xref: /linux/arch/x86/hyperv/hv_init.c (revision 4f372263ef92ed2af55a8c226750b72021ff8d0f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9 
10 #define pr_fmt(fmt)  "Hyper-V: " fmt
11 
12 #include <linux/efi.h>
13 #include <linux/types.h>
14 #include <linux/bitfield.h>
15 #include <linux/io.h>
16 #include <asm/apic.h>
17 #include <asm/desc.h>
18 #include <asm/e820/api.h>
19 #include <asm/sev.h>
20 #include <asm/ibt.h>
21 #include <asm/hypervisor.h>
22 #include <hyperv/hvhdk.h>
23 #include <asm/mshyperv.h>
24 #include <asm/msr.h>
25 #include <asm/idtentry.h>
26 #include <asm/set_memory.h>
27 #include <linux/kexec.h>
28 #include <linux/version.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/slab.h>
32 #include <linux/kernel.h>
33 #include <linux/cpuhotplug.h>
34 #include <linux/syscore_ops.h>
35 #include <clocksource/hyperv_timer.h>
36 #include <linux/highmem.h>
37 
38 void *hv_hypercall_pg;
39 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
40 
41 union hv_ghcb * __percpu *hv_ghcb_pg;
42 
43 /* Storage to save the hypercall page temporarily for hibernation */
44 static void *hv_hypercall_pg_saved;
45 
46 struct hv_vp_assist_page **hv_vp_assist_page;
47 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
48 
49 static int hyperv_init_ghcb(void)
50 {
51 	u64 ghcb_gpa;
52 	void *ghcb_va;
53 	void **ghcb_base;
54 
55 	if (!ms_hyperv.paravisor_present || !hv_isolation_type_snp())
56 		return 0;
57 
58 	if (!hv_ghcb_pg)
59 		return -EINVAL;
60 
61 	/*
62 	 * GHCB page is allocated by paravisor. The address
63 	 * returned by MSR_AMD64_SEV_ES_GHCB is above shared
64 	 * memory boundary and map it here.
65 	 */
66 	rdmsrq(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
67 
68 	/* Mask out vTOM bit. ioremap_cache() maps decrypted */
69 	ghcb_gpa &= ~ms_hyperv.shared_gpa_boundary;
70 	ghcb_va = (void *)ioremap_cache(ghcb_gpa, HV_HYP_PAGE_SIZE);
71 	if (!ghcb_va)
72 		return -ENOMEM;
73 
74 	ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
75 	*ghcb_base = ghcb_va;
76 
77 	return 0;
78 }
79 
80 static int hv_cpu_init(unsigned int cpu)
81 {
82 	union hv_vp_assist_msr_contents msr = { 0 };
83 	struct hv_vp_assist_page **hvp;
84 	int ret;
85 
86 	ret = hv_common_cpu_init(cpu);
87 	if (ret)
88 		return ret;
89 
90 	if (!hv_vp_assist_page)
91 		return 0;
92 
93 	hvp = &hv_vp_assist_page[cpu];
94 	if (hv_root_partition()) {
95 		/*
96 		 * For root partition we get the hypervisor provided VP assist
97 		 * page, instead of allocating a new page.
98 		 */
99 		rdmsrq(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
100 		*hvp = memremap(msr.pfn << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
101 				PAGE_SIZE, MEMREMAP_WB);
102 	} else {
103 		/*
104 		 * The VP assist page is an "overlay" page (see Hyper-V TLFS's
105 		 * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
106 		 * out to make sure we always write the EOI MSR in
107 		 * hv_apic_eoi_write() *after* the EOI optimization is disabled
108 		 * in hv_cpu_die(), otherwise a CPU may not be stopped in the
109 		 * case of CPU offlining and the VM will hang.
110 		 */
111 		if (!*hvp) {
112 			*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
113 
114 			/*
115 			 * Hyper-V should never specify a VM that is a Confidential
116 			 * VM and also running in the root partition. Root partition
117 			 * is blocked to run in Confidential VM. So only decrypt assist
118 			 * page in non-root partition here.
119 			 */
120 			if (*hvp && !ms_hyperv.paravisor_present && hv_isolation_type_snp()) {
121 				WARN_ON_ONCE(set_memory_decrypted((unsigned long)(*hvp), 1));
122 				memset(*hvp, 0, PAGE_SIZE);
123 			}
124 		}
125 
126 		if (*hvp)
127 			msr.pfn = vmalloc_to_pfn(*hvp);
128 
129 	}
130 	if (!WARN_ON(!(*hvp))) {
131 		msr.enable = 1;
132 		wrmsrq(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
133 	}
134 
135 	return hyperv_init_ghcb();
136 }
137 
138 static void (*hv_reenlightenment_cb)(void);
139 
140 static void hv_reenlightenment_notify(struct work_struct *dummy)
141 {
142 	struct hv_tsc_emulation_status emu_status;
143 
144 	rdmsrq(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
145 
146 	/* Don't issue the callback if TSC accesses are not emulated */
147 	if (hv_reenlightenment_cb && emu_status.inprogress)
148 		hv_reenlightenment_cb();
149 }
150 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
151 
152 void hyperv_stop_tsc_emulation(void)
153 {
154 	u64 freq;
155 	struct hv_tsc_emulation_status emu_status;
156 
157 	rdmsrq(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
158 	emu_status.inprogress = 0;
159 	wrmsrq(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
160 
161 	rdmsrq(HV_X64_MSR_TSC_FREQUENCY, freq);
162 	tsc_khz = div64_u64(freq, 1000);
163 }
164 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
165 
166 static inline bool hv_reenlightenment_available(void)
167 {
168 	/*
169 	 * Check for required features and privileges to make TSC frequency
170 	 * change notifications work.
171 	 */
172 	return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
173 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
174 		ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
175 }
176 
177 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
178 {
179 	apic_eoi();
180 	inc_irq_stat(irq_hv_reenlightenment_count);
181 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
182 }
183 
184 void set_hv_tscchange_cb(void (*cb)(void))
185 {
186 	struct hv_reenlightenment_control re_ctrl = {
187 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
188 		.enabled = 1,
189 	};
190 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
191 
192 	if (!hv_reenlightenment_available()) {
193 		pr_warn("reenlightenment support is unavailable\n");
194 		return;
195 	}
196 
197 	if (!hv_vp_index)
198 		return;
199 
200 	hv_reenlightenment_cb = cb;
201 
202 	/* Make sure callback is registered before we write to MSRs */
203 	wmb();
204 
205 	re_ctrl.target_vp = hv_vp_index[get_cpu()];
206 
207 	wrmsrq(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
208 	wrmsrq(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
209 
210 	put_cpu();
211 }
212 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
213 
214 void clear_hv_tscchange_cb(void)
215 {
216 	struct hv_reenlightenment_control re_ctrl;
217 
218 	if (!hv_reenlightenment_available())
219 		return;
220 
221 	rdmsrq(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
222 	re_ctrl.enabled = 0;
223 	wrmsrq(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
224 
225 	hv_reenlightenment_cb = NULL;
226 }
227 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
228 
229 static int hv_cpu_die(unsigned int cpu)
230 {
231 	struct hv_reenlightenment_control re_ctrl;
232 	unsigned int new_cpu;
233 	void **ghcb_va;
234 
235 	if (hv_ghcb_pg) {
236 		ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
237 		if (*ghcb_va)
238 			iounmap(*ghcb_va);
239 		*ghcb_va = NULL;
240 	}
241 
242 	hv_common_cpu_die(cpu);
243 
244 	if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
245 		union hv_vp_assist_msr_contents msr = { 0 };
246 		if (hv_root_partition()) {
247 			/*
248 			 * For root partition the VP assist page is mapped to
249 			 * hypervisor provided page, and thus we unmap the
250 			 * page here and nullify it, so that in future we have
251 			 * correct page address mapped in hv_cpu_init.
252 			 */
253 			memunmap(hv_vp_assist_page[cpu]);
254 			hv_vp_assist_page[cpu] = NULL;
255 			rdmsrq(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
256 			msr.enable = 0;
257 		}
258 		wrmsrq(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
259 	}
260 
261 	if (hv_reenlightenment_cb == NULL)
262 		return 0;
263 
264 	rdmsrq(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
265 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
266 		/*
267 		 * Reassign reenlightenment notifications to some other online
268 		 * CPU or just disable the feature if there are no online CPUs
269 		 * left (happens on hibernation).
270 		 */
271 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
272 
273 		if (new_cpu < nr_cpu_ids)
274 			re_ctrl.target_vp = hv_vp_index[new_cpu];
275 		else
276 			re_ctrl.enabled = 0;
277 
278 		wrmsrq(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
279 	}
280 
281 	return 0;
282 }
283 
284 static int __init hv_pci_init(void)
285 {
286 	bool gen2vm = efi_enabled(EFI_BOOT);
287 
288 	/*
289 	 * A Generation-2 VM doesn't support legacy PCI/PCIe, so both
290 	 * raw_pci_ops and raw_pci_ext_ops are NULL, and pci_subsys_init() ->
291 	 * pcibios_init() doesn't call pcibios_resource_survey() ->
292 	 * e820__reserve_resources_late(); as a result, any emulated persistent
293 	 * memory of E820_TYPE_PRAM (12) via the kernel parameter
294 	 * memmap=nn[KMG]!ss is not added into iomem_resource and hence can't be
295 	 * detected by register_e820_pmem(). Fix this by directly calling
296 	 * e820__reserve_resources_late() here: e820__reserve_resources_late()
297 	 * depends on e820__reserve_resources(), which has been called earlier
298 	 * from setup_arch(). Note: e820__reserve_resources_late() also adds
299 	 * any memory of E820_TYPE_PMEM (7) into iomem_resource, and
300 	 * acpi_nfit_register_region() -> acpi_nfit_insert_resource() ->
301 	 * region_intersects() returns REGION_INTERSECTS, so the memory of
302 	 * E820_TYPE_PMEM won't get added twice.
303 	 *
304 	 * We return 0 here so that pci_arch_init() won't print the warning:
305 	 * "PCI: Fatal: No config space access function found"
306 	 */
307 	if (gen2vm) {
308 		e820__reserve_resources_late();
309 		return 0;
310 	}
311 
312 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
313 	return 1;
314 }
315 
316 static int hv_suspend(void)
317 {
318 	union hv_x64_msr_hypercall_contents hypercall_msr;
319 	int ret;
320 
321 	if (hv_root_partition())
322 		return -EPERM;
323 
324 	/*
325 	 * Reset the hypercall page as it is going to be invalidated
326 	 * across hibernation. Setting hv_hypercall_pg to NULL ensures
327 	 * that any subsequent hypercall operation fails safely instead of
328 	 * crashing due to an access of an invalid page. The hypercall page
329 	 * pointer is restored on resume.
330 	 */
331 	hv_hypercall_pg_saved = hv_hypercall_pg;
332 	hv_hypercall_pg = NULL;
333 
334 	/* Disable the hypercall page in the hypervisor */
335 	rdmsrq(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
336 	hypercall_msr.enable = 0;
337 	wrmsrq(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
338 
339 	ret = hv_cpu_die(0);
340 	return ret;
341 }
342 
343 static void hv_resume(void)
344 {
345 	union hv_x64_msr_hypercall_contents hypercall_msr;
346 	int ret;
347 
348 	ret = hv_cpu_init(0);
349 	WARN_ON(ret);
350 
351 	/* Re-enable the hypercall page */
352 	rdmsrq(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
353 	hypercall_msr.enable = 1;
354 	hypercall_msr.guest_physical_address =
355 		vmalloc_to_pfn(hv_hypercall_pg_saved);
356 	wrmsrq(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
357 
358 	hv_hypercall_pg = hv_hypercall_pg_saved;
359 	hv_hypercall_pg_saved = NULL;
360 
361 	/*
362 	 * Reenlightenment notifications are disabled by hv_cpu_die(0),
363 	 * reenable them here if hv_reenlightenment_cb was previously set.
364 	 */
365 	if (hv_reenlightenment_cb)
366 		set_hv_tscchange_cb(hv_reenlightenment_cb);
367 }
368 
369 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
370 static struct syscore_ops hv_syscore_ops = {
371 	.suspend	= hv_suspend,
372 	.resume		= hv_resume,
373 };
374 
375 static void (* __initdata old_setup_percpu_clockev)(void);
376 
377 static void __init hv_stimer_setup_percpu_clockev(void)
378 {
379 	/*
380 	 * Ignore any errors in setting up stimer clockevents
381 	 * as we can run with the LAPIC timer as a fallback.
382 	 */
383 	(void)hv_stimer_alloc(false);
384 
385 	/*
386 	 * Still register the LAPIC timer, because the direct-mode STIMER is
387 	 * not supported by old versions of Hyper-V. This also allows users
388 	 * to switch to LAPIC timer via /sys, if they want to.
389 	 */
390 	if (old_setup_percpu_clockev)
391 		old_setup_percpu_clockev();
392 }
393 
394 #if IS_ENABLED(CONFIG_HYPERV_VTL_MODE)
395 static u8 __init get_vtl(void)
396 {
397 	u64 control = HV_HYPERCALL_REP_COMP_1 | HVCALL_GET_VP_REGISTERS;
398 	struct hv_input_get_vp_registers *input;
399 	struct hv_output_get_vp_registers *output;
400 	unsigned long flags;
401 	u64 ret;
402 
403 	local_irq_save(flags);
404 	input = *this_cpu_ptr(hyperv_pcpu_input_arg);
405 	output = *this_cpu_ptr(hyperv_pcpu_output_arg);
406 
407 	memset(input, 0, struct_size(input, names, 1));
408 	input->partition_id = HV_PARTITION_ID_SELF;
409 	input->vp_index = HV_VP_INDEX_SELF;
410 	input->input_vtl.as_uint8 = 0;
411 	input->names[0] = HV_REGISTER_VSM_VP_STATUS;
412 
413 	ret = hv_do_hypercall(control, input, output);
414 	if (hv_result_success(ret)) {
415 		ret = output->values[0].reg8 & HV_X64_VTL_MASK;
416 	} else {
417 		pr_err("Failed to get VTL(error: %lld) exiting...\n", ret);
418 		BUG();
419 	}
420 
421 	local_irq_restore(flags);
422 	return ret;
423 }
424 #else
425 static inline u8 get_vtl(void) { return 0; }
426 #endif
427 
428 /*
429  * This function is to be invoked early in the boot sequence after the
430  * hypervisor has been detected.
431  *
432  * 1. Setup the hypercall page.
433  * 2. Register Hyper-V specific clocksource.
434  * 3. Setup Hyper-V specific APIC entry points.
435  */
436 void __init hyperv_init(void)
437 {
438 	u64 guest_id;
439 	union hv_x64_msr_hypercall_contents hypercall_msr;
440 	int cpuhp;
441 
442 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
443 		return;
444 
445 	if (hv_common_init())
446 		return;
447 
448 	/*
449 	 * The VP assist page is useless to a TDX guest: the only use we
450 	 * would have for it is lazy EOI, which can not be used with TDX.
451 	 */
452 	if (hv_isolation_type_tdx())
453 		hv_vp_assist_page = NULL;
454 	else
455 		hv_vp_assist_page = kcalloc(nr_cpu_ids,
456 					    sizeof(*hv_vp_assist_page),
457 					    GFP_KERNEL);
458 	if (!hv_vp_assist_page) {
459 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
460 
461 		if (!hv_isolation_type_tdx())
462 			goto common_free;
463 	}
464 
465 	if (ms_hyperv.paravisor_present && hv_isolation_type_snp()) {
466 		/* Negotiate GHCB Version. */
467 		if (!hv_ghcb_negotiate_protocol())
468 			hv_ghcb_terminate(SEV_TERM_SET_GEN,
469 					  GHCB_SEV_ES_PROT_UNSUPPORTED);
470 
471 		hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
472 		if (!hv_ghcb_pg)
473 			goto free_vp_assist_page;
474 	}
475 
476 	cpuhp = cpuhp_setup_state(CPUHP_AP_HYPERV_ONLINE, "x86/hyperv_init:online",
477 				  hv_cpu_init, hv_cpu_die);
478 	if (cpuhp < 0)
479 		goto free_ghcb_page;
480 
481 	/*
482 	 * Setup the hypercall page and enable hypercalls.
483 	 * 1. Register the guest ID
484 	 * 2. Enable the hypercall and register the hypercall page
485 	 *
486 	 * A TDX VM with no paravisor only uses TDX GHCI rather than hv_hypercall_pg:
487 	 * when the hypercall input is a page, such a VM must pass a decrypted
488 	 * page to Hyper-V, e.g. hv_post_message() uses the per-CPU page
489 	 * hyperv_pcpu_input_arg, which is decrypted if no paravisor is present.
490 	 *
491 	 * A TDX VM with the paravisor uses hv_hypercall_pg for most hypercalls,
492 	 * which are handled by the paravisor and the VM must use an encrypted
493 	 * input page: in such a VM, the hyperv_pcpu_input_arg is encrypted and
494 	 * used in the hypercalls, e.g. see hv_mark_gpa_visibility() and
495 	 * hv_arch_irq_unmask(). Such a VM uses TDX GHCI for two hypercalls:
496 	 * 1. HVCALL_SIGNAL_EVENT: see vmbus_set_event() and _hv_do_fast_hypercall8().
497 	 * 2. HVCALL_POST_MESSAGE: the input page must be a decrypted page, i.e.
498 	 * hv_post_message() in such a VM can't use the encrypted hyperv_pcpu_input_arg;
499 	 * instead, hv_post_message() uses the post_msg_page, which is decrypted
500 	 * in such a VM and is only used in such a VM.
501 	 */
502 	guest_id = hv_generate_guest_id(LINUX_VERSION_CODE);
503 	wrmsrq(HV_X64_MSR_GUEST_OS_ID, guest_id);
504 
505 	/* With the paravisor, the VM must also write the ID via GHCB/GHCI */
506 	hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
507 
508 	/* A TDX VM with no paravisor only uses TDX GHCI rather than hv_hypercall_pg */
509 	if (hv_isolation_type_tdx() && !ms_hyperv.paravisor_present)
510 		goto skip_hypercall_pg_init;
511 
512 	hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
513 			VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
514 			VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
515 			__builtin_return_address(0));
516 	if (hv_hypercall_pg == NULL)
517 		goto clean_guest_os_id;
518 
519 	rdmsrq(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
520 	hypercall_msr.enable = 1;
521 
522 	if (hv_root_partition()) {
523 		struct page *pg;
524 		void *src;
525 
526 		/*
527 		 * For the root partition, the hypervisor will set up its
528 		 * hypercall page. The hypervisor guarantees it will not show
529 		 * up in the root's address space. The root can't change the
530 		 * location of the hypercall page.
531 		 *
532 		 * Order is important here. We must enable the hypercall page
533 		 * so it is populated with code, then copy the code to an
534 		 * executable page.
535 		 */
536 		wrmsrq(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
537 
538 		pg = vmalloc_to_page(hv_hypercall_pg);
539 		src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
540 				MEMREMAP_WB);
541 		BUG_ON(!src);
542 		memcpy_to_page(pg, 0, src, HV_HYP_PAGE_SIZE);
543 		memunmap(src);
544 
545 		hv_remap_tsc_clocksource();
546 	} else {
547 		hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
548 		wrmsrq(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
549 	}
550 
551 skip_hypercall_pg_init:
552 	/*
553 	 * Some versions of Hyper-V that provide IBT in guest VMs have a bug
554 	 * in that there's no ENDBR64 instruction at the entry to the
555 	 * hypercall page. Because hypercalls are invoked via an indirect call
556 	 * to the hypercall page, all hypercall attempts fail when IBT is
557 	 * enabled, and Linux panics. For such buggy versions, disable IBT.
558 	 *
559 	 * Fixed versions of Hyper-V always provide ENDBR64 on the hypercall
560 	 * page, so if future Linux kernel versions enable IBT for 32-bit
561 	 * builds, additional hypercall page hackery will be required here
562 	 * to provide an ENDBR32.
563 	 */
564 #ifdef CONFIG_X86_KERNEL_IBT
565 	if (cpu_feature_enabled(X86_FEATURE_IBT) &&
566 	    *(u32 *)hv_hypercall_pg != gen_endbr()) {
567 		setup_clear_cpu_cap(X86_FEATURE_IBT);
568 		pr_warn("Disabling IBT because of Hyper-V bug\n");
569 	}
570 #endif
571 
572 	/*
573 	 * hyperv_init() is called before LAPIC is initialized: see
574 	 * apic_intr_mode_init() -> x86_platform.apic_post_init() and
575 	 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
576 	 * depends on LAPIC, so hv_stimer_alloc() should be called from
577 	 * x86_init.timers.setup_percpu_clockev.
578 	 */
579 	old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
580 	x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
581 
582 	hv_apic_init();
583 
584 	x86_init.pci.arch_init = hv_pci_init;
585 
586 	register_syscore_ops(&hv_syscore_ops);
587 
588 	if (ms_hyperv.priv_high & HV_ACCESS_PARTITION_ID)
589 		hv_get_partition_id();
590 
591 #ifdef CONFIG_PCI_MSI
592 	/*
593 	 * If we're running as root, we want to create our own PCI MSI domain.
594 	 * We can't set this in hv_pci_init because that would be too late.
595 	 */
596 	if (hv_root_partition())
597 		x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
598 #endif
599 
600 	/* Query the VMs extended capability once, so that it can be cached. */
601 	hv_query_ext_cap(0);
602 
603 	/* Find the VTL */
604 	ms_hyperv.vtl = get_vtl();
605 
606 	if (ms_hyperv.vtl > 0) /* non default VTL */
607 		hv_vtl_early_init();
608 
609 	return;
610 
611 clean_guest_os_id:
612 	wrmsrq(HV_X64_MSR_GUEST_OS_ID, 0);
613 	hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
614 	cpuhp_remove_state(CPUHP_AP_HYPERV_ONLINE);
615 free_ghcb_page:
616 	free_percpu(hv_ghcb_pg);
617 free_vp_assist_page:
618 	kfree(hv_vp_assist_page);
619 	hv_vp_assist_page = NULL;
620 common_free:
621 	hv_common_free();
622 }
623 
624 /*
625  * This routine is called before kexec/kdump, it does the required cleanup.
626  */
627 void hyperv_cleanup(void)
628 {
629 	union hv_x64_msr_hypercall_contents hypercall_msr;
630 	union hv_reference_tsc_msr tsc_msr;
631 
632 	/* Reset our OS id */
633 	wrmsrq(HV_X64_MSR_GUEST_OS_ID, 0);
634 	hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
635 
636 	/*
637 	 * Reset hypercall page reference before reset the page,
638 	 * let hypercall operations fail safely rather than
639 	 * panic the kernel for using invalid hypercall page
640 	 */
641 	hv_hypercall_pg = NULL;
642 
643 	/* Reset the hypercall page */
644 	hypercall_msr.as_uint64 = hv_get_msr(HV_X64_MSR_HYPERCALL);
645 	hypercall_msr.enable = 0;
646 	hv_set_msr(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
647 
648 	/* Reset the TSC page */
649 	tsc_msr.as_uint64 = hv_get_msr(HV_X64_MSR_REFERENCE_TSC);
650 	tsc_msr.enable = 0;
651 	hv_set_msr(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
652 }
653 
654 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
655 {
656 	static bool panic_reported;
657 	u64 guest_id;
658 
659 	if (in_die && !panic_on_oops)
660 		return;
661 
662 	/*
663 	 * We prefer to report panic on 'die' chain as we have proper
664 	 * registers to report, but if we miss it (e.g. on BUG()) we need
665 	 * to report it on 'panic'.
666 	 */
667 	if (panic_reported)
668 		return;
669 	panic_reported = true;
670 
671 	rdmsrq(HV_X64_MSR_GUEST_OS_ID, guest_id);
672 
673 	wrmsrq(HV_X64_MSR_CRASH_P0, err);
674 	wrmsrq(HV_X64_MSR_CRASH_P1, guest_id);
675 	wrmsrq(HV_X64_MSR_CRASH_P2, regs->ip);
676 	wrmsrq(HV_X64_MSR_CRASH_P3, regs->ax);
677 	wrmsrq(HV_X64_MSR_CRASH_P4, regs->sp);
678 
679 	/*
680 	 * Let Hyper-V know there is crash data available
681 	 */
682 	wrmsrq(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
683 }
684 EXPORT_SYMBOL_GPL(hyperv_report_panic);
685 
686 bool hv_is_hyperv_initialized(void)
687 {
688 	union hv_x64_msr_hypercall_contents hypercall_msr;
689 
690 	/*
691 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
692 	 * emulation of Hyper-V
693 	 */
694 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
695 		return false;
696 
697 	/* A TDX VM with no paravisor uses TDX GHCI call rather than hv_hypercall_pg */
698 	if (hv_isolation_type_tdx() && !ms_hyperv.paravisor_present)
699 		return true;
700 	/*
701 	 * Verify that earlier initialization succeeded by checking
702 	 * that the hypercall page is setup
703 	 */
704 	hypercall_msr.as_uint64 = 0;
705 	rdmsrq(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
706 
707 	return hypercall_msr.enable;
708 }
709 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
710