1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/hyperv.h> 28 #include <linux/kfifo.h> 29 30 #include <asm/apic.h> 31 #include <asm/pvclock-abi.h> 32 #include <asm/desc.h> 33 #include <asm/mtrr.h> 34 #include <asm/msr-index.h> 35 #include <asm/asm.h> 36 #include <asm/kvm_page_track.h> 37 #include <asm/kvm_vcpu_regs.h> 38 #include <asm/hyperv-tlfs.h> 39 40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 41 42 /* 43 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 44 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 45 */ 46 #ifdef CONFIG_KVM_MAX_NR_VCPUS 47 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 48 #else 49 #define KVM_MAX_VCPUS 1024 50 #endif 51 52 /* 53 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 54 * might be larger than the actual number of VCPUs because the 55 * APIC ID encodes CPU topology information. 56 * 57 * In the worst case, we'll need less than one extra bit for the 58 * Core ID, and less than one extra bit for the Package (Die) ID, 59 * so ratio of 4 should be enough. 60 */ 61 #define KVM_VCPU_ID_RATIO 4 62 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 63 64 /* memory slots that are not exposed to userspace */ 65 #define KVM_INTERNAL_MEM_SLOTS 3 66 67 #define KVM_HALT_POLL_NS_DEFAULT 200000 68 69 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 70 71 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 72 KVM_DIRTY_LOG_INITIALLY_SET) 73 74 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 75 KVM_BUS_LOCK_DETECTION_EXIT) 76 77 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 78 KVM_X86_NOTIFY_VMEXIT_USER) 79 80 /* x86-specific vcpu->requests bit members */ 81 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 82 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 83 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 84 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 85 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 86 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 87 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 88 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 89 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 90 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 91 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 92 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 93 #ifdef CONFIG_KVM_SMM 94 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 95 #endif 96 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 97 #define KVM_REQ_MCLOCK_INPROGRESS \ 98 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 99 #define KVM_REQ_SCAN_IOAPIC \ 100 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 101 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 102 #define KVM_REQ_APIC_PAGE_RELOAD \ 103 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 104 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 105 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 106 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 107 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 108 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 109 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 110 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 111 #define KVM_REQ_APICV_UPDATE \ 112 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 113 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 114 #define KVM_REQ_TLB_FLUSH_GUEST \ 115 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 116 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 117 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 118 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 119 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 120 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 121 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_HV_TLB_FLUSH \ 123 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 124 125 #define CR0_RESERVED_BITS \ 126 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 127 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 128 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 129 130 #define CR4_RESERVED_BITS \ 131 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 132 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 133 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 134 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 135 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 136 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 137 | X86_CR4_LAM_SUP)) 138 139 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 140 141 142 143 #define INVALID_PAGE (~(hpa_t)0) 144 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 145 146 /* KVM Hugepage definitions for x86 */ 147 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 148 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 149 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 150 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 151 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 152 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 153 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 154 155 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 156 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 157 #define KVM_MMU_HASH_SHIFT 12 158 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 159 #define KVM_MIN_FREE_MMU_PAGES 5 160 #define KVM_REFILL_PAGES 25 161 #define KVM_MAX_CPUID_ENTRIES 256 162 #define KVM_NR_FIXED_MTRR_REGION 88 163 #define KVM_NR_VAR_MTRR 8 164 165 #define ASYNC_PF_PER_VCPU 64 166 167 enum kvm_reg { 168 VCPU_REGS_RAX = __VCPU_REGS_RAX, 169 VCPU_REGS_RCX = __VCPU_REGS_RCX, 170 VCPU_REGS_RDX = __VCPU_REGS_RDX, 171 VCPU_REGS_RBX = __VCPU_REGS_RBX, 172 VCPU_REGS_RSP = __VCPU_REGS_RSP, 173 VCPU_REGS_RBP = __VCPU_REGS_RBP, 174 VCPU_REGS_RSI = __VCPU_REGS_RSI, 175 VCPU_REGS_RDI = __VCPU_REGS_RDI, 176 #ifdef CONFIG_X86_64 177 VCPU_REGS_R8 = __VCPU_REGS_R8, 178 VCPU_REGS_R9 = __VCPU_REGS_R9, 179 VCPU_REGS_R10 = __VCPU_REGS_R10, 180 VCPU_REGS_R11 = __VCPU_REGS_R11, 181 VCPU_REGS_R12 = __VCPU_REGS_R12, 182 VCPU_REGS_R13 = __VCPU_REGS_R13, 183 VCPU_REGS_R14 = __VCPU_REGS_R14, 184 VCPU_REGS_R15 = __VCPU_REGS_R15, 185 #endif 186 VCPU_REGS_RIP, 187 NR_VCPU_REGS, 188 189 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 190 VCPU_EXREG_CR0, 191 VCPU_EXREG_CR3, 192 VCPU_EXREG_CR4, 193 VCPU_EXREG_RFLAGS, 194 VCPU_EXREG_SEGMENTS, 195 VCPU_EXREG_EXIT_INFO_1, 196 VCPU_EXREG_EXIT_INFO_2, 197 }; 198 199 enum { 200 VCPU_SREG_ES, 201 VCPU_SREG_CS, 202 VCPU_SREG_SS, 203 VCPU_SREG_DS, 204 VCPU_SREG_FS, 205 VCPU_SREG_GS, 206 VCPU_SREG_TR, 207 VCPU_SREG_LDTR, 208 }; 209 210 enum exit_fastpath_completion { 211 EXIT_FASTPATH_NONE, 212 EXIT_FASTPATH_REENTER_GUEST, 213 EXIT_FASTPATH_EXIT_HANDLED, 214 }; 215 typedef enum exit_fastpath_completion fastpath_t; 216 217 struct x86_emulate_ctxt; 218 struct x86_exception; 219 union kvm_smram; 220 enum x86_intercept; 221 enum x86_intercept_stage; 222 223 #define KVM_NR_DB_REGS 4 224 225 #define DR6_BUS_LOCK (1 << 11) 226 #define DR6_BD (1 << 13) 227 #define DR6_BS (1 << 14) 228 #define DR6_BT (1 << 15) 229 #define DR6_RTM (1 << 16) 230 /* 231 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 232 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 233 * they will never be 0 for now, but when they are defined 234 * in the future it will require no code change. 235 * 236 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 237 */ 238 #define DR6_ACTIVE_LOW 0xffff0ff0 239 #define DR6_VOLATILE 0x0001e80f 240 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 241 242 #define DR7_BP_EN_MASK 0x000000ff 243 #define DR7_GE (1 << 9) 244 #define DR7_GD (1 << 13) 245 #define DR7_FIXED_1 0x00000400 246 #define DR7_VOLATILE 0xffff2bff 247 248 #define KVM_GUESTDBG_VALID_MASK \ 249 (KVM_GUESTDBG_ENABLE | \ 250 KVM_GUESTDBG_SINGLESTEP | \ 251 KVM_GUESTDBG_USE_HW_BP | \ 252 KVM_GUESTDBG_USE_SW_BP | \ 253 KVM_GUESTDBG_INJECT_BP | \ 254 KVM_GUESTDBG_INJECT_DB | \ 255 KVM_GUESTDBG_BLOCKIRQ) 256 257 #define PFERR_PRESENT_MASK BIT(0) 258 #define PFERR_WRITE_MASK BIT(1) 259 #define PFERR_USER_MASK BIT(2) 260 #define PFERR_RSVD_MASK BIT(3) 261 #define PFERR_FETCH_MASK BIT(4) 262 #define PFERR_PK_MASK BIT(5) 263 #define PFERR_SGX_MASK BIT(15) 264 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 265 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 266 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 267 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 268 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 269 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 270 271 /* 272 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 273 * when emulating instructions that triggers implicit access. 274 */ 275 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 276 /* 277 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 278 * when the guest was accessing private memory. 279 */ 280 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 281 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 282 283 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ 284 PFERR_WRITE_MASK | \ 285 PFERR_PRESENT_MASK) 286 287 /* apic attention bits */ 288 #define KVM_APIC_CHECK_VAPIC 0 289 /* 290 * The following bit is set with PV-EOI, unset on EOI. 291 * We detect PV-EOI changes by guest by comparing 292 * this bit with PV-EOI in guest memory. 293 * See the implementation in apic_update_pv_eoi. 294 */ 295 #define KVM_APIC_PV_EOI_PENDING 1 296 297 struct kvm_kernel_irq_routing_entry; 298 299 /* 300 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 301 * also includes TDP pages) to determine whether or not a page can be used in 302 * the given MMU context. This is a subset of the overall kvm_cpu_role to 303 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 304 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 305 * 306 * Upper-level shadow pages having gptes are tracked for write-protection via 307 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 308 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 309 * otherwise gfn_write_track will overflow and explosions will ensue. 310 * 311 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 312 * cannot be reused. The ability to reuse a SP is tracked by its role, which 313 * incorporates various mode bits and properties of the SP. Roughly speaking, 314 * the number of unique SPs that can theoretically be created is 2^n, where n 315 * is the number of bits that are used to compute the role. 316 * 317 * But, even though there are 19 bits in the mask below, not all combinations 318 * of modes and flags are possible: 319 * 320 * - invalid shadow pages are not accounted, so the bits are effectively 18 321 * 322 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 323 * execonly and ad_disabled are only used for nested EPT which has 324 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 325 * 326 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 327 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 328 * paging has exactly one upper level, making level completely redundant 329 * when has_4_byte_gpte=1. 330 * 331 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 332 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 333 * 334 * Therefore, the maximum number of possible upper-level shadow pages for a 335 * single gfn is a bit less than 2^13. 336 */ 337 union kvm_mmu_page_role { 338 u32 word; 339 struct { 340 unsigned level:4; 341 unsigned has_4_byte_gpte:1; 342 unsigned quadrant:2; 343 unsigned direct:1; 344 unsigned access:3; 345 unsigned invalid:1; 346 unsigned efer_nx:1; 347 unsigned cr0_wp:1; 348 unsigned smep_andnot_wp:1; 349 unsigned smap_andnot_wp:1; 350 unsigned ad_disabled:1; 351 unsigned guest_mode:1; 352 unsigned passthrough:1; 353 unsigned :5; 354 355 /* 356 * This is left at the top of the word so that 357 * kvm_memslots_for_spte_role can extract it with a 358 * simple shift. While there is room, give it a whole 359 * byte so it is also faster to load it from memory. 360 */ 361 unsigned smm:8; 362 }; 363 }; 364 365 /* 366 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 367 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 368 * including on nested transitions, if nothing in the full role changes then 369 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 370 * don't treat all-zero structure as valid data. 371 * 372 * The properties that are tracked in the extended role but not the page role 373 * are for things that either (a) do not affect the validity of the shadow page 374 * or (b) are indirectly reflected in the shadow page's role. For example, 375 * CR4.PKE only affects permission checks for software walks of the guest page 376 * tables (because KVM doesn't support Protection Keys with shadow paging), and 377 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 378 * 379 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 380 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 381 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 382 * SMAP aware regardless of CR0.WP. 383 */ 384 union kvm_mmu_extended_role { 385 u32 word; 386 struct { 387 unsigned int valid:1; 388 unsigned int execonly:1; 389 unsigned int cr4_pse:1; 390 unsigned int cr4_pke:1; 391 unsigned int cr4_smap:1; 392 unsigned int cr4_smep:1; 393 unsigned int cr4_la57:1; 394 unsigned int efer_lma:1; 395 }; 396 }; 397 398 union kvm_cpu_role { 399 u64 as_u64; 400 struct { 401 union kvm_mmu_page_role base; 402 union kvm_mmu_extended_role ext; 403 }; 404 }; 405 406 struct kvm_rmap_head { 407 unsigned long val; 408 }; 409 410 struct kvm_pio_request { 411 unsigned long linear_rip; 412 unsigned long count; 413 int in; 414 int port; 415 int size; 416 }; 417 418 #define PT64_ROOT_MAX_LEVEL 5 419 420 struct rsvd_bits_validate { 421 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 422 u64 bad_mt_xwr; 423 }; 424 425 struct kvm_mmu_root_info { 426 gpa_t pgd; 427 hpa_t hpa; 428 }; 429 430 #define KVM_MMU_ROOT_INFO_INVALID \ 431 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 432 433 #define KVM_MMU_NUM_PREV_ROOTS 3 434 435 #define KVM_MMU_ROOT_CURRENT BIT(0) 436 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 437 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 438 439 #define KVM_HAVE_MMU_RWLOCK 440 441 struct kvm_mmu_page; 442 struct kvm_page_fault; 443 444 /* 445 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 446 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 447 * current mmu mode. 448 */ 449 struct kvm_mmu { 450 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 451 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 452 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 453 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 454 struct x86_exception *fault); 455 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 456 gpa_t gva_or_gpa, u64 access, 457 struct x86_exception *exception); 458 int (*sync_spte)(struct kvm_vcpu *vcpu, 459 struct kvm_mmu_page *sp, int i); 460 struct kvm_mmu_root_info root; 461 union kvm_cpu_role cpu_role; 462 union kvm_mmu_page_role root_role; 463 464 /* 465 * The pkru_mask indicates if protection key checks are needed. It 466 * consists of 16 domains indexed by page fault error code bits [4:1], 467 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 468 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 469 */ 470 u32 pkru_mask; 471 472 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 473 474 /* 475 * Bitmap; bit set = permission fault 476 * Byte index: page fault error code [4:1] 477 * Bit index: pte permissions in ACC_* format 478 */ 479 u8 permissions[16]; 480 481 u64 *pae_root; 482 u64 *pml4_root; 483 u64 *pml5_root; 484 485 /* 486 * check zero bits on shadow page table entries, these 487 * bits include not only hardware reserved bits but also 488 * the bits spte never used. 489 */ 490 struct rsvd_bits_validate shadow_zero_check; 491 492 struct rsvd_bits_validate guest_rsvd_check; 493 494 u64 pdptrs[4]; /* pae */ 495 }; 496 497 enum pmc_type { 498 KVM_PMC_GP = 0, 499 KVM_PMC_FIXED, 500 }; 501 502 struct kvm_pmc { 503 enum pmc_type type; 504 u8 idx; 505 bool is_paused; 506 bool intr; 507 /* 508 * Base value of the PMC counter, relative to the *consumed* count in 509 * the associated perf_event. This value includes counter updates from 510 * the perf_event and emulated_count since the last time the counter 511 * was reprogrammed, but it is *not* the current value as seen by the 512 * guest or userspace. 513 * 514 * The count is relative to the associated perf_event so that KVM 515 * doesn't need to reprogram the perf_event every time the guest writes 516 * to the counter. 517 */ 518 u64 counter; 519 /* 520 * PMC events triggered by KVM emulation that haven't been fully 521 * processed, i.e. haven't undergone overflow detection. 522 */ 523 u64 emulated_counter; 524 u64 eventsel; 525 struct perf_event *perf_event; 526 struct kvm_vcpu *vcpu; 527 /* 528 * only for creating or reusing perf_event, 529 * eventsel value for general purpose counters, 530 * ctrl value for fixed counters. 531 */ 532 u64 current_config; 533 }; 534 535 /* More counters may conflict with other existing Architectural MSRs */ 536 #define KVM_INTEL_PMC_MAX_GENERIC 8 537 #define MSR_ARCH_PERFMON_PERFCTR_MAX (MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 538 #define MSR_ARCH_PERFMON_EVENTSEL_MAX (MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1) 539 #define KVM_PMC_MAX_FIXED 3 540 #define MSR_ARCH_PERFMON_FIXED_CTR_MAX (MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1) 541 #define KVM_AMD_PMC_MAX_GENERIC 6 542 543 struct kvm_pmu { 544 u8 version; 545 unsigned nr_arch_gp_counters; 546 unsigned nr_arch_fixed_counters; 547 unsigned available_event_types; 548 u64 fixed_ctr_ctrl; 549 u64 fixed_ctr_ctrl_mask; 550 u64 global_ctrl; 551 u64 global_status; 552 u64 counter_bitmask[2]; 553 u64 global_ctrl_mask; 554 u64 global_status_mask; 555 u64 reserved_bits; 556 u64 raw_event_mask; 557 struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC]; 558 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED]; 559 560 /* 561 * Overlay the bitmap with a 64-bit atomic so that all bits can be 562 * set in a single access, e.g. to reprogram all counters when the PMU 563 * filter changes. 564 */ 565 union { 566 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 567 atomic64_t __reprogram_pmi; 568 }; 569 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 570 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 571 572 u64 ds_area; 573 u64 pebs_enable; 574 u64 pebs_enable_mask; 575 u64 pebs_data_cfg; 576 u64 pebs_data_cfg_mask; 577 578 /* 579 * If a guest counter is cross-mapped to host counter with different 580 * index, its PEBS capability will be temporarily disabled. 581 * 582 * The user should make sure that this mask is updated 583 * after disabling interrupts and before perf_guest_get_msrs(); 584 */ 585 u64 host_cross_mapped_mask; 586 587 /* 588 * The gate to release perf_events not marked in 589 * pmc_in_use only once in a vcpu time slice. 590 */ 591 bool need_cleanup; 592 593 /* 594 * The total number of programmed perf_events and it helps to avoid 595 * redundant check before cleanup if guest don't use vPMU at all. 596 */ 597 u8 event_count; 598 }; 599 600 struct kvm_pmu_ops; 601 602 enum { 603 KVM_DEBUGREG_BP_ENABLED = 1, 604 KVM_DEBUGREG_WONT_EXIT = 2, 605 }; 606 607 struct kvm_mtrr_range { 608 u64 base; 609 u64 mask; 610 struct list_head node; 611 }; 612 613 struct kvm_mtrr { 614 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; 615 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; 616 u64 deftype; 617 618 struct list_head head; 619 }; 620 621 /* Hyper-V SynIC timer */ 622 struct kvm_vcpu_hv_stimer { 623 struct hrtimer timer; 624 int index; 625 union hv_stimer_config config; 626 u64 count; 627 u64 exp_time; 628 struct hv_message msg; 629 bool msg_pending; 630 }; 631 632 /* Hyper-V synthetic interrupt controller (SynIC)*/ 633 struct kvm_vcpu_hv_synic { 634 u64 version; 635 u64 control; 636 u64 msg_page; 637 u64 evt_page; 638 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 639 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 640 DECLARE_BITMAP(auto_eoi_bitmap, 256); 641 DECLARE_BITMAP(vec_bitmap, 256); 642 bool active; 643 bool dont_zero_synic_pages; 644 }; 645 646 /* The maximum number of entries on the TLB flush fifo. */ 647 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 648 /* 649 * Note: the following 'magic' entry is made up by KVM to avoid putting 650 * anything besides GVA on the TLB flush fifo. It is theoretically possible 651 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 652 * which will look identical. KVM's action to 'flush everything' instead of 653 * flushing these particular addresses is, however, fully legitimate as 654 * flushing more than requested is always OK. 655 */ 656 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 657 658 enum hv_tlb_flush_fifos { 659 HV_L1_TLB_FLUSH_FIFO, 660 HV_L2_TLB_FLUSH_FIFO, 661 HV_NR_TLB_FLUSH_FIFOS, 662 }; 663 664 struct kvm_vcpu_hv_tlb_flush_fifo { 665 spinlock_t write_lock; 666 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 667 }; 668 669 /* Hyper-V per vcpu emulation context */ 670 struct kvm_vcpu_hv { 671 struct kvm_vcpu *vcpu; 672 u32 vp_index; 673 u64 hv_vapic; 674 s64 runtime_offset; 675 struct kvm_vcpu_hv_synic synic; 676 struct kvm_hyperv_exit exit; 677 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 678 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 679 bool enforce_cpuid; 680 struct { 681 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 682 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 683 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 684 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 685 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 686 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 687 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 688 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 689 } cpuid_cache; 690 691 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 692 693 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 694 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 695 696 struct hv_vp_assist_page vp_assist_page; 697 698 struct { 699 u64 pa_page_gpa; 700 u64 vm_id; 701 u32 vp_id; 702 } nested; 703 }; 704 705 struct kvm_hypervisor_cpuid { 706 u32 base; 707 u32 limit; 708 }; 709 710 #ifdef CONFIG_KVM_XEN 711 /* Xen HVM per vcpu emulation context */ 712 struct kvm_vcpu_xen { 713 u64 hypercall_rip; 714 u32 current_runstate; 715 u8 upcall_vector; 716 struct gfn_to_pfn_cache vcpu_info_cache; 717 struct gfn_to_pfn_cache vcpu_time_info_cache; 718 struct gfn_to_pfn_cache runstate_cache; 719 struct gfn_to_pfn_cache runstate2_cache; 720 u64 last_steal; 721 u64 runstate_entry_time; 722 u64 runstate_times[4]; 723 unsigned long evtchn_pending_sel; 724 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 725 u32 timer_virq; 726 u64 timer_expires; /* In guest epoch */ 727 atomic_t timer_pending; 728 struct hrtimer timer; 729 int poll_evtchn; 730 struct timer_list poll_timer; 731 struct kvm_hypervisor_cpuid cpuid; 732 }; 733 #endif 734 735 struct kvm_queued_exception { 736 bool pending; 737 bool injected; 738 bool has_error_code; 739 u8 vector; 740 u32 error_code; 741 unsigned long payload; 742 bool has_payload; 743 }; 744 745 struct kvm_vcpu_arch { 746 /* 747 * rip and regs accesses must go through 748 * kvm_{register,rip}_{read,write} functions. 749 */ 750 unsigned long regs[NR_VCPU_REGS]; 751 u32 regs_avail; 752 u32 regs_dirty; 753 754 unsigned long cr0; 755 unsigned long cr0_guest_owned_bits; 756 unsigned long cr2; 757 unsigned long cr3; 758 unsigned long cr4; 759 unsigned long cr4_guest_owned_bits; 760 unsigned long cr4_guest_rsvd_bits; 761 unsigned long cr8; 762 u32 host_pkru; 763 u32 pkru; 764 u32 hflags; 765 u64 efer; 766 u64 apic_base; 767 struct kvm_lapic *apic; /* kernel irqchip context */ 768 bool load_eoi_exitmap_pending; 769 DECLARE_BITMAP(ioapic_handled_vectors, 256); 770 unsigned long apic_attention; 771 int32_t apic_arb_prio; 772 int mp_state; 773 u64 ia32_misc_enable_msr; 774 u64 smbase; 775 u64 smi_count; 776 bool at_instruction_boundary; 777 bool tpr_access_reporting; 778 bool xfd_no_write_intercept; 779 u64 ia32_xss; 780 u64 microcode_version; 781 u64 arch_capabilities; 782 u64 perf_capabilities; 783 784 /* 785 * Paging state of the vcpu 786 * 787 * If the vcpu runs in guest mode with two level paging this still saves 788 * the paging mode of the l1 guest. This context is always used to 789 * handle faults. 790 */ 791 struct kvm_mmu *mmu; 792 793 /* Non-nested MMU for L1 */ 794 struct kvm_mmu root_mmu; 795 796 /* L1 MMU when running nested */ 797 struct kvm_mmu guest_mmu; 798 799 /* 800 * Paging state of an L2 guest (used for nested npt) 801 * 802 * This context will save all necessary information to walk page tables 803 * of an L2 guest. This context is only initialized for page table 804 * walking and not for faulting since we never handle l2 page faults on 805 * the host. 806 */ 807 struct kvm_mmu nested_mmu; 808 809 /* 810 * Pointer to the mmu context currently used for 811 * gva_to_gpa translations. 812 */ 813 struct kvm_mmu *walk_mmu; 814 815 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 816 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 817 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 818 struct kvm_mmu_memory_cache mmu_page_header_cache; 819 820 /* 821 * QEMU userspace and the guest each have their own FPU state. 822 * In vcpu_run, we switch between the user and guest FPU contexts. 823 * While running a VCPU, the VCPU thread will have the guest FPU 824 * context. 825 * 826 * Note that while the PKRU state lives inside the fpu registers, 827 * it is switched out separately at VMENTER and VMEXIT time. The 828 * "guest_fpstate" state here contains the guest FPU context, with the 829 * host PRKU bits. 830 */ 831 struct fpu_guest guest_fpu; 832 833 u64 xcr0; 834 u64 guest_supported_xcr0; 835 836 struct kvm_pio_request pio; 837 void *pio_data; 838 void *sev_pio_data; 839 unsigned sev_pio_count; 840 841 u8 event_exit_inst_len; 842 843 bool exception_from_userspace; 844 845 /* Exceptions to be injected to the guest. */ 846 struct kvm_queued_exception exception; 847 /* Exception VM-Exits to be synthesized to L1. */ 848 struct kvm_queued_exception exception_vmexit; 849 850 struct kvm_queued_interrupt { 851 bool injected; 852 bool soft; 853 u8 nr; 854 } interrupt; 855 856 int halt_request; /* real mode on Intel only */ 857 858 int cpuid_nent; 859 struct kvm_cpuid_entry2 *cpuid_entries; 860 struct kvm_hypervisor_cpuid kvm_cpuid; 861 bool is_amd_compatible; 862 863 /* 864 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly 865 * when "struct kvm_vcpu_arch" is no longer defined in an 866 * arch/x86/include/asm header. The max is mostly arbitrary, i.e. 867 * can be increased as necessary. 868 */ 869 #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG 870 871 /* 872 * Track whether or not the guest is allowed to use features that are 873 * governed by KVM, where "governed" means KVM needs to manage state 874 * and/or explicitly enable the feature in hardware. Typically, but 875 * not always, governed features can be used by the guest if and only 876 * if both KVM and userspace want to expose the feature to the guest. 877 */ 878 struct { 879 DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES); 880 } governed_features; 881 882 u64 reserved_gpa_bits; 883 int maxphyaddr; 884 885 /* emulate context */ 886 887 struct x86_emulate_ctxt *emulate_ctxt; 888 bool emulate_regs_need_sync_to_vcpu; 889 bool emulate_regs_need_sync_from_vcpu; 890 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 891 892 gpa_t time; 893 struct pvclock_vcpu_time_info hv_clock; 894 unsigned int hw_tsc_khz; 895 struct gfn_to_pfn_cache pv_time; 896 /* set guest stopped flag in pvclock flags field */ 897 bool pvclock_set_guest_stopped_request; 898 899 struct { 900 u8 preempted; 901 u64 msr_val; 902 u64 last_steal; 903 struct gfn_to_hva_cache cache; 904 } st; 905 906 u64 l1_tsc_offset; 907 u64 tsc_offset; /* current tsc offset */ 908 u64 last_guest_tsc; 909 u64 last_host_tsc; 910 u64 tsc_offset_adjustment; 911 u64 this_tsc_nsec; 912 u64 this_tsc_write; 913 u64 this_tsc_generation; 914 bool tsc_catchup; 915 bool tsc_always_catchup; 916 s8 virtual_tsc_shift; 917 u32 virtual_tsc_mult; 918 u32 virtual_tsc_khz; 919 s64 ia32_tsc_adjust_msr; 920 u64 msr_ia32_power_ctl; 921 u64 l1_tsc_scaling_ratio; 922 u64 tsc_scaling_ratio; /* current scaling ratio */ 923 924 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 925 /* Number of NMIs pending injection, not including hardware vNMIs. */ 926 unsigned int nmi_pending; 927 bool nmi_injected; /* Trying to inject an NMI this entry */ 928 bool smi_pending; /* SMI queued after currently running handler */ 929 u8 handling_intr_from_guest; 930 931 struct kvm_mtrr mtrr_state; 932 u64 pat; 933 934 unsigned switch_db_regs; 935 unsigned long db[KVM_NR_DB_REGS]; 936 unsigned long dr6; 937 unsigned long dr7; 938 unsigned long eff_db[KVM_NR_DB_REGS]; 939 unsigned long guest_debug_dr7; 940 u64 msr_platform_info; 941 u64 msr_misc_features_enables; 942 943 u64 mcg_cap; 944 u64 mcg_status; 945 u64 mcg_ctl; 946 u64 mcg_ext_ctl; 947 u64 *mce_banks; 948 u64 *mci_ctl2_banks; 949 950 /* Cache MMIO info */ 951 u64 mmio_gva; 952 unsigned mmio_access; 953 gfn_t mmio_gfn; 954 u64 mmio_gen; 955 956 struct kvm_pmu pmu; 957 958 /* used for guest single stepping over the given code position */ 959 unsigned long singlestep_rip; 960 961 #ifdef CONFIG_KVM_HYPERV 962 bool hyperv_enabled; 963 struct kvm_vcpu_hv *hyperv; 964 #endif 965 #ifdef CONFIG_KVM_XEN 966 struct kvm_vcpu_xen xen; 967 #endif 968 cpumask_var_t wbinvd_dirty_mask; 969 970 unsigned long last_retry_eip; 971 unsigned long last_retry_addr; 972 973 struct { 974 bool halted; 975 gfn_t gfns[ASYNC_PF_PER_VCPU]; 976 struct gfn_to_hva_cache data; 977 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 978 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 979 u16 vec; 980 u32 id; 981 bool send_user_only; 982 u32 host_apf_flags; 983 bool delivery_as_pf_vmexit; 984 bool pageready_pending; 985 } apf; 986 987 /* OSVW MSRs (AMD only) */ 988 struct { 989 u64 length; 990 u64 status; 991 } osvw; 992 993 struct { 994 u64 msr_val; 995 struct gfn_to_hva_cache data; 996 } pv_eoi; 997 998 u64 msr_kvm_poll_control; 999 1000 /* pv related host specific info */ 1001 struct { 1002 bool pv_unhalted; 1003 } pv; 1004 1005 int pending_ioapic_eoi; 1006 int pending_external_vector; 1007 1008 /* be preempted when it's in kernel-mode(cpl=0) */ 1009 bool preempted_in_kernel; 1010 1011 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1012 bool l1tf_flush_l1d; 1013 1014 /* Host CPU on which VM-entry was most recently attempted */ 1015 int last_vmentry_cpu; 1016 1017 /* AMD MSRC001_0015 Hardware Configuration */ 1018 u64 msr_hwcr; 1019 1020 /* pv related cpuid info */ 1021 struct { 1022 /* 1023 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1024 * leaf. 1025 */ 1026 u32 features; 1027 1028 /* 1029 * indicates whether pv emulation should be disabled if features 1030 * are not present in the guest's cpuid 1031 */ 1032 bool enforce; 1033 } pv_cpuid; 1034 1035 /* Protected Guests */ 1036 bool guest_state_protected; 1037 1038 /* 1039 * Set when PDPTS were loaded directly by the userspace without 1040 * reading the guest memory 1041 */ 1042 bool pdptrs_from_userspace; 1043 1044 #if IS_ENABLED(CONFIG_HYPERV) 1045 hpa_t hv_root_tdp; 1046 #endif 1047 }; 1048 1049 struct kvm_lpage_info { 1050 int disallow_lpage; 1051 }; 1052 1053 struct kvm_arch_memory_slot { 1054 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1055 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1056 unsigned short *gfn_write_track; 1057 }; 1058 1059 /* 1060 * Track the mode of the optimized logical map, as the rules for decoding the 1061 * destination vary per mode. Enabling the optimized logical map requires all 1062 * software-enabled local APIs to be in the same mode, each addressable APIC to 1063 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1064 */ 1065 enum kvm_apic_logical_mode { 1066 /* All local APICs are software disabled. */ 1067 KVM_APIC_MODE_SW_DISABLED, 1068 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1069 KVM_APIC_MODE_XAPIC_CLUSTER, 1070 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1071 KVM_APIC_MODE_XAPIC_FLAT, 1072 /* All software enabled local APICs in x2APIC mode. */ 1073 KVM_APIC_MODE_X2APIC, 1074 /* 1075 * Optimized map disabled, e.g. not all local APICs in the same logical 1076 * mode, same logical ID assigned to multiple APICs, etc. 1077 */ 1078 KVM_APIC_MODE_MAP_DISABLED, 1079 }; 1080 1081 struct kvm_apic_map { 1082 struct rcu_head rcu; 1083 enum kvm_apic_logical_mode logical_mode; 1084 u32 max_apic_id; 1085 union { 1086 struct kvm_lapic *xapic_flat_map[8]; 1087 struct kvm_lapic *xapic_cluster_map[16][4]; 1088 }; 1089 struct kvm_lapic *phys_map[]; 1090 }; 1091 1092 /* Hyper-V synthetic debugger (SynDbg)*/ 1093 struct kvm_hv_syndbg { 1094 struct { 1095 u64 control; 1096 u64 status; 1097 u64 send_page; 1098 u64 recv_page; 1099 u64 pending_page; 1100 } control; 1101 u64 options; 1102 }; 1103 1104 /* Current state of Hyper-V TSC page clocksource */ 1105 enum hv_tsc_page_status { 1106 /* TSC page was not set up or disabled */ 1107 HV_TSC_PAGE_UNSET = 0, 1108 /* TSC page MSR was written by the guest, update pending */ 1109 HV_TSC_PAGE_GUEST_CHANGED, 1110 /* TSC page update was triggered from the host side */ 1111 HV_TSC_PAGE_HOST_CHANGED, 1112 /* TSC page was properly set up and is currently active */ 1113 HV_TSC_PAGE_SET, 1114 /* TSC page was set up with an inaccessible GPA */ 1115 HV_TSC_PAGE_BROKEN, 1116 }; 1117 1118 #ifdef CONFIG_KVM_HYPERV 1119 /* Hyper-V emulation context */ 1120 struct kvm_hv { 1121 struct mutex hv_lock; 1122 u64 hv_guest_os_id; 1123 u64 hv_hypercall; 1124 u64 hv_tsc_page; 1125 enum hv_tsc_page_status hv_tsc_page_status; 1126 1127 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1128 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1129 u64 hv_crash_ctl; 1130 1131 struct ms_hyperv_tsc_page tsc_ref; 1132 1133 struct idr conn_to_evt; 1134 1135 u64 hv_reenlightenment_control; 1136 u64 hv_tsc_emulation_control; 1137 u64 hv_tsc_emulation_status; 1138 u64 hv_invtsc_control; 1139 1140 /* How many vCPUs have VP index != vCPU index */ 1141 atomic_t num_mismatched_vp_indexes; 1142 1143 /* 1144 * How many SynICs use 'AutoEOI' feature 1145 * (protected by arch.apicv_update_lock) 1146 */ 1147 unsigned int synic_auto_eoi_used; 1148 1149 struct kvm_hv_syndbg hv_syndbg; 1150 1151 bool xsaves_xsavec_checked; 1152 }; 1153 #endif 1154 1155 struct msr_bitmap_range { 1156 u32 flags; 1157 u32 nmsrs; 1158 u32 base; 1159 unsigned long *bitmap; 1160 }; 1161 1162 #ifdef CONFIG_KVM_XEN 1163 /* Xen emulation context */ 1164 struct kvm_xen { 1165 struct mutex xen_lock; 1166 u32 xen_version; 1167 bool long_mode; 1168 bool runstate_update_flag; 1169 u8 upcall_vector; 1170 struct gfn_to_pfn_cache shinfo_cache; 1171 struct idr evtchn_ports; 1172 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1173 }; 1174 #endif 1175 1176 enum kvm_irqchip_mode { 1177 KVM_IRQCHIP_NONE, 1178 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1179 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1180 }; 1181 1182 struct kvm_x86_msr_filter { 1183 u8 count; 1184 bool default_allow:1; 1185 struct msr_bitmap_range ranges[16]; 1186 }; 1187 1188 struct kvm_x86_pmu_event_filter { 1189 __u32 action; 1190 __u32 nevents; 1191 __u32 fixed_counter_bitmap; 1192 __u32 flags; 1193 __u32 nr_includes; 1194 __u32 nr_excludes; 1195 __u64 *includes; 1196 __u64 *excludes; 1197 __u64 events[]; 1198 }; 1199 1200 enum kvm_apicv_inhibit { 1201 1202 /********************************************************************/ 1203 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1204 /********************************************************************/ 1205 1206 /* 1207 * APIC acceleration is disabled by a module parameter 1208 * and/or not supported in hardware. 1209 */ 1210 APICV_INHIBIT_REASON_DISABLE, 1211 1212 /* 1213 * APIC acceleration is inhibited because AutoEOI feature is 1214 * being used by a HyperV guest. 1215 */ 1216 APICV_INHIBIT_REASON_HYPERV, 1217 1218 /* 1219 * APIC acceleration is inhibited because the userspace didn't yet 1220 * enable the kernel/split irqchip. 1221 */ 1222 APICV_INHIBIT_REASON_ABSENT, 1223 1224 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1225 * (out of band, debug measure of blocking all interrupts on this vCPU) 1226 * was enabled, to avoid AVIC/APICv bypassing it. 1227 */ 1228 APICV_INHIBIT_REASON_BLOCKIRQ, 1229 1230 /* 1231 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1232 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1233 */ 1234 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1235 1236 /* 1237 * For simplicity, the APIC acceleration is inhibited 1238 * first time either APIC ID or APIC base are changed by the guest 1239 * from their reset values. 1240 */ 1241 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1242 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1243 1244 /******************************************************/ 1245 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1246 /******************************************************/ 1247 1248 /* 1249 * AVIC is inhibited on a vCPU because it runs a nested guest. 1250 * 1251 * This is needed because unlike APICv, the peers of this vCPU 1252 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1253 * a vCPU runs nested. 1254 */ 1255 APICV_INHIBIT_REASON_NESTED, 1256 1257 /* 1258 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1259 * which cannot be injected when the AVIC is enabled, thus AVIC 1260 * is inhibited while KVM waits for IRQ window. 1261 */ 1262 APICV_INHIBIT_REASON_IRQWIN, 1263 1264 /* 1265 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1266 * which AVIC doesn't support for edge triggered interrupts. 1267 */ 1268 APICV_INHIBIT_REASON_PIT_REINJ, 1269 1270 /* 1271 * AVIC is disabled because SEV doesn't support it. 1272 */ 1273 APICV_INHIBIT_REASON_SEV, 1274 1275 /* 1276 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1277 * mapping between logical ID and vCPU. 1278 */ 1279 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1280 }; 1281 1282 struct kvm_arch { 1283 unsigned long n_used_mmu_pages; 1284 unsigned long n_requested_mmu_pages; 1285 unsigned long n_max_mmu_pages; 1286 unsigned int indirect_shadow_pages; 1287 u8 mmu_valid_gen; 1288 u8 vm_type; 1289 bool has_private_mem; 1290 bool has_protected_state; 1291 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1292 struct list_head active_mmu_pages; 1293 struct list_head zapped_obsolete_pages; 1294 /* 1295 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1296 * replaced by an NX huge page. A shadow page is on this list if its 1297 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1298 * and there are no other conditions that prevent a huge page, e.g. 1299 * the backing host page is huge, dirtly logging is not enabled for its 1300 * memslot, etc... Note, zapping shadow pages on this list doesn't 1301 * guarantee an NX huge page will be created in its stead, e.g. if the 1302 * guest attempts to execute from the region then KVM obviously can't 1303 * create an NX huge page (without hanging the guest). 1304 */ 1305 struct list_head possible_nx_huge_pages; 1306 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1307 struct kvm_page_track_notifier_head track_notifier_head; 1308 #endif 1309 /* 1310 * Protects marking pages unsync during page faults, as TDP MMU page 1311 * faults only take mmu_lock for read. For simplicity, the unsync 1312 * pages lock is always taken when marking pages unsync regardless of 1313 * whether mmu_lock is held for read or write. 1314 */ 1315 spinlock_t mmu_unsync_pages_lock; 1316 1317 u64 shadow_mmio_value; 1318 1319 struct iommu_domain *iommu_domain; 1320 bool iommu_noncoherent; 1321 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1322 atomic_t noncoherent_dma_count; 1323 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1324 atomic_t assigned_device_count; 1325 struct kvm_pic *vpic; 1326 struct kvm_ioapic *vioapic; 1327 struct kvm_pit *vpit; 1328 atomic_t vapics_in_nmi_mode; 1329 struct mutex apic_map_lock; 1330 struct kvm_apic_map __rcu *apic_map; 1331 atomic_t apic_map_dirty; 1332 1333 bool apic_access_memslot_enabled; 1334 bool apic_access_memslot_inhibited; 1335 1336 /* Protects apicv_inhibit_reasons */ 1337 struct rw_semaphore apicv_update_lock; 1338 unsigned long apicv_inhibit_reasons; 1339 1340 gpa_t wall_clock; 1341 1342 bool mwait_in_guest; 1343 bool hlt_in_guest; 1344 bool pause_in_guest; 1345 bool cstate_in_guest; 1346 1347 unsigned long irq_sources_bitmap; 1348 s64 kvmclock_offset; 1349 1350 /* 1351 * This also protects nr_vcpus_matched_tsc which is read from a 1352 * preemption-disabled region, so it must be a raw spinlock. 1353 */ 1354 raw_spinlock_t tsc_write_lock; 1355 u64 last_tsc_nsec; 1356 u64 last_tsc_write; 1357 u32 last_tsc_khz; 1358 u64 last_tsc_offset; 1359 u64 cur_tsc_nsec; 1360 u64 cur_tsc_write; 1361 u64 cur_tsc_offset; 1362 u64 cur_tsc_generation; 1363 int nr_vcpus_matched_tsc; 1364 1365 u32 default_tsc_khz; 1366 bool user_set_tsc; 1367 1368 seqcount_raw_spinlock_t pvclock_sc; 1369 bool use_master_clock; 1370 u64 master_kernel_ns; 1371 u64 master_cycle_now; 1372 struct delayed_work kvmclock_update_work; 1373 struct delayed_work kvmclock_sync_work; 1374 1375 struct kvm_xen_hvm_config xen_hvm_config; 1376 1377 /* reads protected by irq_srcu, writes by irq_lock */ 1378 struct hlist_head mask_notifier_list; 1379 1380 #ifdef CONFIG_KVM_HYPERV 1381 struct kvm_hv hyperv; 1382 #endif 1383 1384 #ifdef CONFIG_KVM_XEN 1385 struct kvm_xen xen; 1386 #endif 1387 1388 bool backwards_tsc_observed; 1389 bool boot_vcpu_runs_old_kvmclock; 1390 u32 bsp_vcpu_id; 1391 1392 u64 disabled_quirks; 1393 1394 enum kvm_irqchip_mode irqchip_mode; 1395 u8 nr_reserved_ioapic_pins; 1396 1397 bool disabled_lapic_found; 1398 1399 bool x2apic_format; 1400 bool x2apic_broadcast_quirk_disabled; 1401 1402 bool guest_can_read_msr_platform_info; 1403 bool exception_payload_enabled; 1404 1405 bool triple_fault_event; 1406 1407 bool bus_lock_detection_enabled; 1408 bool enable_pmu; 1409 1410 u32 notify_window; 1411 u32 notify_vmexit_flags; 1412 /* 1413 * If exit_on_emulation_error is set, and the in-kernel instruction 1414 * emulator fails to emulate an instruction, allow userspace 1415 * the opportunity to look at it. 1416 */ 1417 bool exit_on_emulation_error; 1418 1419 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1420 u32 user_space_msr_mask; 1421 struct kvm_x86_msr_filter __rcu *msr_filter; 1422 1423 u32 hypercall_exit_enabled; 1424 1425 /* Guest can access the SGX PROVISIONKEY. */ 1426 bool sgx_provisioning_allowed; 1427 1428 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1429 struct task_struct *nx_huge_page_recovery_thread; 1430 1431 #ifdef CONFIG_X86_64 1432 /* The number of TDP MMU pages across all roots. */ 1433 atomic64_t tdp_mmu_pages; 1434 1435 /* 1436 * List of struct kvm_mmu_pages being used as roots. 1437 * All struct kvm_mmu_pages in the list should have 1438 * tdp_mmu_page set. 1439 * 1440 * For reads, this list is protected by: 1441 * the MMU lock in read mode + RCU or 1442 * the MMU lock in write mode 1443 * 1444 * For writes, this list is protected by tdp_mmu_pages_lock; see 1445 * below for the details. 1446 * 1447 * Roots will remain in the list until their tdp_mmu_root_count 1448 * drops to zero, at which point the thread that decremented the 1449 * count to zero should removed the root from the list and clean 1450 * it up, freeing the root after an RCU grace period. 1451 */ 1452 struct list_head tdp_mmu_roots; 1453 1454 /* 1455 * Protects accesses to the following fields when the MMU lock 1456 * is held in read mode: 1457 * - tdp_mmu_roots (above) 1458 * - the link field of kvm_mmu_page structs used by the TDP MMU 1459 * - possible_nx_huge_pages; 1460 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1461 * by the TDP MMU 1462 * Because the lock is only taken within the MMU lock, strictly 1463 * speaking it is redundant to acquire this lock when the thread 1464 * holds the MMU lock in write mode. However it often simplifies 1465 * the code to do so. 1466 */ 1467 spinlock_t tdp_mmu_pages_lock; 1468 #endif /* CONFIG_X86_64 */ 1469 1470 /* 1471 * If set, at least one shadow root has been allocated. This flag 1472 * is used as one input when determining whether certain memslot 1473 * related allocations are necessary. 1474 */ 1475 bool shadow_root_allocated; 1476 1477 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1478 /* 1479 * If set, the VM has (or had) an external write tracking user, and 1480 * thus all write tracking metadata has been allocated, even if KVM 1481 * itself isn't using write tracking. 1482 */ 1483 bool external_write_tracking_enabled; 1484 #endif 1485 1486 #if IS_ENABLED(CONFIG_HYPERV) 1487 hpa_t hv_root_tdp; 1488 spinlock_t hv_root_tdp_lock; 1489 struct hv_partition_assist_pg *hv_pa_pg; 1490 #endif 1491 /* 1492 * VM-scope maximum vCPU ID. Used to determine the size of structures 1493 * that increase along with the maximum vCPU ID, in which case, using 1494 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1495 */ 1496 u32 max_vcpu_ids; 1497 1498 bool disable_nx_huge_pages; 1499 1500 /* 1501 * Memory caches used to allocate shadow pages when performing eager 1502 * page splitting. No need for a shadowed_info_cache since eager page 1503 * splitting only allocates direct shadow pages. 1504 * 1505 * Protected by kvm->slots_lock. 1506 */ 1507 struct kvm_mmu_memory_cache split_shadow_page_cache; 1508 struct kvm_mmu_memory_cache split_page_header_cache; 1509 1510 /* 1511 * Memory cache used to allocate pte_list_desc structs while splitting 1512 * huge pages. In the worst case, to split one huge page, 512 1513 * pte_list_desc structs are needed to add each lower level leaf sptep 1514 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1515 * page table. 1516 * 1517 * Protected by kvm->slots_lock. 1518 */ 1519 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1520 struct kvm_mmu_memory_cache split_desc_cache; 1521 }; 1522 1523 struct kvm_vm_stat { 1524 struct kvm_vm_stat_generic generic; 1525 u64 mmu_shadow_zapped; 1526 u64 mmu_pte_write; 1527 u64 mmu_pde_zapped; 1528 u64 mmu_flooded; 1529 u64 mmu_recycled; 1530 u64 mmu_cache_miss; 1531 u64 mmu_unsync; 1532 union { 1533 struct { 1534 atomic64_t pages_4k; 1535 atomic64_t pages_2m; 1536 atomic64_t pages_1g; 1537 }; 1538 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1539 }; 1540 u64 nx_lpage_splits; 1541 u64 max_mmu_page_hash_collisions; 1542 u64 max_mmu_rmap_size; 1543 }; 1544 1545 struct kvm_vcpu_stat { 1546 struct kvm_vcpu_stat_generic generic; 1547 u64 pf_taken; 1548 u64 pf_fixed; 1549 u64 pf_emulate; 1550 u64 pf_spurious; 1551 u64 pf_fast; 1552 u64 pf_mmio_spte_created; 1553 u64 pf_guest; 1554 u64 tlb_flush; 1555 u64 invlpg; 1556 1557 u64 exits; 1558 u64 io_exits; 1559 u64 mmio_exits; 1560 u64 signal_exits; 1561 u64 irq_window_exits; 1562 u64 nmi_window_exits; 1563 u64 l1d_flush; 1564 u64 halt_exits; 1565 u64 request_irq_exits; 1566 u64 irq_exits; 1567 u64 host_state_reload; 1568 u64 fpu_reload; 1569 u64 insn_emulation; 1570 u64 insn_emulation_fail; 1571 u64 hypercalls; 1572 u64 irq_injections; 1573 u64 nmi_injections; 1574 u64 req_event; 1575 u64 nested_run; 1576 u64 directed_yield_attempted; 1577 u64 directed_yield_successful; 1578 u64 preemption_reported; 1579 u64 preemption_other; 1580 u64 guest_mode; 1581 u64 notify_window_exits; 1582 }; 1583 1584 struct x86_instruction_info; 1585 1586 struct msr_data { 1587 bool host_initiated; 1588 u32 index; 1589 u64 data; 1590 }; 1591 1592 struct kvm_lapic_irq { 1593 u32 vector; 1594 u16 delivery_mode; 1595 u16 dest_mode; 1596 bool level; 1597 u16 trig_mode; 1598 u32 shorthand; 1599 u32 dest_id; 1600 bool msi_redir_hint; 1601 }; 1602 1603 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1604 { 1605 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1606 } 1607 1608 struct kvm_x86_ops { 1609 const char *name; 1610 1611 int (*check_processor_compatibility)(void); 1612 1613 int (*hardware_enable)(void); 1614 void (*hardware_disable)(void); 1615 void (*hardware_unsetup)(void); 1616 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1617 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1618 1619 unsigned int vm_size; 1620 int (*vm_init)(struct kvm *kvm); 1621 void (*vm_destroy)(struct kvm *kvm); 1622 1623 /* Create, but do not attach this VCPU */ 1624 int (*vcpu_precreate)(struct kvm *kvm); 1625 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1626 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1627 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1628 1629 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1630 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1631 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1632 1633 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1634 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1635 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1636 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1637 void (*get_segment)(struct kvm_vcpu *vcpu, 1638 struct kvm_segment *var, int seg); 1639 int (*get_cpl)(struct kvm_vcpu *vcpu); 1640 void (*set_segment)(struct kvm_vcpu *vcpu, 1641 struct kvm_segment *var, int seg); 1642 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1643 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1644 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1645 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1646 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1647 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1648 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1649 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1650 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1651 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1652 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1653 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1654 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1655 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1656 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1657 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1658 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1659 1660 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1661 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1662 #if IS_ENABLED(CONFIG_HYPERV) 1663 int (*flush_remote_tlbs)(struct kvm *kvm); 1664 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1665 gfn_t nr_pages); 1666 #endif 1667 1668 /* 1669 * Flush any TLB entries associated with the given GVA. 1670 * Does not need to flush GPA->HPA mappings. 1671 * Can potentially get non-canonical addresses through INVLPGs, which 1672 * the implementation may choose to ignore if appropriate. 1673 */ 1674 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1675 1676 /* 1677 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1678 * does not need to flush GPA->HPA mappings. 1679 */ 1680 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1681 1682 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1683 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1684 bool force_immediate_exit); 1685 int (*handle_exit)(struct kvm_vcpu *vcpu, 1686 enum exit_fastpath_completion exit_fastpath); 1687 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1688 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1689 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1690 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1691 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1692 unsigned char *hypercall_addr); 1693 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1694 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1695 void (*inject_exception)(struct kvm_vcpu *vcpu); 1696 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1697 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1698 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1699 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1700 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1701 /* Whether or not a virtual NMI is pending in hardware. */ 1702 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1703 /* 1704 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1705 * to allow using static_call_ret0 as the fallback. 1706 */ 1707 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1708 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1709 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1710 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1711 bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason); 1712 const unsigned long required_apicv_inhibits; 1713 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1714 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1715 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); 1716 void (*hwapic_isr_update)(int isr); 1717 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1718 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1719 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1720 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1721 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1722 int trig_mode, int vector); 1723 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1724 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1725 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1726 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1727 1728 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1729 int root_level); 1730 1731 bool (*has_wbinvd_exit)(void); 1732 1733 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1734 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1735 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1736 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1737 1738 /* 1739 * Retrieve somewhat arbitrary exit information. Intended to 1740 * be used only from within tracepoints or error paths. 1741 */ 1742 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1743 u64 *info1, u64 *info2, 1744 u32 *exit_int_info, u32 *exit_int_info_err_code); 1745 1746 int (*check_intercept)(struct kvm_vcpu *vcpu, 1747 struct x86_instruction_info *info, 1748 enum x86_intercept_stage stage, 1749 struct x86_exception *exception); 1750 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1751 1752 void (*sched_in)(struct kvm_vcpu *vcpu, int cpu); 1753 1754 /* 1755 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1756 * value indicates CPU dirty logging is unsupported or disabled. 1757 */ 1758 int cpu_dirty_log_size; 1759 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1760 1761 const struct kvm_x86_nested_ops *nested_ops; 1762 1763 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1764 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1765 1766 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1767 uint32_t guest_irq, bool set); 1768 void (*pi_start_assignment)(struct kvm *kvm); 1769 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1770 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1771 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1772 1773 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1774 bool *expired); 1775 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1776 1777 void (*setup_mce)(struct kvm_vcpu *vcpu); 1778 1779 #ifdef CONFIG_KVM_SMM 1780 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1781 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1782 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1783 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1784 #endif 1785 1786 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1787 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1788 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1789 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1790 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1791 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1792 void (*guest_memory_reclaimed)(struct kvm *kvm); 1793 1794 int (*get_msr_feature)(struct kvm_msr_entry *entry); 1795 1796 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1797 void *insn, int insn_len); 1798 1799 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1800 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1801 1802 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1803 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1804 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1805 1806 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1807 1808 /* 1809 * Returns vCPU specific APICv inhibit reasons 1810 */ 1811 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1812 1813 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1814 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1815 }; 1816 1817 struct kvm_x86_nested_ops { 1818 void (*leave_nested)(struct kvm_vcpu *vcpu); 1819 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1820 u32 error_code); 1821 int (*check_events)(struct kvm_vcpu *vcpu); 1822 bool (*has_events)(struct kvm_vcpu *vcpu); 1823 void (*triple_fault)(struct kvm_vcpu *vcpu); 1824 int (*get_state)(struct kvm_vcpu *vcpu, 1825 struct kvm_nested_state __user *user_kvm_nested_state, 1826 unsigned user_data_size); 1827 int (*set_state)(struct kvm_vcpu *vcpu, 1828 struct kvm_nested_state __user *user_kvm_nested_state, 1829 struct kvm_nested_state *kvm_state); 1830 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1831 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1832 1833 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1834 uint16_t *vmcs_version); 1835 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1836 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1837 }; 1838 1839 struct kvm_x86_init_ops { 1840 int (*hardware_setup)(void); 1841 unsigned int (*handle_intel_pt_intr)(void); 1842 1843 struct kvm_x86_ops *runtime_ops; 1844 struct kvm_pmu_ops *pmu_ops; 1845 }; 1846 1847 struct kvm_arch_async_pf { 1848 u32 token; 1849 gfn_t gfn; 1850 unsigned long cr3; 1851 bool direct_map; 1852 u64 error_code; 1853 }; 1854 1855 extern u32 __read_mostly kvm_nr_uret_msrs; 1856 extern u64 __read_mostly host_efer; 1857 extern bool __read_mostly allow_smaller_maxphyaddr; 1858 extern bool __read_mostly enable_apicv; 1859 extern struct kvm_x86_ops kvm_x86_ops; 1860 1861 #define KVM_X86_OP(func) \ 1862 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1863 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1864 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1865 #include <asm/kvm-x86-ops.h> 1866 1867 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1868 void kvm_x86_vendor_exit(void); 1869 1870 #define __KVM_HAVE_ARCH_VM_ALLOC 1871 static inline struct kvm *kvm_arch_alloc_vm(void) 1872 { 1873 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1874 } 1875 1876 #define __KVM_HAVE_ARCH_VM_FREE 1877 void kvm_arch_free_vm(struct kvm *kvm); 1878 1879 #if IS_ENABLED(CONFIG_HYPERV) 1880 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1881 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1882 { 1883 if (kvm_x86_ops.flush_remote_tlbs && 1884 !static_call(kvm_x86_flush_remote_tlbs)(kvm)) 1885 return 0; 1886 else 1887 return -ENOTSUPP; 1888 } 1889 1890 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1891 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1892 u64 nr_pages) 1893 { 1894 if (!kvm_x86_ops.flush_remote_tlbs_range) 1895 return -EOPNOTSUPP; 1896 1897 return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1898 } 1899 #endif /* CONFIG_HYPERV */ 1900 1901 enum kvm_intr_type { 1902 /* Values are arbitrary, but must be non-zero. */ 1903 KVM_HANDLING_IRQ = 1, 1904 KVM_HANDLING_NMI, 1905 }; 1906 1907 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 1908 #define kvm_arch_pmi_in_guest(vcpu) \ 1909 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 1910 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 1911 1912 void __init kvm_mmu_x86_module_init(void); 1913 int kvm_mmu_vendor_module_init(void); 1914 void kvm_mmu_vendor_module_exit(void); 1915 1916 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1917 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1918 void kvm_mmu_init_vm(struct kvm *kvm); 1919 void kvm_mmu_uninit_vm(struct kvm *kvm); 1920 1921 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 1922 struct kvm_memory_slot *slot); 1923 1924 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 1925 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 1926 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 1927 const struct kvm_memory_slot *memslot, 1928 int start_level); 1929 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 1930 const struct kvm_memory_slot *memslot, 1931 int target_level); 1932 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 1933 const struct kvm_memory_slot *memslot, 1934 u64 start, u64 end, 1935 int target_level); 1936 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 1937 const struct kvm_memory_slot *memslot); 1938 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 1939 const struct kvm_memory_slot *memslot); 1940 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 1941 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 1942 1943 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 1944 1945 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 1946 const void *val, int bytes); 1947 1948 struct kvm_irq_mask_notifier { 1949 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 1950 int irq; 1951 struct hlist_node link; 1952 }; 1953 1954 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 1955 struct kvm_irq_mask_notifier *kimn); 1956 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 1957 struct kvm_irq_mask_notifier *kimn); 1958 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 1959 bool mask); 1960 1961 extern bool tdp_enabled; 1962 1963 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 1964 1965 /* 1966 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 1967 * userspace I/O) to indicate that the emulation context 1968 * should be reused as is, i.e. skip initialization of 1969 * emulation context, instruction fetch and decode. 1970 * 1971 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 1972 * Indicates that only select instructions (tagged with 1973 * EmulateOnUD) should be emulated (to minimize the emulator 1974 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 1975 * 1976 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 1977 * decode the instruction length. For use *only* by 1978 * kvm_x86_ops.skip_emulated_instruction() implementations if 1979 * EMULTYPE_COMPLETE_USER_EXIT is not set. 1980 * 1981 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 1982 * retry native execution under certain conditions, 1983 * Can only be set in conjunction with EMULTYPE_PF. 1984 * 1985 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 1986 * triggered by KVM's magic "force emulation" prefix, 1987 * which is opt in via module param (off by default). 1988 * Bypasses EmulateOnUD restriction despite emulating 1989 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 1990 * Used to test the full emulator from userspace. 1991 * 1992 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 1993 * backdoor emulation, which is opt in via module param. 1994 * VMware backdoor emulation handles select instructions 1995 * and reinjects the #GP for all other cases. 1996 * 1997 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which 1998 * case the CR2/GPA value pass on the stack is valid. 1999 * 2000 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2001 * state and inject single-step #DBs after skipping 2002 * an instruction (after completing userspace I/O). 2003 * 2004 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2005 * is attempting to write a gfn that contains one or 2006 * more of the PTEs used to translate the write itself, 2007 * and the owning page table is being shadowed by KVM. 2008 * If emulation of the faulting instruction fails and 2009 * this flag is set, KVM will exit to userspace instead 2010 * of retrying emulation as KVM cannot make forward 2011 * progress. 2012 * 2013 * If emulation fails for a write to guest page tables, 2014 * KVM unprotects (zaps) the shadow page for the target 2015 * gfn and resumes the guest to retry the non-emulatable 2016 * instruction (on hardware). Unprotecting the gfn 2017 * doesn't allow forward progress for a self-changing 2018 * access because doing so also zaps the translation for 2019 * the gfn, i.e. retrying the instruction will hit a 2020 * !PRESENT fault, which results in a new shadow page 2021 * and sends KVM back to square one. 2022 */ 2023 #define EMULTYPE_NO_DECODE (1 << 0) 2024 #define EMULTYPE_TRAP_UD (1 << 1) 2025 #define EMULTYPE_SKIP (1 << 2) 2026 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2027 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2028 #define EMULTYPE_VMWARE_GP (1 << 5) 2029 #define EMULTYPE_PF (1 << 6) 2030 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2031 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2032 2033 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2034 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2035 void *insn, int insn_len); 2036 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2037 u64 *data, u8 ndata); 2038 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2039 2040 void kvm_enable_efer_bits(u64); 2041 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2042 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2043 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2044 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2045 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2046 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2047 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2048 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2049 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2050 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2051 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2052 2053 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2054 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2055 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2056 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2057 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2058 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2059 2060 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2061 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2062 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2063 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2064 2065 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2066 int reason, bool has_error_code, u32 error_code); 2067 2068 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2069 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2070 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2071 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2072 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2073 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2074 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2075 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2076 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2077 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2078 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2079 2080 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2081 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2082 2083 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2084 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2085 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2086 2087 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2088 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2089 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2090 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2091 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2092 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2093 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2094 struct x86_exception *fault); 2095 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2096 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2097 2098 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2099 int irq_source_id, int level) 2100 { 2101 /* Logical OR for level trig interrupt */ 2102 if (level) 2103 __set_bit(irq_source_id, irq_state); 2104 else 2105 __clear_bit(irq_source_id, irq_state); 2106 2107 return !!(*irq_state); 2108 } 2109 2110 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2111 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2112 2113 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2114 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2115 2116 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2117 2118 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); 2119 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2120 ulong roots_to_free); 2121 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2122 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2123 struct x86_exception *exception); 2124 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2125 struct x86_exception *exception); 2126 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2127 struct x86_exception *exception); 2128 2129 bool kvm_apicv_activated(struct kvm *kvm); 2130 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2131 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2132 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2133 enum kvm_apicv_inhibit reason, bool set); 2134 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2135 enum kvm_apicv_inhibit reason, bool set); 2136 2137 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2138 enum kvm_apicv_inhibit reason) 2139 { 2140 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2141 } 2142 2143 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2144 enum kvm_apicv_inhibit reason) 2145 { 2146 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2147 } 2148 2149 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr, 2150 unsigned long a0, unsigned long a1, 2151 unsigned long a2, unsigned long a3, 2152 int op_64_bit, int cpl); 2153 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); 2154 2155 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2156 void *insn, int insn_len); 2157 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2158 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2159 u64 addr, unsigned long roots); 2160 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2161 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2162 2163 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2164 int tdp_max_root_level, int tdp_huge_page_level); 2165 2166 2167 #ifdef CONFIG_KVM_PRIVATE_MEM 2168 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2169 #else 2170 #define kvm_arch_has_private_mem(kvm) false 2171 #endif 2172 2173 static inline u16 kvm_read_ldt(void) 2174 { 2175 u16 ldt; 2176 asm("sldt %0" : "=g"(ldt)); 2177 return ldt; 2178 } 2179 2180 static inline void kvm_load_ldt(u16 sel) 2181 { 2182 asm("lldt %0" : : "rm"(sel)); 2183 } 2184 2185 #ifdef CONFIG_X86_64 2186 static inline unsigned long read_msr(unsigned long msr) 2187 { 2188 u64 value; 2189 2190 rdmsrl(msr, value); 2191 return value; 2192 } 2193 #endif 2194 2195 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2196 { 2197 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2198 } 2199 2200 #define TSS_IOPB_BASE_OFFSET 0x66 2201 #define TSS_BASE_SIZE 0x68 2202 #define TSS_IOPB_SIZE (65536 / 8) 2203 #define TSS_REDIRECTION_SIZE (256 / 8) 2204 #define RMODE_TSS_SIZE \ 2205 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2206 2207 enum { 2208 TASK_SWITCH_CALL = 0, 2209 TASK_SWITCH_IRET = 1, 2210 TASK_SWITCH_JMP = 2, 2211 TASK_SWITCH_GATE = 3, 2212 }; 2213 2214 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2215 2216 #ifdef CONFIG_KVM_SMM 2217 #define HF_SMM_MASK (1 << 1) 2218 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2219 2220 # define KVM_MAX_NR_ADDRESS_SPACES 2 2221 /* SMM is currently unsupported for guests with private memory. */ 2222 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2223 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2224 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2225 #else 2226 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2227 #endif 2228 2229 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2230 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2231 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2232 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2233 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2234 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2235 2236 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2237 unsigned long ipi_bitmap_high, u32 min, 2238 unsigned long icr, int op_64_bit); 2239 2240 int kvm_add_user_return_msr(u32 msr); 2241 int kvm_find_user_return_msr(u32 msr); 2242 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2243 2244 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2245 { 2246 return kvm_find_user_return_msr(msr) >= 0; 2247 } 2248 2249 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2250 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2251 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2252 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2253 2254 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2255 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2256 2257 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2258 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2259 unsigned long *vcpu_bitmap); 2260 2261 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2262 struct kvm_async_pf *work); 2263 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2264 struct kvm_async_pf *work); 2265 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2266 struct kvm_async_pf *work); 2267 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2268 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2269 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2270 2271 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2272 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2273 2274 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2275 u32 size); 2276 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2277 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2278 2279 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2280 struct kvm_vcpu **dest_vcpu); 2281 2282 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2283 struct kvm_lapic_irq *irq); 2284 2285 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2286 { 2287 /* We can only post Fixed and LowPrio IRQs */ 2288 return (irq->delivery_mode == APIC_DM_FIXED || 2289 irq->delivery_mode == APIC_DM_LOWEST); 2290 } 2291 2292 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2293 { 2294 static_call_cond(kvm_x86_vcpu_blocking)(vcpu); 2295 } 2296 2297 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2298 { 2299 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu); 2300 } 2301 2302 static inline int kvm_cpu_get_apicid(int mps_cpu) 2303 { 2304 #ifdef CONFIG_X86_LOCAL_APIC 2305 return default_cpu_present_to_apicid(mps_cpu); 2306 #else 2307 WARN_ON_ONCE(1); 2308 return BAD_APICID; 2309 #endif 2310 } 2311 2312 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2313 2314 #define KVM_CLOCK_VALID_FLAGS \ 2315 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2316 2317 #define KVM_X86_VALID_QUIRKS \ 2318 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2319 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2320 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2321 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2322 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2323 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2324 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) 2325 2326 /* 2327 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2328 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2329 * remaining 31 lower bits must be 0 to preserve ABI. 2330 */ 2331 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2332 2333 #endif /* _ASM_X86_KVM_HOST_H */ 2334