xref: /linux/arch/x86/hyperv/hv_init.c (revision ec63e2a4897075e427c121d863bd89c44578094f)
1 /*
2  * X86 specific Hyper-V initialization code.
3  *
4  * Copyright (C) 2016, Microsoft, Inc.
5  *
6  * Author : K. Y. Srinivasan <kys@microsoft.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published
10  * by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  * NON INFRINGEMENT.  See the GNU General Public License for more
16  * details.
17  *
18  */
19 
20 #include <linux/efi.h>
21 #include <linux/types.h>
22 #include <asm/apic.h>
23 #include <asm/desc.h>
24 #include <asm/hypervisor.h>
25 #include <asm/hyperv-tlfs.h>
26 #include <asm/mshyperv.h>
27 #include <linux/version.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/clockchips.h>
31 #include <linux/hyperv.h>
32 #include <linux/slab.h>
33 #include <linux/cpuhotplug.h>
34 
35 #ifdef CONFIG_HYPERV_TSCPAGE
36 
37 static struct ms_hyperv_tsc_page *tsc_pg;
38 
39 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
40 {
41 	return tsc_pg;
42 }
43 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
44 
45 static u64 read_hv_clock_tsc(struct clocksource *arg)
46 {
47 	u64 current_tick = hv_read_tsc_page(tsc_pg);
48 
49 	if (current_tick == U64_MAX)
50 		rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
51 
52 	return current_tick;
53 }
54 
55 static struct clocksource hyperv_cs_tsc = {
56 		.name		= "hyperv_clocksource_tsc_page",
57 		.rating		= 400,
58 		.read		= read_hv_clock_tsc,
59 		.mask		= CLOCKSOURCE_MASK(64),
60 		.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
61 };
62 #endif
63 
64 static u64 read_hv_clock_msr(struct clocksource *arg)
65 {
66 	u64 current_tick;
67 	/*
68 	 * Read the partition counter to get the current tick count. This count
69 	 * is set to 0 when the partition is created and is incremented in
70 	 * 100 nanosecond units.
71 	 */
72 	rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
73 	return current_tick;
74 }
75 
76 static struct clocksource hyperv_cs_msr = {
77 	.name		= "hyperv_clocksource_msr",
78 	.rating		= 400,
79 	.read		= read_hv_clock_msr,
80 	.mask		= CLOCKSOURCE_MASK(64),
81 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
82 };
83 
84 void *hv_hypercall_pg;
85 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
86 struct clocksource *hyperv_cs;
87 EXPORT_SYMBOL_GPL(hyperv_cs);
88 
89 u32 *hv_vp_index;
90 EXPORT_SYMBOL_GPL(hv_vp_index);
91 
92 struct hv_vp_assist_page **hv_vp_assist_page;
93 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
94 
95 void  __percpu **hyperv_pcpu_input_arg;
96 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
97 
98 u32 hv_max_vp_index;
99 EXPORT_SYMBOL_GPL(hv_max_vp_index);
100 
101 static int hv_cpu_init(unsigned int cpu)
102 {
103 	u64 msr_vp_index;
104 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
105 	void **input_arg;
106 	struct page *pg;
107 
108 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
109 	pg = alloc_page(GFP_KERNEL);
110 	if (unlikely(!pg))
111 		return -ENOMEM;
112 	*input_arg = page_address(pg);
113 
114 	hv_get_vp_index(msr_vp_index);
115 
116 	hv_vp_index[smp_processor_id()] = msr_vp_index;
117 
118 	if (msr_vp_index > hv_max_vp_index)
119 		hv_max_vp_index = msr_vp_index;
120 
121 	if (!hv_vp_assist_page)
122 		return 0;
123 
124 	if (!*hvp)
125 		*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
126 
127 	if (*hvp) {
128 		u64 val;
129 
130 		val = vmalloc_to_pfn(*hvp);
131 		val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
132 			HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
133 
134 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
135 	}
136 
137 	return 0;
138 }
139 
140 static void (*hv_reenlightenment_cb)(void);
141 
142 static void hv_reenlightenment_notify(struct work_struct *dummy)
143 {
144 	struct hv_tsc_emulation_status emu_status;
145 
146 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
147 
148 	/* Don't issue the callback if TSC accesses are not emulated */
149 	if (hv_reenlightenment_cb && emu_status.inprogress)
150 		hv_reenlightenment_cb();
151 }
152 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
153 
154 void hyperv_stop_tsc_emulation(void)
155 {
156 	u64 freq;
157 	struct hv_tsc_emulation_status emu_status;
158 
159 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
160 	emu_status.inprogress = 0;
161 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
162 
163 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
164 	tsc_khz = div64_u64(freq, 1000);
165 }
166 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
167 
168 static inline bool hv_reenlightenment_available(void)
169 {
170 	/*
171 	 * Check for required features and priviliges to make TSC frequency
172 	 * change notifications work.
173 	 */
174 	return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
175 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
176 		ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
177 }
178 
179 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
180 {
181 	entering_ack_irq();
182 
183 	inc_irq_stat(irq_hv_reenlightenment_count);
184 
185 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
186 
187 	exiting_irq();
188 }
189 
190 void set_hv_tscchange_cb(void (*cb)(void))
191 {
192 	struct hv_reenlightenment_control re_ctrl = {
193 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
194 		.enabled = 1,
195 		.target_vp = hv_vp_index[smp_processor_id()]
196 	};
197 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
198 
199 	if (!hv_reenlightenment_available()) {
200 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
201 		return;
202 	}
203 
204 	hv_reenlightenment_cb = cb;
205 
206 	/* Make sure callback is registered before we write to MSRs */
207 	wmb();
208 
209 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
210 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
211 }
212 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
213 
214 void clear_hv_tscchange_cb(void)
215 {
216 	struct hv_reenlightenment_control re_ctrl;
217 
218 	if (!hv_reenlightenment_available())
219 		return;
220 
221 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
222 	re_ctrl.enabled = 0;
223 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
224 
225 	hv_reenlightenment_cb = NULL;
226 }
227 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
228 
229 static int hv_cpu_die(unsigned int cpu)
230 {
231 	struct hv_reenlightenment_control re_ctrl;
232 	unsigned int new_cpu;
233 	unsigned long flags;
234 	void **input_arg;
235 	void *input_pg = NULL;
236 
237 	local_irq_save(flags);
238 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
239 	input_pg = *input_arg;
240 	*input_arg = NULL;
241 	local_irq_restore(flags);
242 	free_page((unsigned long)input_pg);
243 
244 	if (hv_vp_assist_page && hv_vp_assist_page[cpu])
245 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
246 
247 	if (hv_reenlightenment_cb == NULL)
248 		return 0;
249 
250 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
251 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
252 		/* Reassign to some other online CPU */
253 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
254 
255 		re_ctrl.target_vp = hv_vp_index[new_cpu];
256 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
257 	}
258 
259 	return 0;
260 }
261 
262 static int __init hv_pci_init(void)
263 {
264 	int gen2vm = efi_enabled(EFI_BOOT);
265 
266 	/*
267 	 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
268 	 * The purpose is to suppress the harmless warning:
269 	 * "PCI: Fatal: No config space access function found"
270 	 */
271 	if (gen2vm)
272 		return 0;
273 
274 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
275 	return 1;
276 }
277 
278 /*
279  * This function is to be invoked early in the boot sequence after the
280  * hypervisor has been detected.
281  *
282  * 1. Setup the hypercall page.
283  * 2. Register Hyper-V specific clocksource.
284  * 3. Setup Hyper-V specific APIC entry points.
285  */
286 void __init hyperv_init(void)
287 {
288 	u64 guest_id, required_msrs;
289 	union hv_x64_msr_hypercall_contents hypercall_msr;
290 	int cpuhp, i;
291 
292 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
293 		return;
294 
295 	/* Absolutely required MSRs */
296 	required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
297 		HV_X64_MSR_VP_INDEX_AVAILABLE;
298 
299 	if ((ms_hyperv.features & required_msrs) != required_msrs)
300 		return;
301 
302 	/*
303 	 * Allocate the per-CPU state for the hypercall input arg.
304 	 * If this allocation fails, we will not be able to setup
305 	 * (per-CPU) hypercall input page and thus this failure is
306 	 * fatal on Hyper-V.
307 	 */
308 	hyperv_pcpu_input_arg = alloc_percpu(void  *);
309 
310 	BUG_ON(hyperv_pcpu_input_arg == NULL);
311 
312 	/* Allocate percpu VP index */
313 	hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
314 				    GFP_KERNEL);
315 	if (!hv_vp_index)
316 		return;
317 
318 	for (i = 0; i < num_possible_cpus(); i++)
319 		hv_vp_index[i] = VP_INVAL;
320 
321 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
322 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
323 	if (!hv_vp_assist_page) {
324 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
325 		goto free_vp_index;
326 	}
327 
328 	cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
329 				  hv_cpu_init, hv_cpu_die);
330 	if (cpuhp < 0)
331 		goto free_vp_assist_page;
332 
333 	/*
334 	 * Setup the hypercall page and enable hypercalls.
335 	 * 1. Register the guest ID
336 	 * 2. Enable the hypercall and register the hypercall page
337 	 */
338 	guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
339 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
340 
341 	hv_hypercall_pg  = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
342 	if (hv_hypercall_pg == NULL) {
343 		wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
344 		goto remove_cpuhp_state;
345 	}
346 
347 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
348 	hypercall_msr.enable = 1;
349 	hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
350 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
351 
352 	hv_apic_init();
353 
354 	x86_init.pci.arch_init = hv_pci_init;
355 
356 	/*
357 	 * Register Hyper-V specific clocksource.
358 	 */
359 #ifdef CONFIG_HYPERV_TSCPAGE
360 	if (ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE) {
361 		union hv_x64_msr_hypercall_contents tsc_msr;
362 
363 		tsc_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
364 		if (!tsc_pg)
365 			goto register_msr_cs;
366 
367 		hyperv_cs = &hyperv_cs_tsc;
368 
369 		rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
370 
371 		tsc_msr.enable = 1;
372 		tsc_msr.guest_physical_address = vmalloc_to_pfn(tsc_pg);
373 
374 		wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
375 
376 		hyperv_cs_tsc.archdata.vclock_mode = VCLOCK_HVCLOCK;
377 
378 		clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
379 		return;
380 	}
381 register_msr_cs:
382 #endif
383 	/*
384 	 * For 32 bit guests just use the MSR based mechanism for reading
385 	 * the partition counter.
386 	 */
387 
388 	hyperv_cs = &hyperv_cs_msr;
389 	if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
390 		clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
391 
392 	return;
393 
394 remove_cpuhp_state:
395 	cpuhp_remove_state(cpuhp);
396 free_vp_assist_page:
397 	kfree(hv_vp_assist_page);
398 	hv_vp_assist_page = NULL;
399 free_vp_index:
400 	kfree(hv_vp_index);
401 	hv_vp_index = NULL;
402 }
403 
404 /*
405  * This routine is called before kexec/kdump, it does the required cleanup.
406  */
407 void hyperv_cleanup(void)
408 {
409 	union hv_x64_msr_hypercall_contents hypercall_msr;
410 
411 	/* Reset our OS id */
412 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
413 
414 	/*
415 	 * Reset hypercall page reference before reset the page,
416 	 * let hypercall operations fail safely rather than
417 	 * panic the kernel for using invalid hypercall page
418 	 */
419 	hv_hypercall_pg = NULL;
420 
421 	/* Reset the hypercall page */
422 	hypercall_msr.as_uint64 = 0;
423 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
424 
425 	/* Reset the TSC page */
426 	hypercall_msr.as_uint64 = 0;
427 	wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
428 }
429 EXPORT_SYMBOL_GPL(hyperv_cleanup);
430 
431 void hyperv_report_panic(struct pt_regs *regs, long err)
432 {
433 	static bool panic_reported;
434 	u64 guest_id;
435 
436 	/*
437 	 * We prefer to report panic on 'die' chain as we have proper
438 	 * registers to report, but if we miss it (e.g. on BUG()) we need
439 	 * to report it on 'panic'.
440 	 */
441 	if (panic_reported)
442 		return;
443 	panic_reported = true;
444 
445 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
446 
447 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
448 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
449 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
450 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
451 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
452 
453 	/*
454 	 * Let Hyper-V know there is crash data available
455 	 */
456 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
457 }
458 EXPORT_SYMBOL_GPL(hyperv_report_panic);
459 
460 /**
461  * hyperv_report_panic_msg - report panic message to Hyper-V
462  * @pa: physical address of the panic page containing the message
463  * @size: size of the message in the page
464  */
465 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
466 {
467 	/*
468 	 * P3 to contain the physical address of the panic page & P4 to
469 	 * contain the size of the panic data in that page. Rest of the
470 	 * registers are no-op when the NOTIFY_MSG flag is set.
471 	 */
472 	wrmsrl(HV_X64_MSR_CRASH_P0, 0);
473 	wrmsrl(HV_X64_MSR_CRASH_P1, 0);
474 	wrmsrl(HV_X64_MSR_CRASH_P2, 0);
475 	wrmsrl(HV_X64_MSR_CRASH_P3, pa);
476 	wrmsrl(HV_X64_MSR_CRASH_P4, size);
477 
478 	/*
479 	 * Let Hyper-V know there is crash data available along with
480 	 * the panic message.
481 	 */
482 	wrmsrl(HV_X64_MSR_CRASH_CTL,
483 	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
484 }
485 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
486 
487 bool hv_is_hyperv_initialized(void)
488 {
489 	union hv_x64_msr_hypercall_contents hypercall_msr;
490 
491 	/*
492 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
493 	 * emulation of Hyper-V
494 	 */
495 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
496 		return false;
497 
498 	/*
499 	 * Verify that earlier initialization succeeded by checking
500 	 * that the hypercall page is setup
501 	 */
502 	hypercall_msr.as_uint64 = 0;
503 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
504 
505 	return hypercall_msr.enable;
506 }
507 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
508