xref: /linux/arch/x86/include/asm/bitops.h (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
3 
4 /*
5  * Copyright 1992, Linus Torvalds.
6  */
7 
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
10 #endif
11 
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
14 
15 /*
16  * These have to be done with inline assembly: that way the bit-setting
17  * is guaranteed to be atomic. All bit operations return 0 if the bit
18  * was cleared before the operation and != 0 if it was not.
19  *
20  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
21  */
22 
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
25    versions. */
26 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
27 #else
28 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
29 #endif
30 
31 #define ADDR				BITOP_ADDR(addr)
32 
33 /*
34  * We do the locked ops that don't return the old value as
35  * a mask operation on a byte.
36  */
37 #define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
38 #define CONST_MASK_ADDR(nr, addr)	BITOP_ADDR((void *)(addr) + ((nr)>>3))
39 #define CONST_MASK(nr)			(1 << ((nr) & 7))
40 
41 /**
42  * set_bit - Atomically set a bit in memory
43  * @nr: the bit to set
44  * @addr: the address to start counting from
45  *
46  * This function is atomic and may not be reordered.  See __set_bit()
47  * if you do not require the atomic guarantees.
48  *
49  * Note: there are no guarantees that this function will not be reordered
50  * on non x86 architectures, so if you are writing portable code,
51  * make sure not to rely on its reordering guarantees.
52  *
53  * Note that @nr may be almost arbitrarily large; this function is not
54  * restricted to acting on a single-word quantity.
55  */
56 static inline void set_bit(unsigned int nr, volatile unsigned long *addr)
57 {
58 	if (IS_IMMEDIATE(nr)) {
59 		asm volatile(LOCK_PREFIX "orb %1,%0"
60 			: CONST_MASK_ADDR(nr, addr)
61 			: "iq" ((u8)CONST_MASK(nr))
62 			: "memory");
63 	} else {
64 		asm volatile(LOCK_PREFIX "bts %1,%0"
65 			: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
66 	}
67 }
68 
69 /**
70  * __set_bit - Set a bit in memory
71  * @nr: the bit to set
72  * @addr: the address to start counting from
73  *
74  * Unlike set_bit(), this function is non-atomic and may be reordered.
75  * If it's called on the same region of memory simultaneously, the effect
76  * may be that only one operation succeeds.
77  */
78 static inline void __set_bit(int nr, volatile unsigned long *addr)
79 {
80 	asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
81 }
82 
83 /**
84  * clear_bit - Clears a bit in memory
85  * @nr: Bit to clear
86  * @addr: Address to start counting from
87  *
88  * clear_bit() is atomic and may not be reordered.  However, it does
89  * not contain a memory barrier, so if it is used for locking purposes,
90  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
91  * in order to ensure changes are visible on other processors.
92  */
93 static inline void clear_bit(int nr, volatile unsigned long *addr)
94 {
95 	if (IS_IMMEDIATE(nr)) {
96 		asm volatile(LOCK_PREFIX "andb %1,%0"
97 			: CONST_MASK_ADDR(nr, addr)
98 			: "iq" ((u8)~CONST_MASK(nr)));
99 	} else {
100 		asm volatile(LOCK_PREFIX "btr %1,%0"
101 			: BITOP_ADDR(addr)
102 			: "Ir" (nr));
103 	}
104 }
105 
106 /*
107  * clear_bit_unlock - Clears a bit in memory
108  * @nr: Bit to clear
109  * @addr: Address to start counting from
110  *
111  * clear_bit() is atomic and implies release semantics before the memory
112  * operation. It can be used for an unlock.
113  */
114 static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
115 {
116 	barrier();
117 	clear_bit(nr, addr);
118 }
119 
120 static inline void __clear_bit(int nr, volatile unsigned long *addr)
121 {
122 	asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
123 }
124 
125 /*
126  * __clear_bit_unlock - Clears a bit in memory
127  * @nr: Bit to clear
128  * @addr: Address to start counting from
129  *
130  * __clear_bit() is non-atomic and implies release semantics before the memory
131  * operation. It can be used for an unlock if no other CPUs can concurrently
132  * modify other bits in the word.
133  *
134  * No memory barrier is required here, because x86 cannot reorder stores past
135  * older loads. Same principle as spin_unlock.
136  */
137 static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
138 {
139 	barrier();
140 	__clear_bit(nr, addr);
141 }
142 
143 #define smp_mb__before_clear_bit()	barrier()
144 #define smp_mb__after_clear_bit()	barrier()
145 
146 /**
147  * __change_bit - Toggle a bit in memory
148  * @nr: the bit to change
149  * @addr: the address to start counting from
150  *
151  * Unlike change_bit(), this function is non-atomic and may be reordered.
152  * If it's called on the same region of memory simultaneously, the effect
153  * may be that only one operation succeeds.
154  */
155 static inline void __change_bit(int nr, volatile unsigned long *addr)
156 {
157 	asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
158 }
159 
160 /**
161  * change_bit - Toggle a bit in memory
162  * @nr: Bit to change
163  * @addr: Address to start counting from
164  *
165  * change_bit() is atomic and may not be reordered.
166  * Note that @nr may be almost arbitrarily large; this function is not
167  * restricted to acting on a single-word quantity.
168  */
169 static inline void change_bit(int nr, volatile unsigned long *addr)
170 {
171 	asm volatile(LOCK_PREFIX "btc %1,%0" : ADDR : "Ir" (nr));
172 }
173 
174 /**
175  * test_and_set_bit - Set a bit and return its old value
176  * @nr: Bit to set
177  * @addr: Address to count from
178  *
179  * This operation is atomic and cannot be reordered.
180  * It also implies a memory barrier.
181  */
182 static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
183 {
184 	int oldbit;
185 
186 	asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
187 		     "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
188 
189 	return oldbit;
190 }
191 
192 /**
193  * test_and_set_bit_lock - Set a bit and return its old value for lock
194  * @nr: Bit to set
195  * @addr: Address to count from
196  *
197  * This is the same as test_and_set_bit on x86.
198  */
199 static inline int test_and_set_bit_lock(int nr, volatile unsigned long *addr)
200 {
201 	return test_and_set_bit(nr, addr);
202 }
203 
204 /**
205  * __test_and_set_bit - Set a bit and return its old value
206  * @nr: Bit to set
207  * @addr: Address to count from
208  *
209  * This operation is non-atomic and can be reordered.
210  * If two examples of this operation race, one can appear to succeed
211  * but actually fail.  You must protect multiple accesses with a lock.
212  */
213 static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
214 {
215 	int oldbit;
216 
217 	asm("bts %2,%1\n\t"
218 	    "sbb %0,%0"
219 	    : "=r" (oldbit), ADDR
220 	    : "Ir" (nr));
221 	return oldbit;
222 }
223 
224 /**
225  * test_and_clear_bit - Clear a bit and return its old value
226  * @nr: Bit to clear
227  * @addr: Address to count from
228  *
229  * This operation is atomic and cannot be reordered.
230  * It also implies a memory barrier.
231  */
232 static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
233 {
234 	int oldbit;
235 
236 	asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
237 		     "sbb %0,%0"
238 		     : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
239 
240 	return oldbit;
241 }
242 
243 /**
244  * __test_and_clear_bit - Clear a bit and return its old value
245  * @nr: Bit to clear
246  * @addr: Address to count from
247  *
248  * This operation is non-atomic and can be reordered.
249  * If two examples of this operation race, one can appear to succeed
250  * but actually fail.  You must protect multiple accesses with a lock.
251  */
252 static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
253 {
254 	int oldbit;
255 
256 	asm volatile("btr %2,%1\n\t"
257 		     "sbb %0,%0"
258 		     : "=r" (oldbit), ADDR
259 		     : "Ir" (nr));
260 	return oldbit;
261 }
262 
263 /* WARNING: non atomic and it can be reordered! */
264 static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
265 {
266 	int oldbit;
267 
268 	asm volatile("btc %2,%1\n\t"
269 		     "sbb %0,%0"
270 		     : "=r" (oldbit), ADDR
271 		     : "Ir" (nr) : "memory");
272 
273 	return oldbit;
274 }
275 
276 /**
277  * test_and_change_bit - Change a bit and return its old value
278  * @nr: Bit to change
279  * @addr: Address to count from
280  *
281  * This operation is atomic and cannot be reordered.
282  * It also implies a memory barrier.
283  */
284 static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
285 {
286 	int oldbit;
287 
288 	asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
289 		     "sbb %0,%0"
290 		     : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
291 
292 	return oldbit;
293 }
294 
295 static inline int constant_test_bit(int nr, const volatile unsigned long *addr)
296 {
297 	return ((1UL << (nr % BITS_PER_LONG)) &
298 		(((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
299 }
300 
301 static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
302 {
303 	int oldbit;
304 
305 	asm volatile("bt %2,%1\n\t"
306 		     "sbb %0,%0"
307 		     : "=r" (oldbit)
308 		     : "m" (*(unsigned long *)addr), "Ir" (nr));
309 
310 	return oldbit;
311 }
312 
313 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
314 /**
315  * test_bit - Determine whether a bit is set
316  * @nr: bit number to test
317  * @addr: Address to start counting from
318  */
319 static int test_bit(int nr, const volatile unsigned long *addr);
320 #endif
321 
322 #define test_bit(nr, addr)			\
323 	(__builtin_constant_p((nr))		\
324 	 ? constant_test_bit((nr), (addr))	\
325 	 : variable_test_bit((nr), (addr)))
326 
327 /**
328  * __ffs - find first set bit in word
329  * @word: The word to search
330  *
331  * Undefined if no bit exists, so code should check against 0 first.
332  */
333 static inline unsigned long __ffs(unsigned long word)
334 {
335 	asm("bsf %1,%0"
336 		: "=r" (word)
337 		: "rm" (word));
338 	return word;
339 }
340 
341 /**
342  * ffz - find first zero bit in word
343  * @word: The word to search
344  *
345  * Undefined if no zero exists, so code should check against ~0UL first.
346  */
347 static inline unsigned long ffz(unsigned long word)
348 {
349 	asm("bsf %1,%0"
350 		: "=r" (word)
351 		: "r" (~word));
352 	return word;
353 }
354 
355 /*
356  * __fls: find last set bit in word
357  * @word: The word to search
358  *
359  * Undefined if no set bit exists, so code should check against 0 first.
360  */
361 static inline unsigned long __fls(unsigned long word)
362 {
363 	asm("bsr %1,%0"
364 	    : "=r" (word)
365 	    : "rm" (word));
366 	return word;
367 }
368 
369 #ifdef __KERNEL__
370 /**
371  * ffs - find first set bit in word
372  * @x: the word to search
373  *
374  * This is defined the same way as the libc and compiler builtin ffs
375  * routines, therefore differs in spirit from the other bitops.
376  *
377  * ffs(value) returns 0 if value is 0 or the position of the first
378  * set bit if value is nonzero. The first (least significant) bit
379  * is at position 1.
380  */
381 static inline int ffs(int x)
382 {
383 	int r;
384 #ifdef CONFIG_X86_CMOV
385 	asm("bsfl %1,%0\n\t"
386 	    "cmovzl %2,%0"
387 	    : "=r" (r) : "rm" (x), "r" (-1));
388 #else
389 	asm("bsfl %1,%0\n\t"
390 	    "jnz 1f\n\t"
391 	    "movl $-1,%0\n"
392 	    "1:" : "=r" (r) : "rm" (x));
393 #endif
394 	return r + 1;
395 }
396 
397 /**
398  * fls - find last set bit in word
399  * @x: the word to search
400  *
401  * This is defined in a similar way as the libc and compiler builtin
402  * ffs, but returns the position of the most significant set bit.
403  *
404  * fls(value) returns 0 if value is 0 or the position of the last
405  * set bit if value is nonzero. The last (most significant) bit is
406  * at position 32.
407  */
408 static inline int fls(int x)
409 {
410 	int r;
411 #ifdef CONFIG_X86_CMOV
412 	asm("bsrl %1,%0\n\t"
413 	    "cmovzl %2,%0"
414 	    : "=&r" (r) : "rm" (x), "rm" (-1));
415 #else
416 	asm("bsrl %1,%0\n\t"
417 	    "jnz 1f\n\t"
418 	    "movl $-1,%0\n"
419 	    "1:" : "=r" (r) : "rm" (x));
420 #endif
421 	return r + 1;
422 }
423 #endif /* __KERNEL__ */
424 
425 #undef ADDR
426 
427 #ifdef __KERNEL__
428 
429 #include <asm-generic/bitops/sched.h>
430 
431 #define ARCH_HAS_FAST_MULTIPLIER 1
432 
433 #include <asm-generic/bitops/hweight.h>
434 
435 #endif /* __KERNEL__ */
436 
437 #include <asm-generic/bitops/fls64.h>
438 
439 #ifdef __KERNEL__
440 
441 #include <asm-generic/bitops/ext2-non-atomic.h>
442 
443 #define ext2_set_bit_atomic(lock, nr, addr)			\
444 	test_and_set_bit((nr), (unsigned long *)(addr))
445 #define ext2_clear_bit_atomic(lock, nr, addr)			\
446 	test_and_clear_bit((nr), (unsigned long *)(addr))
447 
448 #include <asm-generic/bitops/minix.h>
449 
450 #endif /* __KERNEL__ */
451 #endif /* _ASM_X86_BITOPS_H */
452