level);
1929 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1930 				       const struct kvm_memory_slot *memslot,
1931 				       int target_level);
1932 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1933 				  const struct kvm_memory_slot *memslot,
1934 				  u64 start, u64 end,
1935 				  int target_level);
1936 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1937 				   const struct kvm_memory_slot *memslot);
1938 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1939 				   const struct kvm_memory_slot *memslot);
1940 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1941 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1942 
1943 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1944 
1945 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1946 			  const void *val, int bytes);
1947 
1948 struct kvm_irq_mask_notifier {
1949 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1950 	int irq;
1951 	struct hlist_node link;
1952 };
1953 
1954 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1955 				    struct kvm_irq_mask_notifier *kimn);
1956 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1957 				      struct kvm_irq_mask_notifier *kimn);
1958 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1959 			     bool mask);
1960 
1961 extern bool tdp_enabled;
1962 
1963 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1964 
1965 /*
1966  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1967  *			userspace I/O) to indicate that the emulation context
1968  *			should be reused as is, i.e. skip initialization of
1969  *			emulation context, instruction fetch and decode.
1970  *
1971  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1972  *		      Indicates that only select instructions (tagged with
1973  *		      EmulateOnUD) should be emulated (to minimize the emulator
1974  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1975  *
1976  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1977  *		   decode the instruction length.  For use *only* by
1978  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
1979  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
1980  *
1981  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1982  *			     retry native execution under certain conditions,
1983  *			     Can only be set in conjunction with EMULTYPE_PF.
1984  *
1985  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1986  *			     triggered by KVM's magic "force emulation" prefix,
1987  *			     which is opt in via module param (off by default).
1988  *			     Bypasses EmulateOnUD restriction despite emulating
1989  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1990  *			     Used to test the full emulator from userspace.
1991  *
1992  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1993  *			backdoor emulation, which is opt in via module param.
1994  *			VMware backdoor emulation handles select instructions
1995  *			and reinjects the #GP for all other cases.
1996  *
1997  * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1998  *		 case the CR2/GPA value pass on the stack is valid.
1999  *
2000  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2001  *				 state and inject single-step #DBs after skipping
2002  *				 an instruction (after completing userspace I/O).
2003  *
2004  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2005  *			     is attempting to write a gfn that contains one or
2006  *			     more of the PTEs used to translate the write itself,
2007  *			     and the owning page table is being shadowed by KVM.
2008  *			     If emulation of the faulting instruction fails and
2009  *			     this flag is set, KVM will exit to userspace instead
2010  *			     of retrying emulation as KVM cannot make forward
2011  *			     progress.
2012  *
2013  *			     If emulation fails for a write to guest page tables,
2014  *			     KVM unprotects (zaps) the shadow page for the target
2015  *			     gfn and resumes the guest to retry the non-emulatable
2016  *			     instruction (on hardware).  Unprotecting the gfn
2017  *			     doesn't allow forward progress for a self-changing
2018  *			     access because doing so also zaps the translation for
2019  *			     the gfn, i.e. retrying the instruction will hit a
2020  *			     !PRESENT fault, which results in a new shadow page
2021  *			     and sends KVM back to square one.
2022  */
2023 #define EMULTYPE_NO_DECODE	    (1 << 0)
2024 #define EMULTYPE_TRAP_UD	    (1 << 1)
2025 #define EMULTYPE_SKIP		    (1 << 2)
2026 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2027 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2028 #define EMULTYPE_VMWARE_GP	    (1 << 5)
2029 #define EMULTYPE_PF		    (1 << 6)
2030 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2031 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2032 
2033 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2034 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2035 					void *insn, int insn_len);
2036 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2037 					  u64 *data, u8 ndata);
2038 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2039 
2040 void kvm_enable_efer_bits(u64);
2041 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2042 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2043 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2044 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2045 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2046 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2047 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2048 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2049 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2050 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2051 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2052 
2053 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2054 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2055 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2056 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2057 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2058 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2059 
2060 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2061 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2062 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2063 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2064 
2065 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2066 		    int reason, bool has_error_code, u32 error_code);
2067 
2068 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2069 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2070 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2071 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2072 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2073 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2074 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2075 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2076 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2077 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2078 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2079 
2080 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2081 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2082 
2083 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2084 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2085 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2086 
2087 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2088 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2089 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2090 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2091 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2092 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2093 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2094 				    struct x86_exception *fault);
2095 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2096 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2097 
2098 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2099 				       int irq_source_id, int level)
2100 {
2101 	/* Logical OR for level trig interrupt */
2102 	if (level)
2103 		__set_bit(irq_source_id, irq_state);
2104 	else
2105 		__clear_bit(irq_source_id, irq_state);
2106 
2107 	return !!(*irq_state);
2108 }
2109 
2110 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2111 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2112 
2113 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2114 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2115 
2116 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2117 
2118 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
2119 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2120 			ulong roots_to_free);
2121 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2122 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2123 			      struct x86_exception *exception);
2124 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2125 			       struct x86_exception *exception);
2126 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2127 				struct x86_exception *exception);
2128 
2129 bool kvm_apicv_activated(struct kvm *kvm);
2130 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2131 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2132 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2133 				      enum kvm_apicv_inhibit reason, bool set);
2134 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2135 				    enum kvm_apicv_inhibit reason, bool set);
2136 
2137 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2138 					 enum kvm_apicv_inhibit reason)
2139 {
2140 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2141 }
2142 
2143 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2144 					   enum kvm_apicv_inhibit reason)
2145 {
2146 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2147 }
2148 
2149 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
2150 				      unsigned long a0, unsigned long a1,
2151 				      unsigned long a2, unsigned long a3,
2152 				      int op_64_bit, int cpl);
2153 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2154 
2155 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2156 		       void *insn, int insn_len);
2157 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2158 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2159 			     u64 addr, unsigned long roots);
2160 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2161 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2162 
2163 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2164 		       int tdp_max_root_level, int tdp_huge_page_level);
2165 
2166 
2167 #ifdef CONFIG_KVM_PRIVATE_MEM
2168 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2169 #else
2170 #define kvm_arch_has_private_mem(kvm) false
2171 #endif
2172 
2173 static inline u16 kvm_read_ldt(void)
2174 {
2175 	u16 ldt;
2176 	asm("sldt %0" : "=g"(ldt));
2177 	return ldt;
2178 }
2179 
2180 static inline void kvm_load_ldt(u16 sel)
2181 {
2182 	asm("lldt %0" : : "rm"(sel));
2183 }
2184 
2185 #ifdef CONFIG_X86_64
2186 static inline unsigned long read_msr(unsigned long msr)
2187 {
2188 	u64 value;
2189 
2190 	rdmsrl(msr, value);
2191 	return value;
2192 }
2193 #endif
2194 
2195 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2196 {
2197 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2198 }
2199 
2200 #define TSS_IOPB_BASE_OFFSET 0x66
2201 #define TSS_BASE_SIZE 0x68
2202 #define TSS_IOPB_SIZE (65536 / 8)
2203 #define TSS_REDIRECTION_SIZE (256 / 8)
2204 #define RMODE_TSS_SIZE							\
2205 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2206 
2207 enum {
2208 	TASK_SWITCH_CALL = 0,
2209 	TASK_SWITCH_IRET = 1,
2210 	TASK_SWITCH_JMP = 2,
2211 	TASK_SWITCH_GATE = 3,
2212 };
2213 
2214 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2215 
2216 #ifdef CONFIG_KVM_SMM
2217 #define HF_SMM_MASK		(1 << 1)
2218 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2219 
2220 # define KVM_MAX_NR_ADDRESS_SPACES	2
2221 /* SMM is currently unsupported for guests with private memory. */
2222 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2223 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2224 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2225 #else
2226 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2227 #endif
2228 
2229 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2230 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2231 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2232 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2233 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2234 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2235 
2236 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2237 		    unsigned long ipi_bitmap_high, u32 min,
2238 		    unsigned long icr, int op_64_bit);
2239 
2240 int kvm_add_user_return_msr(u32 msr);
2241 int kvm_find_user_return_msr(u32 msr);
2242 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2243 
2244 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2245 {
2246 	return kvm_find_user_return_msr(msr) >= 0;
2247 }
2248 
2249 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2250 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2251 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2252 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2253 
2254 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2255 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2256 
2257 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2258 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2259 				       unsigned long *vcpu_bitmap);
2260 
2261 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2262 				     struct kvm_async_pf *work);
2263 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2264 				 struct kvm_async_pf *work);
2265 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2266 			       struct kvm_async_pf *work);
2267 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2268 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2269 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2270 
2271 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2272 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2273 
2274 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2275 				     u32 size);
2276 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2277 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2278 
2279 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2280 			     struct kvm_vcpu **dest_vcpu);
2281 
2282 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2283 		     struct kvm_lapic_irq *irq);
2284 
2285 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2286 {
2287 	/* We can only post Fixed and LowPrio IRQs */
2288 	return (irq->delivery_mode == APIC_DM_FIXED ||
2289 		irq->delivery_mode == APIC_DM_LOWEST);
2290 }
2291 
2292 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2293 {
2294 	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2295 }
2296 
2297 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2298 {
2299 	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2300 }
2301 
2302 static inline int kvm_cpu_get_apicid(int mps_cpu)
2303 {
2304 #ifdef CONFIG_X86_LOCAL_APIC
2305 	return default_cpu_present_to_apicid(mps_cpu);
2306 #else
2307 	WARN_ON_ONCE(1);
2308 	return BAD_APICID;
2309 #endif
2310 }
2311 
2312 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2313 
2314 #define KVM_CLOCK_VALID_FLAGS						\
2315 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2316 
2317 #define KVM_X86_VALID_QUIRKS			\
2318 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2319 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2320 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2321 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2322 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2323 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2324 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2325 
2326 /*
2327  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2328  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2329  * remaining 31 lower bits must be 0 to preserve ABI.
2330  */
2331 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2332 
2333 #endif /* _ASM_X86_KVM_HOST_H */
2334