1 /* 2 * Architecture specific parts of the Floppy driver 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1995 9 */ 10 #ifndef _ASM_X86_FLOPPY_H 11 #define _ASM_X86_FLOPPY_H 12 13 #include <linux/vmalloc.h> 14 15 /* 16 * The DMA channel used by the floppy controller cannot access data at 17 * addresses >= 16MB 18 * 19 * Went back to the 1MB limit, as some people had problems with the floppy 20 * driver otherwise. It doesn't matter much for performance anyway, as most 21 * floppy accesses go through the track buffer. 22 */ 23 #define _CROSS_64KB(a, s, vdma) \ 24 (!(vdma) && \ 25 ((unsigned long)(a)/K_64 != ((unsigned long)(a) + (s) - 1) / K_64)) 26 27 #define CROSS_64KB(a, s) _CROSS_64KB(a, s, use_virtual_dma & 1) 28 29 30 #define SW fd_routine[use_virtual_dma & 1] 31 #define CSW fd_routine[can_use_virtual_dma & 1] 32 33 34 #define fd_inb(base, reg) inb_p((base) + (reg)) 35 #define fd_outb(value, base, reg) outb_p(value, (base) + (reg)) 36 37 #define fd_request_dma() CSW._request_dma(FLOPPY_DMA, "floppy") 38 #define fd_free_dma() CSW._free_dma(FLOPPY_DMA) 39 #define fd_enable_irq() enable_irq(FLOPPY_IRQ) 40 #define fd_disable_irq() disable_irq(FLOPPY_IRQ) 41 #define fd_free_irq() free_irq(FLOPPY_IRQ, NULL) 42 #define fd_get_dma_residue() SW._get_dma_residue(FLOPPY_DMA) 43 #define fd_dma_mem_alloc(size) SW._dma_mem_alloc(size) 44 #define fd_dma_setup(addr, size, mode, io) SW._dma_setup(addr, size, mode, io) 45 46 #define FLOPPY_CAN_FALLBACK_ON_NODMA 47 48 static int virtual_dma_count; 49 static int virtual_dma_residue; 50 static char *virtual_dma_addr; 51 static int virtual_dma_mode; 52 static int doing_pdma; 53 54 static irqreturn_t floppy_hardint(int irq, void *dev_id) 55 { 56 unsigned char st; 57 58 #undef TRACE_FLPY_INT 59 60 #ifdef TRACE_FLPY_INT 61 static int calls; 62 static int bytes; 63 static int dma_wait; 64 #endif 65 if (!doing_pdma) 66 return floppy_interrupt(irq, dev_id); 67 68 #ifdef TRACE_FLPY_INT 69 if (!calls) 70 bytes = virtual_dma_count; 71 #endif 72 73 { 74 int lcount; 75 char *lptr; 76 77 st = 1; 78 for (lcount = virtual_dma_count, lptr = virtual_dma_addr; 79 lcount; lcount--, lptr++) { 80 st = inb(virtual_dma_port + FD_STATUS); 81 st &= STATUS_DMA | STATUS_READY; 82 if (st != (STATUS_DMA | STATUS_READY)) 83 break; 84 if (virtual_dma_mode) 85 outb_p(*lptr, virtual_dma_port + FD_DATA); 86 else 87 *lptr = inb_p(virtual_dma_port + FD_DATA); 88 } 89 virtual_dma_count = lcount; 90 virtual_dma_addr = lptr; 91 st = inb(virtual_dma_port + FD_STATUS); 92 } 93 94 #ifdef TRACE_FLPY_INT 95 calls++; 96 #endif 97 if (st == STATUS_DMA) 98 return IRQ_HANDLED; 99 if (!(st & STATUS_DMA)) { 100 virtual_dma_residue += virtual_dma_count; 101 virtual_dma_count = 0; 102 #ifdef TRACE_FLPY_INT 103 printk(KERN_DEBUG "count=%x, residue=%x calls=%d bytes=%d dma_wait=%d\n", 104 virtual_dma_count, virtual_dma_residue, calls, bytes, 105 dma_wait); 106 calls = 0; 107 dma_wait = 0; 108 #endif 109 doing_pdma = 0; 110 floppy_interrupt(irq, dev_id); 111 return IRQ_HANDLED; 112 } 113 #ifdef TRACE_FLPY_INT 114 if (!virtual_dma_count) 115 dma_wait++; 116 #endif 117 return IRQ_HANDLED; 118 } 119 120 static void fd_disable_dma(void) 121 { 122 if (!(can_use_virtual_dma & 1)) 123 disable_dma(FLOPPY_DMA); 124 doing_pdma = 0; 125 virtual_dma_residue += virtual_dma_count; 126 virtual_dma_count = 0; 127 } 128 129 static int vdma_request_dma(unsigned int dmanr, const char *device_id) 130 { 131 return 0; 132 } 133 134 static void vdma_nop(unsigned int dummy) 135 { 136 } 137 138 139 static int vdma_get_dma_residue(unsigned int dummy) 140 { 141 return virtual_dma_count + virtual_dma_residue; 142 } 143 144 145 static int fd_request_irq(void) 146 { 147 if (can_use_virtual_dma) 148 return request_irq(FLOPPY_IRQ, floppy_hardint, 149 0, "floppy", NULL); 150 else 151 return request_irq(FLOPPY_IRQ, floppy_interrupt, 152 0, "floppy", NULL); 153 } 154 155 static unsigned long dma_mem_alloc(unsigned long size) 156 { 157 return __get_dma_pages(GFP_KERNEL|__GFP_NORETRY, get_order(size)); 158 } 159 160 161 static unsigned long vdma_mem_alloc(unsigned long size) 162 { 163 return (unsigned long)vmalloc(size); 164 165 } 166 167 #define nodma_mem_alloc(size) vdma_mem_alloc(size) 168 169 static void _fd_dma_mem_free(unsigned long addr, unsigned long size) 170 { 171 if ((unsigned long)addr >= (unsigned long)high_memory) 172 vfree((void *)addr); 173 else 174 free_pages(addr, get_order(size)); 175 } 176 177 #define fd_dma_mem_free(addr, size) _fd_dma_mem_free(addr, size) 178 179 static void _fd_chose_dma_mode(char *addr, unsigned long size) 180 { 181 if (can_use_virtual_dma == 2) { 182 if ((unsigned long)addr >= (unsigned long)high_memory || 183 isa_virt_to_bus(addr) >= 0x1000000 || 184 _CROSS_64KB(addr, size, 0)) 185 use_virtual_dma = 1; 186 else 187 use_virtual_dma = 0; 188 } else { 189 use_virtual_dma = can_use_virtual_dma & 1; 190 } 191 } 192 193 #define fd_chose_dma_mode(addr, size) _fd_chose_dma_mode(addr, size) 194 195 196 static int vdma_dma_setup(char *addr, unsigned long size, int mode, int io) 197 { 198 doing_pdma = 1; 199 virtual_dma_port = io; 200 virtual_dma_mode = (mode == DMA_MODE_WRITE); 201 virtual_dma_addr = addr; 202 virtual_dma_count = size; 203 virtual_dma_residue = 0; 204 return 0; 205 } 206 207 static int hard_dma_setup(char *addr, unsigned long size, int mode, int io) 208 { 209 #ifdef FLOPPY_SANITY_CHECK 210 if (CROSS_64KB(addr, size)) { 211 printk("DMA crossing 64-K boundary %p-%p\n", addr, addr+size); 212 return -1; 213 } 214 #endif 215 /* actual, physical DMA */ 216 doing_pdma = 0; 217 clear_dma_ff(FLOPPY_DMA); 218 set_dma_mode(FLOPPY_DMA, mode); 219 set_dma_addr(FLOPPY_DMA, isa_virt_to_bus(addr)); 220 set_dma_count(FLOPPY_DMA, size); 221 enable_dma(FLOPPY_DMA); 222 return 0; 223 } 224 225 static struct fd_routine_l { 226 int (*_request_dma)(unsigned int dmanr, const char *device_id); 227 void (*_free_dma)(unsigned int dmanr); 228 int (*_get_dma_residue)(unsigned int dummy); 229 unsigned long (*_dma_mem_alloc)(unsigned long size); 230 int (*_dma_setup)(char *addr, unsigned long size, int mode, int io); 231 } fd_routine[] = { 232 { 233 ._request_dma = request_dma, 234 ._free_dma = free_dma, 235 ._get_dma_residue = get_dma_residue, 236 ._dma_mem_alloc = dma_mem_alloc, 237 ._dma_setup = hard_dma_setup 238 }, 239 { 240 ._request_dma = vdma_request_dma, 241 ._free_dma = vdma_nop, 242 ._get_dma_residue = vdma_get_dma_residue, 243 ._dma_mem_alloc = vdma_mem_alloc, 244 ._dma_setup = vdma_dma_setup 245 } 246 }; 247 248 249 static int FDC1 = 0x3f0; 250 static int FDC2 = -1; 251 252 /* 253 * Floppy types are stored in the rtc's CMOS RAM and so rtc_lock 254 * is needed to prevent corrupted CMOS RAM in case "insmod floppy" 255 * coincides with another rtc CMOS user. Paul G. 256 */ 257 #define FLOPPY0_TYPE \ 258 ({ \ 259 unsigned long flags; \ 260 unsigned char val; \ 261 spin_lock_irqsave(&rtc_lock, flags); \ 262 val = (CMOS_READ(0x10) >> 4) & 15; \ 263 spin_unlock_irqrestore(&rtc_lock, flags); \ 264 val; \ 265 }) 266 267 #define FLOPPY1_TYPE \ 268 ({ \ 269 unsigned long flags; \ 270 unsigned char val; \ 271 spin_lock_irqsave(&rtc_lock, flags); \ 272 val = CMOS_READ(0x10) & 15; \ 273 spin_unlock_irqrestore(&rtc_lock, flags); \ 274 val; \ 275 }) 276 277 #define N_FDC 2 278 #define N_DRIVE 8 279 280 #define EXTRA_FLOPPY_PARAMS 281 282 #endif /* _ASM_X86_FLOPPY_H */ 283