xref: /linux/arch/x86/include/asm/bitops.h (revision ec63e2a4897075e427c121d863bd89c44578094f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_BITOPS_H
3 #define _ASM_X86_BITOPS_H
4 
5 /*
6  * Copyright 1992, Linus Torvalds.
7  *
8  * Note: inlines with more than a single statement should be marked
9  * __always_inline to avoid problems with older gcc's inlining heuristics.
10  */
11 
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
14 #endif
15 
16 #include <linux/compiler.h>
17 #include <asm/alternative.h>
18 #include <asm/rmwcc.h>
19 #include <asm/barrier.h>
20 
21 #if BITS_PER_LONG == 32
22 # define _BITOPS_LONG_SHIFT 5
23 #elif BITS_PER_LONG == 64
24 # define _BITOPS_LONG_SHIFT 6
25 #else
26 # error "Unexpected BITS_PER_LONG"
27 #endif
28 
29 #define BIT_64(n)			(U64_C(1) << (n))
30 
31 /*
32  * These have to be done with inline assembly: that way the bit-setting
33  * is guaranteed to be atomic. All bit operations return 0 if the bit
34  * was cleared before the operation and != 0 if it was not.
35  *
36  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37  */
38 
39 #define RLONG_ADDR(x)			 "m" (*(volatile long *) (x))
40 #define WBYTE_ADDR(x)			"+m" (*(volatile char *) (x))
41 
42 #define ADDR				RLONG_ADDR(addr)
43 
44 /*
45  * We do the locked ops that don't return the old value as
46  * a mask operation on a byte.
47  */
48 #define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
49 #define CONST_MASK_ADDR(nr, addr)	WBYTE_ADDR((void *)(addr) + ((nr)>>3))
50 #define CONST_MASK(nr)			(1 << ((nr) & 7))
51 
52 /**
53  * set_bit - Atomically set a bit in memory
54  * @nr: the bit to set
55  * @addr: the address to start counting from
56  *
57  * This function is atomic and may not be reordered.  See __set_bit()
58  * if you do not require the atomic guarantees.
59  *
60  * Note: there are no guarantees that this function will not be reordered
61  * on non x86 architectures, so if you are writing portable code,
62  * make sure not to rely on its reordering guarantees.
63  *
64  * Note that @nr may be almost arbitrarily large; this function is not
65  * restricted to acting on a single-word quantity.
66  */
67 static __always_inline void
68 set_bit(long nr, volatile unsigned long *addr)
69 {
70 	if (IS_IMMEDIATE(nr)) {
71 		asm volatile(LOCK_PREFIX "orb %1,%0"
72 			: CONST_MASK_ADDR(nr, addr)
73 			: "iq" ((u8)CONST_MASK(nr))
74 			: "memory");
75 	} else {
76 		asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0"
77 			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
78 	}
79 }
80 
81 /**
82  * __set_bit - Set a bit in memory
83  * @nr: the bit to set
84  * @addr: the address to start counting from
85  *
86  * Unlike set_bit(), this function is non-atomic and may be reordered.
87  * If it's called on the same region of memory simultaneously, the effect
88  * may be that only one operation succeeds.
89  */
90 static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
91 {
92 	asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
93 }
94 
95 /**
96  * clear_bit - Clears a bit in memory
97  * @nr: Bit to clear
98  * @addr: Address to start counting from
99  *
100  * clear_bit() is atomic and may not be reordered.  However, it does
101  * not contain a memory barrier, so if it is used for locking purposes,
102  * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
103  * in order to ensure changes are visible on other processors.
104  */
105 static __always_inline void
106 clear_bit(long nr, volatile unsigned long *addr)
107 {
108 	if (IS_IMMEDIATE(nr)) {
109 		asm volatile(LOCK_PREFIX "andb %1,%0"
110 			: CONST_MASK_ADDR(nr, addr)
111 			: "iq" ((u8)~CONST_MASK(nr)));
112 	} else {
113 		asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0"
114 			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
115 	}
116 }
117 
118 /*
119  * clear_bit_unlock - Clears a bit in memory
120  * @nr: Bit to clear
121  * @addr: Address to start counting from
122  *
123  * clear_bit() is atomic and implies release semantics before the memory
124  * operation. It can be used for an unlock.
125  */
126 static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
127 {
128 	barrier();
129 	clear_bit(nr, addr);
130 }
131 
132 static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
133 {
134 	asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
135 }
136 
137 static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
138 {
139 	bool negative;
140 	asm volatile(LOCK_PREFIX "andb %2,%1"
141 		CC_SET(s)
142 		: CC_OUT(s) (negative), WBYTE_ADDR(addr)
143 		: "ir" ((char) ~(1 << nr)) : "memory");
144 	return negative;
145 }
146 
147 // Let everybody know we have it
148 #define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
149 
150 /*
151  * __clear_bit_unlock - Clears a bit in memory
152  * @nr: Bit to clear
153  * @addr: Address to start counting from
154  *
155  * __clear_bit() is non-atomic and implies release semantics before the memory
156  * operation. It can be used for an unlock if no other CPUs can concurrently
157  * modify other bits in the word.
158  */
159 static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
160 {
161 	__clear_bit(nr, addr);
162 }
163 
164 /**
165  * __change_bit - Toggle a bit in memory
166  * @nr: the bit to change
167  * @addr: the address to start counting from
168  *
169  * Unlike change_bit(), this function is non-atomic and may be reordered.
170  * If it's called on the same region of memory simultaneously, the effect
171  * may be that only one operation succeeds.
172  */
173 static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
174 {
175 	asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
176 }
177 
178 /**
179  * change_bit - Toggle a bit in memory
180  * @nr: Bit to change
181  * @addr: Address to start counting from
182  *
183  * change_bit() is atomic and may not be reordered.
184  * Note that @nr may be almost arbitrarily large; this function is not
185  * restricted to acting on a single-word quantity.
186  */
187 static __always_inline void change_bit(long nr, volatile unsigned long *addr)
188 {
189 	if (IS_IMMEDIATE(nr)) {
190 		asm volatile(LOCK_PREFIX "xorb %1,%0"
191 			: CONST_MASK_ADDR(nr, addr)
192 			: "iq" ((u8)CONST_MASK(nr)));
193 	} else {
194 		asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0"
195 			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
196 	}
197 }
198 
199 /**
200  * test_and_set_bit - Set a bit and return its old value
201  * @nr: Bit to set
202  * @addr: Address to count from
203  *
204  * This operation is atomic and cannot be reordered.
205  * It also implies a memory barrier.
206  */
207 static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
208 {
209 	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr);
210 }
211 
212 /**
213  * test_and_set_bit_lock - Set a bit and return its old value for lock
214  * @nr: Bit to set
215  * @addr: Address to count from
216  *
217  * This is the same as test_and_set_bit on x86.
218  */
219 static __always_inline bool
220 test_and_set_bit_lock(long nr, volatile unsigned long *addr)
221 {
222 	return test_and_set_bit(nr, addr);
223 }
224 
225 /**
226  * __test_and_set_bit - Set a bit and return its old value
227  * @nr: Bit to set
228  * @addr: Address to count from
229  *
230  * This operation is non-atomic and can be reordered.
231  * If two examples of this operation race, one can appear to succeed
232  * but actually fail.  You must protect multiple accesses with a lock.
233  */
234 static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
235 {
236 	bool oldbit;
237 
238 	asm(__ASM_SIZE(bts) " %2,%1"
239 	    CC_SET(c)
240 	    : CC_OUT(c) (oldbit)
241 	    : ADDR, "Ir" (nr) : "memory");
242 	return oldbit;
243 }
244 
245 /**
246  * test_and_clear_bit - Clear a bit and return its old value
247  * @nr: Bit to clear
248  * @addr: Address to count from
249  *
250  * This operation is atomic and cannot be reordered.
251  * It also implies a memory barrier.
252  */
253 static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
254 {
255 	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr);
256 }
257 
258 /**
259  * __test_and_clear_bit - Clear a bit and return its old value
260  * @nr: Bit to clear
261  * @addr: Address to count from
262  *
263  * This operation is non-atomic and can be reordered.
264  * If two examples of this operation race, one can appear to succeed
265  * but actually fail.  You must protect multiple accesses with a lock.
266  *
267  * Note: the operation is performed atomically with respect to
268  * the local CPU, but not other CPUs. Portable code should not
269  * rely on this behaviour.
270  * KVM relies on this behaviour on x86 for modifying memory that is also
271  * accessed from a hypervisor on the same CPU if running in a VM: don't change
272  * this without also updating arch/x86/kernel/kvm.c
273  */
274 static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
275 {
276 	bool oldbit;
277 
278 	asm volatile(__ASM_SIZE(btr) " %2,%1"
279 		     CC_SET(c)
280 		     : CC_OUT(c) (oldbit)
281 		     : ADDR, "Ir" (nr) : "memory");
282 	return oldbit;
283 }
284 
285 /* WARNING: non atomic and it can be reordered! */
286 static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
287 {
288 	bool oldbit;
289 
290 	asm volatile(__ASM_SIZE(btc) " %2,%1"
291 		     CC_SET(c)
292 		     : CC_OUT(c) (oldbit)
293 		     : ADDR, "Ir" (nr) : "memory");
294 
295 	return oldbit;
296 }
297 
298 /**
299  * test_and_change_bit - Change a bit and return its old value
300  * @nr: Bit to change
301  * @addr: Address to count from
302  *
303  * This operation is atomic and cannot be reordered.
304  * It also implies a memory barrier.
305  */
306 static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
307 {
308 	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
309 }
310 
311 static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
312 {
313 	return ((1UL << (nr & (BITS_PER_LONG-1))) &
314 		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
315 }
316 
317 static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
318 {
319 	bool oldbit;
320 
321 	asm volatile(__ASM_SIZE(bt) " %2,%1"
322 		     CC_SET(c)
323 		     : CC_OUT(c) (oldbit)
324 		     : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory");
325 
326 	return oldbit;
327 }
328 
329 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
330 /**
331  * test_bit - Determine whether a bit is set
332  * @nr: bit number to test
333  * @addr: Address to start counting from
334  */
335 static bool test_bit(int nr, const volatile unsigned long *addr);
336 #endif
337 
338 #define test_bit(nr, addr)			\
339 	(__builtin_constant_p((nr))		\
340 	 ? constant_test_bit((nr), (addr))	\
341 	 : variable_test_bit((nr), (addr)))
342 
343 /**
344  * __ffs - find first set bit in word
345  * @word: The word to search
346  *
347  * Undefined if no bit exists, so code should check against 0 first.
348  */
349 static __always_inline unsigned long __ffs(unsigned long word)
350 {
351 	asm("rep; bsf %1,%0"
352 		: "=r" (word)
353 		: "rm" (word));
354 	return word;
355 }
356 
357 /**
358  * ffz - find first zero bit in word
359  * @word: The word to search
360  *
361  * Undefined if no zero exists, so code should check against ~0UL first.
362  */
363 static __always_inline unsigned long ffz(unsigned long word)
364 {
365 	asm("rep; bsf %1,%0"
366 		: "=r" (word)
367 		: "r" (~word));
368 	return word;
369 }
370 
371 /*
372  * __fls: find last set bit in word
373  * @word: The word to search
374  *
375  * Undefined if no set bit exists, so code should check against 0 first.
376  */
377 static __always_inline unsigned long __fls(unsigned long word)
378 {
379 	asm("bsr %1,%0"
380 	    : "=r" (word)
381 	    : "rm" (word));
382 	return word;
383 }
384 
385 #undef ADDR
386 
387 #ifdef __KERNEL__
388 /**
389  * ffs - find first set bit in word
390  * @x: the word to search
391  *
392  * This is defined the same way as the libc and compiler builtin ffs
393  * routines, therefore differs in spirit from the other bitops.
394  *
395  * ffs(value) returns 0 if value is 0 or the position of the first
396  * set bit if value is nonzero. The first (least significant) bit
397  * is at position 1.
398  */
399 static __always_inline int ffs(int x)
400 {
401 	int r;
402 
403 #ifdef CONFIG_X86_64
404 	/*
405 	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
406 	 * dest reg is undefined if x==0, but their CPU architect says its
407 	 * value is written to set it to the same as before, except that the
408 	 * top 32 bits will be cleared.
409 	 *
410 	 * We cannot do this on 32 bits because at the very least some
411 	 * 486 CPUs did not behave this way.
412 	 */
413 	asm("bsfl %1,%0"
414 	    : "=r" (r)
415 	    : "rm" (x), "0" (-1));
416 #elif defined(CONFIG_X86_CMOV)
417 	asm("bsfl %1,%0\n\t"
418 	    "cmovzl %2,%0"
419 	    : "=&r" (r) : "rm" (x), "r" (-1));
420 #else
421 	asm("bsfl %1,%0\n\t"
422 	    "jnz 1f\n\t"
423 	    "movl $-1,%0\n"
424 	    "1:" : "=r" (r) : "rm" (x));
425 #endif
426 	return r + 1;
427 }
428 
429 /**
430  * fls - find last set bit in word
431  * @x: the word to search
432  *
433  * This is defined in a similar way as the libc and compiler builtin
434  * ffs, but returns the position of the most significant set bit.
435  *
436  * fls(value) returns 0 if value is 0 or the position of the last
437  * set bit if value is nonzero. The last (most significant) bit is
438  * at position 32.
439  */
440 static __always_inline int fls(unsigned int x)
441 {
442 	int r;
443 
444 #ifdef CONFIG_X86_64
445 	/*
446 	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
447 	 * dest reg is undefined if x==0, but their CPU architect says its
448 	 * value is written to set it to the same as before, except that the
449 	 * top 32 bits will be cleared.
450 	 *
451 	 * We cannot do this on 32 bits because at the very least some
452 	 * 486 CPUs did not behave this way.
453 	 */
454 	asm("bsrl %1,%0"
455 	    : "=r" (r)
456 	    : "rm" (x), "0" (-1));
457 #elif defined(CONFIG_X86_CMOV)
458 	asm("bsrl %1,%0\n\t"
459 	    "cmovzl %2,%0"
460 	    : "=&r" (r) : "rm" (x), "rm" (-1));
461 #else
462 	asm("bsrl %1,%0\n\t"
463 	    "jnz 1f\n\t"
464 	    "movl $-1,%0\n"
465 	    "1:" : "=r" (r) : "rm" (x));
466 #endif
467 	return r + 1;
468 }
469 
470 /**
471  * fls64 - find last set bit in a 64-bit word
472  * @x: the word to search
473  *
474  * This is defined in a similar way as the libc and compiler builtin
475  * ffsll, but returns the position of the most significant set bit.
476  *
477  * fls64(value) returns 0 if value is 0 or the position of the last
478  * set bit if value is nonzero. The last (most significant) bit is
479  * at position 64.
480  */
481 #ifdef CONFIG_X86_64
482 static __always_inline int fls64(__u64 x)
483 {
484 	int bitpos = -1;
485 	/*
486 	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
487 	 * dest reg is undefined if x==0, but their CPU architect says its
488 	 * value is written to set it to the same as before.
489 	 */
490 	asm("bsrq %1,%q0"
491 	    : "+r" (bitpos)
492 	    : "rm" (x));
493 	return bitpos + 1;
494 }
495 #else
496 #include <asm-generic/bitops/fls64.h>
497 #endif
498 
499 #include <asm-generic/bitops/find.h>
500 
501 #include <asm-generic/bitops/sched.h>
502 
503 #include <asm/arch_hweight.h>
504 
505 #include <asm-generic/bitops/const_hweight.h>
506 
507 #include <asm-generic/bitops/le.h>
508 
509 #include <asm-generic/bitops/ext2-atomic-setbit.h>
510 
511 #endif /* __KERNEL__ */
512 #endif /* _ASM_X86_BITOPS_H */
513