xref: /linux/arch/x86/include/asm/efi.h (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_EFI_H
3 #define _ASM_X86_EFI_H
4 
5 #include <asm/fpu/api.h>
6 #include <asm/processor-flags.h>
7 #include <asm/tlb.h>
8 #include <asm/nospec-branch.h>
9 #include <asm/mmu_context.h>
10 #include <linux/build_bug.h>
11 #include <linux/kernel.h>
12 #include <linux/pgtable.h>
13 
14 extern unsigned long efi_fw_vendor, efi_config_table;
15 extern unsigned long efi_mixed_mode_stack_pa;
16 
17 /*
18  * We map the EFI regions needed for runtime services non-contiguously,
19  * with preserved alignment on virtual addresses starting from -4G down
20  * for a total max space of 64G. This way, we provide for stable runtime
21  * services addresses across kernels so that a kexec'd kernel can still
22  * use them.
23  *
24  * This is the main reason why we're doing stable VA mappings for RT
25  * services.
26  */
27 
28 #define EFI32_LOADER_SIGNATURE	"EL32"
29 #define EFI64_LOADER_SIGNATURE	"EL64"
30 
31 #define ARCH_EFI_IRQ_FLAGS_MASK	X86_EFLAGS_IF
32 
33 /*
34  * The EFI services are called through variadic functions in many cases. These
35  * functions are implemented in assembler and support only a fixed number of
36  * arguments. The macros below allows us to check at build time that we don't
37  * try to call them with too many arguments.
38  *
39  * __efi_nargs() will return the number of arguments if it is 7 or less, and
40  * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
41  * impossible to calculate the exact number of arguments beyond some
42  * pre-defined limit. The maximum number of arguments currently supported by
43  * any of the thunks is 7, so this is good enough for now and can be extended
44  * in the obvious way if we ever need more.
45  */
46 
47 #define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
48 #define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__,	\
49 	__efi_arg_sentinel(9), __efi_arg_sentinel(8),		\
50 	__efi_arg_sentinel(7), __efi_arg_sentinel(6),		\
51 	__efi_arg_sentinel(5), __efi_arg_sentinel(4),		\
52 	__efi_arg_sentinel(3), __efi_arg_sentinel(2),		\
53 	__efi_arg_sentinel(1), __efi_arg_sentinel(0))
54 #define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, n, ...)	\
55 	__take_second_arg(n,					\
56 		({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 10; }))
57 #define __efi_arg_sentinel(n) , n
58 
59 /*
60  * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
61  * represents more than n arguments.
62  */
63 
64 #define __efi_nargs_check(f, n, ...)					\
65 	__efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
66 #define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
67 #define __efi_nargs_check__(f, p, n) ({					\
68 	BUILD_BUG_ON_MSG(						\
69 		(p) > (n),						\
70 		#f " called with too many arguments (" #p ">" #n ")");	\
71 })
72 
73 static inline void efi_fpu_begin(void)
74 {
75 	/*
76 	 * The UEFI calling convention (UEFI spec 2.3.2 and 2.3.4) requires
77 	 * that FCW and MXCSR (64-bit) must be initialized prior to calling
78 	 * UEFI code.  (Oddly the spec does not require that the FPU stack
79 	 * be empty.)
80 	 */
81 	kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR);
82 }
83 
84 static inline void efi_fpu_end(void)
85 {
86 	kernel_fpu_end();
87 }
88 
89 #ifdef CONFIG_X86_32
90 #define arch_efi_call_virt_setup()					\
91 ({									\
92 	efi_fpu_begin();						\
93 	firmware_restrict_branch_speculation_start();			\
94 })
95 
96 #define arch_efi_call_virt_teardown()					\
97 ({									\
98 	firmware_restrict_branch_speculation_end();			\
99 	efi_fpu_end();							\
100 })
101 
102 #define arch_efi_call_virt(p, f, args...)	p->f(args)
103 
104 #else /* !CONFIG_X86_32 */
105 
106 #define EFI_LOADER_SIGNATURE	"EL64"
107 
108 extern asmlinkage u64 __efi_call(void *fp, ...);
109 
110 #define efi_call(...) ({						\
111 	__efi_nargs_check(efi_call, 7, __VA_ARGS__);			\
112 	__efi_call(__VA_ARGS__);					\
113 })
114 
115 #define arch_efi_call_virt_setup()					\
116 ({									\
117 	efi_sync_low_kernel_mappings();					\
118 	efi_fpu_begin();						\
119 	firmware_restrict_branch_speculation_start();			\
120 	efi_enter_mm();							\
121 })
122 
123 #define arch_efi_call_virt(p, f, args...)				\
124 	efi_call((void *)p->f, args)					\
125 
126 #define arch_efi_call_virt_teardown()					\
127 ({									\
128 	efi_leave_mm();							\
129 	firmware_restrict_branch_speculation_end();			\
130 	efi_fpu_end();							\
131 })
132 
133 #ifdef CONFIG_KASAN
134 /*
135  * CONFIG_KASAN may redefine memset to __memset.  __memset function is present
136  * only in kernel binary.  Since the EFI stub linked into a separate binary it
137  * doesn't have __memset().  So we should use standard memset from
138  * arch/x86/boot/compressed/string.c.  The same applies to memcpy and memmove.
139  */
140 #undef memcpy
141 #undef memset
142 #undef memmove
143 #endif
144 
145 #endif /* CONFIG_X86_32 */
146 
147 extern int __init efi_memblock_x86_reserve_range(void);
148 extern void __init efi_print_memmap(void);
149 extern void __init efi_map_region(efi_memory_desc_t *md);
150 extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
151 extern void efi_sync_low_kernel_mappings(void);
152 extern int __init efi_alloc_page_tables(void);
153 extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
154 extern void __init efi_runtime_update_mappings(void);
155 extern void __init efi_dump_pagetable(void);
156 extern void __init efi_apply_memmap_quirks(void);
157 extern int __init efi_reuse_config(u64 tables, int nr_tables);
158 extern void efi_delete_dummy_variable(void);
159 extern void efi_crash_gracefully_on_page_fault(unsigned long phys_addr);
160 extern void efi_free_boot_services(void);
161 
162 void efi_enter_mm(void);
163 void efi_leave_mm(void);
164 
165 /* kexec external ABI */
166 struct efi_setup_data {
167 	u64 fw_vendor;
168 	u64 __unused;
169 	u64 tables;
170 	u64 smbios;
171 	u64 reserved[8];
172 };
173 
174 extern u64 efi_setup;
175 
176 #ifdef CONFIG_EFI
177 extern efi_status_t __efi64_thunk(u32, ...);
178 
179 #define efi64_thunk(...) ({						\
180 	u64 __pad[3]; /* must have space for 3 args on the stack */	\
181 	__efi_nargs_check(efi64_thunk, 9, __VA_ARGS__);			\
182 	__efi64_thunk(__VA_ARGS__, __pad);				\
183 })
184 
185 static inline bool efi_is_mixed(void)
186 {
187 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
188 		return false;
189 	return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
190 }
191 
192 static inline bool efi_runtime_supported(void)
193 {
194 	if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
195 		return true;
196 
197 	return IS_ENABLED(CONFIG_EFI_MIXED);
198 }
199 
200 extern void parse_efi_setup(u64 phys_addr, u32 data_len);
201 
202 extern void efi_thunk_runtime_setup(void);
203 efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
204 					 unsigned long descriptor_size,
205 					 u32 descriptor_version,
206 					 efi_memory_desc_t *virtual_map,
207 					 unsigned long systab_phys);
208 
209 /* arch specific definitions used by the stub code */
210 
211 #ifdef CONFIG_EFI_MIXED
212 
213 #define ARCH_HAS_EFISTUB_WRAPPERS
214 
215 static inline bool efi_is_64bit(void)
216 {
217 	extern const bool efi_is64;
218 
219 	return efi_is64;
220 }
221 
222 static inline bool efi_is_native(void)
223 {
224 	return efi_is_64bit();
225 }
226 
227 #define efi_mixed_mode_cast(attr)					\
228 	__builtin_choose_expr(						\
229 		__builtin_types_compatible_p(u32, __typeof__(attr)),	\
230 			(unsigned long)(attr), (attr))
231 
232 #define efi_table_attr(inst, attr)					\
233 	(efi_is_native()						\
234 		? inst->attr						\
235 		: (__typeof__(inst->attr))				\
236 			efi_mixed_mode_cast(inst->mixed_mode.attr))
237 
238 /*
239  * The following macros allow translating arguments if necessary from native to
240  * mixed mode. The use case for this is to initialize the upper 32 bits of
241  * output parameters, and where the 32-bit method requires a 64-bit argument,
242  * which must be split up into two arguments to be thunked properly.
243  *
244  * As examples, the AllocatePool boot service returns the address of the
245  * allocation, but it will not set the high 32 bits of the address. To ensure
246  * that the full 64-bit address is initialized, we zero-init the address before
247  * calling the thunk.
248  *
249  * The FreePages boot service takes a 64-bit physical address even in 32-bit
250  * mode. For the thunk to work correctly, a native 64-bit call of
251  * 	free_pages(addr, size)
252  * must be translated to
253  * 	efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
254  * so that the two 32-bit halves of addr get pushed onto the stack separately.
255  */
256 
257 static inline void *efi64_zero_upper(void *p)
258 {
259 	((u32 *)p)[1] = 0;
260 	return p;
261 }
262 
263 static inline u32 efi64_convert_status(efi_status_t status)
264 {
265 	return (u32)(status | (u64)status >> 32);
266 }
267 
268 #define __efi64_argmap_free_pages(addr, size)				\
269 	((addr), 0, (size))
270 
271 #define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver)	\
272 	((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))
273 
274 #define __efi64_argmap_allocate_pool(type, size, buffer)		\
275 	((type), (size), efi64_zero_upper(buffer))
276 
277 #define __efi64_argmap_create_event(type, tpl, f, c, event)		\
278 	((type), (tpl), (f), (c), efi64_zero_upper(event))
279 
280 #define __efi64_argmap_set_timer(event, type, time)			\
281 	((event), (type), lower_32_bits(time), upper_32_bits(time))
282 
283 #define __efi64_argmap_wait_for_event(num, event, index)		\
284 	((num), (event), efi64_zero_upper(index))
285 
286 #define __efi64_argmap_handle_protocol(handle, protocol, interface)	\
287 	((handle), (protocol), efi64_zero_upper(interface))
288 
289 #define __efi64_argmap_locate_protocol(protocol, reg, interface)	\
290 	((protocol), (reg), efi64_zero_upper(interface))
291 
292 #define __efi64_argmap_locate_device_path(protocol, path, handle)	\
293 	((protocol), (path), efi64_zero_upper(handle))
294 
295 #define __efi64_argmap_exit(handle, status, size, data)			\
296 	((handle), efi64_convert_status(status), (size), (data))
297 
298 /* PCI I/O */
299 #define __efi64_argmap_get_location(protocol, seg, bus, dev, func)	\
300 	((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus),	\
301 	 efi64_zero_upper(dev), efi64_zero_upper(func))
302 
303 /* LoadFile */
304 #define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf)	\
305 	((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf))
306 
307 /* Graphics Output Protocol */
308 #define __efi64_argmap_query_mode(gop, mode, size, info)		\
309 	((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info))
310 
311 /* TCG2 protocol */
312 #define __efi64_argmap_hash_log_extend_event(prot, fl, addr, size, ev)	\
313 	((prot), (fl), 0ULL, (u64)(addr), 0ULL, (u64)(size), 0ULL, ev)
314 
315 /*
316  * The macros below handle the plumbing for the argument mapping. To add a
317  * mapping for a specific EFI method, simply define a macro
318  * __efi64_argmap_<method name>, following the examples above.
319  */
320 
321 #define __efi64_thunk_map(inst, func, ...)				\
322 	efi64_thunk(inst->mixed_mode.func,				\
323 		__efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__),	\
324 			       (__VA_ARGS__)))
325 
326 #define __efi64_argmap(mapped, args)					\
327 	__PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
328 #define __efi64_argmap__0(mapped, args) __efi_eval mapped
329 #define __efi64_argmap__1(mapped, args) __efi_eval args
330 
331 #define __efi_eat(...)
332 #define __efi_eval(...) __VA_ARGS__
333 
334 /* The three macros below handle dispatching via the thunk if needed */
335 
336 #define efi_call_proto(inst, func, ...)					\
337 	(efi_is_native()						\
338 		? inst->func(inst, ##__VA_ARGS__)			\
339 		: __efi64_thunk_map(inst, func, inst, ##__VA_ARGS__))
340 
341 #define efi_bs_call(func, ...)						\
342 	(efi_is_native()						\
343 		? efi_system_table->boottime->func(__VA_ARGS__)		\
344 		: __efi64_thunk_map(efi_table_attr(efi_system_table,	\
345 						   boottime),		\
346 				    func, __VA_ARGS__))
347 
348 #define efi_rt_call(func, ...)						\
349 	(efi_is_native()						\
350 		? efi_system_table->runtime->func(__VA_ARGS__)		\
351 		: __efi64_thunk_map(efi_table_attr(efi_system_table,	\
352 						   runtime),		\
353 				    func, __VA_ARGS__))
354 
355 #else /* CONFIG_EFI_MIXED */
356 
357 static inline bool efi_is_64bit(void)
358 {
359 	return IS_ENABLED(CONFIG_X86_64);
360 }
361 
362 #endif /* CONFIG_EFI_MIXED */
363 
364 extern bool efi_reboot_required(void);
365 extern bool efi_is_table_address(unsigned long phys_addr);
366 
367 extern void efi_find_mirror(void);
368 extern void efi_reserve_boot_services(void);
369 #else
370 static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
371 static inline bool efi_reboot_required(void)
372 {
373 	return false;
374 }
375 static inline  bool efi_is_table_address(unsigned long phys_addr)
376 {
377 	return false;
378 }
379 static inline void efi_find_mirror(void)
380 {
381 }
382 static inline void efi_reserve_boot_services(void)
383 {
384 }
385 #endif /* CONFIG_EFI */
386 
387 #ifdef CONFIG_EFI_FAKE_MEMMAP
388 extern void __init efi_fake_memmap_early(void);
389 #else
390 static inline void efi_fake_memmap_early(void)
391 {
392 }
393 #endif
394 
395 #define arch_ima_efi_boot_mode	\
396 	({ extern struct boot_params boot_params; boot_params.secure_boot; })
397 
398 #endif /* _ASM_X86_EFI_H */
399