xref: /linux/arch/x86/include/asm/bitops.h (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
3 
4 /*
5  * Copyright 1992, Linus Torvalds.
6  *
7  * Note: inlines with more than a single statement should be marked
8  * __always_inline to avoid problems with older gcc's inlining heuristics.
9  */
10 
11 #ifndef _LINUX_BITOPS_H
12 #error only <linux/bitops.h> can be included directly
13 #endif
14 
15 #include <linux/compiler.h>
16 #include <asm/alternative.h>
17 #include <asm/rmwcc.h>
18 #include <asm/barrier.h>
19 
20 #if BITS_PER_LONG == 32
21 # define _BITOPS_LONG_SHIFT 5
22 #elif BITS_PER_LONG == 64
23 # define _BITOPS_LONG_SHIFT 6
24 #else
25 # error "Unexpected BITS_PER_LONG"
26 #endif
27 
28 #define BIT_64(n)			(U64_C(1) << (n))
29 
30 /*
31  * These have to be done with inline assembly: that way the bit-setting
32  * is guaranteed to be atomic. All bit operations return 0 if the bit
33  * was cleared before the operation and != 0 if it was not.
34  *
35  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
36  */
37 
38 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
39 /* Technically wrong, but this avoids compilation errors on some gcc
40    versions. */
41 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
42 #else
43 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
44 #endif
45 
46 #define ADDR				BITOP_ADDR(addr)
47 
48 /*
49  * We do the locked ops that don't return the old value as
50  * a mask operation on a byte.
51  */
52 #define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
53 #define CONST_MASK_ADDR(nr, addr)	BITOP_ADDR((void *)(addr) + ((nr)>>3))
54 #define CONST_MASK(nr)			(1 << ((nr) & 7))
55 
56 /**
57  * set_bit - Atomically set a bit in memory
58  * @nr: the bit to set
59  * @addr: the address to start counting from
60  *
61  * This function is atomic and may not be reordered.  See __set_bit()
62  * if you do not require the atomic guarantees.
63  *
64  * Note: there are no guarantees that this function will not be reordered
65  * on non x86 architectures, so if you are writing portable code,
66  * make sure not to rely on its reordering guarantees.
67  *
68  * Note that @nr may be almost arbitrarily large; this function is not
69  * restricted to acting on a single-word quantity.
70  */
71 static __always_inline void
72 set_bit(long nr, volatile unsigned long *addr)
73 {
74 	if (IS_IMMEDIATE(nr)) {
75 		asm volatile(LOCK_PREFIX "orb %1,%0"
76 			: CONST_MASK_ADDR(nr, addr)
77 			: "iq" ((u8)CONST_MASK(nr))
78 			: "memory");
79 	} else {
80 		asm volatile(LOCK_PREFIX "bts %1,%0"
81 			: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
82 	}
83 }
84 
85 /**
86  * __set_bit - Set a bit in memory
87  * @nr: the bit to set
88  * @addr: the address to start counting from
89  *
90  * Unlike set_bit(), this function is non-atomic and may be reordered.
91  * If it's called on the same region of memory simultaneously, the effect
92  * may be that only one operation succeeds.
93  */
94 static inline void __set_bit(long nr, volatile unsigned long *addr)
95 {
96 	asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
97 }
98 
99 /**
100  * clear_bit - Clears a bit in memory
101  * @nr: Bit to clear
102  * @addr: Address to start counting from
103  *
104  * clear_bit() is atomic and may not be reordered.  However, it does
105  * not contain a memory barrier, so if it is used for locking purposes,
106  * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
107  * in order to ensure changes are visible on other processors.
108  */
109 static __always_inline void
110 clear_bit(long nr, volatile unsigned long *addr)
111 {
112 	if (IS_IMMEDIATE(nr)) {
113 		asm volatile(LOCK_PREFIX "andb %1,%0"
114 			: CONST_MASK_ADDR(nr, addr)
115 			: "iq" ((u8)~CONST_MASK(nr)));
116 	} else {
117 		asm volatile(LOCK_PREFIX "btr %1,%0"
118 			: BITOP_ADDR(addr)
119 			: "Ir" (nr));
120 	}
121 }
122 
123 /*
124  * clear_bit_unlock - Clears a bit in memory
125  * @nr: Bit to clear
126  * @addr: Address to start counting from
127  *
128  * clear_bit() is atomic and implies release semantics before the memory
129  * operation. It can be used for an unlock.
130  */
131 static inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
132 {
133 	barrier();
134 	clear_bit(nr, addr);
135 }
136 
137 static inline void __clear_bit(long nr, volatile unsigned long *addr)
138 {
139 	asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
140 }
141 
142 /*
143  * __clear_bit_unlock - Clears a bit in memory
144  * @nr: Bit to clear
145  * @addr: Address to start counting from
146  *
147  * __clear_bit() is non-atomic and implies release semantics before the memory
148  * operation. It can be used for an unlock if no other CPUs can concurrently
149  * modify other bits in the word.
150  *
151  * No memory barrier is required here, because x86 cannot reorder stores past
152  * older loads. Same principle as spin_unlock.
153  */
154 static inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
155 {
156 	barrier();
157 	__clear_bit(nr, addr);
158 }
159 
160 /**
161  * __change_bit - Toggle a bit in memory
162  * @nr: the bit to change
163  * @addr: the address to start counting from
164  *
165  * Unlike change_bit(), this function is non-atomic and may be reordered.
166  * If it's called on the same region of memory simultaneously, the effect
167  * may be that only one operation succeeds.
168  */
169 static inline void __change_bit(long nr, volatile unsigned long *addr)
170 {
171 	asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
172 }
173 
174 /**
175  * change_bit - Toggle a bit in memory
176  * @nr: Bit to change
177  * @addr: Address to start counting from
178  *
179  * change_bit() is atomic and may not be reordered.
180  * Note that @nr may be almost arbitrarily large; this function is not
181  * restricted to acting on a single-word quantity.
182  */
183 static inline void change_bit(long nr, volatile unsigned long *addr)
184 {
185 	if (IS_IMMEDIATE(nr)) {
186 		asm volatile(LOCK_PREFIX "xorb %1,%0"
187 			: CONST_MASK_ADDR(nr, addr)
188 			: "iq" ((u8)CONST_MASK(nr)));
189 	} else {
190 		asm volatile(LOCK_PREFIX "btc %1,%0"
191 			: BITOP_ADDR(addr)
192 			: "Ir" (nr));
193 	}
194 }
195 
196 /**
197  * test_and_set_bit - Set a bit and return its old value
198  * @nr: Bit to set
199  * @addr: Address to count from
200  *
201  * This operation is atomic and cannot be reordered.
202  * It also implies a memory barrier.
203  */
204 static inline int test_and_set_bit(long nr, volatile unsigned long *addr)
205 {
206 	GEN_BINARY_RMWcc(LOCK_PREFIX "bts", *addr, "Ir", nr, "%0", "c");
207 }
208 
209 /**
210  * test_and_set_bit_lock - Set a bit and return its old value for lock
211  * @nr: Bit to set
212  * @addr: Address to count from
213  *
214  * This is the same as test_and_set_bit on x86.
215  */
216 static __always_inline int
217 test_and_set_bit_lock(long nr, volatile unsigned long *addr)
218 {
219 	return test_and_set_bit(nr, addr);
220 }
221 
222 /**
223  * __test_and_set_bit - Set a bit and return its old value
224  * @nr: Bit to set
225  * @addr: Address to count from
226  *
227  * This operation is non-atomic and can be reordered.
228  * If two examples of this operation race, one can appear to succeed
229  * but actually fail.  You must protect multiple accesses with a lock.
230  */
231 static inline int __test_and_set_bit(long nr, volatile unsigned long *addr)
232 {
233 	int oldbit;
234 
235 	asm("bts %2,%1\n\t"
236 	    "sbb %0,%0"
237 	    : "=r" (oldbit), ADDR
238 	    : "Ir" (nr));
239 	return oldbit;
240 }
241 
242 /**
243  * test_and_clear_bit - Clear a bit and return its old value
244  * @nr: Bit to clear
245  * @addr: Address to count from
246  *
247  * This operation is atomic and cannot be reordered.
248  * It also implies a memory barrier.
249  */
250 static inline int test_and_clear_bit(long nr, volatile unsigned long *addr)
251 {
252 	GEN_BINARY_RMWcc(LOCK_PREFIX "btr", *addr, "Ir", nr, "%0", "c");
253 }
254 
255 /**
256  * __test_and_clear_bit - Clear a bit and return its old value
257  * @nr: Bit to clear
258  * @addr: Address to count from
259  *
260  * This operation is non-atomic and can be reordered.
261  * If two examples of this operation race, one can appear to succeed
262  * but actually fail.  You must protect multiple accesses with a lock.
263  *
264  * Note: the operation is performed atomically with respect to
265  * the local CPU, but not other CPUs. Portable code should not
266  * rely on this behaviour.
267  * KVM relies on this behaviour on x86 for modifying memory that is also
268  * accessed from a hypervisor on the same CPU if running in a VM: don't change
269  * this without also updating arch/x86/kernel/kvm.c
270  */
271 static inline int __test_and_clear_bit(long nr, volatile unsigned long *addr)
272 {
273 	int oldbit;
274 
275 	asm volatile("btr %2,%1\n\t"
276 		     "sbb %0,%0"
277 		     : "=r" (oldbit), ADDR
278 		     : "Ir" (nr));
279 	return oldbit;
280 }
281 
282 /* WARNING: non atomic and it can be reordered! */
283 static inline int __test_and_change_bit(long nr, volatile unsigned long *addr)
284 {
285 	int oldbit;
286 
287 	asm volatile("btc %2,%1\n\t"
288 		     "sbb %0,%0"
289 		     : "=r" (oldbit), ADDR
290 		     : "Ir" (nr) : "memory");
291 
292 	return oldbit;
293 }
294 
295 /**
296  * test_and_change_bit - Change a bit and return its old value
297  * @nr: Bit to change
298  * @addr: Address to count from
299  *
300  * This operation is atomic and cannot be reordered.
301  * It also implies a memory barrier.
302  */
303 static inline int test_and_change_bit(long nr, volatile unsigned long *addr)
304 {
305 	GEN_BINARY_RMWcc(LOCK_PREFIX "btc", *addr, "Ir", nr, "%0", "c");
306 }
307 
308 static __always_inline int constant_test_bit(long nr, const volatile unsigned long *addr)
309 {
310 	return ((1UL << (nr & (BITS_PER_LONG-1))) &
311 		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
312 }
313 
314 static inline int variable_test_bit(long nr, volatile const unsigned long *addr)
315 {
316 	int oldbit;
317 
318 	asm volatile("bt %2,%1\n\t"
319 		     "sbb %0,%0"
320 		     : "=r" (oldbit)
321 		     : "m" (*(unsigned long *)addr), "Ir" (nr));
322 
323 	return oldbit;
324 }
325 
326 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
327 /**
328  * test_bit - Determine whether a bit is set
329  * @nr: bit number to test
330  * @addr: Address to start counting from
331  */
332 static int test_bit(int nr, const volatile unsigned long *addr);
333 #endif
334 
335 #define test_bit(nr, addr)			\
336 	(__builtin_constant_p((nr))		\
337 	 ? constant_test_bit((nr), (addr))	\
338 	 : variable_test_bit((nr), (addr)))
339 
340 /**
341  * __ffs - find first set bit in word
342  * @word: The word to search
343  *
344  * Undefined if no bit exists, so code should check against 0 first.
345  */
346 static inline unsigned long __ffs(unsigned long word)
347 {
348 	asm("rep; bsf %1,%0"
349 		: "=r" (word)
350 		: "rm" (word));
351 	return word;
352 }
353 
354 /**
355  * ffz - find first zero bit in word
356  * @word: The word to search
357  *
358  * Undefined if no zero exists, so code should check against ~0UL first.
359  */
360 static inline unsigned long ffz(unsigned long word)
361 {
362 	asm("rep; bsf %1,%0"
363 		: "=r" (word)
364 		: "r" (~word));
365 	return word;
366 }
367 
368 /*
369  * __fls: find last set bit in word
370  * @word: The word to search
371  *
372  * Undefined if no set bit exists, so code should check against 0 first.
373  */
374 static inline unsigned long __fls(unsigned long word)
375 {
376 	asm("bsr %1,%0"
377 	    : "=r" (word)
378 	    : "rm" (word));
379 	return word;
380 }
381 
382 #undef ADDR
383 
384 #ifdef __KERNEL__
385 /**
386  * ffs - find first set bit in word
387  * @x: the word to search
388  *
389  * This is defined the same way as the libc and compiler builtin ffs
390  * routines, therefore differs in spirit from the other bitops.
391  *
392  * ffs(value) returns 0 if value is 0 or the position of the first
393  * set bit if value is nonzero. The first (least significant) bit
394  * is at position 1.
395  */
396 static inline int ffs(int x)
397 {
398 	int r;
399 
400 #ifdef CONFIG_X86_64
401 	/*
402 	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
403 	 * dest reg is undefined if x==0, but their CPU architect says its
404 	 * value is written to set it to the same as before, except that the
405 	 * top 32 bits will be cleared.
406 	 *
407 	 * We cannot do this on 32 bits because at the very least some
408 	 * 486 CPUs did not behave this way.
409 	 */
410 	asm("bsfl %1,%0"
411 	    : "=r" (r)
412 	    : "rm" (x), "0" (-1));
413 #elif defined(CONFIG_X86_CMOV)
414 	asm("bsfl %1,%0\n\t"
415 	    "cmovzl %2,%0"
416 	    : "=&r" (r) : "rm" (x), "r" (-1));
417 #else
418 	asm("bsfl %1,%0\n\t"
419 	    "jnz 1f\n\t"
420 	    "movl $-1,%0\n"
421 	    "1:" : "=r" (r) : "rm" (x));
422 #endif
423 	return r + 1;
424 }
425 
426 /**
427  * fls - find last set bit in word
428  * @x: the word to search
429  *
430  * This is defined in a similar way as the libc and compiler builtin
431  * ffs, but returns the position of the most significant set bit.
432  *
433  * fls(value) returns 0 if value is 0 or the position of the last
434  * set bit if value is nonzero. The last (most significant) bit is
435  * at position 32.
436  */
437 static inline int fls(int x)
438 {
439 	int r;
440 
441 #ifdef CONFIG_X86_64
442 	/*
443 	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
444 	 * dest reg is undefined if x==0, but their CPU architect says its
445 	 * value is written to set it to the same as before, except that the
446 	 * top 32 bits will be cleared.
447 	 *
448 	 * We cannot do this on 32 bits because at the very least some
449 	 * 486 CPUs did not behave this way.
450 	 */
451 	asm("bsrl %1,%0"
452 	    : "=r" (r)
453 	    : "rm" (x), "0" (-1));
454 #elif defined(CONFIG_X86_CMOV)
455 	asm("bsrl %1,%0\n\t"
456 	    "cmovzl %2,%0"
457 	    : "=&r" (r) : "rm" (x), "rm" (-1));
458 #else
459 	asm("bsrl %1,%0\n\t"
460 	    "jnz 1f\n\t"
461 	    "movl $-1,%0\n"
462 	    "1:" : "=r" (r) : "rm" (x));
463 #endif
464 	return r + 1;
465 }
466 
467 /**
468  * fls64 - find last set bit in a 64-bit word
469  * @x: the word to search
470  *
471  * This is defined in a similar way as the libc and compiler builtin
472  * ffsll, but returns the position of the most significant set bit.
473  *
474  * fls64(value) returns 0 if value is 0 or the position of the last
475  * set bit if value is nonzero. The last (most significant) bit is
476  * at position 64.
477  */
478 #ifdef CONFIG_X86_64
479 static __always_inline int fls64(__u64 x)
480 {
481 	int bitpos = -1;
482 	/*
483 	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
484 	 * dest reg is undefined if x==0, but their CPU architect says its
485 	 * value is written to set it to the same as before.
486 	 */
487 	asm("bsrq %1,%q0"
488 	    : "+r" (bitpos)
489 	    : "rm" (x));
490 	return bitpos + 1;
491 }
492 #else
493 #include <asm-generic/bitops/fls64.h>
494 #endif
495 
496 #include <asm-generic/bitops/find.h>
497 
498 #include <asm-generic/bitops/sched.h>
499 
500 #include <asm/arch_hweight.h>
501 
502 #include <asm-generic/bitops/const_hweight.h>
503 
504 #include <asm-generic/bitops/le.h>
505 
506 #include <asm-generic/bitops/ext2-atomic-setbit.h>
507 
508 #endif /* __KERNEL__ */
509 #endif /* _ASM_X86_BITOPS_H */
510