xref: /linux/arch/x86/include/asm/insn.h (revision add452d09a38c7a7c44aea55c1015392cebf9fa7)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _ASM_X86_INSN_H
3 #define _ASM_X86_INSN_H
4 /*
5  * x86 instruction analysis
6  *
7  * Copyright (C) IBM Corporation, 2009
8  */
9 
10 #include <asm/byteorder.h>
11 /* insn_attr_t is defined in inat.h */
12 #include <asm/inat.h> /* __ignore_sync_check__ */
13 
14 #if defined(__BYTE_ORDER) ? __BYTE_ORDER == __LITTLE_ENDIAN : defined(__LITTLE_ENDIAN)
15 
16 struct insn_field {
17 	union {
18 		insn_value_t value;
19 		insn_byte_t bytes[4];
20 	};
21 	/* !0 if we've run insn_get_xxx() for this field */
22 	unsigned char got;
23 	unsigned char nbytes;
24 };
25 
26 static inline void insn_field_set(struct insn_field *p, insn_value_t v,
27 				  unsigned char n)
28 {
29 	p->value = v;
30 	p->nbytes = n;
31 }
32 
33 static inline void insn_set_byte(struct insn_field *p, unsigned char n,
34 				 insn_byte_t v)
35 {
36 	p->bytes[n] = v;
37 }
38 
39 #else
40 
41 struct insn_field {
42 	insn_value_t value;
43 	union {
44 		insn_value_t little;
45 		insn_byte_t bytes[4];
46 	};
47 	/* !0 if we've run insn_get_xxx() for this field */
48 	unsigned char got;
49 	unsigned char nbytes;
50 };
51 
52 static inline void insn_field_set(struct insn_field *p, insn_value_t v,
53 				  unsigned char n)
54 {
55 	p->value = v;
56 	p->little = __cpu_to_le32(v);
57 	p->nbytes = n;
58 }
59 
60 static inline void insn_set_byte(struct insn_field *p, unsigned char n,
61 				 insn_byte_t v)
62 {
63 	p->bytes[n] = v;
64 	p->value = __le32_to_cpu(p->little);
65 }
66 #endif
67 
68 struct insn {
69 	struct insn_field prefixes;	/*
70 					 * Prefixes
71 					 * prefixes.bytes[3]: last prefix
72 					 */
73 	struct insn_field rex_prefix;	/* REX prefix */
74 	struct insn_field vex_prefix;	/* VEX prefix */
75 	struct insn_field opcode;	/*
76 					 * opcode.bytes[0]: opcode1
77 					 * opcode.bytes[1]: opcode2
78 					 * opcode.bytes[2]: opcode3
79 					 */
80 	struct insn_field modrm;
81 	struct insn_field sib;
82 	struct insn_field displacement;
83 	union {
84 		struct insn_field immediate;
85 		struct insn_field moffset1;	/* for 64bit MOV */
86 		struct insn_field immediate1;	/* for 64bit imm or off16/32 */
87 	};
88 	union {
89 		struct insn_field moffset2;	/* for 64bit MOV */
90 		struct insn_field immediate2;	/* for 64bit imm or seg16 */
91 	};
92 
93 	int	emulate_prefix_size;
94 	insn_attr_t attr;
95 	unsigned char opnd_bytes;
96 	unsigned char addr_bytes;
97 	unsigned char length;
98 	unsigned char x86_64;
99 
100 	const insn_byte_t *kaddr;	/* kernel address of insn to analyze */
101 	const insn_byte_t *end_kaddr;	/* kernel address of last insn in buffer */
102 	const insn_byte_t *next_byte;
103 };
104 
105 #define MAX_INSN_SIZE	15
106 
107 #define X86_MODRM_MOD(modrm) (((modrm) & 0xc0) >> 6)
108 #define X86_MODRM_REG(modrm) (((modrm) & 0x38) >> 3)
109 #define X86_MODRM_RM(modrm) ((modrm) & 0x07)
110 
111 #define X86_SIB_SCALE(sib) (((sib) & 0xc0) >> 6)
112 #define X86_SIB_INDEX(sib) (((sib) & 0x38) >> 3)
113 #define X86_SIB_BASE(sib) ((sib) & 0x07)
114 
115 #define X86_REX2_M(rex) ((rex) & 0x80)	/* REX2 M0 */
116 #define X86_REX2_R(rex) ((rex) & 0x40)	/* REX2 R4 */
117 #define X86_REX2_X(rex) ((rex) & 0x20)	/* REX2 X4 */
118 #define X86_REX2_B(rex) ((rex) & 0x10)	/* REX2 B4 */
119 
120 #define X86_REX_W(rex) ((rex) & 8)	/* REX or REX2 W */
121 #define X86_REX_R(rex) ((rex) & 4)	/* REX or REX2 R3 */
122 #define X86_REX_X(rex) ((rex) & 2)	/* REX or REX2 X3 */
123 #define X86_REX_B(rex) ((rex) & 1)	/* REX or REX2 B3 */
124 
125 /* VEX bit flags  */
126 #define X86_VEX_W(vex)	((vex) & 0x80)	/* VEX3 Byte2 */
127 #define X86_VEX_R(vex)	((vex) & 0x80)	/* VEX2/3 Byte1 */
128 #define X86_VEX_X(vex)	((vex) & 0x40)	/* VEX3 Byte1 */
129 #define X86_VEX_B(vex)	((vex) & 0x20)	/* VEX3 Byte1 */
130 #define X86_VEX_L(vex)	((vex) & 0x04)	/* VEX3 Byte2, VEX2 Byte1 */
131 /* VEX bit fields */
132 #define X86_EVEX_M(vex)	((vex) & 0x07)		/* EVEX Byte1 */
133 #define X86_VEX3_M(vex)	((vex) & 0x1f)		/* VEX3 Byte1 */
134 #define X86_VEX2_M	1			/* VEX2.M always 1 */
135 #define X86_VEX_V(vex)	(((vex) & 0x78) >> 3)	/* VEX3 Byte2, VEX2 Byte1 */
136 #define X86_VEX_P(vex)	((vex) & 0x03)		/* VEX3 Byte2, VEX2 Byte1 */
137 #define X86_VEX_M_MAX	0x1f			/* VEX3.M Maximum value */
138 
139 extern void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64);
140 extern int insn_get_prefixes(struct insn *insn);
141 extern int insn_get_opcode(struct insn *insn);
142 extern int insn_get_modrm(struct insn *insn);
143 extern int insn_get_sib(struct insn *insn);
144 extern int insn_get_displacement(struct insn *insn);
145 extern int insn_get_immediate(struct insn *insn);
146 extern int insn_get_length(struct insn *insn);
147 
148 enum insn_mode {
149 	INSN_MODE_32,
150 	INSN_MODE_64,
151 	/* Mode is determined by the current kernel build. */
152 	INSN_MODE_KERN,
153 	INSN_NUM_MODES,
154 };
155 
156 extern int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m);
157 
158 #define insn_decode_kernel(_insn, _ptr) insn_decode((_insn), (_ptr), MAX_INSN_SIZE, INSN_MODE_KERN)
159 
160 /* Attribute will be determined after getting ModRM (for opcode groups) */
161 static inline void insn_get_attribute(struct insn *insn)
162 {
163 	insn_get_modrm(insn);
164 }
165 
166 /* Instruction uses RIP-relative addressing */
167 extern int insn_rip_relative(struct insn *insn);
168 
169 static inline int insn_is_rex2(struct insn *insn)
170 {
171 	if (!insn->prefixes.got)
172 		insn_get_prefixes(insn);
173 	return insn->rex_prefix.nbytes == 2;
174 }
175 
176 static inline insn_byte_t insn_rex2_m_bit(struct insn *insn)
177 {
178 	return X86_REX2_M(insn->rex_prefix.bytes[1]);
179 }
180 
181 static inline int insn_is_avx(struct insn *insn)
182 {
183 	if (!insn->prefixes.got)
184 		insn_get_prefixes(insn);
185 	return (insn->vex_prefix.value != 0);
186 }
187 
188 static inline int insn_is_evex(struct insn *insn)
189 {
190 	if (!insn->prefixes.got)
191 		insn_get_prefixes(insn);
192 	return (insn->vex_prefix.nbytes == 4);
193 }
194 
195 static inline int insn_has_emulate_prefix(struct insn *insn)
196 {
197 	return !!insn->emulate_prefix_size;
198 }
199 
200 static inline insn_byte_t insn_vex_m_bits(struct insn *insn)
201 {
202 	if (insn->vex_prefix.nbytes == 2)	/* 2 bytes VEX */
203 		return X86_VEX2_M;
204 	else if (insn->vex_prefix.nbytes == 3)	/* 3 bytes VEX */
205 		return X86_VEX3_M(insn->vex_prefix.bytes[1]);
206 	else					/* EVEX */
207 		return X86_EVEX_M(insn->vex_prefix.bytes[1]);
208 }
209 
210 static inline insn_byte_t insn_vex_p_bits(struct insn *insn)
211 {
212 	if (insn->vex_prefix.nbytes == 2)	/* 2 bytes VEX */
213 		return X86_VEX_P(insn->vex_prefix.bytes[1]);
214 	else
215 		return X86_VEX_P(insn->vex_prefix.bytes[2]);
216 }
217 
218 static inline insn_byte_t insn_vex_w_bit(struct insn *insn)
219 {
220 	if (insn->vex_prefix.nbytes < 3)
221 		return 0;
222 	return X86_VEX_W(insn->vex_prefix.bytes[2]);
223 }
224 
225 /* Get the last prefix id from last prefix or VEX prefix */
226 static inline int insn_last_prefix_id(struct insn *insn)
227 {
228 	if (insn_is_avx(insn))
229 		return insn_vex_p_bits(insn);	/* VEX_p is a SIMD prefix id */
230 
231 	if (insn->prefixes.bytes[3])
232 		return inat_get_last_prefix_id(insn->prefixes.bytes[3]);
233 
234 	return 0;
235 }
236 
237 /* Offset of each field from kaddr */
238 static inline int insn_offset_rex_prefix(struct insn *insn)
239 {
240 	return insn->prefixes.nbytes;
241 }
242 static inline int insn_offset_vex_prefix(struct insn *insn)
243 {
244 	return insn_offset_rex_prefix(insn) + insn->rex_prefix.nbytes;
245 }
246 static inline int insn_offset_opcode(struct insn *insn)
247 {
248 	return insn_offset_vex_prefix(insn) + insn->vex_prefix.nbytes;
249 }
250 static inline int insn_offset_modrm(struct insn *insn)
251 {
252 	return insn_offset_opcode(insn) + insn->opcode.nbytes;
253 }
254 static inline int insn_offset_sib(struct insn *insn)
255 {
256 	return insn_offset_modrm(insn) + insn->modrm.nbytes;
257 }
258 static inline int insn_offset_displacement(struct insn *insn)
259 {
260 	return insn_offset_sib(insn) + insn->sib.nbytes;
261 }
262 static inline int insn_offset_immediate(struct insn *insn)
263 {
264 	return insn_offset_displacement(insn) + insn->displacement.nbytes;
265 }
266 
267 /**
268  * for_each_insn_prefix() -- Iterate prefixes in the instruction
269  * @insn: Pointer to struct insn.
270  * @idx:  Index storage.
271  * @prefix: Prefix byte.
272  *
273  * Iterate prefix bytes of given @insn. Each prefix byte is stored in @prefix
274  * and the index is stored in @idx (note that this @idx is just for a cursor,
275  * do not change it.)
276  * Since prefixes.nbytes can be bigger than 4 if some prefixes
277  * are repeated, it cannot be used for looping over the prefixes.
278  */
279 #define for_each_insn_prefix(insn, idx, prefix)	\
280 	for (idx = 0; idx < ARRAY_SIZE(insn->prefixes.bytes) && (prefix = insn->prefixes.bytes[idx]) != 0; idx++)
281 
282 #define POP_SS_OPCODE 0x1f
283 #define MOV_SREG_OPCODE 0x8e
284 
285 /*
286  * Intel SDM Vol.3A 6.8.3 states;
287  * "Any single-step trap that would be delivered following the MOV to SS
288  * instruction or POP to SS instruction (because EFLAGS.TF is 1) is
289  * suppressed."
290  * This function returns true if @insn is MOV SS or POP SS. On these
291  * instructions, single stepping is suppressed.
292  */
293 static inline int insn_masking_exception(struct insn *insn)
294 {
295 	return insn->opcode.bytes[0] == POP_SS_OPCODE ||
296 		(insn->opcode.bytes[0] == MOV_SREG_OPCODE &&
297 		 X86_MODRM_REG(insn->modrm.bytes[0]) == 2);
298 }
299 
300 #endif /* _ASM_X86_INSN_H */
301