1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/kfifo.h> 28 #include <linux/sched/vhost_task.h> 29 #include <linux/call_once.h> 30 #include <linux/atomic.h> 31 32 #include <asm/apic.h> 33 #include <asm/pvclock-abi.h> 34 #include <asm/desc.h> 35 #include <asm/mtrr.h> 36 #include <asm/msr-index.h> 37 #include <asm/asm.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/kvm_page_track.h> 40 #include <asm/kvm_vcpu_regs.h> 41 #include <asm/reboot.h> 42 #include <hyperv/hvhdk.h> 43 44 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 45 46 /* 47 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 48 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 49 */ 50 #ifdef CONFIG_KVM_MAX_NR_VCPUS 51 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 52 #else 53 #define KVM_MAX_VCPUS 1024 54 #endif 55 56 /* 57 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 58 * might be larger than the actual number of VCPUs because the 59 * APIC ID encodes CPU topology information. 60 * 61 * In the worst case, we'll need less than one extra bit for the 62 * Core ID, and less than one extra bit for the Package (Die) ID, 63 * so ratio of 4 should be enough. 64 */ 65 #define KVM_VCPU_ID_RATIO 4 66 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 67 68 /* memory slots that are not exposed to userspace */ 69 #define KVM_INTERNAL_MEM_SLOTS 3 70 71 #define KVM_HALT_POLL_NS_DEFAULT 200000 72 73 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 74 75 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 76 KVM_DIRTY_LOG_INITIALLY_SET) 77 78 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 79 KVM_BUS_LOCK_DETECTION_EXIT) 80 81 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 82 KVM_X86_NOTIFY_VMEXIT_USER) 83 84 /* x86-specific vcpu->requests bit members */ 85 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 86 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 87 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 88 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 89 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 90 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 91 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 92 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 93 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 94 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 95 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 96 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 97 #ifdef CONFIG_KVM_SMM 98 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 99 #endif 100 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 101 #define KVM_REQ_MCLOCK_INPROGRESS \ 102 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 103 #define KVM_REQ_SCAN_IOAPIC \ 104 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 105 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 106 #define KVM_REQ_APIC_PAGE_RELOAD \ 107 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 108 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 109 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 110 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 111 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 112 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 113 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 114 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 115 #define KVM_REQ_APICV_UPDATE \ 116 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 117 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 118 #define KVM_REQ_TLB_FLUSH_GUEST \ 119 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 120 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 121 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 122 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 123 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 124 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 125 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126 #define KVM_REQ_HV_TLB_FLUSH \ 127 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 128 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE KVM_ARCH_REQ(34) 129 130 #define CR0_RESERVED_BITS \ 131 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 132 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 133 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 134 135 #define CR4_RESERVED_BITS \ 136 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 137 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 138 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 139 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 140 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 141 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 142 | X86_CR4_LAM_SUP)) 143 144 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 145 146 147 148 #define INVALID_PAGE (~(hpa_t)0) 149 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 150 151 /* KVM Hugepage definitions for x86 */ 152 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 153 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 154 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 155 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 156 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 157 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 158 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 159 160 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 161 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 162 #define KVM_MMU_HASH_SHIFT 12 163 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 164 #define KVM_MIN_FREE_MMU_PAGES 5 165 #define KVM_REFILL_PAGES 25 166 #define KVM_MAX_CPUID_ENTRIES 256 167 #define KVM_NR_VAR_MTRR 8 168 169 #define ASYNC_PF_PER_VCPU 64 170 171 enum kvm_reg { 172 VCPU_REGS_RAX = __VCPU_REGS_RAX, 173 VCPU_REGS_RCX = __VCPU_REGS_RCX, 174 VCPU_REGS_RDX = __VCPU_REGS_RDX, 175 VCPU_REGS_RBX = __VCPU_REGS_RBX, 176 VCPU_REGS_RSP = __VCPU_REGS_RSP, 177 VCPU_REGS_RBP = __VCPU_REGS_RBP, 178 VCPU_REGS_RSI = __VCPU_REGS_RSI, 179 VCPU_REGS_RDI = __VCPU_REGS_RDI, 180 #ifdef CONFIG_X86_64 181 VCPU_REGS_R8 = __VCPU_REGS_R8, 182 VCPU_REGS_R9 = __VCPU_REGS_R9, 183 VCPU_REGS_R10 = __VCPU_REGS_R10, 184 VCPU_REGS_R11 = __VCPU_REGS_R11, 185 VCPU_REGS_R12 = __VCPU_REGS_R12, 186 VCPU_REGS_R13 = __VCPU_REGS_R13, 187 VCPU_REGS_R14 = __VCPU_REGS_R14, 188 VCPU_REGS_R15 = __VCPU_REGS_R15, 189 #endif 190 VCPU_REGS_RIP, 191 NR_VCPU_REGS, 192 193 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 194 VCPU_EXREG_CR0, 195 VCPU_EXREG_CR3, 196 VCPU_EXREG_CR4, 197 VCPU_EXREG_RFLAGS, 198 VCPU_EXREG_SEGMENTS, 199 VCPU_EXREG_EXIT_INFO_1, 200 VCPU_EXREG_EXIT_INFO_2, 201 }; 202 203 enum { 204 VCPU_SREG_ES, 205 VCPU_SREG_CS, 206 VCPU_SREG_SS, 207 VCPU_SREG_DS, 208 VCPU_SREG_FS, 209 VCPU_SREG_GS, 210 VCPU_SREG_TR, 211 VCPU_SREG_LDTR, 212 }; 213 214 enum exit_fastpath_completion { 215 EXIT_FASTPATH_NONE, 216 EXIT_FASTPATH_REENTER_GUEST, 217 EXIT_FASTPATH_EXIT_HANDLED, 218 EXIT_FASTPATH_EXIT_USERSPACE, 219 }; 220 typedef enum exit_fastpath_completion fastpath_t; 221 222 struct x86_emulate_ctxt; 223 struct x86_exception; 224 union kvm_smram; 225 enum x86_intercept; 226 enum x86_intercept_stage; 227 228 #define KVM_NR_DB_REGS 4 229 230 #define DR6_BUS_LOCK (1 << 11) 231 #define DR6_BD (1 << 13) 232 #define DR6_BS (1 << 14) 233 #define DR6_BT (1 << 15) 234 #define DR6_RTM (1 << 16) 235 /* 236 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 237 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 238 * they will never be 0 for now, but when they are defined 239 * in the future it will require no code change. 240 * 241 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 242 */ 243 #define DR6_ACTIVE_LOW 0xffff0ff0 244 #define DR6_VOLATILE 0x0001e80f 245 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 246 247 #define DR7_BP_EN_MASK 0x000000ff 248 #define DR7_GE (1 << 9) 249 #define DR7_GD (1 << 13) 250 #define DR7_FIXED_1 0x00000400 251 #define DR7_VOLATILE 0xffff2bff 252 253 #define KVM_GUESTDBG_VALID_MASK \ 254 (KVM_GUESTDBG_ENABLE | \ 255 KVM_GUESTDBG_SINGLESTEP | \ 256 KVM_GUESTDBG_USE_HW_BP | \ 257 KVM_GUESTDBG_USE_SW_BP | \ 258 KVM_GUESTDBG_INJECT_BP | \ 259 KVM_GUESTDBG_INJECT_DB | \ 260 KVM_GUESTDBG_BLOCKIRQ) 261 262 #define PFERR_PRESENT_MASK BIT(0) 263 #define PFERR_WRITE_MASK BIT(1) 264 #define PFERR_USER_MASK BIT(2) 265 #define PFERR_RSVD_MASK BIT(3) 266 #define PFERR_FETCH_MASK BIT(4) 267 #define PFERR_PK_MASK BIT(5) 268 #define PFERR_SGX_MASK BIT(15) 269 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 270 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 271 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 272 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 273 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 274 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 275 276 /* 277 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 278 * when emulating instructions that triggers implicit access. 279 */ 280 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 281 /* 282 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 283 * when the guest was accessing private memory. 284 */ 285 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 286 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 287 288 /* apic attention bits */ 289 #define KVM_APIC_CHECK_VAPIC 0 290 /* 291 * The following bit is set with PV-EOI, unset on EOI. 292 * We detect PV-EOI changes by guest by comparing 293 * this bit with PV-EOI in guest memory. 294 * See the implementation in apic_update_pv_eoi. 295 */ 296 #define KVM_APIC_PV_EOI_PENDING 1 297 298 struct kvm_kernel_irq_routing_entry; 299 300 /* 301 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 302 * also includes TDP pages) to determine whether or not a page can be used in 303 * the given MMU context. This is a subset of the overall kvm_cpu_role to 304 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 305 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 306 * 307 * Upper-level shadow pages having gptes are tracked for write-protection via 308 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 309 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 310 * otherwise gfn_write_track will overflow and explosions will ensue. 311 * 312 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 313 * cannot be reused. The ability to reuse a SP is tracked by its role, which 314 * incorporates various mode bits and properties of the SP. Roughly speaking, 315 * the number of unique SPs that can theoretically be created is 2^n, where n 316 * is the number of bits that are used to compute the role. 317 * 318 * But, even though there are 20 bits in the mask below, not all combinations 319 * of modes and flags are possible: 320 * 321 * - invalid shadow pages are not accounted, mirror pages are not shadowed, 322 * so the bits are effectively 18. 323 * 324 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 325 * execonly and ad_disabled are only used for nested EPT which has 326 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 327 * 328 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 329 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 330 * paging has exactly one upper level, making level completely redundant 331 * when has_4_byte_gpte=1. 332 * 333 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 334 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 335 * 336 * Therefore, the maximum number of possible upper-level shadow pages for a 337 * single gfn is a bit less than 2^13. 338 */ 339 union kvm_mmu_page_role { 340 u32 word; 341 struct { 342 unsigned level:4; 343 unsigned has_4_byte_gpte:1; 344 unsigned quadrant:2; 345 unsigned direct:1; 346 unsigned access:3; 347 unsigned invalid:1; 348 unsigned efer_nx:1; 349 unsigned cr0_wp:1; 350 unsigned smep_andnot_wp:1; 351 unsigned smap_andnot_wp:1; 352 unsigned ad_disabled:1; 353 unsigned guest_mode:1; 354 unsigned passthrough:1; 355 unsigned is_mirror:1; 356 unsigned :4; 357 358 /* 359 * This is left at the top of the word so that 360 * kvm_memslots_for_spte_role can extract it with a 361 * simple shift. While there is room, give it a whole 362 * byte so it is also faster to load it from memory. 363 */ 364 unsigned smm:8; 365 }; 366 }; 367 368 /* 369 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 370 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 371 * including on nested transitions, if nothing in the full role changes then 372 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 373 * don't treat all-zero structure as valid data. 374 * 375 * The properties that are tracked in the extended role but not the page role 376 * are for things that either (a) do not affect the validity of the shadow page 377 * or (b) are indirectly reflected in the shadow page's role. For example, 378 * CR4.PKE only affects permission checks for software walks of the guest page 379 * tables (because KVM doesn't support Protection Keys with shadow paging), and 380 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 381 * 382 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 383 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 384 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 385 * SMAP aware regardless of CR0.WP. 386 */ 387 union kvm_mmu_extended_role { 388 u32 word; 389 struct { 390 unsigned int valid:1; 391 unsigned int execonly:1; 392 unsigned int cr4_pse:1; 393 unsigned int cr4_pke:1; 394 unsigned int cr4_smap:1; 395 unsigned int cr4_smep:1; 396 unsigned int cr4_la57:1; 397 unsigned int efer_lma:1; 398 }; 399 }; 400 401 union kvm_cpu_role { 402 u64 as_u64; 403 struct { 404 union kvm_mmu_page_role base; 405 union kvm_mmu_extended_role ext; 406 }; 407 }; 408 409 struct kvm_rmap_head { 410 atomic_long_t val; 411 }; 412 413 struct kvm_pio_request { 414 unsigned long linear_rip; 415 unsigned long count; 416 int in; 417 int port; 418 int size; 419 }; 420 421 #define PT64_ROOT_MAX_LEVEL 5 422 423 struct rsvd_bits_validate { 424 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 425 u64 bad_mt_xwr; 426 }; 427 428 struct kvm_mmu_root_info { 429 gpa_t pgd; 430 hpa_t hpa; 431 }; 432 433 #define KVM_MMU_ROOT_INFO_INVALID \ 434 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 435 436 #define KVM_MMU_NUM_PREV_ROOTS 3 437 438 #define KVM_MMU_ROOT_CURRENT BIT(0) 439 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 440 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 441 442 #define KVM_HAVE_MMU_RWLOCK 443 444 struct kvm_mmu_page; 445 struct kvm_page_fault; 446 447 /* 448 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 449 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 450 * current mmu mode. 451 */ 452 struct kvm_mmu { 453 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 454 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 455 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 456 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 457 struct x86_exception *fault); 458 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 459 gpa_t gva_or_gpa, u64 access, 460 struct x86_exception *exception); 461 int (*sync_spte)(struct kvm_vcpu *vcpu, 462 struct kvm_mmu_page *sp, int i); 463 struct kvm_mmu_root_info root; 464 hpa_t mirror_root_hpa; 465 union kvm_cpu_role cpu_role; 466 union kvm_mmu_page_role root_role; 467 468 /* 469 * The pkru_mask indicates if protection key checks are needed. It 470 * consists of 16 domains indexed by page fault error code bits [4:1], 471 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 472 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 473 */ 474 u32 pkru_mask; 475 476 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 477 478 /* 479 * Bitmap; bit set = permission fault 480 * Byte index: page fault error code [4:1] 481 * Bit index: pte permissions in ACC_* format 482 */ 483 u8 permissions[16]; 484 485 u64 *pae_root; 486 u64 *pml4_root; 487 u64 *pml5_root; 488 489 /* 490 * check zero bits on shadow page table entries, these 491 * bits include not only hardware reserved bits but also 492 * the bits spte never used. 493 */ 494 struct rsvd_bits_validate shadow_zero_check; 495 496 struct rsvd_bits_validate guest_rsvd_check; 497 498 u64 pdptrs[4]; /* pae */ 499 }; 500 501 enum pmc_type { 502 KVM_PMC_GP = 0, 503 KVM_PMC_FIXED, 504 }; 505 506 struct kvm_pmc { 507 enum pmc_type type; 508 u8 idx; 509 bool is_paused; 510 bool intr; 511 /* 512 * Base value of the PMC counter, relative to the *consumed* count in 513 * the associated perf_event. This value includes counter updates from 514 * the perf_event and emulated_count since the last time the counter 515 * was reprogrammed, but it is *not* the current value as seen by the 516 * guest or userspace. 517 * 518 * The count is relative to the associated perf_event so that KVM 519 * doesn't need to reprogram the perf_event every time the guest writes 520 * to the counter. 521 */ 522 u64 counter; 523 /* 524 * PMC events triggered by KVM emulation that haven't been fully 525 * processed, i.e. haven't undergone overflow detection. 526 */ 527 u64 emulated_counter; 528 u64 eventsel; 529 struct perf_event *perf_event; 530 struct kvm_vcpu *vcpu; 531 /* 532 * only for creating or reusing perf_event, 533 * eventsel value for general purpose counters, 534 * ctrl value for fixed counters. 535 */ 536 u64 current_config; 537 }; 538 539 /* More counters may conflict with other existing Architectural MSRs */ 540 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 541 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 542 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 543 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 544 KVM_MAX_NR_AMD_GP_COUNTERS) 545 546 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3 547 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0 548 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \ 549 KVM_MAX_NR_AMD_FIXED_COUTNERS) 550 551 struct kvm_pmu { 552 u8 version; 553 unsigned nr_arch_gp_counters; 554 unsigned nr_arch_fixed_counters; 555 unsigned available_event_types; 556 u64 fixed_ctr_ctrl; 557 u64 fixed_ctr_ctrl_rsvd; 558 u64 global_ctrl; 559 u64 global_status; 560 u64 counter_bitmask[2]; 561 u64 global_ctrl_rsvd; 562 u64 global_status_rsvd; 563 u64 reserved_bits; 564 u64 raw_event_mask; 565 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 566 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 567 568 /* 569 * Overlay the bitmap with a 64-bit atomic so that all bits can be 570 * set in a single access, e.g. to reprogram all counters when the PMU 571 * filter changes. 572 */ 573 union { 574 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 575 atomic64_t __reprogram_pmi; 576 }; 577 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 578 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 579 580 u64 ds_area; 581 u64 pebs_enable; 582 u64 pebs_enable_rsvd; 583 u64 pebs_data_cfg; 584 u64 pebs_data_cfg_rsvd; 585 586 /* 587 * If a guest counter is cross-mapped to host counter with different 588 * index, its PEBS capability will be temporarily disabled. 589 * 590 * The user should make sure that this mask is updated 591 * after disabling interrupts and before perf_guest_get_msrs(); 592 */ 593 u64 host_cross_mapped_mask; 594 595 /* 596 * The gate to release perf_events not marked in 597 * pmc_in_use only once in a vcpu time slice. 598 */ 599 bool need_cleanup; 600 601 /* 602 * The total number of programmed perf_events and it helps to avoid 603 * redundant check before cleanup if guest don't use vPMU at all. 604 */ 605 u8 event_count; 606 }; 607 608 struct kvm_pmu_ops; 609 610 enum { 611 KVM_DEBUGREG_BP_ENABLED = 1, 612 KVM_DEBUGREG_WONT_EXIT = 2, 613 }; 614 615 struct kvm_mtrr { 616 u64 var[KVM_NR_VAR_MTRR * 2]; 617 u64 fixed_64k; 618 u64 fixed_16k[2]; 619 u64 fixed_4k[8]; 620 u64 deftype; 621 }; 622 623 /* Hyper-V SynIC timer */ 624 struct kvm_vcpu_hv_stimer { 625 struct hrtimer timer; 626 int index; 627 union hv_stimer_config config; 628 u64 count; 629 u64 exp_time; 630 struct hv_message msg; 631 bool msg_pending; 632 }; 633 634 /* Hyper-V synthetic interrupt controller (SynIC)*/ 635 struct kvm_vcpu_hv_synic { 636 u64 version; 637 u64 control; 638 u64 msg_page; 639 u64 evt_page; 640 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 641 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 642 DECLARE_BITMAP(auto_eoi_bitmap, 256); 643 DECLARE_BITMAP(vec_bitmap, 256); 644 bool active; 645 bool dont_zero_synic_pages; 646 }; 647 648 /* The maximum number of entries on the TLB flush fifo. */ 649 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 650 /* 651 * Note: the following 'magic' entry is made up by KVM to avoid putting 652 * anything besides GVA on the TLB flush fifo. It is theoretically possible 653 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 654 * which will look identical. KVM's action to 'flush everything' instead of 655 * flushing these particular addresses is, however, fully legitimate as 656 * flushing more than requested is always OK. 657 */ 658 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 659 660 enum hv_tlb_flush_fifos { 661 HV_L1_TLB_FLUSH_FIFO, 662 HV_L2_TLB_FLUSH_FIFO, 663 HV_NR_TLB_FLUSH_FIFOS, 664 }; 665 666 struct kvm_vcpu_hv_tlb_flush_fifo { 667 spinlock_t write_lock; 668 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 669 }; 670 671 /* Hyper-V per vcpu emulation context */ 672 struct kvm_vcpu_hv { 673 struct kvm_vcpu *vcpu; 674 u32 vp_index; 675 u64 hv_vapic; 676 s64 runtime_offset; 677 struct kvm_vcpu_hv_synic synic; 678 struct kvm_hyperv_exit exit; 679 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 680 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 681 bool enforce_cpuid; 682 struct { 683 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 684 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 685 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 686 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 687 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 688 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 689 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 690 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 691 } cpuid_cache; 692 693 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 694 695 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 696 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 697 698 struct hv_vp_assist_page vp_assist_page; 699 700 struct { 701 u64 pa_page_gpa; 702 u64 vm_id; 703 u32 vp_id; 704 } nested; 705 }; 706 707 struct kvm_hypervisor_cpuid { 708 u32 base; 709 u32 limit; 710 }; 711 712 #ifdef CONFIG_KVM_XEN 713 /* Xen HVM per vcpu emulation context */ 714 struct kvm_vcpu_xen { 715 u64 hypercall_rip; 716 u32 current_runstate; 717 u8 upcall_vector; 718 struct gfn_to_pfn_cache vcpu_info_cache; 719 struct gfn_to_pfn_cache vcpu_time_info_cache; 720 struct gfn_to_pfn_cache runstate_cache; 721 struct gfn_to_pfn_cache runstate2_cache; 722 u64 last_steal; 723 u64 runstate_entry_time; 724 u64 runstate_times[4]; 725 unsigned long evtchn_pending_sel; 726 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 727 u32 timer_virq; 728 u64 timer_expires; /* In guest epoch */ 729 atomic_t timer_pending; 730 struct hrtimer timer; 731 int poll_evtchn; 732 struct timer_list poll_timer; 733 struct kvm_hypervisor_cpuid cpuid; 734 }; 735 #endif 736 737 struct kvm_queued_exception { 738 bool pending; 739 bool injected; 740 bool has_error_code; 741 u8 vector; 742 u32 error_code; 743 unsigned long payload; 744 bool has_payload; 745 }; 746 747 /* 748 * Hardware-defined CPUID leafs that are either scattered by the kernel or are 749 * unknown to the kernel, but need to be directly used by KVM. Note, these 750 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those. 751 */ 752 enum kvm_only_cpuid_leafs { 753 CPUID_12_EAX = NCAPINTS, 754 CPUID_7_1_EDX, 755 CPUID_8000_0007_EDX, 756 CPUID_8000_0022_EAX, 757 CPUID_7_2_EDX, 758 CPUID_24_0_EBX, 759 NR_KVM_CPU_CAPS, 760 761 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, 762 }; 763 764 struct kvm_vcpu_arch { 765 /* 766 * rip and regs accesses must go through 767 * kvm_{register,rip}_{read,write} functions. 768 */ 769 unsigned long regs[NR_VCPU_REGS]; 770 u32 regs_avail; 771 u32 regs_dirty; 772 773 unsigned long cr0; 774 unsigned long cr0_guest_owned_bits; 775 unsigned long cr2; 776 unsigned long cr3; 777 unsigned long cr4; 778 unsigned long cr4_guest_owned_bits; 779 unsigned long cr4_guest_rsvd_bits; 780 unsigned long cr8; 781 u32 host_pkru; 782 u32 pkru; 783 u32 hflags; 784 u64 efer; 785 u64 host_debugctl; 786 u64 apic_base; 787 struct kvm_lapic *apic; /* kernel irqchip context */ 788 bool load_eoi_exitmap_pending; 789 DECLARE_BITMAP(ioapic_handled_vectors, 256); 790 unsigned long apic_attention; 791 int32_t apic_arb_prio; 792 int mp_state; 793 u64 ia32_misc_enable_msr; 794 u64 smbase; 795 u64 smi_count; 796 bool at_instruction_boundary; 797 bool tpr_access_reporting; 798 bool xfd_no_write_intercept; 799 u64 ia32_xss; 800 u64 microcode_version; 801 u64 arch_capabilities; 802 u64 perf_capabilities; 803 804 /* 805 * Paging state of the vcpu 806 * 807 * If the vcpu runs in guest mode with two level paging this still saves 808 * the paging mode of the l1 guest. This context is always used to 809 * handle faults. 810 */ 811 struct kvm_mmu *mmu; 812 813 /* Non-nested MMU for L1 */ 814 struct kvm_mmu root_mmu; 815 816 /* L1 MMU when running nested */ 817 struct kvm_mmu guest_mmu; 818 819 /* 820 * Paging state of an L2 guest (used for nested npt) 821 * 822 * This context will save all necessary information to walk page tables 823 * of an L2 guest. This context is only initialized for page table 824 * walking and not for faulting since we never handle l2 page faults on 825 * the host. 826 */ 827 struct kvm_mmu nested_mmu; 828 829 /* 830 * Pointer to the mmu context currently used for 831 * gva_to_gpa translations. 832 */ 833 struct kvm_mmu *walk_mmu; 834 835 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 836 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 837 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 838 struct kvm_mmu_memory_cache mmu_page_header_cache; 839 /* 840 * This cache is to allocate external page table. E.g. private EPT used 841 * by the TDX module. 842 */ 843 struct kvm_mmu_memory_cache mmu_external_spt_cache; 844 845 /* 846 * QEMU userspace and the guest each have their own FPU state. 847 * In vcpu_run, we switch between the user and guest FPU contexts. 848 * While running a VCPU, the VCPU thread will have the guest FPU 849 * context. 850 * 851 * Note that while the PKRU state lives inside the fpu registers, 852 * it is switched out separately at VMENTER and VMEXIT time. The 853 * "guest_fpstate" state here contains the guest FPU context, with the 854 * host PRKU bits. 855 */ 856 struct fpu_guest guest_fpu; 857 858 u64 xcr0; 859 u64 guest_supported_xcr0; 860 861 struct kvm_pio_request pio; 862 void *pio_data; 863 void *sev_pio_data; 864 unsigned sev_pio_count; 865 866 u8 event_exit_inst_len; 867 868 bool exception_from_userspace; 869 870 /* Exceptions to be injected to the guest. */ 871 struct kvm_queued_exception exception; 872 /* Exception VM-Exits to be synthesized to L1. */ 873 struct kvm_queued_exception exception_vmexit; 874 875 struct kvm_queued_interrupt { 876 bool injected; 877 bool soft; 878 u8 nr; 879 } interrupt; 880 881 int halt_request; /* real mode on Intel only */ 882 883 int cpuid_nent; 884 struct kvm_cpuid_entry2 *cpuid_entries; 885 bool cpuid_dynamic_bits_dirty; 886 bool is_amd_compatible; 887 888 /* 889 * cpu_caps holds the effective guest capabilities, i.e. the features 890 * the vCPU is allowed to use. Typically, but not always, features can 891 * be used by the guest if and only if both KVM and userspace want to 892 * expose the feature to the guest. 893 * 894 * A common exception is for virtualization holes, i.e. when KVM can't 895 * prevent the guest from using a feature, in which case the vCPU "has" 896 * the feature regardless of what KVM or userspace desires. 897 * 898 * Note, features that don't require KVM involvement in any way are 899 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the 900 * guest CPUID provided by userspace. 901 */ 902 u32 cpu_caps[NR_KVM_CPU_CAPS]; 903 904 u64 reserved_gpa_bits; 905 int maxphyaddr; 906 907 /* emulate context */ 908 909 struct x86_emulate_ctxt *emulate_ctxt; 910 bool emulate_regs_need_sync_to_vcpu; 911 bool emulate_regs_need_sync_from_vcpu; 912 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 913 914 gpa_t time; 915 s8 pvclock_tsc_shift; 916 u32 pvclock_tsc_mul; 917 unsigned int hw_tsc_khz; 918 struct gfn_to_pfn_cache pv_time; 919 /* set guest stopped flag in pvclock flags field */ 920 bool pvclock_set_guest_stopped_request; 921 922 struct { 923 u8 preempted; 924 u64 msr_val; 925 u64 last_steal; 926 struct gfn_to_hva_cache cache; 927 } st; 928 929 u64 l1_tsc_offset; 930 u64 tsc_offset; /* current tsc offset */ 931 u64 last_guest_tsc; 932 u64 last_host_tsc; 933 u64 tsc_offset_adjustment; 934 u64 this_tsc_nsec; 935 u64 this_tsc_write; 936 u64 this_tsc_generation; 937 bool tsc_catchup; 938 bool tsc_always_catchup; 939 s8 virtual_tsc_shift; 940 u32 virtual_tsc_mult; 941 u32 virtual_tsc_khz; 942 s64 ia32_tsc_adjust_msr; 943 u64 msr_ia32_power_ctl; 944 u64 l1_tsc_scaling_ratio; 945 u64 tsc_scaling_ratio; /* current scaling ratio */ 946 947 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 948 /* Number of NMIs pending injection, not including hardware vNMIs. */ 949 unsigned int nmi_pending; 950 bool nmi_injected; /* Trying to inject an NMI this entry */ 951 bool smi_pending; /* SMI queued after currently running handler */ 952 u8 handling_intr_from_guest; 953 954 struct kvm_mtrr mtrr_state; 955 u64 pat; 956 957 unsigned switch_db_regs; 958 unsigned long db[KVM_NR_DB_REGS]; 959 unsigned long dr6; 960 unsigned long dr7; 961 unsigned long eff_db[KVM_NR_DB_REGS]; 962 unsigned long guest_debug_dr7; 963 u64 msr_platform_info; 964 u64 msr_misc_features_enables; 965 966 u64 mcg_cap; 967 u64 mcg_status; 968 u64 mcg_ctl; 969 u64 mcg_ext_ctl; 970 u64 *mce_banks; 971 u64 *mci_ctl2_banks; 972 973 /* Cache MMIO info */ 974 u64 mmio_gva; 975 unsigned mmio_access; 976 gfn_t mmio_gfn; 977 u64 mmio_gen; 978 979 struct kvm_pmu pmu; 980 981 /* used for guest single stepping over the given code position */ 982 unsigned long singlestep_rip; 983 984 #ifdef CONFIG_KVM_HYPERV 985 bool hyperv_enabled; 986 struct kvm_vcpu_hv *hyperv; 987 #endif 988 #ifdef CONFIG_KVM_XEN 989 struct kvm_vcpu_xen xen; 990 #endif 991 cpumask_var_t wbinvd_dirty_mask; 992 993 unsigned long last_retry_eip; 994 unsigned long last_retry_addr; 995 996 struct { 997 bool halted; 998 gfn_t gfns[ASYNC_PF_PER_VCPU]; 999 struct gfn_to_hva_cache data; 1000 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 1001 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 1002 u16 vec; 1003 u32 id; 1004 u32 host_apf_flags; 1005 bool send_always; 1006 bool delivery_as_pf_vmexit; 1007 bool pageready_pending; 1008 } apf; 1009 1010 /* OSVW MSRs (AMD only) */ 1011 struct { 1012 u64 length; 1013 u64 status; 1014 } osvw; 1015 1016 struct { 1017 u64 msr_val; 1018 struct gfn_to_hva_cache data; 1019 } pv_eoi; 1020 1021 u64 msr_kvm_poll_control; 1022 1023 /* pv related host specific info */ 1024 struct { 1025 bool pv_unhalted; 1026 } pv; 1027 1028 int pending_ioapic_eoi; 1029 int pending_external_vector; 1030 1031 /* be preempted when it's in kernel-mode(cpl=0) */ 1032 bool preempted_in_kernel; 1033 1034 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1035 bool l1tf_flush_l1d; 1036 1037 /* Host CPU on which VM-entry was most recently attempted */ 1038 int last_vmentry_cpu; 1039 1040 /* AMD MSRC001_0015 Hardware Configuration */ 1041 u64 msr_hwcr; 1042 1043 /* pv related cpuid info */ 1044 struct { 1045 /* 1046 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1047 * leaf. 1048 */ 1049 u32 features; 1050 1051 /* 1052 * indicates whether pv emulation should be disabled if features 1053 * are not present in the guest's cpuid 1054 */ 1055 bool enforce; 1056 } pv_cpuid; 1057 1058 /* Protected Guests */ 1059 bool guest_state_protected; 1060 bool guest_tsc_protected; 1061 1062 /* 1063 * Set when PDPTS were loaded directly by the userspace without 1064 * reading the guest memory 1065 */ 1066 bool pdptrs_from_userspace; 1067 1068 #if IS_ENABLED(CONFIG_HYPERV) 1069 hpa_t hv_root_tdp; 1070 #endif 1071 }; 1072 1073 struct kvm_lpage_info { 1074 int disallow_lpage; 1075 }; 1076 1077 struct kvm_arch_memory_slot { 1078 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1079 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1080 unsigned short *gfn_write_track; 1081 }; 1082 1083 /* 1084 * Track the mode of the optimized logical map, as the rules for decoding the 1085 * destination vary per mode. Enabling the optimized logical map requires all 1086 * software-enabled local APIs to be in the same mode, each addressable APIC to 1087 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1088 */ 1089 enum kvm_apic_logical_mode { 1090 /* All local APICs are software disabled. */ 1091 KVM_APIC_MODE_SW_DISABLED, 1092 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1093 KVM_APIC_MODE_XAPIC_CLUSTER, 1094 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1095 KVM_APIC_MODE_XAPIC_FLAT, 1096 /* All software enabled local APICs in x2APIC mode. */ 1097 KVM_APIC_MODE_X2APIC, 1098 /* 1099 * Optimized map disabled, e.g. not all local APICs in the same logical 1100 * mode, same logical ID assigned to multiple APICs, etc. 1101 */ 1102 KVM_APIC_MODE_MAP_DISABLED, 1103 }; 1104 1105 struct kvm_apic_map { 1106 struct rcu_head rcu; 1107 enum kvm_apic_logical_mode logical_mode; 1108 u32 max_apic_id; 1109 union { 1110 struct kvm_lapic *xapic_flat_map[8]; 1111 struct kvm_lapic *xapic_cluster_map[16][4]; 1112 }; 1113 struct kvm_lapic *phys_map[]; 1114 }; 1115 1116 /* Hyper-V synthetic debugger (SynDbg)*/ 1117 struct kvm_hv_syndbg { 1118 struct { 1119 u64 control; 1120 u64 status; 1121 u64 send_page; 1122 u64 recv_page; 1123 u64 pending_page; 1124 } control; 1125 u64 options; 1126 }; 1127 1128 /* Current state of Hyper-V TSC page clocksource */ 1129 enum hv_tsc_page_status { 1130 /* TSC page was not set up or disabled */ 1131 HV_TSC_PAGE_UNSET = 0, 1132 /* TSC page MSR was written by the guest, update pending */ 1133 HV_TSC_PAGE_GUEST_CHANGED, 1134 /* TSC page update was triggered from the host side */ 1135 HV_TSC_PAGE_HOST_CHANGED, 1136 /* TSC page was properly set up and is currently active */ 1137 HV_TSC_PAGE_SET, 1138 /* TSC page was set up with an inaccessible GPA */ 1139 HV_TSC_PAGE_BROKEN, 1140 }; 1141 1142 #ifdef CONFIG_KVM_HYPERV 1143 /* Hyper-V emulation context */ 1144 struct kvm_hv { 1145 struct mutex hv_lock; 1146 u64 hv_guest_os_id; 1147 u64 hv_hypercall; 1148 u64 hv_tsc_page; 1149 enum hv_tsc_page_status hv_tsc_page_status; 1150 1151 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1152 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1153 u64 hv_crash_ctl; 1154 1155 struct ms_hyperv_tsc_page tsc_ref; 1156 1157 struct idr conn_to_evt; 1158 1159 u64 hv_reenlightenment_control; 1160 u64 hv_tsc_emulation_control; 1161 u64 hv_tsc_emulation_status; 1162 u64 hv_invtsc_control; 1163 1164 /* How many vCPUs have VP index != vCPU index */ 1165 atomic_t num_mismatched_vp_indexes; 1166 1167 /* 1168 * How many SynICs use 'AutoEOI' feature 1169 * (protected by arch.apicv_update_lock) 1170 */ 1171 unsigned int synic_auto_eoi_used; 1172 1173 struct kvm_hv_syndbg hv_syndbg; 1174 1175 bool xsaves_xsavec_checked; 1176 }; 1177 #endif 1178 1179 struct msr_bitmap_range { 1180 u32 flags; 1181 u32 nmsrs; 1182 u32 base; 1183 unsigned long *bitmap; 1184 }; 1185 1186 #ifdef CONFIG_KVM_XEN 1187 /* Xen emulation context */ 1188 struct kvm_xen { 1189 struct mutex xen_lock; 1190 u32 xen_version; 1191 bool long_mode; 1192 bool runstate_update_flag; 1193 u8 upcall_vector; 1194 struct gfn_to_pfn_cache shinfo_cache; 1195 struct idr evtchn_ports; 1196 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1197 1198 struct kvm_xen_hvm_config hvm_config; 1199 }; 1200 #endif 1201 1202 enum kvm_irqchip_mode { 1203 KVM_IRQCHIP_NONE, 1204 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1205 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1206 }; 1207 1208 struct kvm_x86_msr_filter { 1209 u8 count; 1210 bool default_allow:1; 1211 struct msr_bitmap_range ranges[16]; 1212 }; 1213 1214 struct kvm_x86_pmu_event_filter { 1215 __u32 action; 1216 __u32 nevents; 1217 __u32 fixed_counter_bitmap; 1218 __u32 flags; 1219 __u32 nr_includes; 1220 __u32 nr_excludes; 1221 __u64 *includes; 1222 __u64 *excludes; 1223 __u64 events[]; 1224 }; 1225 1226 enum kvm_apicv_inhibit { 1227 1228 /********************************************************************/ 1229 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1230 /********************************************************************/ 1231 1232 /* 1233 * APIC acceleration is disabled by a module parameter 1234 * and/or not supported in hardware. 1235 */ 1236 APICV_INHIBIT_REASON_DISABLED, 1237 1238 /* 1239 * APIC acceleration is inhibited because AutoEOI feature is 1240 * being used by a HyperV guest. 1241 */ 1242 APICV_INHIBIT_REASON_HYPERV, 1243 1244 /* 1245 * APIC acceleration is inhibited because the userspace didn't yet 1246 * enable the kernel/split irqchip. 1247 */ 1248 APICV_INHIBIT_REASON_ABSENT, 1249 1250 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1251 * (out of band, debug measure of blocking all interrupts on this vCPU) 1252 * was enabled, to avoid AVIC/APICv bypassing it. 1253 */ 1254 APICV_INHIBIT_REASON_BLOCKIRQ, 1255 1256 /* 1257 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1258 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1259 */ 1260 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1261 1262 /* 1263 * For simplicity, the APIC acceleration is inhibited 1264 * first time either APIC ID or APIC base are changed by the guest 1265 * from their reset values. 1266 */ 1267 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1268 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1269 1270 /******************************************************/ 1271 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1272 /******************************************************/ 1273 1274 /* 1275 * AVIC is inhibited on a vCPU because it runs a nested guest. 1276 * 1277 * This is needed because unlike APICv, the peers of this vCPU 1278 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1279 * a vCPU runs nested. 1280 */ 1281 APICV_INHIBIT_REASON_NESTED, 1282 1283 /* 1284 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1285 * which cannot be injected when the AVIC is enabled, thus AVIC 1286 * is inhibited while KVM waits for IRQ window. 1287 */ 1288 APICV_INHIBIT_REASON_IRQWIN, 1289 1290 /* 1291 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1292 * which AVIC doesn't support for edge triggered interrupts. 1293 */ 1294 APICV_INHIBIT_REASON_PIT_REINJ, 1295 1296 /* 1297 * AVIC is disabled because SEV doesn't support it. 1298 */ 1299 APICV_INHIBIT_REASON_SEV, 1300 1301 /* 1302 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1303 * mapping between logical ID and vCPU. 1304 */ 1305 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1306 1307 NR_APICV_INHIBIT_REASONS, 1308 }; 1309 1310 #define __APICV_INHIBIT_REASON(reason) \ 1311 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1312 1313 #define APICV_INHIBIT_REASONS \ 1314 __APICV_INHIBIT_REASON(DISABLED), \ 1315 __APICV_INHIBIT_REASON(HYPERV), \ 1316 __APICV_INHIBIT_REASON(ABSENT), \ 1317 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1318 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1319 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1320 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1321 __APICV_INHIBIT_REASON(NESTED), \ 1322 __APICV_INHIBIT_REASON(IRQWIN), \ 1323 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1324 __APICV_INHIBIT_REASON(SEV), \ 1325 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED) 1326 1327 struct kvm_arch { 1328 unsigned long n_used_mmu_pages; 1329 unsigned long n_requested_mmu_pages; 1330 unsigned long n_max_mmu_pages; 1331 unsigned int indirect_shadow_pages; 1332 u8 mmu_valid_gen; 1333 u8 vm_type; 1334 bool has_private_mem; 1335 bool has_protected_state; 1336 bool pre_fault_allowed; 1337 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1338 struct list_head active_mmu_pages; 1339 /* 1340 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1341 * replaced by an NX huge page. A shadow page is on this list if its 1342 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1343 * and there are no other conditions that prevent a huge page, e.g. 1344 * the backing host page is huge, dirtly logging is not enabled for its 1345 * memslot, etc... Note, zapping shadow pages on this list doesn't 1346 * guarantee an NX huge page will be created in its stead, e.g. if the 1347 * guest attempts to execute from the region then KVM obviously can't 1348 * create an NX huge page (without hanging the guest). 1349 */ 1350 struct list_head possible_nx_huge_pages; 1351 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1352 struct kvm_page_track_notifier_head track_notifier_head; 1353 #endif 1354 /* 1355 * Protects marking pages unsync during page faults, as TDP MMU page 1356 * faults only take mmu_lock for read. For simplicity, the unsync 1357 * pages lock is always taken when marking pages unsync regardless of 1358 * whether mmu_lock is held for read or write. 1359 */ 1360 spinlock_t mmu_unsync_pages_lock; 1361 1362 u64 shadow_mmio_value; 1363 1364 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1365 atomic_t noncoherent_dma_count; 1366 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1367 atomic_t assigned_device_count; 1368 struct kvm_pic *vpic; 1369 struct kvm_ioapic *vioapic; 1370 struct kvm_pit *vpit; 1371 atomic_t vapics_in_nmi_mode; 1372 struct mutex apic_map_lock; 1373 struct kvm_apic_map __rcu *apic_map; 1374 atomic_t apic_map_dirty; 1375 1376 bool apic_access_memslot_enabled; 1377 bool apic_access_memslot_inhibited; 1378 1379 /* Protects apicv_inhibit_reasons */ 1380 struct rw_semaphore apicv_update_lock; 1381 unsigned long apicv_inhibit_reasons; 1382 1383 gpa_t wall_clock; 1384 1385 bool mwait_in_guest; 1386 bool hlt_in_guest; 1387 bool pause_in_guest; 1388 bool cstate_in_guest; 1389 1390 unsigned long irq_sources_bitmap; 1391 s64 kvmclock_offset; 1392 1393 /* 1394 * This also protects nr_vcpus_matched_tsc which is read from a 1395 * preemption-disabled region, so it must be a raw spinlock. 1396 */ 1397 raw_spinlock_t tsc_write_lock; 1398 u64 last_tsc_nsec; 1399 u64 last_tsc_write; 1400 u32 last_tsc_khz; 1401 u64 last_tsc_offset; 1402 u64 cur_tsc_nsec; 1403 u64 cur_tsc_write; 1404 u64 cur_tsc_offset; 1405 u64 cur_tsc_generation; 1406 int nr_vcpus_matched_tsc; 1407 1408 u32 default_tsc_khz; 1409 bool user_set_tsc; 1410 u64 apic_bus_cycle_ns; 1411 1412 seqcount_raw_spinlock_t pvclock_sc; 1413 bool use_master_clock; 1414 u64 master_kernel_ns; 1415 u64 master_cycle_now; 1416 struct delayed_work kvmclock_update_work; 1417 struct delayed_work kvmclock_sync_work; 1418 1419 /* reads protected by irq_srcu, writes by irq_lock */ 1420 struct hlist_head mask_notifier_list; 1421 1422 #ifdef CONFIG_KVM_HYPERV 1423 struct kvm_hv hyperv; 1424 #endif 1425 1426 #ifdef CONFIG_KVM_XEN 1427 struct kvm_xen xen; 1428 #endif 1429 1430 bool backwards_tsc_observed; 1431 bool boot_vcpu_runs_old_kvmclock; 1432 u32 bsp_vcpu_id; 1433 1434 u64 disabled_quirks; 1435 1436 enum kvm_irqchip_mode irqchip_mode; 1437 u8 nr_reserved_ioapic_pins; 1438 1439 bool disabled_lapic_found; 1440 1441 bool x2apic_format; 1442 bool x2apic_broadcast_quirk_disabled; 1443 1444 bool guest_can_read_msr_platform_info; 1445 bool exception_payload_enabled; 1446 1447 bool triple_fault_event; 1448 1449 bool bus_lock_detection_enabled; 1450 bool enable_pmu; 1451 1452 u32 notify_window; 1453 u32 notify_vmexit_flags; 1454 /* 1455 * If exit_on_emulation_error is set, and the in-kernel instruction 1456 * emulator fails to emulate an instruction, allow userspace 1457 * the opportunity to look at it. 1458 */ 1459 bool exit_on_emulation_error; 1460 1461 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1462 u32 user_space_msr_mask; 1463 struct kvm_x86_msr_filter __rcu *msr_filter; 1464 1465 u32 hypercall_exit_enabled; 1466 1467 /* Guest can access the SGX PROVISIONKEY. */ 1468 bool sgx_provisioning_allowed; 1469 1470 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1471 struct vhost_task *nx_huge_page_recovery_thread; 1472 u64 nx_huge_page_last; 1473 struct once nx_once; 1474 1475 #ifdef CONFIG_X86_64 1476 #ifdef CONFIG_KVM_PROVE_MMU 1477 /* 1478 * The number of TDP MMU pages across all roots. Used only to sanity 1479 * check that KVM isn't leaking TDP MMU pages. 1480 */ 1481 atomic64_t tdp_mmu_pages; 1482 #endif 1483 1484 /* 1485 * List of struct kvm_mmu_pages being used as roots. 1486 * All struct kvm_mmu_pages in the list should have 1487 * tdp_mmu_page set. 1488 * 1489 * For reads, this list is protected by: 1490 * RCU alone or 1491 * the MMU lock in read mode + RCU or 1492 * the MMU lock in write mode 1493 * 1494 * For writes, this list is protected by tdp_mmu_pages_lock; see 1495 * below for the details. 1496 * 1497 * Roots will remain in the list until their tdp_mmu_root_count 1498 * drops to zero, at which point the thread that decremented the 1499 * count to zero should removed the root from the list and clean 1500 * it up, freeing the root after an RCU grace period. 1501 */ 1502 struct list_head tdp_mmu_roots; 1503 1504 /* 1505 * Protects accesses to the following fields when the MMU lock 1506 * is held in read mode: 1507 * - tdp_mmu_roots (above) 1508 * - the link field of kvm_mmu_page structs used by the TDP MMU 1509 * - possible_nx_huge_pages; 1510 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1511 * by the TDP MMU 1512 * Because the lock is only taken within the MMU lock, strictly 1513 * speaking it is redundant to acquire this lock when the thread 1514 * holds the MMU lock in write mode. However it often simplifies 1515 * the code to do so. 1516 */ 1517 spinlock_t tdp_mmu_pages_lock; 1518 #endif /* CONFIG_X86_64 */ 1519 1520 /* 1521 * If set, at least one shadow root has been allocated. This flag 1522 * is used as one input when determining whether certain memslot 1523 * related allocations are necessary. 1524 */ 1525 bool shadow_root_allocated; 1526 1527 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1528 /* 1529 * If set, the VM has (or had) an external write tracking user, and 1530 * thus all write tracking metadata has been allocated, even if KVM 1531 * itself isn't using write tracking. 1532 */ 1533 bool external_write_tracking_enabled; 1534 #endif 1535 1536 #if IS_ENABLED(CONFIG_HYPERV) 1537 hpa_t hv_root_tdp; 1538 spinlock_t hv_root_tdp_lock; 1539 struct hv_partition_assist_pg *hv_pa_pg; 1540 #endif 1541 /* 1542 * VM-scope maximum vCPU ID. Used to determine the size of structures 1543 * that increase along with the maximum vCPU ID, in which case, using 1544 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1545 */ 1546 u32 max_vcpu_ids; 1547 1548 bool disable_nx_huge_pages; 1549 1550 /* 1551 * Memory caches used to allocate shadow pages when performing eager 1552 * page splitting. No need for a shadowed_info_cache since eager page 1553 * splitting only allocates direct shadow pages. 1554 * 1555 * Protected by kvm->slots_lock. 1556 */ 1557 struct kvm_mmu_memory_cache split_shadow_page_cache; 1558 struct kvm_mmu_memory_cache split_page_header_cache; 1559 1560 /* 1561 * Memory cache used to allocate pte_list_desc structs while splitting 1562 * huge pages. In the worst case, to split one huge page, 512 1563 * pte_list_desc structs are needed to add each lower level leaf sptep 1564 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1565 * page table. 1566 * 1567 * Protected by kvm->slots_lock. 1568 */ 1569 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1570 struct kvm_mmu_memory_cache split_desc_cache; 1571 1572 gfn_t gfn_direct_bits; 1573 }; 1574 1575 struct kvm_vm_stat { 1576 struct kvm_vm_stat_generic generic; 1577 u64 mmu_shadow_zapped; 1578 u64 mmu_pte_write; 1579 u64 mmu_pde_zapped; 1580 u64 mmu_flooded; 1581 u64 mmu_recycled; 1582 u64 mmu_cache_miss; 1583 u64 mmu_unsync; 1584 union { 1585 struct { 1586 atomic64_t pages_4k; 1587 atomic64_t pages_2m; 1588 atomic64_t pages_1g; 1589 }; 1590 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1591 }; 1592 u64 nx_lpage_splits; 1593 u64 max_mmu_page_hash_collisions; 1594 u64 max_mmu_rmap_size; 1595 }; 1596 1597 struct kvm_vcpu_stat { 1598 struct kvm_vcpu_stat_generic generic; 1599 u64 pf_taken; 1600 u64 pf_fixed; 1601 u64 pf_emulate; 1602 u64 pf_spurious; 1603 u64 pf_fast; 1604 u64 pf_mmio_spte_created; 1605 u64 pf_guest; 1606 u64 tlb_flush; 1607 u64 invlpg; 1608 1609 u64 exits; 1610 u64 io_exits; 1611 u64 mmio_exits; 1612 u64 signal_exits; 1613 u64 irq_window_exits; 1614 u64 nmi_window_exits; 1615 u64 l1d_flush; 1616 u64 halt_exits; 1617 u64 request_irq_exits; 1618 u64 irq_exits; 1619 u64 host_state_reload; 1620 u64 fpu_reload; 1621 u64 insn_emulation; 1622 u64 insn_emulation_fail; 1623 u64 hypercalls; 1624 u64 irq_injections; 1625 u64 nmi_injections; 1626 u64 req_event; 1627 u64 nested_run; 1628 u64 directed_yield_attempted; 1629 u64 directed_yield_successful; 1630 u64 preemption_reported; 1631 u64 preemption_other; 1632 u64 guest_mode; 1633 u64 notify_window_exits; 1634 }; 1635 1636 struct x86_instruction_info; 1637 1638 struct msr_data { 1639 bool host_initiated; 1640 u32 index; 1641 u64 data; 1642 }; 1643 1644 struct kvm_lapic_irq { 1645 u32 vector; 1646 u16 delivery_mode; 1647 u16 dest_mode; 1648 bool level; 1649 u16 trig_mode; 1650 u32 shorthand; 1651 u32 dest_id; 1652 bool msi_redir_hint; 1653 }; 1654 1655 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1656 { 1657 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1658 } 1659 1660 struct kvm_x86_ops { 1661 const char *name; 1662 1663 int (*check_processor_compatibility)(void); 1664 1665 int (*enable_virtualization_cpu)(void); 1666 void (*disable_virtualization_cpu)(void); 1667 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1668 1669 void (*hardware_unsetup)(void); 1670 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1671 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1672 1673 unsigned int vm_size; 1674 int (*vm_init)(struct kvm *kvm); 1675 void (*vm_destroy)(struct kvm *kvm); 1676 1677 /* Create, but do not attach this VCPU */ 1678 int (*vcpu_precreate)(struct kvm *kvm); 1679 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1680 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1681 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1682 1683 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1684 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1685 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1686 1687 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1688 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1689 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1690 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1691 void (*get_segment)(struct kvm_vcpu *vcpu, 1692 struct kvm_segment *var, int seg); 1693 int (*get_cpl)(struct kvm_vcpu *vcpu); 1694 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu); 1695 void (*set_segment)(struct kvm_vcpu *vcpu, 1696 struct kvm_segment *var, int seg); 1697 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1698 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1699 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1700 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1701 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1702 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1703 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1704 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1705 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1706 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1707 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1708 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1709 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value); 1710 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1711 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1712 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1713 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1714 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1715 1716 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1717 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1718 #if IS_ENABLED(CONFIG_HYPERV) 1719 int (*flush_remote_tlbs)(struct kvm *kvm); 1720 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1721 gfn_t nr_pages); 1722 #endif 1723 1724 /* 1725 * Flush any TLB entries associated with the given GVA. 1726 * Does not need to flush GPA->HPA mappings. 1727 * Can potentially get non-canonical addresses through INVLPGs, which 1728 * the implementation may choose to ignore if appropriate. 1729 */ 1730 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1731 1732 /* 1733 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1734 * does not need to flush GPA->HPA mappings. 1735 */ 1736 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1737 1738 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1739 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1740 bool force_immediate_exit); 1741 int (*handle_exit)(struct kvm_vcpu *vcpu, 1742 enum exit_fastpath_completion exit_fastpath); 1743 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1744 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1745 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1746 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1747 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1748 unsigned char *hypercall_addr); 1749 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1750 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1751 void (*inject_exception)(struct kvm_vcpu *vcpu); 1752 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1753 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1754 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1755 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1756 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1757 /* Whether or not a virtual NMI is pending in hardware. */ 1758 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1759 /* 1760 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1761 * to allow using static_call_ret0 as the fallback. 1762 */ 1763 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1764 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1765 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1766 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1767 1768 const bool x2apic_icr_is_split; 1769 const unsigned long required_apicv_inhibits; 1770 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1771 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1772 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1773 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1774 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1775 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1776 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1777 int trig_mode, int vector); 1778 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1779 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1780 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1781 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1782 1783 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1784 int root_level); 1785 1786 /* Update external mapping with page table link. */ 1787 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1788 void *external_spt); 1789 /* Update the external page table from spte getting set. */ 1790 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1791 kvm_pfn_t pfn_for_gfn); 1792 1793 /* Update external page tables for page table about to be freed. */ 1794 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1795 void *external_spt); 1796 1797 /* Update external page table from spte getting removed, and flush TLB. */ 1798 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1799 kvm_pfn_t pfn_for_gfn); 1800 1801 bool (*has_wbinvd_exit)(void); 1802 1803 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1804 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1805 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1806 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1807 1808 /* 1809 * Retrieve somewhat arbitrary exit/entry information. Intended to 1810 * be used only from within tracepoints or error paths. 1811 */ 1812 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1813 u64 *info1, u64 *info2, 1814 u32 *intr_info, u32 *error_code); 1815 1816 void (*get_entry_info)(struct kvm_vcpu *vcpu, 1817 u32 *intr_info, u32 *error_code); 1818 1819 int (*check_intercept)(struct kvm_vcpu *vcpu, 1820 struct x86_instruction_info *info, 1821 enum x86_intercept_stage stage, 1822 struct x86_exception *exception); 1823 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1824 1825 /* 1826 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero 1827 * value indicates CPU dirty logging is unsupported or disabled. 1828 */ 1829 int cpu_dirty_log_size; 1830 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1831 1832 const struct kvm_x86_nested_ops *nested_ops; 1833 1834 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1835 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1836 1837 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1838 uint32_t guest_irq, bool set); 1839 void (*pi_start_assignment)(struct kvm *kvm); 1840 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1841 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1842 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1843 1844 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1845 bool *expired); 1846 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1847 1848 void (*setup_mce)(struct kvm_vcpu *vcpu); 1849 1850 #ifdef CONFIG_KVM_SMM 1851 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1852 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1853 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1854 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1855 #endif 1856 1857 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1858 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1859 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1860 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1861 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1862 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1863 void (*guest_memory_reclaimed)(struct kvm *kvm); 1864 1865 int (*get_feature_msr)(u32 msr, u64 *data); 1866 1867 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1868 void *insn, int insn_len); 1869 1870 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1871 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1872 1873 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1874 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1875 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1876 1877 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1878 1879 /* 1880 * Returns vCPU specific APICv inhibit reasons 1881 */ 1882 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1883 1884 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1885 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1886 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1887 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1888 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn); 1889 }; 1890 1891 struct kvm_x86_nested_ops { 1892 void (*leave_nested)(struct kvm_vcpu *vcpu); 1893 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1894 u32 error_code); 1895 int (*check_events)(struct kvm_vcpu *vcpu); 1896 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1897 void (*triple_fault)(struct kvm_vcpu *vcpu); 1898 int (*get_state)(struct kvm_vcpu *vcpu, 1899 struct kvm_nested_state __user *user_kvm_nested_state, 1900 unsigned user_data_size); 1901 int (*set_state)(struct kvm_vcpu *vcpu, 1902 struct kvm_nested_state __user *user_kvm_nested_state, 1903 struct kvm_nested_state *kvm_state); 1904 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1905 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1906 1907 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1908 uint16_t *vmcs_version); 1909 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1910 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1911 }; 1912 1913 struct kvm_x86_init_ops { 1914 int (*hardware_setup)(void); 1915 unsigned int (*handle_intel_pt_intr)(void); 1916 1917 struct kvm_x86_ops *runtime_ops; 1918 struct kvm_pmu_ops *pmu_ops; 1919 }; 1920 1921 struct kvm_arch_async_pf { 1922 u32 token; 1923 gfn_t gfn; 1924 unsigned long cr3; 1925 bool direct_map; 1926 u64 error_code; 1927 }; 1928 1929 extern u32 __read_mostly kvm_nr_uret_msrs; 1930 extern bool __read_mostly allow_smaller_maxphyaddr; 1931 extern bool __read_mostly enable_apicv; 1932 extern struct kvm_x86_ops kvm_x86_ops; 1933 1934 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1935 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1936 1937 #define KVM_X86_OP(func) \ 1938 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1939 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1940 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1941 #include <asm/kvm-x86-ops.h> 1942 1943 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1944 void kvm_x86_vendor_exit(void); 1945 1946 #define __KVM_HAVE_ARCH_VM_ALLOC 1947 static inline struct kvm *kvm_arch_alloc_vm(void) 1948 { 1949 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1950 } 1951 1952 #define __KVM_HAVE_ARCH_VM_FREE 1953 void kvm_arch_free_vm(struct kvm *kvm); 1954 1955 #if IS_ENABLED(CONFIG_HYPERV) 1956 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1957 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1958 { 1959 if (kvm_x86_ops.flush_remote_tlbs && 1960 !kvm_x86_call(flush_remote_tlbs)(kvm)) 1961 return 0; 1962 else 1963 return -ENOTSUPP; 1964 } 1965 1966 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1967 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1968 u64 nr_pages) 1969 { 1970 if (!kvm_x86_ops.flush_remote_tlbs_range) 1971 return -EOPNOTSUPP; 1972 1973 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1974 } 1975 #endif /* CONFIG_HYPERV */ 1976 1977 enum kvm_intr_type { 1978 /* Values are arbitrary, but must be non-zero. */ 1979 KVM_HANDLING_IRQ = 1, 1980 KVM_HANDLING_NMI, 1981 }; 1982 1983 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 1984 #define kvm_arch_pmi_in_guest(vcpu) \ 1985 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 1986 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 1987 1988 void __init kvm_mmu_x86_module_init(void); 1989 int kvm_mmu_vendor_module_init(void); 1990 void kvm_mmu_vendor_module_exit(void); 1991 1992 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 1993 int kvm_mmu_create(struct kvm_vcpu *vcpu); 1994 void kvm_mmu_init_vm(struct kvm *kvm); 1995 void kvm_mmu_uninit_vm(struct kvm *kvm); 1996 1997 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 1998 struct kvm_memory_slot *slot); 1999 2000 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 2001 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 2002 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 2003 const struct kvm_memory_slot *memslot, 2004 int start_level); 2005 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 2006 const struct kvm_memory_slot *memslot, 2007 int target_level); 2008 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 2009 const struct kvm_memory_slot *memslot, 2010 u64 start, u64 end, 2011 int target_level); 2012 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 2013 const struct kvm_memory_slot *memslot); 2014 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 2015 const struct kvm_memory_slot *memslot); 2016 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 2017 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 2018 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 2019 2020 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 2021 2022 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 2023 const void *val, int bytes); 2024 2025 struct kvm_irq_mask_notifier { 2026 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 2027 int irq; 2028 struct hlist_node link; 2029 }; 2030 2031 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 2032 struct kvm_irq_mask_notifier *kimn); 2033 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 2034 struct kvm_irq_mask_notifier *kimn); 2035 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 2036 bool mask); 2037 2038 extern bool tdp_enabled; 2039 2040 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 2041 2042 /* 2043 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 2044 * userspace I/O) to indicate that the emulation context 2045 * should be reused as is, i.e. skip initialization of 2046 * emulation context, instruction fetch and decode. 2047 * 2048 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 2049 * Indicates that only select instructions (tagged with 2050 * EmulateOnUD) should be emulated (to minimize the emulator 2051 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 2052 * 2053 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2054 * decode the instruction length. For use *only* by 2055 * kvm_x86_ops.skip_emulated_instruction() implementations if 2056 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2057 * 2058 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2059 * retry native execution under certain conditions, 2060 * Can only be set in conjunction with EMULTYPE_PF. 2061 * 2062 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2063 * triggered by KVM's magic "force emulation" prefix, 2064 * which is opt in via module param (off by default). 2065 * Bypasses EmulateOnUD restriction despite emulating 2066 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2067 * Used to test the full emulator from userspace. 2068 * 2069 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2070 * backdoor emulation, which is opt in via module param. 2071 * VMware backdoor emulation handles select instructions 2072 * and reinjects the #GP for all other cases. 2073 * 2074 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case 2075 * the CR2/GPA value pass on the stack is valid. 2076 * 2077 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2078 * state and inject single-step #DBs after skipping 2079 * an instruction (after completing userspace I/O). 2080 * 2081 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2082 * is attempting to write a gfn that contains one or 2083 * more of the PTEs used to translate the write itself, 2084 * and the owning page table is being shadowed by KVM. 2085 * If emulation of the faulting instruction fails and 2086 * this flag is set, KVM will exit to userspace instead 2087 * of retrying emulation as KVM cannot make forward 2088 * progress. 2089 * 2090 * If emulation fails for a write to guest page tables, 2091 * KVM unprotects (zaps) the shadow page for the target 2092 * gfn and resumes the guest to retry the non-emulatable 2093 * instruction (on hardware). Unprotecting the gfn 2094 * doesn't allow forward progress for a self-changing 2095 * access because doing so also zaps the translation for 2096 * the gfn, i.e. retrying the instruction will hit a 2097 * !PRESENT fault, which results in a new shadow page 2098 * and sends KVM back to square one. 2099 */ 2100 #define EMULTYPE_NO_DECODE (1 << 0) 2101 #define EMULTYPE_TRAP_UD (1 << 1) 2102 #define EMULTYPE_SKIP (1 << 2) 2103 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2104 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2105 #define EMULTYPE_VMWARE_GP (1 << 5) 2106 #define EMULTYPE_PF (1 << 6) 2107 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2108 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2109 2110 static inline bool kvm_can_emulate_event_vectoring(int emul_type) 2111 { 2112 return !(emul_type & EMULTYPE_PF); 2113 } 2114 2115 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2116 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2117 void *insn, int insn_len); 2118 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2119 u64 *data, u8 ndata); 2120 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2121 2122 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa); 2123 2124 void kvm_enable_efer_bits(u64); 2125 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2126 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2127 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data); 2128 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2129 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2130 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2131 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2132 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2133 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2134 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2135 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2136 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2137 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2138 2139 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2140 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2141 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2142 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2143 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2144 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2145 2146 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2147 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2148 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2149 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2150 2151 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2152 int reason, bool has_error_code, u32 error_code); 2153 2154 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2155 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2156 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2157 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2158 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2159 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2160 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2161 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2162 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2163 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2164 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2165 2166 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2167 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2168 2169 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2170 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2171 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2172 2173 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2174 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2175 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2176 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 2177 bool has_error_code, u32 error_code); 2178 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2179 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2180 struct x86_exception *fault); 2181 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2182 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2183 2184 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2185 int irq_source_id, int level) 2186 { 2187 /* Logical OR for level trig interrupt */ 2188 if (level) 2189 __set_bit(irq_source_id, irq_state); 2190 else 2191 __clear_bit(irq_source_id, irq_state); 2192 2193 return !!(*irq_state); 2194 } 2195 2196 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2197 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2198 2199 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2200 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2201 2202 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2203 2204 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2205 bool always_retry); 2206 2207 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2208 gpa_t cr2_or_gpa) 2209 { 2210 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2211 } 2212 2213 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2214 ulong roots_to_free); 2215 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2216 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2217 struct x86_exception *exception); 2218 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2219 struct x86_exception *exception); 2220 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2221 struct x86_exception *exception); 2222 2223 bool kvm_apicv_activated(struct kvm *kvm); 2224 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2225 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2226 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2227 enum kvm_apicv_inhibit reason, bool set); 2228 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2229 enum kvm_apicv_inhibit reason, bool set); 2230 2231 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2232 enum kvm_apicv_inhibit reason) 2233 { 2234 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2235 } 2236 2237 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2238 enum kvm_apicv_inhibit reason) 2239 { 2240 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2241 } 2242 2243 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2244 void *insn, int insn_len); 2245 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2246 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2247 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2248 u64 addr, unsigned long roots); 2249 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2250 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2251 2252 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2253 int tdp_max_root_level, int tdp_huge_page_level); 2254 2255 2256 #ifdef CONFIG_KVM_PRIVATE_MEM 2257 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2258 #else 2259 #define kvm_arch_has_private_mem(kvm) false 2260 #endif 2261 2262 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2263 2264 static inline u16 kvm_read_ldt(void) 2265 { 2266 u16 ldt; 2267 asm("sldt %0" : "=g"(ldt)); 2268 return ldt; 2269 } 2270 2271 static inline void kvm_load_ldt(u16 sel) 2272 { 2273 asm("lldt %0" : : "rm"(sel)); 2274 } 2275 2276 #ifdef CONFIG_X86_64 2277 static inline unsigned long read_msr(unsigned long msr) 2278 { 2279 u64 value; 2280 2281 rdmsrl(msr, value); 2282 return value; 2283 } 2284 #endif 2285 2286 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2287 { 2288 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2289 } 2290 2291 #define TSS_IOPB_BASE_OFFSET 0x66 2292 #define TSS_BASE_SIZE 0x68 2293 #define TSS_IOPB_SIZE (65536 / 8) 2294 #define TSS_REDIRECTION_SIZE (256 / 8) 2295 #define RMODE_TSS_SIZE \ 2296 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2297 2298 enum { 2299 TASK_SWITCH_CALL = 0, 2300 TASK_SWITCH_IRET = 1, 2301 TASK_SWITCH_JMP = 2, 2302 TASK_SWITCH_GATE = 3, 2303 }; 2304 2305 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2306 2307 #ifdef CONFIG_KVM_SMM 2308 #define HF_SMM_MASK (1 << 1) 2309 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2310 2311 # define KVM_MAX_NR_ADDRESS_SPACES 2 2312 /* SMM is currently unsupported for guests with private memory. */ 2313 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2314 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2315 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2316 #else 2317 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2318 #endif 2319 2320 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2321 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2322 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2323 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2324 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2325 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2326 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2327 2328 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2329 unsigned long ipi_bitmap_high, u32 min, 2330 unsigned long icr, int op_64_bit); 2331 2332 int kvm_add_user_return_msr(u32 msr); 2333 int kvm_find_user_return_msr(u32 msr); 2334 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2335 2336 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2337 { 2338 return kvm_find_user_return_msr(msr) >= 0; 2339 } 2340 2341 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2342 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2343 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2344 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2345 2346 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2347 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2348 2349 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2350 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2351 unsigned long *vcpu_bitmap); 2352 2353 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2354 struct kvm_async_pf *work); 2355 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2356 struct kvm_async_pf *work); 2357 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2358 struct kvm_async_pf *work); 2359 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2360 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2361 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2362 2363 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2364 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2365 2366 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2367 u32 size); 2368 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2369 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2370 2371 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2372 struct kvm_vcpu **dest_vcpu); 2373 2374 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2375 struct kvm_lapic_irq *irq); 2376 2377 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2378 { 2379 /* We can only post Fixed and LowPrio IRQs */ 2380 return (irq->delivery_mode == APIC_DM_FIXED || 2381 irq->delivery_mode == APIC_DM_LOWEST); 2382 } 2383 2384 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2385 { 2386 kvm_x86_call(vcpu_blocking)(vcpu); 2387 } 2388 2389 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2390 { 2391 kvm_x86_call(vcpu_unblocking)(vcpu); 2392 } 2393 2394 static inline int kvm_cpu_get_apicid(int mps_cpu) 2395 { 2396 #ifdef CONFIG_X86_LOCAL_APIC 2397 return default_cpu_present_to_apicid(mps_cpu); 2398 #else 2399 WARN_ON_ONCE(1); 2400 return BAD_APICID; 2401 #endif 2402 } 2403 2404 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2405 2406 #define KVM_CLOCK_VALID_FLAGS \ 2407 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2408 2409 #define KVM_X86_VALID_QUIRKS \ 2410 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2411 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2412 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2413 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2414 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2415 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2416 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2417 KVM_X86_QUIRK_SLOT_ZAP_ALL | \ 2418 KVM_X86_QUIRK_STUFF_FEATURE_MSRS) 2419 2420 /* 2421 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2422 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2423 * remaining 31 lower bits must be 0 to preserve ABI. 2424 */ 2425 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2426 2427 static inline bool kvm_arch_has_irq_bypass(void) 2428 { 2429 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 2430 } 2431 2432 #endif /* _ASM_X86_KVM_HOST_H */ 2433