xref: /linux/arch/x86/include/asm/bitops.h (revision a126eca844353360ebafa9088d22865cb8e022e3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_BITOPS_H
3 #define _ASM_X86_BITOPS_H
4 
5 /*
6  * Copyright 1992, Linus Torvalds.
7  *
8  * Note: inlines with more than a single statement should be marked
9  * __always_inline to avoid problems with older gcc's inlining heuristics.
10  */
11 
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
14 #endif
15 
16 #include <linux/compiler.h>
17 #include <asm/alternative.h>
18 #include <asm/rmwcc.h>
19 #include <asm/barrier.h>
20 
21 #if BITS_PER_LONG == 32
22 # define _BITOPS_LONG_SHIFT 5
23 #elif BITS_PER_LONG == 64
24 # define _BITOPS_LONG_SHIFT 6
25 #else
26 # error "Unexpected BITS_PER_LONG"
27 #endif
28 
29 #define BIT_64(n)			(U64_C(1) << (n))
30 
31 /*
32  * These have to be done with inline assembly: that way the bit-setting
33  * is guaranteed to be atomic. All bit operations return 0 if the bit
34  * was cleared before the operation and != 0 if it was not.
35  *
36  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37  */
38 
39 #define RLONG_ADDR(x)			 "m" (*(volatile long *) (x))
40 #define WBYTE_ADDR(x)			"+m" (*(volatile char *) (x))
41 
42 #define ADDR				RLONG_ADDR(addr)
43 
44 /*
45  * We do the locked ops that don't return the old value as
46  * a mask operation on a byte.
47  */
48 #define CONST_MASK_ADDR(nr, addr)	WBYTE_ADDR((void *)(addr) + ((nr)>>3))
49 #define CONST_MASK(nr)			(1 << ((nr) & 7))
50 
51 static __always_inline void
52 arch_set_bit(long nr, volatile unsigned long *addr)
53 {
54 	if (__builtin_constant_p(nr)) {
55 		asm volatile(LOCK_PREFIX "orb %b1,%0"
56 			: CONST_MASK_ADDR(nr, addr)
57 			: "iq" (CONST_MASK(nr))
58 			: "memory");
59 	} else {
60 		asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0"
61 			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
62 	}
63 }
64 
65 static __always_inline void
66 arch___set_bit(unsigned long nr, volatile unsigned long *addr)
67 {
68 	asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
69 }
70 
71 static __always_inline void
72 arch_clear_bit(long nr, volatile unsigned long *addr)
73 {
74 	if (__builtin_constant_p(nr)) {
75 		asm volatile(LOCK_PREFIX "andb %b1,%0"
76 			: CONST_MASK_ADDR(nr, addr)
77 			: "iq" (~CONST_MASK(nr)));
78 	} else {
79 		asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0"
80 			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
81 	}
82 }
83 
84 static __always_inline void
85 arch_clear_bit_unlock(long nr, volatile unsigned long *addr)
86 {
87 	barrier();
88 	arch_clear_bit(nr, addr);
89 }
90 
91 static __always_inline void
92 arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
93 {
94 	asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
95 }
96 
97 static __always_inline bool arch_xor_unlock_is_negative_byte(unsigned long mask,
98 		volatile unsigned long *addr)
99 {
100 	bool negative;
101 	asm volatile(LOCK_PREFIX "xorb %2,%1"
102 		CC_SET(s)
103 		: CC_OUT(s) (negative), WBYTE_ADDR(addr)
104 		: "iq" ((char)mask) : "memory");
105 	return negative;
106 }
107 #define arch_xor_unlock_is_negative_byte arch_xor_unlock_is_negative_byte
108 
109 static __always_inline void
110 arch___clear_bit_unlock(long nr, volatile unsigned long *addr)
111 {
112 	arch___clear_bit(nr, addr);
113 }
114 
115 static __always_inline void
116 arch___change_bit(unsigned long nr, volatile unsigned long *addr)
117 {
118 	asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
119 }
120 
121 static __always_inline void
122 arch_change_bit(long nr, volatile unsigned long *addr)
123 {
124 	if (__builtin_constant_p(nr)) {
125 		asm volatile(LOCK_PREFIX "xorb %b1,%0"
126 			: CONST_MASK_ADDR(nr, addr)
127 			: "iq" (CONST_MASK(nr)));
128 	} else {
129 		asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0"
130 			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
131 	}
132 }
133 
134 static __always_inline bool
135 arch_test_and_set_bit(long nr, volatile unsigned long *addr)
136 {
137 	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr);
138 }
139 
140 static __always_inline bool
141 arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr)
142 {
143 	return arch_test_and_set_bit(nr, addr);
144 }
145 
146 static __always_inline bool
147 arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
148 {
149 	bool oldbit;
150 
151 	asm(__ASM_SIZE(bts) " %2,%1"
152 	    CC_SET(c)
153 	    : CC_OUT(c) (oldbit)
154 	    : ADDR, "Ir" (nr) : "memory");
155 	return oldbit;
156 }
157 
158 static __always_inline bool
159 arch_test_and_clear_bit(long nr, volatile unsigned long *addr)
160 {
161 	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr);
162 }
163 
164 /*
165  * Note: the operation is performed atomically with respect to
166  * the local CPU, but not other CPUs. Portable code should not
167  * rely on this behaviour.
168  * KVM relies on this behaviour on x86 for modifying memory that is also
169  * accessed from a hypervisor on the same CPU if running in a VM: don't change
170  * this without also updating arch/x86/kernel/kvm.c
171  */
172 static __always_inline bool
173 arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
174 {
175 	bool oldbit;
176 
177 	asm volatile(__ASM_SIZE(btr) " %2,%1"
178 		     CC_SET(c)
179 		     : CC_OUT(c) (oldbit)
180 		     : ADDR, "Ir" (nr) : "memory");
181 	return oldbit;
182 }
183 
184 static __always_inline bool
185 arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
186 {
187 	bool oldbit;
188 
189 	asm volatile(__ASM_SIZE(btc) " %2,%1"
190 		     CC_SET(c)
191 		     : CC_OUT(c) (oldbit)
192 		     : ADDR, "Ir" (nr) : "memory");
193 
194 	return oldbit;
195 }
196 
197 static __always_inline bool
198 arch_test_and_change_bit(long nr, volatile unsigned long *addr)
199 {
200 	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
201 }
202 
203 static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
204 {
205 	return ((1UL << (nr & (BITS_PER_LONG-1))) &
206 		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
207 }
208 
209 static __always_inline bool constant_test_bit_acquire(long nr, const volatile unsigned long *addr)
210 {
211 	bool oldbit;
212 
213 	asm volatile("testb %2,%1"
214 		     CC_SET(nz)
215 		     : CC_OUT(nz) (oldbit)
216 		     : "m" (((unsigned char *)addr)[nr >> 3]),
217 		       "i" (1 << (nr & 7))
218 		     :"memory");
219 
220 	return oldbit;
221 }
222 
223 static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
224 {
225 	bool oldbit;
226 
227 	asm volatile(__ASM_SIZE(bt) " %2,%1"
228 		     CC_SET(c)
229 		     : CC_OUT(c) (oldbit)
230 		     : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory");
231 
232 	return oldbit;
233 }
234 
235 static __always_inline bool
236 arch_test_bit(unsigned long nr, const volatile unsigned long *addr)
237 {
238 	return __builtin_constant_p(nr) ? constant_test_bit(nr, addr) :
239 					  variable_test_bit(nr, addr);
240 }
241 
242 static __always_inline bool
243 arch_test_bit_acquire(unsigned long nr, const volatile unsigned long *addr)
244 {
245 	return __builtin_constant_p(nr) ? constant_test_bit_acquire(nr, addr) :
246 					  variable_test_bit(nr, addr);
247 }
248 
249 static __always_inline unsigned long variable__ffs(unsigned long word)
250 {
251 	asm("rep; bsf %1,%0"
252 		: "=r" (word)
253 		: ASM_INPUT_RM (word));
254 	return word;
255 }
256 
257 /**
258  * __ffs - find first set bit in word
259  * @word: The word to search
260  *
261  * Undefined if no bit exists, so code should check against 0 first.
262  */
263 #define __ffs(word)				\
264 	(__builtin_constant_p(word) ?		\
265 	 (unsigned long)__builtin_ctzl(word) :	\
266 	 variable__ffs(word))
267 
268 static __always_inline unsigned long variable_ffz(unsigned long word)
269 {
270 	asm("rep; bsf %1,%0"
271 		: "=r" (word)
272 		: "r" (~word));
273 	return word;
274 }
275 
276 /**
277  * ffz - find first zero bit in word
278  * @word: The word to search
279  *
280  * Undefined if no zero exists, so code should check against ~0UL first.
281  */
282 #define ffz(word)				\
283 	(__builtin_constant_p(word) ?		\
284 	 (unsigned long)__builtin_ctzl(~word) :	\
285 	 variable_ffz(word))
286 
287 /*
288  * __fls: find last set bit in word
289  * @word: The word to search
290  *
291  * Undefined if no set bit exists, so code should check against 0 first.
292  */
293 static __always_inline unsigned long __fls(unsigned long word)
294 {
295 	if (__builtin_constant_p(word))
296 		return BITS_PER_LONG - 1 - __builtin_clzl(word);
297 
298 	asm("bsr %1,%0"
299 	    : "=r" (word)
300 	    : ASM_INPUT_RM (word));
301 	return word;
302 }
303 
304 #undef ADDR
305 
306 #ifdef __KERNEL__
307 static __always_inline int variable_ffs(int x)
308 {
309 	int r;
310 
311 #ifdef CONFIG_X86_64
312 	/*
313 	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
314 	 * dest reg is undefined if x==0, but their CPU architect says its
315 	 * value is written to set it to the same as before, except that the
316 	 * top 32 bits will be cleared.
317 	 *
318 	 * We cannot do this on 32 bits because at the very least some
319 	 * 486 CPUs did not behave this way.
320 	 */
321 	asm("bsfl %1,%0"
322 	    : "=r" (r)
323 	    : ASM_INPUT_RM (x), "0" (-1));
324 #elif defined(CONFIG_X86_CMOV)
325 	asm("bsfl %1,%0\n\t"
326 	    "cmovzl %2,%0"
327 	    : "=&r" (r) : "rm" (x), "r" (-1));
328 #else
329 	asm("bsfl %1,%0\n\t"
330 	    "jnz 1f\n\t"
331 	    "movl $-1,%0\n"
332 	    "1:" : "=r" (r) : "rm" (x));
333 #endif
334 	return r + 1;
335 }
336 
337 /**
338  * ffs - find first set bit in word
339  * @x: the word to search
340  *
341  * This is defined the same way as the libc and compiler builtin ffs
342  * routines, therefore differs in spirit from the other bitops.
343  *
344  * ffs(value) returns 0 if value is 0 or the position of the first
345  * set bit if value is nonzero. The first (least significant) bit
346  * is at position 1.
347  */
348 #define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x))
349 
350 /**
351  * fls - find last set bit in word
352  * @x: the word to search
353  *
354  * This is defined in a similar way as the libc and compiler builtin
355  * ffs, but returns the position of the most significant set bit.
356  *
357  * fls(value) returns 0 if value is 0 or the position of the last
358  * set bit if value is nonzero. The last (most significant) bit is
359  * at position 32.
360  */
361 static __always_inline int fls(unsigned int x)
362 {
363 	int r;
364 
365 	if (__builtin_constant_p(x))
366 		return x ? 32 - __builtin_clz(x) : 0;
367 
368 #ifdef CONFIG_X86_64
369 	/*
370 	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
371 	 * dest reg is undefined if x==0, but their CPU architect says its
372 	 * value is written to set it to the same as before, except that the
373 	 * top 32 bits will be cleared.
374 	 *
375 	 * We cannot do this on 32 bits because at the very least some
376 	 * 486 CPUs did not behave this way.
377 	 */
378 	asm("bsrl %1,%0"
379 	    : "=r" (r)
380 	    : ASM_INPUT_RM (x), "0" (-1));
381 #elif defined(CONFIG_X86_CMOV)
382 	asm("bsrl %1,%0\n\t"
383 	    "cmovzl %2,%0"
384 	    : "=&r" (r) : "rm" (x), "rm" (-1));
385 #else
386 	asm("bsrl %1,%0\n\t"
387 	    "jnz 1f\n\t"
388 	    "movl $-1,%0\n"
389 	    "1:" : "=r" (r) : "rm" (x));
390 #endif
391 	return r + 1;
392 }
393 
394 /**
395  * fls64 - find last set bit in a 64-bit word
396  * @x: the word to search
397  *
398  * This is defined in a similar way as the libc and compiler builtin
399  * ffsll, but returns the position of the most significant set bit.
400  *
401  * fls64(value) returns 0 if value is 0 or the position of the last
402  * set bit if value is nonzero. The last (most significant) bit is
403  * at position 64.
404  */
405 #ifdef CONFIG_X86_64
406 static __always_inline int fls64(__u64 x)
407 {
408 	int bitpos = -1;
409 
410 	if (__builtin_constant_p(x))
411 		return x ? 64 - __builtin_clzll(x) : 0;
412 	/*
413 	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
414 	 * dest reg is undefined if x==0, but their CPU architect says its
415 	 * value is written to set it to the same as before.
416 	 */
417 	asm("bsrq %1,%q0"
418 	    : "+r" (bitpos)
419 	    : ASM_INPUT_RM (x));
420 	return bitpos + 1;
421 }
422 #else
423 #include <asm-generic/bitops/fls64.h>
424 #endif
425 
426 #include <asm-generic/bitops/sched.h>
427 
428 #include <asm/arch_hweight.h>
429 
430 #include <asm-generic/bitops/const_hweight.h>
431 
432 #include <asm-generic/bitops/instrumented-atomic.h>
433 #include <asm-generic/bitops/instrumented-non-atomic.h>
434 #include <asm-generic/bitops/instrumented-lock.h>
435 
436 #include <asm-generic/bitops/le.h>
437 
438 #include <asm-generic/bitops/ext2-atomic-setbit.h>
439 
440 #endif /* __KERNEL__ */
441 #endif /* _ASM_X86_BITOPS_H */
442