xref: /linux/arch/x86/hyperv/hv_init.c (revision c22760885fd6f7161fabde8e7db63d7f085b125a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9 
10 #include <linux/efi.h>
11 #include <linux/types.h>
12 #include <linux/bitfield.h>
13 #include <linux/io.h>
14 #include <asm/apic.h>
15 #include <asm/desc.h>
16 #include <asm/hypervisor.h>
17 #include <asm/hyperv-tlfs.h>
18 #include <asm/mshyperv.h>
19 #include <asm/idtentry.h>
20 #include <linux/kexec.h>
21 #include <linux/version.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/hyperv.h>
25 #include <linux/slab.h>
26 #include <linux/kernel.h>
27 #include <linux/cpuhotplug.h>
28 #include <linux/syscore_ops.h>
29 #include <clocksource/hyperv_timer.h>
30 #include <linux/highmem.h>
31 
32 int hyperv_init_cpuhp;
33 u64 hv_current_partition_id = ~0ull;
34 EXPORT_SYMBOL_GPL(hv_current_partition_id);
35 
36 void *hv_hypercall_pg;
37 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
38 
39 union hv_ghcb __percpu **hv_ghcb_pg;
40 
41 /* Storage to save the hypercall page temporarily for hibernation */
42 static void *hv_hypercall_pg_saved;
43 
44 struct hv_vp_assist_page **hv_vp_assist_page;
45 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
46 
47 static int hyperv_init_ghcb(void)
48 {
49 	u64 ghcb_gpa;
50 	void *ghcb_va;
51 	void **ghcb_base;
52 
53 	if (!hv_isolation_type_snp())
54 		return 0;
55 
56 	if (!hv_ghcb_pg)
57 		return -EINVAL;
58 
59 	/*
60 	 * GHCB page is allocated by paravisor. The address
61 	 * returned by MSR_AMD64_SEV_ES_GHCB is above shared
62 	 * memory boundary and map it here.
63 	 */
64 	rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
65 	ghcb_va = memremap(ghcb_gpa, HV_HYP_PAGE_SIZE, MEMREMAP_WB);
66 	if (!ghcb_va)
67 		return -ENOMEM;
68 
69 	ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
70 	*ghcb_base = ghcb_va;
71 
72 	return 0;
73 }
74 
75 static int hv_cpu_init(unsigned int cpu)
76 {
77 	union hv_vp_assist_msr_contents msr = { 0 };
78 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
79 	int ret;
80 
81 	ret = hv_common_cpu_init(cpu);
82 	if (ret)
83 		return ret;
84 
85 	if (!hv_vp_assist_page)
86 		return 0;
87 
88 	if (!*hvp) {
89 		if (hv_root_partition) {
90 			/*
91 			 * For root partition we get the hypervisor provided VP assist
92 			 * page, instead of allocating a new page.
93 			 */
94 			rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
95 			*hvp = memremap(msr.pfn <<
96 					HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
97 					PAGE_SIZE, MEMREMAP_WB);
98 		} else {
99 			/*
100 			 * The VP assist page is an "overlay" page (see Hyper-V TLFS's
101 			 * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
102 			 * out to make sure we always write the EOI MSR in
103 			 * hv_apic_eoi_write() *after* the EOI optimization is disabled
104 			 * in hv_cpu_die(), otherwise a CPU may not be stopped in the
105 			 * case of CPU offlining and the VM will hang.
106 			 */
107 			*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
108 			if (*hvp)
109 				msr.pfn = vmalloc_to_pfn(*hvp);
110 		}
111 		WARN_ON(!(*hvp));
112 		if (*hvp) {
113 			msr.enable = 1;
114 			wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
115 		}
116 	}
117 
118 	return hyperv_init_ghcb();
119 }
120 
121 static void (*hv_reenlightenment_cb)(void);
122 
123 static void hv_reenlightenment_notify(struct work_struct *dummy)
124 {
125 	struct hv_tsc_emulation_status emu_status;
126 
127 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
128 
129 	/* Don't issue the callback if TSC accesses are not emulated */
130 	if (hv_reenlightenment_cb && emu_status.inprogress)
131 		hv_reenlightenment_cb();
132 }
133 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
134 
135 void hyperv_stop_tsc_emulation(void)
136 {
137 	u64 freq;
138 	struct hv_tsc_emulation_status emu_status;
139 
140 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
141 	emu_status.inprogress = 0;
142 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
143 
144 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
145 	tsc_khz = div64_u64(freq, 1000);
146 }
147 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
148 
149 static inline bool hv_reenlightenment_available(void)
150 {
151 	/*
152 	 * Check for required features and privileges to make TSC frequency
153 	 * change notifications work.
154 	 */
155 	return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
156 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
157 		ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
158 }
159 
160 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
161 {
162 	ack_APIC_irq();
163 	inc_irq_stat(irq_hv_reenlightenment_count);
164 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
165 }
166 
167 void set_hv_tscchange_cb(void (*cb)(void))
168 {
169 	struct hv_reenlightenment_control re_ctrl = {
170 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
171 		.enabled = 1,
172 	};
173 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
174 
175 	if (!hv_reenlightenment_available()) {
176 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
177 		return;
178 	}
179 
180 	if (!hv_vp_index)
181 		return;
182 
183 	hv_reenlightenment_cb = cb;
184 
185 	/* Make sure callback is registered before we write to MSRs */
186 	wmb();
187 
188 	re_ctrl.target_vp = hv_vp_index[get_cpu()];
189 
190 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
191 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
192 
193 	put_cpu();
194 }
195 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
196 
197 void clear_hv_tscchange_cb(void)
198 {
199 	struct hv_reenlightenment_control re_ctrl;
200 
201 	if (!hv_reenlightenment_available())
202 		return;
203 
204 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
205 	re_ctrl.enabled = 0;
206 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
207 
208 	hv_reenlightenment_cb = NULL;
209 }
210 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
211 
212 static int hv_cpu_die(unsigned int cpu)
213 {
214 	struct hv_reenlightenment_control re_ctrl;
215 	unsigned int new_cpu;
216 	void **ghcb_va;
217 
218 	if (hv_ghcb_pg) {
219 		ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
220 		if (*ghcb_va)
221 			memunmap(*ghcb_va);
222 		*ghcb_va = NULL;
223 	}
224 
225 	hv_common_cpu_die(cpu);
226 
227 	if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
228 		union hv_vp_assist_msr_contents msr = { 0 };
229 		if (hv_root_partition) {
230 			/*
231 			 * For root partition the VP assist page is mapped to
232 			 * hypervisor provided page, and thus we unmap the
233 			 * page here and nullify it, so that in future we have
234 			 * correct page address mapped in hv_cpu_init.
235 			 */
236 			memunmap(hv_vp_assist_page[cpu]);
237 			hv_vp_assist_page[cpu] = NULL;
238 			rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
239 			msr.enable = 0;
240 		}
241 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
242 	}
243 
244 	if (hv_reenlightenment_cb == NULL)
245 		return 0;
246 
247 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
248 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
249 		/*
250 		 * Reassign reenlightenment notifications to some other online
251 		 * CPU or just disable the feature if there are no online CPUs
252 		 * left (happens on hibernation).
253 		 */
254 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
255 
256 		if (new_cpu < nr_cpu_ids)
257 			re_ctrl.target_vp = hv_vp_index[new_cpu];
258 		else
259 			re_ctrl.enabled = 0;
260 
261 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
262 	}
263 
264 	return 0;
265 }
266 
267 static int __init hv_pci_init(void)
268 {
269 	int gen2vm = efi_enabled(EFI_BOOT);
270 
271 	/*
272 	 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
273 	 * The purpose is to suppress the harmless warning:
274 	 * "PCI: Fatal: No config space access function found"
275 	 */
276 	if (gen2vm)
277 		return 0;
278 
279 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
280 	return 1;
281 }
282 
283 static int hv_suspend(void)
284 {
285 	union hv_x64_msr_hypercall_contents hypercall_msr;
286 	int ret;
287 
288 	if (hv_root_partition)
289 		return -EPERM;
290 
291 	/*
292 	 * Reset the hypercall page as it is going to be invalidated
293 	 * across hibernation. Setting hv_hypercall_pg to NULL ensures
294 	 * that any subsequent hypercall operation fails safely instead of
295 	 * crashing due to an access of an invalid page. The hypercall page
296 	 * pointer is restored on resume.
297 	 */
298 	hv_hypercall_pg_saved = hv_hypercall_pg;
299 	hv_hypercall_pg = NULL;
300 
301 	/* Disable the hypercall page in the hypervisor */
302 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
303 	hypercall_msr.enable = 0;
304 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
305 
306 	ret = hv_cpu_die(0);
307 	return ret;
308 }
309 
310 static void hv_resume(void)
311 {
312 	union hv_x64_msr_hypercall_contents hypercall_msr;
313 	int ret;
314 
315 	ret = hv_cpu_init(0);
316 	WARN_ON(ret);
317 
318 	/* Re-enable the hypercall page */
319 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
320 	hypercall_msr.enable = 1;
321 	hypercall_msr.guest_physical_address =
322 		vmalloc_to_pfn(hv_hypercall_pg_saved);
323 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
324 
325 	hv_hypercall_pg = hv_hypercall_pg_saved;
326 	hv_hypercall_pg_saved = NULL;
327 
328 	/*
329 	 * Reenlightenment notifications are disabled by hv_cpu_die(0),
330 	 * reenable them here if hv_reenlightenment_cb was previously set.
331 	 */
332 	if (hv_reenlightenment_cb)
333 		set_hv_tscchange_cb(hv_reenlightenment_cb);
334 }
335 
336 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
337 static struct syscore_ops hv_syscore_ops = {
338 	.suspend	= hv_suspend,
339 	.resume		= hv_resume,
340 };
341 
342 static void (* __initdata old_setup_percpu_clockev)(void);
343 
344 static void __init hv_stimer_setup_percpu_clockev(void)
345 {
346 	/*
347 	 * Ignore any errors in setting up stimer clockevents
348 	 * as we can run with the LAPIC timer as a fallback.
349 	 */
350 	(void)hv_stimer_alloc(false);
351 
352 	/*
353 	 * Still register the LAPIC timer, because the direct-mode STIMER is
354 	 * not supported by old versions of Hyper-V. This also allows users
355 	 * to switch to LAPIC timer via /sys, if they want to.
356 	 */
357 	if (old_setup_percpu_clockev)
358 		old_setup_percpu_clockev();
359 }
360 
361 static void __init hv_get_partition_id(void)
362 {
363 	struct hv_get_partition_id *output_page;
364 	u64 status;
365 	unsigned long flags;
366 
367 	local_irq_save(flags);
368 	output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
369 	status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
370 	if (!hv_result_success(status)) {
371 		/* No point in proceeding if this failed */
372 		pr_err("Failed to get partition ID: %lld\n", status);
373 		BUG();
374 	}
375 	hv_current_partition_id = output_page->partition_id;
376 	local_irq_restore(flags);
377 }
378 
379 /*
380  * This function is to be invoked early in the boot sequence after the
381  * hypervisor has been detected.
382  *
383  * 1. Setup the hypercall page.
384  * 2. Register Hyper-V specific clocksource.
385  * 3. Setup Hyper-V specific APIC entry points.
386  */
387 void __init hyperv_init(void)
388 {
389 	u64 guest_id;
390 	union hv_x64_msr_hypercall_contents hypercall_msr;
391 	int cpuhp;
392 
393 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
394 		return;
395 
396 	if (hv_common_init())
397 		return;
398 
399 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
400 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
401 	if (!hv_vp_assist_page) {
402 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
403 		goto common_free;
404 	}
405 
406 	if (hv_isolation_type_snp()) {
407 		hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
408 		if (!hv_ghcb_pg)
409 			goto free_vp_assist_page;
410 	}
411 
412 	cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
413 				  hv_cpu_init, hv_cpu_die);
414 	if (cpuhp < 0)
415 		goto free_ghcb_page;
416 
417 	/*
418 	 * Setup the hypercall page and enable hypercalls.
419 	 * 1. Register the guest ID
420 	 * 2. Enable the hypercall and register the hypercall page
421 	 */
422 	guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
423 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
424 
425 	/* Hyper-V requires to write guest os id via ghcb in SNP IVM. */
426 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
427 
428 	hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
429 			VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
430 			VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
431 			__builtin_return_address(0));
432 	if (hv_hypercall_pg == NULL)
433 		goto clean_guest_os_id;
434 
435 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
436 	hypercall_msr.enable = 1;
437 
438 	if (hv_root_partition) {
439 		struct page *pg;
440 		void *src, *dst;
441 
442 		/*
443 		 * For the root partition, the hypervisor will set up its
444 		 * hypercall page. The hypervisor guarantees it will not show
445 		 * up in the root's address space. The root can't change the
446 		 * location of the hypercall page.
447 		 *
448 		 * Order is important here. We must enable the hypercall page
449 		 * so it is populated with code, then copy the code to an
450 		 * executable page.
451 		 */
452 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
453 
454 		pg = vmalloc_to_page(hv_hypercall_pg);
455 		dst = kmap(pg);
456 		src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
457 				MEMREMAP_WB);
458 		BUG_ON(!(src && dst));
459 		memcpy(dst, src, HV_HYP_PAGE_SIZE);
460 		memunmap(src);
461 		kunmap(pg);
462 	} else {
463 		hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
464 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
465 	}
466 
467 	/*
468 	 * hyperv_init() is called before LAPIC is initialized: see
469 	 * apic_intr_mode_init() -> x86_platform.apic_post_init() and
470 	 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
471 	 * depends on LAPIC, so hv_stimer_alloc() should be called from
472 	 * x86_init.timers.setup_percpu_clockev.
473 	 */
474 	old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
475 	x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
476 
477 	hv_apic_init();
478 
479 	x86_init.pci.arch_init = hv_pci_init;
480 
481 	register_syscore_ops(&hv_syscore_ops);
482 
483 	hyperv_init_cpuhp = cpuhp;
484 
485 	if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
486 		hv_get_partition_id();
487 
488 	BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
489 
490 #ifdef CONFIG_PCI_MSI
491 	/*
492 	 * If we're running as root, we want to create our own PCI MSI domain.
493 	 * We can't set this in hv_pci_init because that would be too late.
494 	 */
495 	if (hv_root_partition)
496 		x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
497 #endif
498 
499 	/* Query the VMs extended capability once, so that it can be cached. */
500 	hv_query_ext_cap(0);
501 	return;
502 
503 clean_guest_os_id:
504 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
505 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
506 	cpuhp_remove_state(cpuhp);
507 free_ghcb_page:
508 	free_percpu(hv_ghcb_pg);
509 free_vp_assist_page:
510 	kfree(hv_vp_assist_page);
511 	hv_vp_assist_page = NULL;
512 common_free:
513 	hv_common_free();
514 }
515 
516 /*
517  * This routine is called before kexec/kdump, it does the required cleanup.
518  */
519 void hyperv_cleanup(void)
520 {
521 	union hv_x64_msr_hypercall_contents hypercall_msr;
522 
523 	unregister_syscore_ops(&hv_syscore_ops);
524 
525 	/* Reset our OS id */
526 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
527 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
528 
529 	/*
530 	 * Reset hypercall page reference before reset the page,
531 	 * let hypercall operations fail safely rather than
532 	 * panic the kernel for using invalid hypercall page
533 	 */
534 	hv_hypercall_pg = NULL;
535 
536 	/* Reset the hypercall page */
537 	hypercall_msr.as_uint64 = 0;
538 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
539 
540 	/* Reset the TSC page */
541 	hypercall_msr.as_uint64 = 0;
542 	wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
543 }
544 
545 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
546 {
547 	static bool panic_reported;
548 	u64 guest_id;
549 
550 	if (in_die && !panic_on_oops)
551 		return;
552 
553 	/*
554 	 * We prefer to report panic on 'die' chain as we have proper
555 	 * registers to report, but if we miss it (e.g. on BUG()) we need
556 	 * to report it on 'panic'.
557 	 */
558 	if (panic_reported)
559 		return;
560 	panic_reported = true;
561 
562 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
563 
564 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
565 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
566 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
567 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
568 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
569 
570 	/*
571 	 * Let Hyper-V know there is crash data available
572 	 */
573 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
574 }
575 EXPORT_SYMBOL_GPL(hyperv_report_panic);
576 
577 bool hv_is_hyperv_initialized(void)
578 {
579 	union hv_x64_msr_hypercall_contents hypercall_msr;
580 
581 	/*
582 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
583 	 * emulation of Hyper-V
584 	 */
585 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
586 		return false;
587 
588 	/*
589 	 * Verify that earlier initialization succeeded by checking
590 	 * that the hypercall page is setup
591 	 */
592 	hypercall_msr.as_uint64 = 0;
593 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
594 
595 	return hypercall_msr.enable;
596 }
597 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
598