xref: /linux/arch/x86/include/asm/kexec.h (revision 68a052239fc4b351e961f698b824f7654a346091)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_KEXEC_H
3 #define _ASM_X86_KEXEC_H
4 
5 #ifdef CONFIG_X86_32
6 # define PA_CONTROL_PAGE	0
7 # define VA_CONTROL_PAGE	1
8 # define PA_PGD			2
9 # define PA_SWAP_PAGE		3
10 # define PAGES_NR		4
11 #else
12 /* Size of each exception handler referenced by the IDT */
13 # define KEXEC_DEBUG_EXC_HANDLER_SIZE	6 /* PUSHI, PUSHI, 2-byte JMP */
14 #endif
15 
16 #ifdef CONFIG_X86_64
17 
18 #include <linux/bits.h>
19 
20 #define RELOC_KERNEL_PRESERVE_CONTEXT	BIT(0)
21 #define RELOC_KERNEL_CACHE_INCOHERENT	BIT(1)
22 
23 #endif
24 
25 # define KEXEC_CONTROL_PAGE_SIZE	4096
26 # define KEXEC_CONTROL_CODE_MAX_SIZE	2048
27 
28 #ifndef __ASSEMBLER__
29 
30 #include <linux/string.h>
31 #include <linux/kernel.h>
32 
33 #include <asm/asm.h>
34 #include <asm/page.h>
35 #include <asm/ptrace.h>
36 
37 struct kimage;
38 
39 /*
40  * KEXEC_SOURCE_MEMORY_LIMIT maximum page get_free_page can return.
41  * I.e. Maximum page that is mapped directly into kernel memory,
42  * and kmap is not required.
43  *
44  * So far x86_64 is limited to 40 physical address bits.
45  */
46 #ifdef CONFIG_X86_32
47 /* Maximum physical address we can use pages from */
48 # define KEXEC_SOURCE_MEMORY_LIMIT (-1UL)
49 /* Maximum address we can reach in physical address mode */
50 # define KEXEC_DESTINATION_MEMORY_LIMIT (-1UL)
51 /* Maximum address we can use for the control code buffer */
52 # define KEXEC_CONTROL_MEMORY_LIMIT TASK_SIZE
53 
54 
55 /* The native architecture */
56 # define KEXEC_ARCH KEXEC_ARCH_386
57 
58 /* We can also handle crash dumps from 64 bit kernel. */
59 # define vmcore_elf_check_arch_cross(x) ((x)->e_machine == EM_X86_64)
60 #else
61 /* Maximum physical address we can use pages from */
62 # define KEXEC_SOURCE_MEMORY_LIMIT      (MAXMEM-1)
63 /* Maximum address we can reach in physical address mode */
64 # define KEXEC_DESTINATION_MEMORY_LIMIT (MAXMEM-1)
65 /* Maximum address we can use for the control pages */
66 # define KEXEC_CONTROL_MEMORY_LIMIT     (MAXMEM-1)
67 
68 /* The native architecture */
69 # define KEXEC_ARCH KEXEC_ARCH_X86_64
70 
71 extern unsigned long kexec_va_control_page;
72 extern unsigned long kexec_pa_table_page;
73 extern unsigned long kexec_pa_swap_page;
74 extern gate_desc kexec_debug_idt[];
75 extern unsigned char kexec_debug_exc_vectors[];
76 extern uint16_t kexec_debug_8250_port;
77 extern unsigned long kexec_debug_8250_mmio32;
78 #endif
79 
80 /*
81  * This function is responsible for capturing register states if coming
82  * via panic otherwise just fix up the ss and sp if coming via kernel
83  * mode exception.
84  */
85 static inline void crash_setup_regs(struct pt_regs *newregs,
86 				    struct pt_regs *oldregs)
87 {
88 	if (oldregs) {
89 		memcpy(newregs, oldregs, sizeof(*newregs));
90 	} else {
91 		asm volatile("mov %%" _ASM_BX ",%0" : "=m"(newregs->bx));
92 		asm volatile("mov %%" _ASM_CX ",%0" : "=m"(newregs->cx));
93 		asm volatile("mov %%" _ASM_DX ",%0" : "=m"(newregs->dx));
94 		asm volatile("mov %%" _ASM_SI ",%0" : "=m"(newregs->si));
95 		asm volatile("mov %%" _ASM_DI ",%0" : "=m"(newregs->di));
96 		asm volatile("mov %%" _ASM_BP ",%0" : "=m"(newregs->bp));
97 		asm volatile("mov %%" _ASM_AX ",%0" : "=m"(newregs->ax));
98 		asm volatile("mov %%" _ASM_SP ",%0" : "=m"(newregs->sp));
99 #ifdef CONFIG_X86_64
100 		asm volatile("mov %%r8,%0" : "=m"(newregs->r8));
101 		asm volatile("mov %%r9,%0" : "=m"(newregs->r9));
102 		asm volatile("mov %%r10,%0" : "=m"(newregs->r10));
103 		asm volatile("mov %%r11,%0" : "=m"(newregs->r11));
104 		asm volatile("mov %%r12,%0" : "=m"(newregs->r12));
105 		asm volatile("mov %%r13,%0" : "=m"(newregs->r13));
106 		asm volatile("mov %%r14,%0" : "=m"(newregs->r14));
107 		asm volatile("mov %%r15,%0" : "=m"(newregs->r15));
108 #endif
109 		asm volatile("mov %%ss,%k0" : "=a"(newregs->ss));
110 		asm volatile("mov %%cs,%k0" : "=a"(newregs->cs));
111 #ifdef CONFIG_X86_32
112 		asm volatile("mov %%ds,%k0" : "=a"(newregs->ds));
113 		asm volatile("mov %%es,%k0" : "=a"(newregs->es));
114 #endif
115 		asm volatile("pushf\n\t"
116 			     "pop %0" : "=m"(newregs->flags));
117 		newregs->ip = _THIS_IP_;
118 	}
119 }
120 
121 #ifdef CONFIG_X86_32
122 typedef asmlinkage unsigned long
123 relocate_kernel_fn(unsigned long indirection_page,
124 		   unsigned long control_page,
125 		   unsigned long start_address,
126 		   unsigned int has_pae,
127 		   unsigned int preserve_context);
128 #else
129 typedef unsigned long
130 relocate_kernel_fn(unsigned long indirection_page,
131 		   unsigned long pa_control_page,
132 		   unsigned long start_address,
133 		   unsigned int flags);
134 #endif
135 extern relocate_kernel_fn relocate_kernel;
136 #define ARCH_HAS_KIMAGE_ARCH
137 
138 #ifdef CONFIG_X86_32
139 struct kimage_arch {
140 	pgd_t *pgd;
141 #ifdef CONFIG_X86_PAE
142 	pmd_t *pmd0;
143 	pmd_t *pmd1;
144 #endif
145 	pte_t *pte0;
146 	pte_t *pte1;
147 };
148 #else
149 struct kimage_arch {
150 	/*
151 	 * This is a kimage control page, as it must not overlap with either
152 	 * source or destination address ranges.
153 	 */
154 	pgd_t *pgd;
155 	/*
156 	 * The virtual mapping of the control code page itself is used only
157 	 * during the transition, while the current kernel's pages are all
158 	 * in place. Thus the intermediate page table pages used to map it
159 	 * are not control pages, but instead just normal pages obtained
160 	 * with get_zeroed_page(). And have to be tracked (below) so that
161 	 * they can be freed.
162 	 */
163 	p4d_t *p4d;
164 	pud_t *pud;
165 	pmd_t *pmd;
166 	pte_t *pte;
167 };
168 #endif /* CONFIG_X86_32 */
169 
170 #ifdef CONFIG_X86_64
171 /*
172  * Number of elements and order of elements in this structure should match
173  * with the ones in arch/x86/purgatory/entry64.S. If you make a change here
174  * make an appropriate change in purgatory too.
175  */
176 struct kexec_entry64_regs {
177 	uint64_t rax;
178 	uint64_t rcx;
179 	uint64_t rdx;
180 	uint64_t rbx;
181 	uint64_t rsp;
182 	uint64_t rbp;
183 	uint64_t rsi;
184 	uint64_t rdi;
185 	uint64_t r8;
186 	uint64_t r9;
187 	uint64_t r10;
188 	uint64_t r11;
189 	uint64_t r12;
190 	uint64_t r13;
191 	uint64_t r14;
192 	uint64_t r15;
193 	uint64_t rip;
194 };
195 
196 extern int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages,
197 				       gfp_t gfp);
198 #define arch_kexec_post_alloc_pages arch_kexec_post_alloc_pages
199 
200 extern void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages);
201 #define arch_kexec_pre_free_pages arch_kexec_pre_free_pages
202 
203 void arch_kexec_protect_crashkres(void);
204 #define arch_kexec_protect_crashkres arch_kexec_protect_crashkres
205 
206 void arch_kexec_unprotect_crashkres(void);
207 #define arch_kexec_unprotect_crashkres arch_kexec_unprotect_crashkres
208 
209 #ifdef CONFIG_KEXEC_FILE
210 struct purgatory_info;
211 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
212 				     Elf_Shdr *section,
213 				     const Elf_Shdr *relsec,
214 				     const Elf_Shdr *symtab);
215 #define arch_kexec_apply_relocations_add arch_kexec_apply_relocations_add
216 
217 int arch_kimage_file_post_load_cleanup(struct kimage *image);
218 #define arch_kimage_file_post_load_cleanup arch_kimage_file_post_load_cleanup
219 #endif
220 #endif
221 
222 extern void kdump_nmi_shootdown_cpus(void);
223 
224 #ifdef CONFIG_CRASH_HOTPLUG
225 void arch_crash_handle_hotplug_event(struct kimage *image, void *arg);
226 #define arch_crash_handle_hotplug_event arch_crash_handle_hotplug_event
227 
228 int arch_crash_hotplug_support(struct kimage *image, unsigned long kexec_flags);
229 #define arch_crash_hotplug_support arch_crash_hotplug_support
230 
231 unsigned int arch_crash_get_elfcorehdr_size(void);
232 #define crash_get_elfcorehdr_size arch_crash_get_elfcorehdr_size
233 #endif
234 
235 #endif /* __ASSEMBLER__ */
236 
237 #endif /* _ASM_X86_KEXEC_H */
238