xref: /linux/arch/x86/include/asm/efi.h (revision ca853314e78b0a65c20b6a889a23c31f918d4aa2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_EFI_H
3 #define _ASM_X86_EFI_H
4 
5 #include <asm/fpu/api.h>
6 #include <asm/processor-flags.h>
7 #include <asm/tlb.h>
8 #include <asm/nospec-branch.h>
9 #include <asm/mmu_context.h>
10 #include <linux/build_bug.h>
11 #include <linux/kernel.h>
12 #include <linux/pgtable.h>
13 
14 extern unsigned long efi_fw_vendor, efi_config_table;
15 
16 /*
17  * We map the EFI regions needed for runtime services non-contiguously,
18  * with preserved alignment on virtual addresses starting from -4G down
19  * for a total max space of 64G. This way, we provide for stable runtime
20  * services addresses across kernels so that a kexec'd kernel can still
21  * use them.
22  *
23  * This is the main reason why we're doing stable VA mappings for RT
24  * services.
25  */
26 
27 #define EFI32_LOADER_SIGNATURE	"EL32"
28 #define EFI64_LOADER_SIGNATURE	"EL64"
29 
30 #define ARCH_EFI_IRQ_FLAGS_MASK	X86_EFLAGS_IF
31 
32 /*
33  * The EFI services are called through variadic functions in many cases. These
34  * functions are implemented in assembler and support only a fixed number of
35  * arguments. The macros below allows us to check at build time that we don't
36  * try to call them with too many arguments.
37  *
38  * __efi_nargs() will return the number of arguments if it is 7 or less, and
39  * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
40  * impossible to calculate the exact number of arguments beyond some
41  * pre-defined limit. The maximum number of arguments currently supported by
42  * any of the thunks is 7, so this is good enough for now and can be extended
43  * in the obvious way if we ever need more.
44  */
45 
46 #define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
47 #define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__,	\
48 	__efi_arg_sentinel(7), __efi_arg_sentinel(6),		\
49 	__efi_arg_sentinel(5), __efi_arg_sentinel(4),		\
50 	__efi_arg_sentinel(3), __efi_arg_sentinel(2),		\
51 	__efi_arg_sentinel(1), __efi_arg_sentinel(0))
52 #define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, n, ...)	\
53 	__take_second_arg(n,					\
54 		({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 8; }))
55 #define __efi_arg_sentinel(n) , n
56 
57 /*
58  * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
59  * represents more than n arguments.
60  */
61 
62 #define __efi_nargs_check(f, n, ...)					\
63 	__efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
64 #define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
65 #define __efi_nargs_check__(f, p, n) ({					\
66 	BUILD_BUG_ON_MSG(						\
67 		(p) > (n),						\
68 		#f " called with too many arguments (" #p ">" #n ")");	\
69 })
70 
71 #ifdef CONFIG_X86_32
72 #define arch_efi_call_virt_setup()					\
73 ({									\
74 	kernel_fpu_begin();						\
75 	firmware_restrict_branch_speculation_start();			\
76 })
77 
78 #define arch_efi_call_virt_teardown()					\
79 ({									\
80 	firmware_restrict_branch_speculation_end();			\
81 	kernel_fpu_end();						\
82 })
83 
84 #define arch_efi_call_virt(p, f, args...)	p->f(args)
85 
86 #else /* !CONFIG_X86_32 */
87 
88 #define EFI_LOADER_SIGNATURE	"EL64"
89 
90 extern asmlinkage u64 __efi_call(void *fp, ...);
91 
92 #define efi_call(...) ({						\
93 	__efi_nargs_check(efi_call, 7, __VA_ARGS__);			\
94 	__efi_call(__VA_ARGS__);					\
95 })
96 
97 /*
98  * struct efi_scratch - Scratch space used while switching to/from efi_mm
99  * @phys_stack: stack used during EFI Mixed Mode
100  * @prev_mm:    store/restore stolen mm_struct while switching to/from efi_mm
101  */
102 struct efi_scratch {
103 	u64			phys_stack;
104 	struct mm_struct	*prev_mm;
105 } __packed;
106 
107 #define arch_efi_call_virt_setup()					\
108 ({									\
109 	efi_sync_low_kernel_mappings();					\
110 	kernel_fpu_begin();						\
111 	firmware_restrict_branch_speculation_start();			\
112 	efi_switch_mm(&efi_mm);						\
113 })
114 
115 #define arch_efi_call_virt(p, f, args...)				\
116 	efi_call((void *)p->f, args)					\
117 
118 #define arch_efi_call_virt_teardown()					\
119 ({									\
120 	efi_switch_mm(efi_scratch.prev_mm);				\
121 	firmware_restrict_branch_speculation_end();			\
122 	kernel_fpu_end();						\
123 })
124 
125 #ifdef CONFIG_KASAN
126 /*
127  * CONFIG_KASAN may redefine memset to __memset.  __memset function is present
128  * only in kernel binary.  Since the EFI stub linked into a separate binary it
129  * doesn't have __memset().  So we should use standard memset from
130  * arch/x86/boot/compressed/string.c.  The same applies to memcpy and memmove.
131  */
132 #undef memcpy
133 #undef memset
134 #undef memmove
135 #endif
136 
137 #endif /* CONFIG_X86_32 */
138 
139 extern struct efi_scratch efi_scratch;
140 extern int __init efi_memblock_x86_reserve_range(void);
141 extern void __init efi_print_memmap(void);
142 extern void __init efi_map_region(efi_memory_desc_t *md);
143 extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
144 extern void efi_sync_low_kernel_mappings(void);
145 extern int __init efi_alloc_page_tables(void);
146 extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
147 extern void __init efi_runtime_update_mappings(void);
148 extern void __init efi_dump_pagetable(void);
149 extern void __init efi_apply_memmap_quirks(void);
150 extern int __init efi_reuse_config(u64 tables, int nr_tables);
151 extern void efi_delete_dummy_variable(void);
152 extern void efi_switch_mm(struct mm_struct *mm);
153 extern void efi_recover_from_page_fault(unsigned long phys_addr);
154 extern void efi_free_boot_services(void);
155 
156 /* kexec external ABI */
157 struct efi_setup_data {
158 	u64 fw_vendor;
159 	u64 __unused;
160 	u64 tables;
161 	u64 smbios;
162 	u64 reserved[8];
163 };
164 
165 extern u64 efi_setup;
166 
167 #ifdef CONFIG_EFI
168 extern efi_status_t __efi64_thunk(u32, ...);
169 
170 #define efi64_thunk(...) ({						\
171 	__efi_nargs_check(efi64_thunk, 6, __VA_ARGS__);			\
172 	__efi64_thunk(__VA_ARGS__);					\
173 })
174 
175 static inline bool efi_is_mixed(void)
176 {
177 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
178 		return false;
179 	return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
180 }
181 
182 static inline bool efi_runtime_supported(void)
183 {
184 	if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
185 		return true;
186 
187 	return IS_ENABLED(CONFIG_EFI_MIXED);
188 }
189 
190 extern void parse_efi_setup(u64 phys_addr, u32 data_len);
191 
192 extern void efifb_setup_from_dmi(struct screen_info *si, const char *opt);
193 
194 extern void efi_thunk_runtime_setup(void);
195 efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
196 					 unsigned long descriptor_size,
197 					 u32 descriptor_version,
198 					 efi_memory_desc_t *virtual_map,
199 					 unsigned long systab_phys);
200 
201 /* arch specific definitions used by the stub code */
202 
203 #ifdef CONFIG_EFI_MIXED
204 
205 #define ARCH_HAS_EFISTUB_WRAPPERS
206 
207 static inline bool efi_is_64bit(void)
208 {
209 	extern const bool efi_is64;
210 
211 	return efi_is64;
212 }
213 
214 static inline bool efi_is_native(void)
215 {
216 	return efi_is_64bit();
217 }
218 
219 #define efi_mixed_mode_cast(attr)					\
220 	__builtin_choose_expr(						\
221 		__builtin_types_compatible_p(u32, __typeof__(attr)),	\
222 			(unsigned long)(attr), (attr))
223 
224 #define efi_table_attr(inst, attr)					\
225 	(efi_is_native()						\
226 		? inst->attr						\
227 		: (__typeof__(inst->attr))				\
228 			efi_mixed_mode_cast(inst->mixed_mode.attr))
229 
230 /*
231  * The following macros allow translating arguments if necessary from native to
232  * mixed mode. The use case for this is to initialize the upper 32 bits of
233  * output parameters, and where the 32-bit method requires a 64-bit argument,
234  * which must be split up into two arguments to be thunked properly.
235  *
236  * As examples, the AllocatePool boot service returns the address of the
237  * allocation, but it will not set the high 32 bits of the address. To ensure
238  * that the full 64-bit address is initialized, we zero-init the address before
239  * calling the thunk.
240  *
241  * The FreePages boot service takes a 64-bit physical address even in 32-bit
242  * mode. For the thunk to work correctly, a native 64-bit call of
243  * 	free_pages(addr, size)
244  * must be translated to
245  * 	efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
246  * so that the two 32-bit halves of addr get pushed onto the stack separately.
247  */
248 
249 static inline void *efi64_zero_upper(void *p)
250 {
251 	((u32 *)p)[1] = 0;
252 	return p;
253 }
254 
255 static inline u32 efi64_convert_status(efi_status_t status)
256 {
257 	return (u32)(status | (u64)status >> 32);
258 }
259 
260 #define __efi64_argmap_free_pages(addr, size)				\
261 	((addr), 0, (size))
262 
263 #define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver)	\
264 	((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))
265 
266 #define __efi64_argmap_allocate_pool(type, size, buffer)		\
267 	((type), (size), efi64_zero_upper(buffer))
268 
269 #define __efi64_argmap_create_event(type, tpl, f, c, event)		\
270 	((type), (tpl), (f), (c), efi64_zero_upper(event))
271 
272 #define __efi64_argmap_set_timer(event, type, time)			\
273 	((event), (type), lower_32_bits(time), upper_32_bits(time))
274 
275 #define __efi64_argmap_wait_for_event(num, event, index)		\
276 	((num), (event), efi64_zero_upper(index))
277 
278 #define __efi64_argmap_handle_protocol(handle, protocol, interface)	\
279 	((handle), (protocol), efi64_zero_upper(interface))
280 
281 #define __efi64_argmap_locate_protocol(protocol, reg, interface)	\
282 	((protocol), (reg), efi64_zero_upper(interface))
283 
284 #define __efi64_argmap_locate_device_path(protocol, path, handle)	\
285 	((protocol), (path), efi64_zero_upper(handle))
286 
287 #define __efi64_argmap_exit(handle, status, size, data)			\
288 	((handle), efi64_convert_status(status), (size), (data))
289 
290 /* PCI I/O */
291 #define __efi64_argmap_get_location(protocol, seg, bus, dev, func)	\
292 	((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus),	\
293 	 efi64_zero_upper(dev), efi64_zero_upper(func))
294 
295 /* LoadFile */
296 #define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf)	\
297 	((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf))
298 
299 /* Graphics Output Protocol */
300 #define __efi64_argmap_query_mode(gop, mode, size, info)		\
301 	((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info))
302 
303 /*
304  * The macros below handle the plumbing for the argument mapping. To add a
305  * mapping for a specific EFI method, simply define a macro
306  * __efi64_argmap_<method name>, following the examples above.
307  */
308 
309 #define __efi64_thunk_map(inst, func, ...)				\
310 	efi64_thunk(inst->mixed_mode.func,				\
311 		__efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__),	\
312 			       (__VA_ARGS__)))
313 
314 #define __efi64_argmap(mapped, args)					\
315 	__PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
316 #define __efi64_argmap__0(mapped, args) __efi_eval mapped
317 #define __efi64_argmap__1(mapped, args) __efi_eval args
318 
319 #define __efi_eat(...)
320 #define __efi_eval(...) __VA_ARGS__
321 
322 /* The three macros below handle dispatching via the thunk if needed */
323 
324 #define efi_call_proto(inst, func, ...)					\
325 	(efi_is_native()						\
326 		? inst->func(inst, ##__VA_ARGS__)			\
327 		: __efi64_thunk_map(inst, func, inst, ##__VA_ARGS__))
328 
329 #define efi_bs_call(func, ...)						\
330 	(efi_is_native()						\
331 		? efi_system_table->boottime->func(__VA_ARGS__)		\
332 		: __efi64_thunk_map(efi_table_attr(efi_system_table,	\
333 						   boottime),		\
334 				    func, __VA_ARGS__))
335 
336 #define efi_rt_call(func, ...)						\
337 	(efi_is_native()						\
338 		? efi_system_table->runtime->func(__VA_ARGS__)		\
339 		: __efi64_thunk_map(efi_table_attr(efi_system_table,	\
340 						   runtime),		\
341 				    func, __VA_ARGS__))
342 
343 #else /* CONFIG_EFI_MIXED */
344 
345 static inline bool efi_is_64bit(void)
346 {
347 	return IS_ENABLED(CONFIG_X86_64);
348 }
349 
350 #endif /* CONFIG_EFI_MIXED */
351 
352 extern bool efi_reboot_required(void);
353 extern bool efi_is_table_address(unsigned long phys_addr);
354 
355 extern void efi_find_mirror(void);
356 extern void efi_reserve_boot_services(void);
357 #else
358 static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
359 static inline bool efi_reboot_required(void)
360 {
361 	return false;
362 }
363 static inline  bool efi_is_table_address(unsigned long phys_addr)
364 {
365 	return false;
366 }
367 static inline void efi_find_mirror(void)
368 {
369 }
370 static inline void efi_reserve_boot_services(void)
371 {
372 }
373 #endif /* CONFIG_EFI */
374 
375 #ifdef CONFIG_EFI_FAKE_MEMMAP
376 extern void __init efi_fake_memmap_early(void);
377 #else
378 static inline void efi_fake_memmap_early(void)
379 {
380 }
381 #endif
382 
383 #define arch_ima_efi_boot_mode	\
384 	({ extern struct boot_params boot_params; boot_params.secure_boot; })
385 
386 #endif /* _ASM_X86_EFI_H */
387