xref: /linux/arch/x86/hyperv/hv_init.c (revision b4db9f840283caca0d904436f187ef56a9126eaa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9 
10 #define pr_fmt(fmt)  "Hyper-V: " fmt
11 
12 #include <linux/efi.h>
13 #include <linux/types.h>
14 #include <linux/bitfield.h>
15 #include <linux/io.h>
16 #include <asm/apic.h>
17 #include <asm/desc.h>
18 #include <asm/e820/api.h>
19 #include <asm/sev.h>
20 #include <asm/ibt.h>
21 #include <asm/hypervisor.h>
22 #include <asm/hyperv-tlfs.h>
23 #include <asm/mshyperv.h>
24 #include <asm/idtentry.h>
25 #include <asm/set_memory.h>
26 #include <linux/kexec.h>
27 #include <linux/version.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/hyperv.h>
31 #include <linux/slab.h>
32 #include <linux/kernel.h>
33 #include <linux/cpuhotplug.h>
34 #include <linux/syscore_ops.h>
35 #include <clocksource/hyperv_timer.h>
36 #include <linux/highmem.h>
37 
38 int hyperv_init_cpuhp;
39 u64 hv_current_partition_id = ~0ull;
40 EXPORT_SYMBOL_GPL(hv_current_partition_id);
41 
42 void *hv_hypercall_pg;
43 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
44 
45 union hv_ghcb * __percpu *hv_ghcb_pg;
46 
47 /* Storage to save the hypercall page temporarily for hibernation */
48 static void *hv_hypercall_pg_saved;
49 
50 struct hv_vp_assist_page **hv_vp_assist_page;
51 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
52 
53 static int hyperv_init_ghcb(void)
54 {
55 	u64 ghcb_gpa;
56 	void *ghcb_va;
57 	void **ghcb_base;
58 
59 	if (!ms_hyperv.paravisor_present || !hv_isolation_type_snp())
60 		return 0;
61 
62 	if (!hv_ghcb_pg)
63 		return -EINVAL;
64 
65 	/*
66 	 * GHCB page is allocated by paravisor. The address
67 	 * returned by MSR_AMD64_SEV_ES_GHCB is above shared
68 	 * memory boundary and map it here.
69 	 */
70 	rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
71 
72 	/* Mask out vTOM bit. ioremap_cache() maps decrypted */
73 	ghcb_gpa &= ~ms_hyperv.shared_gpa_boundary;
74 	ghcb_va = (void *)ioremap_cache(ghcb_gpa, HV_HYP_PAGE_SIZE);
75 	if (!ghcb_va)
76 		return -ENOMEM;
77 
78 	ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
79 	*ghcb_base = ghcb_va;
80 
81 	return 0;
82 }
83 
84 static int hv_cpu_init(unsigned int cpu)
85 {
86 	union hv_vp_assist_msr_contents msr = { 0 };
87 	struct hv_vp_assist_page **hvp;
88 	int ret;
89 
90 	ret = hv_common_cpu_init(cpu);
91 	if (ret)
92 		return ret;
93 
94 	if (!hv_vp_assist_page)
95 		return 0;
96 
97 	hvp = &hv_vp_assist_page[cpu];
98 	if (hv_root_partition) {
99 		/*
100 		 * For root partition we get the hypervisor provided VP assist
101 		 * page, instead of allocating a new page.
102 		 */
103 		rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
104 		*hvp = memremap(msr.pfn << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
105 				PAGE_SIZE, MEMREMAP_WB);
106 	} else {
107 		/*
108 		 * The VP assist page is an "overlay" page (see Hyper-V TLFS's
109 		 * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
110 		 * out to make sure we always write the EOI MSR in
111 		 * hv_apic_eoi_write() *after* the EOI optimization is disabled
112 		 * in hv_cpu_die(), otherwise a CPU may not be stopped in the
113 		 * case of CPU offlining and the VM will hang.
114 		 */
115 		if (!*hvp) {
116 			*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
117 
118 			/*
119 			 * Hyper-V should never specify a VM that is a Confidential
120 			 * VM and also running in the root partition. Root partition
121 			 * is blocked to run in Confidential VM. So only decrypt assist
122 			 * page in non-root partition here.
123 			 */
124 			if (*hvp && !ms_hyperv.paravisor_present && hv_isolation_type_snp()) {
125 				WARN_ON_ONCE(set_memory_decrypted((unsigned long)(*hvp), 1));
126 				memset(*hvp, 0, PAGE_SIZE);
127 			}
128 		}
129 
130 		if (*hvp)
131 			msr.pfn = vmalloc_to_pfn(*hvp);
132 
133 	}
134 	if (!WARN_ON(!(*hvp))) {
135 		msr.enable = 1;
136 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
137 	}
138 
139 	return hyperv_init_ghcb();
140 }
141 
142 static void (*hv_reenlightenment_cb)(void);
143 
144 static void hv_reenlightenment_notify(struct work_struct *dummy)
145 {
146 	struct hv_tsc_emulation_status emu_status;
147 
148 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
149 
150 	/* Don't issue the callback if TSC accesses are not emulated */
151 	if (hv_reenlightenment_cb && emu_status.inprogress)
152 		hv_reenlightenment_cb();
153 }
154 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
155 
156 void hyperv_stop_tsc_emulation(void)
157 {
158 	u64 freq;
159 	struct hv_tsc_emulation_status emu_status;
160 
161 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
162 	emu_status.inprogress = 0;
163 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
164 
165 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
166 	tsc_khz = div64_u64(freq, 1000);
167 }
168 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
169 
170 static inline bool hv_reenlightenment_available(void)
171 {
172 	/*
173 	 * Check for required features and privileges to make TSC frequency
174 	 * change notifications work.
175 	 */
176 	return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
177 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
178 		ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
179 }
180 
181 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
182 {
183 	apic_eoi();
184 	inc_irq_stat(irq_hv_reenlightenment_count);
185 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
186 }
187 
188 void set_hv_tscchange_cb(void (*cb)(void))
189 {
190 	struct hv_reenlightenment_control re_ctrl = {
191 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
192 		.enabled = 1,
193 	};
194 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
195 
196 	if (!hv_reenlightenment_available()) {
197 		pr_warn("reenlightenment support is unavailable\n");
198 		return;
199 	}
200 
201 	if (!hv_vp_index)
202 		return;
203 
204 	hv_reenlightenment_cb = cb;
205 
206 	/* Make sure callback is registered before we write to MSRs */
207 	wmb();
208 
209 	re_ctrl.target_vp = hv_vp_index[get_cpu()];
210 
211 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
212 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
213 
214 	put_cpu();
215 }
216 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
217 
218 void clear_hv_tscchange_cb(void)
219 {
220 	struct hv_reenlightenment_control re_ctrl;
221 
222 	if (!hv_reenlightenment_available())
223 		return;
224 
225 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
226 	re_ctrl.enabled = 0;
227 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
228 
229 	hv_reenlightenment_cb = NULL;
230 }
231 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
232 
233 static int hv_cpu_die(unsigned int cpu)
234 {
235 	struct hv_reenlightenment_control re_ctrl;
236 	unsigned int new_cpu;
237 	void **ghcb_va;
238 
239 	if (hv_ghcb_pg) {
240 		ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
241 		if (*ghcb_va)
242 			iounmap(*ghcb_va);
243 		*ghcb_va = NULL;
244 	}
245 
246 	hv_common_cpu_die(cpu);
247 
248 	if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
249 		union hv_vp_assist_msr_contents msr = { 0 };
250 		if (hv_root_partition) {
251 			/*
252 			 * For root partition the VP assist page is mapped to
253 			 * hypervisor provided page, and thus we unmap the
254 			 * page here and nullify it, so that in future we have
255 			 * correct page address mapped in hv_cpu_init.
256 			 */
257 			memunmap(hv_vp_assist_page[cpu]);
258 			hv_vp_assist_page[cpu] = NULL;
259 			rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
260 			msr.enable = 0;
261 		}
262 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
263 	}
264 
265 	if (hv_reenlightenment_cb == NULL)
266 		return 0;
267 
268 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
269 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
270 		/*
271 		 * Reassign reenlightenment notifications to some other online
272 		 * CPU or just disable the feature if there are no online CPUs
273 		 * left (happens on hibernation).
274 		 */
275 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
276 
277 		if (new_cpu < nr_cpu_ids)
278 			re_ctrl.target_vp = hv_vp_index[new_cpu];
279 		else
280 			re_ctrl.enabled = 0;
281 
282 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
283 	}
284 
285 	return 0;
286 }
287 
288 static int __init hv_pci_init(void)
289 {
290 	bool gen2vm = efi_enabled(EFI_BOOT);
291 
292 	/*
293 	 * A Generation-2 VM doesn't support legacy PCI/PCIe, so both
294 	 * raw_pci_ops and raw_pci_ext_ops are NULL, and pci_subsys_init() ->
295 	 * pcibios_init() doesn't call pcibios_resource_survey() ->
296 	 * e820__reserve_resources_late(); as a result, any emulated persistent
297 	 * memory of E820_TYPE_PRAM (12) via the kernel parameter
298 	 * memmap=nn[KMG]!ss is not added into iomem_resource and hence can't be
299 	 * detected by register_e820_pmem(). Fix this by directly calling
300 	 * e820__reserve_resources_late() here: e820__reserve_resources_late()
301 	 * depends on e820__reserve_resources(), which has been called earlier
302 	 * from setup_arch(). Note: e820__reserve_resources_late() also adds
303 	 * any memory of E820_TYPE_PMEM (7) into iomem_resource, and
304 	 * acpi_nfit_register_region() -> acpi_nfit_insert_resource() ->
305 	 * region_intersects() returns REGION_INTERSECTS, so the memory of
306 	 * E820_TYPE_PMEM won't get added twice.
307 	 *
308 	 * We return 0 here so that pci_arch_init() won't print the warning:
309 	 * "PCI: Fatal: No config space access function found"
310 	 */
311 	if (gen2vm) {
312 		e820__reserve_resources_late();
313 		return 0;
314 	}
315 
316 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
317 	return 1;
318 }
319 
320 static int hv_suspend(void)
321 {
322 	union hv_x64_msr_hypercall_contents hypercall_msr;
323 	int ret;
324 
325 	if (hv_root_partition)
326 		return -EPERM;
327 
328 	/*
329 	 * Reset the hypercall page as it is going to be invalidated
330 	 * across hibernation. Setting hv_hypercall_pg to NULL ensures
331 	 * that any subsequent hypercall operation fails safely instead of
332 	 * crashing due to an access of an invalid page. The hypercall page
333 	 * pointer is restored on resume.
334 	 */
335 	hv_hypercall_pg_saved = hv_hypercall_pg;
336 	hv_hypercall_pg = NULL;
337 
338 	/* Disable the hypercall page in the hypervisor */
339 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
340 	hypercall_msr.enable = 0;
341 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
342 
343 	ret = hv_cpu_die(0);
344 	return ret;
345 }
346 
347 static void hv_resume(void)
348 {
349 	union hv_x64_msr_hypercall_contents hypercall_msr;
350 	int ret;
351 
352 	ret = hv_cpu_init(0);
353 	WARN_ON(ret);
354 
355 	/* Re-enable the hypercall page */
356 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
357 	hypercall_msr.enable = 1;
358 	hypercall_msr.guest_physical_address =
359 		vmalloc_to_pfn(hv_hypercall_pg_saved);
360 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
361 
362 	hv_hypercall_pg = hv_hypercall_pg_saved;
363 	hv_hypercall_pg_saved = NULL;
364 
365 	/*
366 	 * Reenlightenment notifications are disabled by hv_cpu_die(0),
367 	 * reenable them here if hv_reenlightenment_cb was previously set.
368 	 */
369 	if (hv_reenlightenment_cb)
370 		set_hv_tscchange_cb(hv_reenlightenment_cb);
371 }
372 
373 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
374 static struct syscore_ops hv_syscore_ops = {
375 	.suspend	= hv_suspend,
376 	.resume		= hv_resume,
377 };
378 
379 static void (* __initdata old_setup_percpu_clockev)(void);
380 
381 static void __init hv_stimer_setup_percpu_clockev(void)
382 {
383 	/*
384 	 * Ignore any errors in setting up stimer clockevents
385 	 * as we can run with the LAPIC timer as a fallback.
386 	 */
387 	(void)hv_stimer_alloc(false);
388 
389 	/*
390 	 * Still register the LAPIC timer, because the direct-mode STIMER is
391 	 * not supported by old versions of Hyper-V. This also allows users
392 	 * to switch to LAPIC timer via /sys, if they want to.
393 	 */
394 	if (old_setup_percpu_clockev)
395 		old_setup_percpu_clockev();
396 }
397 
398 static void __init hv_get_partition_id(void)
399 {
400 	struct hv_get_partition_id *output_page;
401 	u64 status;
402 	unsigned long flags;
403 
404 	local_irq_save(flags);
405 	output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
406 	status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
407 	if (!hv_result_success(status)) {
408 		/* No point in proceeding if this failed */
409 		pr_err("Failed to get partition ID: %lld\n", status);
410 		BUG();
411 	}
412 	hv_current_partition_id = output_page->partition_id;
413 	local_irq_restore(flags);
414 }
415 
416 #if IS_ENABLED(CONFIG_HYPERV_VTL_MODE)
417 static u8 __init get_vtl(void)
418 {
419 	u64 control = HV_HYPERCALL_REP_COMP_1 | HVCALL_GET_VP_REGISTERS;
420 	struct hv_get_vp_registers_input *input;
421 	struct hv_get_vp_registers_output *output;
422 	unsigned long flags;
423 	u64 ret;
424 
425 	local_irq_save(flags);
426 	input = *this_cpu_ptr(hyperv_pcpu_input_arg);
427 	output = (struct hv_get_vp_registers_output *)input;
428 
429 	memset(input, 0, struct_size(input, element, 1));
430 	input->header.partitionid = HV_PARTITION_ID_SELF;
431 	input->header.vpindex = HV_VP_INDEX_SELF;
432 	input->header.inputvtl = 0;
433 	input->element[0].name0 = HV_X64_REGISTER_VSM_VP_STATUS;
434 
435 	ret = hv_do_hypercall(control, input, output);
436 	if (hv_result_success(ret)) {
437 		ret = output->as64.low & HV_X64_VTL_MASK;
438 	} else {
439 		pr_err("Failed to get VTL(error: %lld) exiting...\n", ret);
440 		BUG();
441 	}
442 
443 	local_irq_restore(flags);
444 	return ret;
445 }
446 #else
447 static inline u8 get_vtl(void) { return 0; }
448 #endif
449 
450 /*
451  * This function is to be invoked early in the boot sequence after the
452  * hypervisor has been detected.
453  *
454  * 1. Setup the hypercall page.
455  * 2. Register Hyper-V specific clocksource.
456  * 3. Setup Hyper-V specific APIC entry points.
457  */
458 void __init hyperv_init(void)
459 {
460 	u64 guest_id;
461 	union hv_x64_msr_hypercall_contents hypercall_msr;
462 	int cpuhp;
463 
464 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
465 		return;
466 
467 	if (hv_common_init())
468 		return;
469 
470 	/*
471 	 * The VP assist page is useless to a TDX guest: the only use we
472 	 * would have for it is lazy EOI, which can not be used with TDX.
473 	 */
474 	if (hv_isolation_type_tdx())
475 		hv_vp_assist_page = NULL;
476 	else
477 		hv_vp_assist_page = kcalloc(num_possible_cpus(),
478 					    sizeof(*hv_vp_assist_page),
479 					    GFP_KERNEL);
480 	if (!hv_vp_assist_page) {
481 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
482 
483 		if (!hv_isolation_type_tdx())
484 			goto common_free;
485 	}
486 
487 	if (ms_hyperv.paravisor_present && hv_isolation_type_snp()) {
488 		/* Negotiate GHCB Version. */
489 		if (!hv_ghcb_negotiate_protocol())
490 			hv_ghcb_terminate(SEV_TERM_SET_GEN,
491 					  GHCB_SEV_ES_PROT_UNSUPPORTED);
492 
493 		hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
494 		if (!hv_ghcb_pg)
495 			goto free_vp_assist_page;
496 	}
497 
498 	cpuhp = cpuhp_setup_state(CPUHP_AP_HYPERV_ONLINE, "x86/hyperv_init:online",
499 				  hv_cpu_init, hv_cpu_die);
500 	if (cpuhp < 0)
501 		goto free_ghcb_page;
502 
503 	/*
504 	 * Setup the hypercall page and enable hypercalls.
505 	 * 1. Register the guest ID
506 	 * 2. Enable the hypercall and register the hypercall page
507 	 *
508 	 * A TDX VM with no paravisor only uses TDX GHCI rather than hv_hypercall_pg:
509 	 * when the hypercall input is a page, such a VM must pass a decrypted
510 	 * page to Hyper-V, e.g. hv_post_message() uses the per-CPU page
511 	 * hyperv_pcpu_input_arg, which is decrypted if no paravisor is present.
512 	 *
513 	 * A TDX VM with the paravisor uses hv_hypercall_pg for most hypercalls,
514 	 * which are handled by the paravisor and the VM must use an encrypted
515 	 * input page: in such a VM, the hyperv_pcpu_input_arg is encrypted and
516 	 * used in the hypercalls, e.g. see hv_mark_gpa_visibility() and
517 	 * hv_arch_irq_unmask(). Such a VM uses TDX GHCI for two hypercalls:
518 	 * 1. HVCALL_SIGNAL_EVENT: see vmbus_set_event() and _hv_do_fast_hypercall8().
519 	 * 2. HVCALL_POST_MESSAGE: the input page must be a decrypted page, i.e.
520 	 * hv_post_message() in such a VM can't use the encrypted hyperv_pcpu_input_arg;
521 	 * instead, hv_post_message() uses the post_msg_page, which is decrypted
522 	 * in such a VM and is only used in such a VM.
523 	 */
524 	guest_id = hv_generate_guest_id(LINUX_VERSION_CODE);
525 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
526 
527 	/* With the paravisor, the VM must also write the ID via GHCB/GHCI */
528 	hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
529 
530 	/* A TDX VM with no paravisor only uses TDX GHCI rather than hv_hypercall_pg */
531 	if (hv_isolation_type_tdx() && !ms_hyperv.paravisor_present)
532 		goto skip_hypercall_pg_init;
533 
534 	hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
535 			VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
536 			VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
537 			__builtin_return_address(0));
538 	if (hv_hypercall_pg == NULL)
539 		goto clean_guest_os_id;
540 
541 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
542 	hypercall_msr.enable = 1;
543 
544 	if (hv_root_partition) {
545 		struct page *pg;
546 		void *src;
547 
548 		/*
549 		 * For the root partition, the hypervisor will set up its
550 		 * hypercall page. The hypervisor guarantees it will not show
551 		 * up in the root's address space. The root can't change the
552 		 * location of the hypercall page.
553 		 *
554 		 * Order is important here. We must enable the hypercall page
555 		 * so it is populated with code, then copy the code to an
556 		 * executable page.
557 		 */
558 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
559 
560 		pg = vmalloc_to_page(hv_hypercall_pg);
561 		src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
562 				MEMREMAP_WB);
563 		BUG_ON(!src);
564 		memcpy_to_page(pg, 0, src, HV_HYP_PAGE_SIZE);
565 		memunmap(src);
566 
567 		hv_remap_tsc_clocksource();
568 	} else {
569 		hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
570 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
571 	}
572 
573 skip_hypercall_pg_init:
574 	/*
575 	 * Some versions of Hyper-V that provide IBT in guest VMs have a bug
576 	 * in that there's no ENDBR64 instruction at the entry to the
577 	 * hypercall page. Because hypercalls are invoked via an indirect call
578 	 * to the hypercall page, all hypercall attempts fail when IBT is
579 	 * enabled, and Linux panics. For such buggy versions, disable IBT.
580 	 *
581 	 * Fixed versions of Hyper-V always provide ENDBR64 on the hypercall
582 	 * page, so if future Linux kernel versions enable IBT for 32-bit
583 	 * builds, additional hypercall page hackery will be required here
584 	 * to provide an ENDBR32.
585 	 */
586 #ifdef CONFIG_X86_KERNEL_IBT
587 	if (cpu_feature_enabled(X86_FEATURE_IBT) &&
588 	    *(u32 *)hv_hypercall_pg != gen_endbr()) {
589 		setup_clear_cpu_cap(X86_FEATURE_IBT);
590 		pr_warn("Disabling IBT because of Hyper-V bug\n");
591 	}
592 #endif
593 
594 	/*
595 	 * hyperv_init() is called before LAPIC is initialized: see
596 	 * apic_intr_mode_init() -> x86_platform.apic_post_init() and
597 	 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
598 	 * depends on LAPIC, so hv_stimer_alloc() should be called from
599 	 * x86_init.timers.setup_percpu_clockev.
600 	 */
601 	old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
602 	x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
603 
604 	hv_apic_init();
605 
606 	x86_init.pci.arch_init = hv_pci_init;
607 
608 	register_syscore_ops(&hv_syscore_ops);
609 
610 	hyperv_init_cpuhp = cpuhp;
611 
612 	if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
613 		hv_get_partition_id();
614 
615 	BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
616 
617 #ifdef CONFIG_PCI_MSI
618 	/*
619 	 * If we're running as root, we want to create our own PCI MSI domain.
620 	 * We can't set this in hv_pci_init because that would be too late.
621 	 */
622 	if (hv_root_partition)
623 		x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
624 #endif
625 
626 	/* Query the VMs extended capability once, so that it can be cached. */
627 	hv_query_ext_cap(0);
628 
629 	/* Find the VTL */
630 	ms_hyperv.vtl = get_vtl();
631 
632 	if (ms_hyperv.vtl > 0) /* non default VTL */
633 		hv_vtl_early_init();
634 
635 	return;
636 
637 clean_guest_os_id:
638 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
639 	hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
640 	cpuhp_remove_state(cpuhp);
641 free_ghcb_page:
642 	free_percpu(hv_ghcb_pg);
643 free_vp_assist_page:
644 	kfree(hv_vp_assist_page);
645 	hv_vp_assist_page = NULL;
646 common_free:
647 	hv_common_free();
648 }
649 
650 /*
651  * This routine is called before kexec/kdump, it does the required cleanup.
652  */
653 void hyperv_cleanup(void)
654 {
655 	union hv_x64_msr_hypercall_contents hypercall_msr;
656 	union hv_reference_tsc_msr tsc_msr;
657 
658 	/* Reset our OS id */
659 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
660 	hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
661 
662 	/*
663 	 * Reset hypercall page reference before reset the page,
664 	 * let hypercall operations fail safely rather than
665 	 * panic the kernel for using invalid hypercall page
666 	 */
667 	hv_hypercall_pg = NULL;
668 
669 	/* Reset the hypercall page */
670 	hypercall_msr.as_uint64 = hv_get_msr(HV_X64_MSR_HYPERCALL);
671 	hypercall_msr.enable = 0;
672 	hv_set_msr(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
673 
674 	/* Reset the TSC page */
675 	tsc_msr.as_uint64 = hv_get_msr(HV_X64_MSR_REFERENCE_TSC);
676 	tsc_msr.enable = 0;
677 	hv_set_msr(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
678 }
679 
680 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
681 {
682 	static bool panic_reported;
683 	u64 guest_id;
684 
685 	if (in_die && !panic_on_oops)
686 		return;
687 
688 	/*
689 	 * We prefer to report panic on 'die' chain as we have proper
690 	 * registers to report, but if we miss it (e.g. on BUG()) we need
691 	 * to report it on 'panic'.
692 	 */
693 	if (panic_reported)
694 		return;
695 	panic_reported = true;
696 
697 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
698 
699 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
700 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
701 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
702 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
703 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
704 
705 	/*
706 	 * Let Hyper-V know there is crash data available
707 	 */
708 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
709 }
710 EXPORT_SYMBOL_GPL(hyperv_report_panic);
711 
712 bool hv_is_hyperv_initialized(void)
713 {
714 	union hv_x64_msr_hypercall_contents hypercall_msr;
715 
716 	/*
717 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
718 	 * emulation of Hyper-V
719 	 */
720 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
721 		return false;
722 
723 	/* A TDX VM with no paravisor uses TDX GHCI call rather than hv_hypercall_pg */
724 	if (hv_isolation_type_tdx() && !ms_hyperv.paravisor_present)
725 		return true;
726 	/*
727 	 * Verify that earlier initialization succeeded by checking
728 	 * that the hypercall page is setup
729 	 */
730 	hypercall_msr.as_uint64 = 0;
731 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
732 
733 	return hypercall_msr.enable;
734 }
735 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
736