xref: /linux/arch/x86/hyperv/hv_init.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * X86 specific Hyper-V initialization code.
3  *
4  * Copyright (C) 2016, Microsoft, Inc.
5  *
6  * Author : K. Y. Srinivasan <kys@microsoft.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published
10  * by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  * NON INFRINGEMENT.  See the GNU General Public License for more
16  * details.
17  *
18  */
19 
20 #include <linux/types.h>
21 #include <asm/apic.h>
22 #include <asm/desc.h>
23 #include <asm/hypervisor.h>
24 #include <asm/hyperv-tlfs.h>
25 #include <asm/mshyperv.h>
26 #include <linux/version.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/clockchips.h>
30 #include <linux/hyperv.h>
31 #include <linux/slab.h>
32 #include <linux/cpuhotplug.h>
33 
34 #ifdef CONFIG_HYPERV_TSCPAGE
35 
36 static struct ms_hyperv_tsc_page *tsc_pg;
37 
38 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
39 {
40 	return tsc_pg;
41 }
42 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
43 
44 static u64 read_hv_clock_tsc(struct clocksource *arg)
45 {
46 	u64 current_tick = hv_read_tsc_page(tsc_pg);
47 
48 	if (current_tick == U64_MAX)
49 		rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
50 
51 	return current_tick;
52 }
53 
54 static struct clocksource hyperv_cs_tsc = {
55 		.name		= "hyperv_clocksource_tsc_page",
56 		.rating		= 400,
57 		.read		= read_hv_clock_tsc,
58 		.mask		= CLOCKSOURCE_MASK(64),
59 		.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
60 };
61 #endif
62 
63 static u64 read_hv_clock_msr(struct clocksource *arg)
64 {
65 	u64 current_tick;
66 	/*
67 	 * Read the partition counter to get the current tick count. This count
68 	 * is set to 0 when the partition is created and is incremented in
69 	 * 100 nanosecond units.
70 	 */
71 	rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
72 	return current_tick;
73 }
74 
75 static struct clocksource hyperv_cs_msr = {
76 	.name		= "hyperv_clocksource_msr",
77 	.rating		= 400,
78 	.read		= read_hv_clock_msr,
79 	.mask		= CLOCKSOURCE_MASK(64),
80 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
81 };
82 
83 void *hv_hypercall_pg;
84 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
85 struct clocksource *hyperv_cs;
86 EXPORT_SYMBOL_GPL(hyperv_cs);
87 
88 u32 *hv_vp_index;
89 EXPORT_SYMBOL_GPL(hv_vp_index);
90 
91 struct hv_vp_assist_page **hv_vp_assist_page;
92 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
93 
94 void  __percpu **hyperv_pcpu_input_arg;
95 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
96 
97 u32 hv_max_vp_index;
98 
99 static int hv_cpu_init(unsigned int cpu)
100 {
101 	u64 msr_vp_index;
102 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
103 	void **input_arg;
104 
105 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
106 	*input_arg = page_address(alloc_page(GFP_KERNEL));
107 
108 	hv_get_vp_index(msr_vp_index);
109 
110 	hv_vp_index[smp_processor_id()] = msr_vp_index;
111 
112 	if (msr_vp_index > hv_max_vp_index)
113 		hv_max_vp_index = msr_vp_index;
114 
115 	if (!hv_vp_assist_page)
116 		return 0;
117 
118 	if (!*hvp)
119 		*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
120 
121 	if (*hvp) {
122 		u64 val;
123 
124 		val = vmalloc_to_pfn(*hvp);
125 		val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
126 			HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
127 
128 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
129 	}
130 
131 	return 0;
132 }
133 
134 static void (*hv_reenlightenment_cb)(void);
135 
136 static void hv_reenlightenment_notify(struct work_struct *dummy)
137 {
138 	struct hv_tsc_emulation_status emu_status;
139 
140 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
141 
142 	/* Don't issue the callback if TSC accesses are not emulated */
143 	if (hv_reenlightenment_cb && emu_status.inprogress)
144 		hv_reenlightenment_cb();
145 }
146 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
147 
148 void hyperv_stop_tsc_emulation(void)
149 {
150 	u64 freq;
151 	struct hv_tsc_emulation_status emu_status;
152 
153 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
154 	emu_status.inprogress = 0;
155 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
156 
157 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
158 	tsc_khz = div64_u64(freq, 1000);
159 }
160 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
161 
162 static inline bool hv_reenlightenment_available(void)
163 {
164 	/*
165 	 * Check for required features and priviliges to make TSC frequency
166 	 * change notifications work.
167 	 */
168 	return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
169 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
170 		ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
171 }
172 
173 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
174 {
175 	entering_ack_irq();
176 
177 	inc_irq_stat(irq_hv_reenlightenment_count);
178 
179 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
180 
181 	exiting_irq();
182 }
183 
184 void set_hv_tscchange_cb(void (*cb)(void))
185 {
186 	struct hv_reenlightenment_control re_ctrl = {
187 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
188 		.enabled = 1,
189 		.target_vp = hv_vp_index[smp_processor_id()]
190 	};
191 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
192 
193 	if (!hv_reenlightenment_available()) {
194 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
195 		return;
196 	}
197 
198 	hv_reenlightenment_cb = cb;
199 
200 	/* Make sure callback is registered before we write to MSRs */
201 	wmb();
202 
203 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
204 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
205 }
206 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
207 
208 void clear_hv_tscchange_cb(void)
209 {
210 	struct hv_reenlightenment_control re_ctrl;
211 
212 	if (!hv_reenlightenment_available())
213 		return;
214 
215 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
216 	re_ctrl.enabled = 0;
217 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
218 
219 	hv_reenlightenment_cb = NULL;
220 }
221 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
222 
223 static int hv_cpu_die(unsigned int cpu)
224 {
225 	struct hv_reenlightenment_control re_ctrl;
226 	unsigned int new_cpu;
227 	unsigned long flags;
228 	void **input_arg;
229 	void *input_pg = NULL;
230 
231 	local_irq_save(flags);
232 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
233 	input_pg = *input_arg;
234 	*input_arg = NULL;
235 	local_irq_restore(flags);
236 	free_page((unsigned long)input_pg);
237 
238 	if (hv_vp_assist_page && hv_vp_assist_page[cpu])
239 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
240 
241 	if (hv_reenlightenment_cb == NULL)
242 		return 0;
243 
244 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
245 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
246 		/* Reassign to some other online CPU */
247 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
248 
249 		re_ctrl.target_vp = hv_vp_index[new_cpu];
250 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
251 	}
252 
253 	return 0;
254 }
255 
256 /*
257  * This function is to be invoked early in the boot sequence after the
258  * hypervisor has been detected.
259  *
260  * 1. Setup the hypercall page.
261  * 2. Register Hyper-V specific clocksource.
262  * 3. Setup Hyper-V specific APIC entry points.
263  */
264 void __init hyperv_init(void)
265 {
266 	u64 guest_id, required_msrs;
267 	union hv_x64_msr_hypercall_contents hypercall_msr;
268 	int cpuhp, i;
269 
270 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
271 		return;
272 
273 	/* Absolutely required MSRs */
274 	required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
275 		HV_X64_MSR_VP_INDEX_AVAILABLE;
276 
277 	if ((ms_hyperv.features & required_msrs) != required_msrs)
278 		return;
279 
280 	/*
281 	 * Allocate the per-CPU state for the hypercall input arg.
282 	 * If this allocation fails, we will not be able to setup
283 	 * (per-CPU) hypercall input page and thus this failure is
284 	 * fatal on Hyper-V.
285 	 */
286 	hyperv_pcpu_input_arg = alloc_percpu(void  *);
287 
288 	BUG_ON(hyperv_pcpu_input_arg == NULL);
289 
290 	/* Allocate percpu VP index */
291 	hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
292 				    GFP_KERNEL);
293 	if (!hv_vp_index)
294 		return;
295 
296 	for (i = 0; i < num_possible_cpus(); i++)
297 		hv_vp_index[i] = VP_INVAL;
298 
299 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
300 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
301 	if (!hv_vp_assist_page) {
302 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
303 		goto free_vp_index;
304 	}
305 
306 	cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
307 				  hv_cpu_init, hv_cpu_die);
308 	if (cpuhp < 0)
309 		goto free_vp_assist_page;
310 
311 	/*
312 	 * Setup the hypercall page and enable hypercalls.
313 	 * 1. Register the guest ID
314 	 * 2. Enable the hypercall and register the hypercall page
315 	 */
316 	guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
317 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
318 
319 	hv_hypercall_pg  = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
320 	if (hv_hypercall_pg == NULL) {
321 		wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
322 		goto remove_cpuhp_state;
323 	}
324 
325 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
326 	hypercall_msr.enable = 1;
327 	hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
328 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
329 
330 	hv_apic_init();
331 
332 	/*
333 	 * Register Hyper-V specific clocksource.
334 	 */
335 #ifdef CONFIG_HYPERV_TSCPAGE
336 	if (ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE) {
337 		union hv_x64_msr_hypercall_contents tsc_msr;
338 
339 		tsc_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
340 		if (!tsc_pg)
341 			goto register_msr_cs;
342 
343 		hyperv_cs = &hyperv_cs_tsc;
344 
345 		rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
346 
347 		tsc_msr.enable = 1;
348 		tsc_msr.guest_physical_address = vmalloc_to_pfn(tsc_pg);
349 
350 		wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
351 
352 		hyperv_cs_tsc.archdata.vclock_mode = VCLOCK_HVCLOCK;
353 
354 		clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
355 		return;
356 	}
357 register_msr_cs:
358 #endif
359 	/*
360 	 * For 32 bit guests just use the MSR based mechanism for reading
361 	 * the partition counter.
362 	 */
363 
364 	hyperv_cs = &hyperv_cs_msr;
365 	if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
366 		clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
367 
368 	return;
369 
370 remove_cpuhp_state:
371 	cpuhp_remove_state(cpuhp);
372 free_vp_assist_page:
373 	kfree(hv_vp_assist_page);
374 	hv_vp_assist_page = NULL;
375 free_vp_index:
376 	kfree(hv_vp_index);
377 	hv_vp_index = NULL;
378 }
379 
380 /*
381  * This routine is called before kexec/kdump, it does the required cleanup.
382  */
383 void hyperv_cleanup(void)
384 {
385 	union hv_x64_msr_hypercall_contents hypercall_msr;
386 
387 	/* Reset our OS id */
388 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
389 
390 	/* Reset the hypercall page */
391 	hypercall_msr.as_uint64 = 0;
392 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
393 
394 	/* Reset the TSC page */
395 	hypercall_msr.as_uint64 = 0;
396 	wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
397 }
398 EXPORT_SYMBOL_GPL(hyperv_cleanup);
399 
400 void hyperv_report_panic(struct pt_regs *regs, long err)
401 {
402 	static bool panic_reported;
403 	u64 guest_id;
404 
405 	/*
406 	 * We prefer to report panic on 'die' chain as we have proper
407 	 * registers to report, but if we miss it (e.g. on BUG()) we need
408 	 * to report it on 'panic'.
409 	 */
410 	if (panic_reported)
411 		return;
412 	panic_reported = true;
413 
414 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
415 
416 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
417 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
418 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
419 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
420 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
421 
422 	/*
423 	 * Let Hyper-V know there is crash data available
424 	 */
425 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
426 }
427 EXPORT_SYMBOL_GPL(hyperv_report_panic);
428 
429 /**
430  * hyperv_report_panic_msg - report panic message to Hyper-V
431  * @pa: physical address of the panic page containing the message
432  * @size: size of the message in the page
433  */
434 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
435 {
436 	/*
437 	 * P3 to contain the physical address of the panic page & P4 to
438 	 * contain the size of the panic data in that page. Rest of the
439 	 * registers are no-op when the NOTIFY_MSG flag is set.
440 	 */
441 	wrmsrl(HV_X64_MSR_CRASH_P0, 0);
442 	wrmsrl(HV_X64_MSR_CRASH_P1, 0);
443 	wrmsrl(HV_X64_MSR_CRASH_P2, 0);
444 	wrmsrl(HV_X64_MSR_CRASH_P3, pa);
445 	wrmsrl(HV_X64_MSR_CRASH_P4, size);
446 
447 	/*
448 	 * Let Hyper-V know there is crash data available along with
449 	 * the panic message.
450 	 */
451 	wrmsrl(HV_X64_MSR_CRASH_CTL,
452 	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
453 }
454 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
455 
456 bool hv_is_hyperv_initialized(void)
457 {
458 	union hv_x64_msr_hypercall_contents hypercall_msr;
459 
460 	/*
461 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
462 	 * emulation of Hyper-V
463 	 */
464 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
465 		return false;
466 
467 	/*
468 	 * Verify that earlier initialization succeeded by checking
469 	 * that the hypercall page is setup
470 	 */
471 	hypercall_msr.as_uint64 = 0;
472 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
473 
474 	return hypercall_msr.enable;
475 }
476 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
477