xref: /linux/arch/x86/hyperv/hv_init.c (revision 37744feebc086908fd89760650f458ab19071750)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/efi.h>
12 #include <linux/types.h>
13 #include <asm/apic.h>
14 #include <asm/desc.h>
15 #include <asm/hypervisor.h>
16 #include <asm/hyperv-tlfs.h>
17 #include <asm/mshyperv.h>
18 #include <linux/version.h>
19 #include <linux/vmalloc.h>
20 #include <linux/mm.h>
21 #include <linux/hyperv.h>
22 #include <linux/slab.h>
23 #include <linux/kernel.h>
24 #include <linux/cpuhotplug.h>
25 #include <linux/syscore_ops.h>
26 #include <clocksource/hyperv_timer.h>
27 
28 void *hv_hypercall_pg;
29 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
30 
31 /* Storage to save the hypercall page temporarily for hibernation */
32 static void *hv_hypercall_pg_saved;
33 
34 u32 *hv_vp_index;
35 EXPORT_SYMBOL_GPL(hv_vp_index);
36 
37 struct hv_vp_assist_page **hv_vp_assist_page;
38 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
39 
40 void  __percpu **hyperv_pcpu_input_arg;
41 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
42 
43 u32 hv_max_vp_index;
44 EXPORT_SYMBOL_GPL(hv_max_vp_index);
45 
46 void *hv_alloc_hyperv_page(void)
47 {
48 	BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE);
49 
50 	return (void *)__get_free_page(GFP_KERNEL);
51 }
52 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_page);
53 
54 void *hv_alloc_hyperv_zeroed_page(void)
55 {
56         BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE);
57 
58         return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
59 }
60 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_zeroed_page);
61 
62 void hv_free_hyperv_page(unsigned long addr)
63 {
64 	free_page(addr);
65 }
66 EXPORT_SYMBOL_GPL(hv_free_hyperv_page);
67 
68 static int hv_cpu_init(unsigned int cpu)
69 {
70 	u64 msr_vp_index;
71 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
72 	void **input_arg;
73 	struct page *pg;
74 
75 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
76 	/* hv_cpu_init() can be called with IRQs disabled from hv_resume() */
77 	pg = alloc_page(irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL);
78 	if (unlikely(!pg))
79 		return -ENOMEM;
80 	*input_arg = page_address(pg);
81 
82 	hv_get_vp_index(msr_vp_index);
83 
84 	hv_vp_index[smp_processor_id()] = msr_vp_index;
85 
86 	if (msr_vp_index > hv_max_vp_index)
87 		hv_max_vp_index = msr_vp_index;
88 
89 	if (!hv_vp_assist_page)
90 		return 0;
91 
92 	/*
93 	 * The VP ASSIST PAGE is an "overlay" page (see Hyper-V TLFS's Section
94 	 * 5.2.1 "GPA Overlay Pages"). Here it must be zeroed out to make sure
95 	 * we always write the EOI MSR in hv_apic_eoi_write() *after* the
96 	 * EOI optimization is disabled in hv_cpu_die(), otherwise a CPU may
97 	 * not be stopped in the case of CPU offlining and the VM will hang.
98 	 */
99 	if (!*hvp) {
100 		*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO,
101 				 PAGE_KERNEL);
102 	}
103 
104 	if (*hvp) {
105 		u64 val;
106 
107 		val = vmalloc_to_pfn(*hvp);
108 		val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
109 			HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
110 
111 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
112 	}
113 
114 	return 0;
115 }
116 
117 static void (*hv_reenlightenment_cb)(void);
118 
119 static void hv_reenlightenment_notify(struct work_struct *dummy)
120 {
121 	struct hv_tsc_emulation_status emu_status;
122 
123 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
124 
125 	/* Don't issue the callback if TSC accesses are not emulated */
126 	if (hv_reenlightenment_cb && emu_status.inprogress)
127 		hv_reenlightenment_cb();
128 }
129 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
130 
131 void hyperv_stop_tsc_emulation(void)
132 {
133 	u64 freq;
134 	struct hv_tsc_emulation_status emu_status;
135 
136 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
137 	emu_status.inprogress = 0;
138 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
139 
140 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
141 	tsc_khz = div64_u64(freq, 1000);
142 }
143 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
144 
145 static inline bool hv_reenlightenment_available(void)
146 {
147 	/*
148 	 * Check for required features and priviliges to make TSC frequency
149 	 * change notifications work.
150 	 */
151 	return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
152 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
153 		ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
154 }
155 
156 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
157 {
158 	entering_ack_irq();
159 
160 	inc_irq_stat(irq_hv_reenlightenment_count);
161 
162 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
163 
164 	exiting_irq();
165 }
166 
167 void set_hv_tscchange_cb(void (*cb)(void))
168 {
169 	struct hv_reenlightenment_control re_ctrl = {
170 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
171 		.enabled = 1,
172 		.target_vp = hv_vp_index[smp_processor_id()]
173 	};
174 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
175 
176 	if (!hv_reenlightenment_available()) {
177 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
178 		return;
179 	}
180 
181 	hv_reenlightenment_cb = cb;
182 
183 	/* Make sure callback is registered before we write to MSRs */
184 	wmb();
185 
186 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
187 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
188 }
189 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
190 
191 void clear_hv_tscchange_cb(void)
192 {
193 	struct hv_reenlightenment_control re_ctrl;
194 
195 	if (!hv_reenlightenment_available())
196 		return;
197 
198 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
199 	re_ctrl.enabled = 0;
200 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
201 
202 	hv_reenlightenment_cb = NULL;
203 }
204 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
205 
206 static int hv_cpu_die(unsigned int cpu)
207 {
208 	struct hv_reenlightenment_control re_ctrl;
209 	unsigned int new_cpu;
210 	unsigned long flags;
211 	void **input_arg;
212 	void *input_pg = NULL;
213 
214 	local_irq_save(flags);
215 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
216 	input_pg = *input_arg;
217 	*input_arg = NULL;
218 	local_irq_restore(flags);
219 	free_page((unsigned long)input_pg);
220 
221 	if (hv_vp_assist_page && hv_vp_assist_page[cpu])
222 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
223 
224 	if (hv_reenlightenment_cb == NULL)
225 		return 0;
226 
227 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
228 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
229 		/*
230 		 * Reassign reenlightenment notifications to some other online
231 		 * CPU or just disable the feature if there are no online CPUs
232 		 * left (happens on hibernation).
233 		 */
234 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
235 
236 		if (new_cpu < nr_cpu_ids)
237 			re_ctrl.target_vp = hv_vp_index[new_cpu];
238 		else
239 			re_ctrl.enabled = 0;
240 
241 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
242 	}
243 
244 	return 0;
245 }
246 
247 static int __init hv_pci_init(void)
248 {
249 	int gen2vm = efi_enabled(EFI_BOOT);
250 
251 	/*
252 	 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
253 	 * The purpose is to suppress the harmless warning:
254 	 * "PCI: Fatal: No config space access function found"
255 	 */
256 	if (gen2vm)
257 		return 0;
258 
259 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
260 	return 1;
261 }
262 
263 static int hv_suspend(void)
264 {
265 	union hv_x64_msr_hypercall_contents hypercall_msr;
266 	int ret;
267 
268 	/*
269 	 * Reset the hypercall page as it is going to be invalidated
270 	 * accross hibernation. Setting hv_hypercall_pg to NULL ensures
271 	 * that any subsequent hypercall operation fails safely instead of
272 	 * crashing due to an access of an invalid page. The hypercall page
273 	 * pointer is restored on resume.
274 	 */
275 	hv_hypercall_pg_saved = hv_hypercall_pg;
276 	hv_hypercall_pg = NULL;
277 
278 	/* Disable the hypercall page in the hypervisor */
279 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
280 	hypercall_msr.enable = 0;
281 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
282 
283 	ret = hv_cpu_die(0);
284 	return ret;
285 }
286 
287 static void hv_resume(void)
288 {
289 	union hv_x64_msr_hypercall_contents hypercall_msr;
290 	int ret;
291 
292 	ret = hv_cpu_init(0);
293 	WARN_ON(ret);
294 
295 	/* Re-enable the hypercall page */
296 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
297 	hypercall_msr.enable = 1;
298 	hypercall_msr.guest_physical_address =
299 		vmalloc_to_pfn(hv_hypercall_pg_saved);
300 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
301 
302 	hv_hypercall_pg = hv_hypercall_pg_saved;
303 	hv_hypercall_pg_saved = NULL;
304 
305 	/*
306 	 * Reenlightenment notifications are disabled by hv_cpu_die(0),
307 	 * reenable them here if hv_reenlightenment_cb was previously set.
308 	 */
309 	if (hv_reenlightenment_cb)
310 		set_hv_tscchange_cb(hv_reenlightenment_cb);
311 }
312 
313 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
314 static struct syscore_ops hv_syscore_ops = {
315 	.suspend	= hv_suspend,
316 	.resume		= hv_resume,
317 };
318 
319 /*
320  * This function is to be invoked early in the boot sequence after the
321  * hypervisor has been detected.
322  *
323  * 1. Setup the hypercall page.
324  * 2. Register Hyper-V specific clocksource.
325  * 3. Setup Hyper-V specific APIC entry points.
326  */
327 void __init hyperv_init(void)
328 {
329 	u64 guest_id, required_msrs;
330 	union hv_x64_msr_hypercall_contents hypercall_msr;
331 	int cpuhp, i;
332 
333 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
334 		return;
335 
336 	/* Absolutely required MSRs */
337 	required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
338 		HV_X64_MSR_VP_INDEX_AVAILABLE;
339 
340 	if ((ms_hyperv.features & required_msrs) != required_msrs)
341 		return;
342 
343 	/*
344 	 * Allocate the per-CPU state for the hypercall input arg.
345 	 * If this allocation fails, we will not be able to setup
346 	 * (per-CPU) hypercall input page and thus this failure is
347 	 * fatal on Hyper-V.
348 	 */
349 	hyperv_pcpu_input_arg = alloc_percpu(void  *);
350 
351 	BUG_ON(hyperv_pcpu_input_arg == NULL);
352 
353 	/* Allocate percpu VP index */
354 	hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
355 				    GFP_KERNEL);
356 	if (!hv_vp_index)
357 		return;
358 
359 	for (i = 0; i < num_possible_cpus(); i++)
360 		hv_vp_index[i] = VP_INVAL;
361 
362 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
363 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
364 	if (!hv_vp_assist_page) {
365 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
366 		goto free_vp_index;
367 	}
368 
369 	cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
370 				  hv_cpu_init, hv_cpu_die);
371 	if (cpuhp < 0)
372 		goto free_vp_assist_page;
373 
374 	/*
375 	 * Setup the hypercall page and enable hypercalls.
376 	 * 1. Register the guest ID
377 	 * 2. Enable the hypercall and register the hypercall page
378 	 */
379 	guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
380 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
381 
382 	hv_hypercall_pg  = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
383 	if (hv_hypercall_pg == NULL) {
384 		wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
385 		goto remove_cpuhp_state;
386 	}
387 
388 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
389 	hypercall_msr.enable = 1;
390 	hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
391 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
392 
393 	/*
394 	 * Ignore any errors in setting up stimer clockevents
395 	 * as we can run with the LAPIC timer as a fallback.
396 	 */
397 	(void)hv_stimer_alloc();
398 
399 	hv_apic_init();
400 
401 	x86_init.pci.arch_init = hv_pci_init;
402 
403 	register_syscore_ops(&hv_syscore_ops);
404 
405 	return;
406 
407 remove_cpuhp_state:
408 	cpuhp_remove_state(cpuhp);
409 free_vp_assist_page:
410 	kfree(hv_vp_assist_page);
411 	hv_vp_assist_page = NULL;
412 free_vp_index:
413 	kfree(hv_vp_index);
414 	hv_vp_index = NULL;
415 }
416 
417 /*
418  * This routine is called before kexec/kdump, it does the required cleanup.
419  */
420 void hyperv_cleanup(void)
421 {
422 	union hv_x64_msr_hypercall_contents hypercall_msr;
423 
424 	unregister_syscore_ops(&hv_syscore_ops);
425 
426 	/* Reset our OS id */
427 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
428 
429 	/*
430 	 * Reset hypercall page reference before reset the page,
431 	 * let hypercall operations fail safely rather than
432 	 * panic the kernel for using invalid hypercall page
433 	 */
434 	hv_hypercall_pg = NULL;
435 
436 	/* Reset the hypercall page */
437 	hypercall_msr.as_uint64 = 0;
438 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
439 
440 	/* Reset the TSC page */
441 	hypercall_msr.as_uint64 = 0;
442 	wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
443 }
444 EXPORT_SYMBOL_GPL(hyperv_cleanup);
445 
446 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
447 {
448 	static bool panic_reported;
449 	u64 guest_id;
450 
451 	if (in_die && !panic_on_oops)
452 		return;
453 
454 	/*
455 	 * We prefer to report panic on 'die' chain as we have proper
456 	 * registers to report, but if we miss it (e.g. on BUG()) we need
457 	 * to report it on 'panic'.
458 	 */
459 	if (panic_reported)
460 		return;
461 	panic_reported = true;
462 
463 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
464 
465 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
466 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
467 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
468 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
469 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
470 
471 	/*
472 	 * Let Hyper-V know there is crash data available
473 	 */
474 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
475 }
476 EXPORT_SYMBOL_GPL(hyperv_report_panic);
477 
478 /**
479  * hyperv_report_panic_msg - report panic message to Hyper-V
480  * @pa: physical address of the panic page containing the message
481  * @size: size of the message in the page
482  */
483 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
484 {
485 	/*
486 	 * P3 to contain the physical address of the panic page & P4 to
487 	 * contain the size of the panic data in that page. Rest of the
488 	 * registers are no-op when the NOTIFY_MSG flag is set.
489 	 */
490 	wrmsrl(HV_X64_MSR_CRASH_P0, 0);
491 	wrmsrl(HV_X64_MSR_CRASH_P1, 0);
492 	wrmsrl(HV_X64_MSR_CRASH_P2, 0);
493 	wrmsrl(HV_X64_MSR_CRASH_P3, pa);
494 	wrmsrl(HV_X64_MSR_CRASH_P4, size);
495 
496 	/*
497 	 * Let Hyper-V know there is crash data available along with
498 	 * the panic message.
499 	 */
500 	wrmsrl(HV_X64_MSR_CRASH_CTL,
501 	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
502 }
503 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
504 
505 bool hv_is_hyperv_initialized(void)
506 {
507 	union hv_x64_msr_hypercall_contents hypercall_msr;
508 
509 	/*
510 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
511 	 * emulation of Hyper-V
512 	 */
513 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
514 		return false;
515 
516 	/*
517 	 * Verify that earlier initialization succeeded by checking
518 	 * that the hypercall page is setup
519 	 */
520 	hypercall_msr.as_uint64 = 0;
521 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
522 
523 	return hypercall_msr.enable;
524 }
525 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
526 
527 bool hv_is_hibernation_supported(void)
528 {
529 	return acpi_sleep_state_supported(ACPI_STATE_S4);
530 }
531 EXPORT_SYMBOL_GPL(hv_is_hibernation_supported);
532