xref: /linux/arch/x86/include/asm/bitops.h (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
3 
4 /*
5  * Copyright 1992, Linus Torvalds.
6  *
7  * Note: inlines with more than a single statement should be marked
8  * __always_inline to avoid problems with older gcc's inlining heuristics.
9  */
10 
11 #ifndef _LINUX_BITOPS_H
12 #error only <linux/bitops.h> can be included directly
13 #endif
14 
15 #include <linux/compiler.h>
16 #include <asm/alternative.h>
17 #include <asm/rmwcc.h>
18 #include <asm/barrier.h>
19 
20 #if BITS_PER_LONG == 32
21 # define _BITOPS_LONG_SHIFT 5
22 #elif BITS_PER_LONG == 64
23 # define _BITOPS_LONG_SHIFT 6
24 #else
25 # error "Unexpected BITS_PER_LONG"
26 #endif
27 
28 #define BIT_64(n)			(U64_C(1) << (n))
29 
30 /*
31  * These have to be done with inline assembly: that way the bit-setting
32  * is guaranteed to be atomic. All bit operations return 0 if the bit
33  * was cleared before the operation and != 0 if it was not.
34  *
35  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
36  */
37 
38 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
39 /* Technically wrong, but this avoids compilation errors on some gcc
40    versions. */
41 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
42 #else
43 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
44 #endif
45 
46 #define ADDR				BITOP_ADDR(addr)
47 
48 /*
49  * We do the locked ops that don't return the old value as
50  * a mask operation on a byte.
51  */
52 #define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
53 #define CONST_MASK_ADDR(nr, addr)	BITOP_ADDR((void *)(addr) + ((nr)>>3))
54 #define CONST_MASK(nr)			(1 << ((nr) & 7))
55 
56 /**
57  * set_bit - Atomically set a bit in memory
58  * @nr: the bit to set
59  * @addr: the address to start counting from
60  *
61  * This function is atomic and may not be reordered.  See __set_bit()
62  * if you do not require the atomic guarantees.
63  *
64  * Note: there are no guarantees that this function will not be reordered
65  * on non x86 architectures, so if you are writing portable code,
66  * make sure not to rely on its reordering guarantees.
67  *
68  * Note that @nr may be almost arbitrarily large; this function is not
69  * restricted to acting on a single-word quantity.
70  */
71 static __always_inline void
72 set_bit(long nr, volatile unsigned long *addr)
73 {
74 	if (IS_IMMEDIATE(nr)) {
75 		asm volatile(LOCK_PREFIX "orb %1,%0"
76 			: CONST_MASK_ADDR(nr, addr)
77 			: "iq" ((u8)CONST_MASK(nr))
78 			: "memory");
79 	} else {
80 		asm volatile(LOCK_PREFIX "bts %1,%0"
81 			: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
82 	}
83 }
84 
85 /**
86  * __set_bit - Set a bit in memory
87  * @nr: the bit to set
88  * @addr: the address to start counting from
89  *
90  * Unlike set_bit(), this function is non-atomic and may be reordered.
91  * If it's called on the same region of memory simultaneously, the effect
92  * may be that only one operation succeeds.
93  */
94 static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
95 {
96 	asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
97 }
98 
99 /**
100  * clear_bit - Clears a bit in memory
101  * @nr: Bit to clear
102  * @addr: Address to start counting from
103  *
104  * clear_bit() is atomic and may not be reordered.  However, it does
105  * not contain a memory barrier, so if it is used for locking purposes,
106  * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
107  * in order to ensure changes are visible on other processors.
108  */
109 static __always_inline void
110 clear_bit(long nr, volatile unsigned long *addr)
111 {
112 	if (IS_IMMEDIATE(nr)) {
113 		asm volatile(LOCK_PREFIX "andb %1,%0"
114 			: CONST_MASK_ADDR(nr, addr)
115 			: "iq" ((u8)~CONST_MASK(nr)));
116 	} else {
117 		asm volatile(LOCK_PREFIX "btr %1,%0"
118 			: BITOP_ADDR(addr)
119 			: "Ir" (nr));
120 	}
121 }
122 
123 /*
124  * clear_bit_unlock - Clears a bit in memory
125  * @nr: Bit to clear
126  * @addr: Address to start counting from
127  *
128  * clear_bit() is atomic and implies release semantics before the memory
129  * operation. It can be used for an unlock.
130  */
131 static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
132 {
133 	barrier();
134 	clear_bit(nr, addr);
135 }
136 
137 static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
138 {
139 	asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
140 }
141 
142 static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
143 {
144 	bool negative;
145 	asm volatile(LOCK_PREFIX "andb %2,%1\n\t"
146 		CC_SET(s)
147 		: CC_OUT(s) (negative), ADDR
148 		: "ir" ((char) ~(1 << nr)) : "memory");
149 	return negative;
150 }
151 
152 // Let everybody know we have it
153 #define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
154 
155 /*
156  * __clear_bit_unlock - Clears a bit in memory
157  * @nr: Bit to clear
158  * @addr: Address to start counting from
159  *
160  * __clear_bit() is non-atomic and implies release semantics before the memory
161  * operation. It can be used for an unlock if no other CPUs can concurrently
162  * modify other bits in the word.
163  *
164  * No memory barrier is required here, because x86 cannot reorder stores past
165  * older loads. Same principle as spin_unlock.
166  */
167 static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
168 {
169 	barrier();
170 	__clear_bit(nr, addr);
171 }
172 
173 /**
174  * __change_bit - Toggle a bit in memory
175  * @nr: the bit to change
176  * @addr: the address to start counting from
177  *
178  * Unlike change_bit(), this function is non-atomic and may be reordered.
179  * If it's called on the same region of memory simultaneously, the effect
180  * may be that only one operation succeeds.
181  */
182 static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
183 {
184 	asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
185 }
186 
187 /**
188  * change_bit - Toggle a bit in memory
189  * @nr: Bit to change
190  * @addr: Address to start counting from
191  *
192  * change_bit() is atomic and may not be reordered.
193  * Note that @nr may be almost arbitrarily large; this function is not
194  * restricted to acting on a single-word quantity.
195  */
196 static __always_inline void change_bit(long nr, volatile unsigned long *addr)
197 {
198 	if (IS_IMMEDIATE(nr)) {
199 		asm volatile(LOCK_PREFIX "xorb %1,%0"
200 			: CONST_MASK_ADDR(nr, addr)
201 			: "iq" ((u8)CONST_MASK(nr)));
202 	} else {
203 		asm volatile(LOCK_PREFIX "btc %1,%0"
204 			: BITOP_ADDR(addr)
205 			: "Ir" (nr));
206 	}
207 }
208 
209 /**
210  * test_and_set_bit - Set a bit and return its old value
211  * @nr: Bit to set
212  * @addr: Address to count from
213  *
214  * This operation is atomic and cannot be reordered.
215  * It also implies a memory barrier.
216  */
217 static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
218 {
219 	GEN_BINARY_RMWcc(LOCK_PREFIX "bts", *addr, "Ir", nr, "%0", c);
220 }
221 
222 /**
223  * test_and_set_bit_lock - Set a bit and return its old value for lock
224  * @nr: Bit to set
225  * @addr: Address to count from
226  *
227  * This is the same as test_and_set_bit on x86.
228  */
229 static __always_inline bool
230 test_and_set_bit_lock(long nr, volatile unsigned long *addr)
231 {
232 	return test_and_set_bit(nr, addr);
233 }
234 
235 /**
236  * __test_and_set_bit - Set a bit and return its old value
237  * @nr: Bit to set
238  * @addr: Address to count from
239  *
240  * This operation is non-atomic and can be reordered.
241  * If two examples of this operation race, one can appear to succeed
242  * but actually fail.  You must protect multiple accesses with a lock.
243  */
244 static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
245 {
246 	bool oldbit;
247 
248 	asm("bts %2,%1\n\t"
249 	    CC_SET(c)
250 	    : CC_OUT(c) (oldbit), ADDR
251 	    : "Ir" (nr));
252 	return oldbit;
253 }
254 
255 /**
256  * test_and_clear_bit - Clear a bit and return its old value
257  * @nr: Bit to clear
258  * @addr: Address to count from
259  *
260  * This operation is atomic and cannot be reordered.
261  * It also implies a memory barrier.
262  */
263 static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
264 {
265 	GEN_BINARY_RMWcc(LOCK_PREFIX "btr", *addr, "Ir", nr, "%0", c);
266 }
267 
268 /**
269  * __test_and_clear_bit - Clear a bit and return its old value
270  * @nr: Bit to clear
271  * @addr: Address to count from
272  *
273  * This operation is non-atomic and can be reordered.
274  * If two examples of this operation race, one can appear to succeed
275  * but actually fail.  You must protect multiple accesses with a lock.
276  *
277  * Note: the operation is performed atomically with respect to
278  * the local CPU, but not other CPUs. Portable code should not
279  * rely on this behaviour.
280  * KVM relies on this behaviour on x86 for modifying memory that is also
281  * accessed from a hypervisor on the same CPU if running in a VM: don't change
282  * this without also updating arch/x86/kernel/kvm.c
283  */
284 static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
285 {
286 	bool oldbit;
287 
288 	asm volatile("btr %2,%1\n\t"
289 		     CC_SET(c)
290 		     : CC_OUT(c) (oldbit), ADDR
291 		     : "Ir" (nr));
292 	return oldbit;
293 }
294 
295 /* WARNING: non atomic and it can be reordered! */
296 static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
297 {
298 	bool oldbit;
299 
300 	asm volatile("btc %2,%1\n\t"
301 		     CC_SET(c)
302 		     : CC_OUT(c) (oldbit), ADDR
303 		     : "Ir" (nr) : "memory");
304 
305 	return oldbit;
306 }
307 
308 /**
309  * test_and_change_bit - Change a bit and return its old value
310  * @nr: Bit to change
311  * @addr: Address to count from
312  *
313  * This operation is atomic and cannot be reordered.
314  * It also implies a memory barrier.
315  */
316 static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
317 {
318 	GEN_BINARY_RMWcc(LOCK_PREFIX "btc", *addr, "Ir", nr, "%0", c);
319 }
320 
321 static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
322 {
323 	return ((1UL << (nr & (BITS_PER_LONG-1))) &
324 		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
325 }
326 
327 static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
328 {
329 	bool oldbit;
330 
331 	asm volatile("bt %2,%1\n\t"
332 		     CC_SET(c)
333 		     : CC_OUT(c) (oldbit)
334 		     : "m" (*(unsigned long *)addr), "Ir" (nr));
335 
336 	return oldbit;
337 }
338 
339 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
340 /**
341  * test_bit - Determine whether a bit is set
342  * @nr: bit number to test
343  * @addr: Address to start counting from
344  */
345 static bool test_bit(int nr, const volatile unsigned long *addr);
346 #endif
347 
348 #define test_bit(nr, addr)			\
349 	(__builtin_constant_p((nr))		\
350 	 ? constant_test_bit((nr), (addr))	\
351 	 : variable_test_bit((nr), (addr)))
352 
353 /**
354  * __ffs - find first set bit in word
355  * @word: The word to search
356  *
357  * Undefined if no bit exists, so code should check against 0 first.
358  */
359 static __always_inline unsigned long __ffs(unsigned long word)
360 {
361 	asm("rep; bsf %1,%0"
362 		: "=r" (word)
363 		: "rm" (word));
364 	return word;
365 }
366 
367 /**
368  * ffz - find first zero bit in word
369  * @word: The word to search
370  *
371  * Undefined if no zero exists, so code should check against ~0UL first.
372  */
373 static __always_inline unsigned long ffz(unsigned long word)
374 {
375 	asm("rep; bsf %1,%0"
376 		: "=r" (word)
377 		: "r" (~word));
378 	return word;
379 }
380 
381 /*
382  * __fls: find last set bit in word
383  * @word: The word to search
384  *
385  * Undefined if no set bit exists, so code should check against 0 first.
386  */
387 static __always_inline unsigned long __fls(unsigned long word)
388 {
389 	asm("bsr %1,%0"
390 	    : "=r" (word)
391 	    : "rm" (word));
392 	return word;
393 }
394 
395 #undef ADDR
396 
397 #ifdef __KERNEL__
398 /**
399  * ffs - find first set bit in word
400  * @x: the word to search
401  *
402  * This is defined the same way as the libc and compiler builtin ffs
403  * routines, therefore differs in spirit from the other bitops.
404  *
405  * ffs(value) returns 0 if value is 0 or the position of the first
406  * set bit if value is nonzero. The first (least significant) bit
407  * is at position 1.
408  */
409 static __always_inline int ffs(int x)
410 {
411 	int r;
412 
413 #ifdef CONFIG_X86_64
414 	/*
415 	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
416 	 * dest reg is undefined if x==0, but their CPU architect says its
417 	 * value is written to set it to the same as before, except that the
418 	 * top 32 bits will be cleared.
419 	 *
420 	 * We cannot do this on 32 bits because at the very least some
421 	 * 486 CPUs did not behave this way.
422 	 */
423 	asm("bsfl %1,%0"
424 	    : "=r" (r)
425 	    : "rm" (x), "0" (-1));
426 #elif defined(CONFIG_X86_CMOV)
427 	asm("bsfl %1,%0\n\t"
428 	    "cmovzl %2,%0"
429 	    : "=&r" (r) : "rm" (x), "r" (-1));
430 #else
431 	asm("bsfl %1,%0\n\t"
432 	    "jnz 1f\n\t"
433 	    "movl $-1,%0\n"
434 	    "1:" : "=r" (r) : "rm" (x));
435 #endif
436 	return r + 1;
437 }
438 
439 /**
440  * fls - find last set bit in word
441  * @x: the word to search
442  *
443  * This is defined in a similar way as the libc and compiler builtin
444  * ffs, but returns the position of the most significant set bit.
445  *
446  * fls(value) returns 0 if value is 0 or the position of the last
447  * set bit if value is nonzero. The last (most significant) bit is
448  * at position 32.
449  */
450 static __always_inline int fls(int x)
451 {
452 	int r;
453 
454 #ifdef CONFIG_X86_64
455 	/*
456 	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
457 	 * dest reg is undefined if x==0, but their CPU architect says its
458 	 * value is written to set it to the same as before, except that the
459 	 * top 32 bits will be cleared.
460 	 *
461 	 * We cannot do this on 32 bits because at the very least some
462 	 * 486 CPUs did not behave this way.
463 	 */
464 	asm("bsrl %1,%0"
465 	    : "=r" (r)
466 	    : "rm" (x), "0" (-1));
467 #elif defined(CONFIG_X86_CMOV)
468 	asm("bsrl %1,%0\n\t"
469 	    "cmovzl %2,%0"
470 	    : "=&r" (r) : "rm" (x), "rm" (-1));
471 #else
472 	asm("bsrl %1,%0\n\t"
473 	    "jnz 1f\n\t"
474 	    "movl $-1,%0\n"
475 	    "1:" : "=r" (r) : "rm" (x));
476 #endif
477 	return r + 1;
478 }
479 
480 /**
481  * fls64 - find last set bit in a 64-bit word
482  * @x: the word to search
483  *
484  * This is defined in a similar way as the libc and compiler builtin
485  * ffsll, but returns the position of the most significant set bit.
486  *
487  * fls64(value) returns 0 if value is 0 or the position of the last
488  * set bit if value is nonzero. The last (most significant) bit is
489  * at position 64.
490  */
491 #ifdef CONFIG_X86_64
492 static __always_inline int fls64(__u64 x)
493 {
494 	int bitpos = -1;
495 	/*
496 	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
497 	 * dest reg is undefined if x==0, but their CPU architect says its
498 	 * value is written to set it to the same as before.
499 	 */
500 	asm("bsrq %1,%q0"
501 	    : "+r" (bitpos)
502 	    : "rm" (x));
503 	return bitpos + 1;
504 }
505 #else
506 #include <asm-generic/bitops/fls64.h>
507 #endif
508 
509 #include <asm-generic/bitops/find.h>
510 
511 #include <asm-generic/bitops/sched.h>
512 
513 #include <asm/arch_hweight.h>
514 
515 #include <asm-generic/bitops/const_hweight.h>
516 
517 #include <asm-generic/bitops/le.h>
518 
519 #include <asm-generic/bitops/ext2-atomic-setbit.h>
520 
521 #endif /* __KERNEL__ */
522 #endif /* _ASM_X86_BITOPS_H */
523