xref: /linux/arch/x86/hyperv/hv_apic.c (revision 1d5198dd08ac04b13a8b7539131baf0980998032)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Hyper-V specific APIC code.
5  *
6  * Copyright (C) 2018, Microsoft, Inc.
7  *
8  * Author : K. Y. Srinivasan <kys@microsoft.com>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License version 2 as published
12  * by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17  * NON INFRINGEMENT.  See the GNU General Public License for more
18  * details.
19  *
20  */
21 
22 #include <linux/types.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/clockchips.h>
26 #include <linux/hyperv.h>
27 #include <linux/slab.h>
28 #include <linux/cpuhotplug.h>
29 #include <asm/hypervisor.h>
30 #include <asm/mshyperv.h>
31 #include <asm/apic.h>
32 
33 #include <asm/trace/hyperv.h>
34 
35 static struct apic orig_apic;
36 
37 static u64 hv_apic_icr_read(void)
38 {
39 	u64 reg_val;
40 
41 	rdmsrl(HV_X64_MSR_ICR, reg_val);
42 	return reg_val;
43 }
44 
45 static void hv_apic_icr_write(u32 low, u32 id)
46 {
47 	u64 reg_val;
48 
49 	reg_val = SET_XAPIC_DEST_FIELD(id);
50 	reg_val = reg_val << 32;
51 	reg_val |= low;
52 
53 	wrmsrl(HV_X64_MSR_ICR, reg_val);
54 }
55 
56 static u32 hv_apic_read(u32 reg)
57 {
58 	u32 reg_val, hi;
59 
60 	switch (reg) {
61 	case APIC_EOI:
62 		rdmsr(HV_X64_MSR_EOI, reg_val, hi);
63 		(void)hi;
64 		return reg_val;
65 	case APIC_TASKPRI:
66 		rdmsr(HV_X64_MSR_TPR, reg_val, hi);
67 		(void)hi;
68 		return reg_val;
69 
70 	default:
71 		return native_apic_mem_read(reg);
72 	}
73 }
74 
75 static void hv_apic_write(u32 reg, u32 val)
76 {
77 	switch (reg) {
78 	case APIC_EOI:
79 		wrmsr(HV_X64_MSR_EOI, val, 0);
80 		break;
81 	case APIC_TASKPRI:
82 		wrmsr(HV_X64_MSR_TPR, val, 0);
83 		break;
84 	default:
85 		native_apic_mem_write(reg, val);
86 	}
87 }
88 
89 static void hv_apic_eoi_write(void)
90 {
91 	struct hv_vp_assist_page *hvp = hv_vp_assist_page[smp_processor_id()];
92 
93 	if (hvp && (xchg(&hvp->apic_assist, 0) & 0x1))
94 		return;
95 
96 	wrmsr(HV_X64_MSR_EOI, APIC_EOI_ACK, 0);
97 }
98 
99 static bool cpu_is_self(int cpu)
100 {
101 	return cpu == smp_processor_id();
102 }
103 
104 /*
105  * IPI implementation on Hyper-V.
106  */
107 static bool __send_ipi_mask_ex(const struct cpumask *mask, int vector,
108 			       bool exclude_self)
109 {
110 	struct hv_send_ipi_ex *ipi_arg;
111 	unsigned long flags;
112 	int nr_bank = 0;
113 	u64 status = HV_STATUS_INVALID_PARAMETER;
114 
115 	if (!(ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
116 		return false;
117 
118 	local_irq_save(flags);
119 	ipi_arg = *this_cpu_ptr(hyperv_pcpu_input_arg);
120 
121 	if (unlikely(!ipi_arg))
122 		goto ipi_mask_ex_done;
123 
124 	ipi_arg->vector = vector;
125 	ipi_arg->reserved = 0;
126 	ipi_arg->vp_set.valid_bank_mask = 0;
127 
128 	/*
129 	 * Use HV_GENERIC_SET_ALL and avoid converting cpumask to VP_SET
130 	 * when the IPI is sent to all currently present CPUs.
131 	 */
132 	if (!cpumask_equal(mask, cpu_present_mask) || exclude_self) {
133 		ipi_arg->vp_set.format = HV_GENERIC_SET_SPARSE_4K;
134 
135 		nr_bank = cpumask_to_vpset_skip(&ipi_arg->vp_set, mask,
136 						exclude_self ? cpu_is_self : NULL);
137 
138 		/*
139 		 * 'nr_bank <= 0' means some CPUs in cpumask can't be
140 		 * represented in VP_SET. Return an error and fall back to
141 		 * native (architectural) method of sending IPIs.
142 		 */
143 		if (nr_bank <= 0)
144 			goto ipi_mask_ex_done;
145 	} else {
146 		ipi_arg->vp_set.format = HV_GENERIC_SET_ALL;
147 	}
148 
149 	status = hv_do_rep_hypercall(HVCALL_SEND_IPI_EX, 0, nr_bank,
150 				     ipi_arg, NULL);
151 
152 ipi_mask_ex_done:
153 	local_irq_restore(flags);
154 	return hv_result_success(status);
155 }
156 
157 static bool __send_ipi_mask(const struct cpumask *mask, int vector,
158 			    bool exclude_self)
159 {
160 	int cur_cpu, vcpu, this_cpu = smp_processor_id();
161 	struct hv_send_ipi ipi_arg;
162 	u64 status;
163 	unsigned int weight;
164 
165 	trace_hyperv_send_ipi_mask(mask, vector);
166 
167 	weight = cpumask_weight(mask);
168 
169 	/*
170 	 * Do nothing if
171 	 *   1. the mask is empty
172 	 *   2. the mask only contains self when exclude_self is true
173 	 */
174 	if (weight == 0 ||
175 	    (exclude_self && weight == 1 && cpumask_test_cpu(this_cpu, mask)))
176 		return true;
177 
178 	/* A fully enlightened TDX VM uses GHCI rather than hv_hypercall_pg. */
179 	if (!hv_hypercall_pg) {
180 		if (ms_hyperv.paravisor_present || !hv_isolation_type_tdx())
181 			return false;
182 	}
183 
184 	if (vector < HV_IPI_LOW_VECTOR || vector > HV_IPI_HIGH_VECTOR)
185 		return false;
186 
187 	/*
188 	 * From the supplied CPU set we need to figure out if we can get away
189 	 * with cheaper HVCALL_SEND_IPI hypercall. This is possible when the
190 	 * highest VP number in the set is < 64. As VP numbers are usually in
191 	 * ascending order and match Linux CPU ids, here is an optimization:
192 	 * we check the VP number for the highest bit in the supplied set first
193 	 * so we can quickly find out if using HVCALL_SEND_IPI_EX hypercall is
194 	 * a must. We will also check all VP numbers when walking the supplied
195 	 * CPU set to remain correct in all cases.
196 	 */
197 	if (hv_cpu_number_to_vp_number(cpumask_last(mask)) >= 64)
198 		goto do_ex_hypercall;
199 
200 	ipi_arg.vector = vector;
201 	ipi_arg.cpu_mask = 0;
202 
203 	for_each_cpu(cur_cpu, mask) {
204 		if (exclude_self && cur_cpu == this_cpu)
205 			continue;
206 		vcpu = hv_cpu_number_to_vp_number(cur_cpu);
207 		if (vcpu == VP_INVAL)
208 			return false;
209 
210 		/*
211 		 * This particular version of the IPI hypercall can
212 		 * only target up to 64 CPUs.
213 		 */
214 		if (vcpu >= 64)
215 			goto do_ex_hypercall;
216 
217 		__set_bit(vcpu, (unsigned long *)&ipi_arg.cpu_mask);
218 	}
219 
220 	status = hv_do_fast_hypercall16(HVCALL_SEND_IPI, ipi_arg.vector,
221 					ipi_arg.cpu_mask);
222 	return hv_result_success(status);
223 
224 do_ex_hypercall:
225 	return __send_ipi_mask_ex(mask, vector, exclude_self);
226 }
227 
228 static bool __send_ipi_one(int cpu, int vector)
229 {
230 	int vp = hv_cpu_number_to_vp_number(cpu);
231 	u64 status;
232 
233 	trace_hyperv_send_ipi_one(cpu, vector);
234 
235 	if (vp == VP_INVAL)
236 		return false;
237 
238 	/* A fully enlightened TDX VM uses GHCI rather than hv_hypercall_pg. */
239 	if (!hv_hypercall_pg) {
240 		if (ms_hyperv.paravisor_present || !hv_isolation_type_tdx())
241 			return false;
242 	}
243 
244 	if (vector < HV_IPI_LOW_VECTOR || vector > HV_IPI_HIGH_VECTOR)
245 		return false;
246 
247 	if (vp >= 64)
248 		return __send_ipi_mask_ex(cpumask_of(cpu), vector, false);
249 
250 	status = hv_do_fast_hypercall16(HVCALL_SEND_IPI, vector, BIT_ULL(vp));
251 	return hv_result_success(status);
252 }
253 
254 static void hv_send_ipi(int cpu, int vector)
255 {
256 	if (!__send_ipi_one(cpu, vector))
257 		orig_apic.send_IPI(cpu, vector);
258 }
259 
260 static void hv_send_ipi_mask(const struct cpumask *mask, int vector)
261 {
262 	if (!__send_ipi_mask(mask, vector, false))
263 		orig_apic.send_IPI_mask(mask, vector);
264 }
265 
266 static void hv_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
267 {
268 	if (!__send_ipi_mask(mask, vector, true))
269 		orig_apic.send_IPI_mask_allbutself(mask, vector);
270 }
271 
272 static void hv_send_ipi_allbutself(int vector)
273 {
274 	hv_send_ipi_mask_allbutself(cpu_online_mask, vector);
275 }
276 
277 static void hv_send_ipi_all(int vector)
278 {
279 	if (!__send_ipi_mask(cpu_online_mask, vector, false))
280 		orig_apic.send_IPI_all(vector);
281 }
282 
283 static void hv_send_ipi_self(int vector)
284 {
285 	if (!__send_ipi_one(smp_processor_id(), vector))
286 		orig_apic.send_IPI_self(vector);
287 }
288 
289 void __init hv_apic_init(void)
290 {
291 	if (ms_hyperv.hints & HV_X64_CLUSTER_IPI_RECOMMENDED) {
292 		pr_info("Hyper-V: Using IPI hypercalls\n");
293 		/*
294 		 * Set the IPI entry points.
295 		 */
296 		orig_apic = *apic;
297 
298 		apic_update_callback(send_IPI, hv_send_ipi);
299 		apic_update_callback(send_IPI_mask, hv_send_ipi_mask);
300 		apic_update_callback(send_IPI_mask_allbutself, hv_send_ipi_mask_allbutself);
301 		apic_update_callback(send_IPI_allbutself, hv_send_ipi_allbutself);
302 		apic_update_callback(send_IPI_all, hv_send_ipi_all);
303 		apic_update_callback(send_IPI_self, hv_send_ipi_self);
304 	}
305 
306 	if (ms_hyperv.hints & HV_X64_APIC_ACCESS_RECOMMENDED) {
307 		pr_info("Hyper-V: Using enlightened APIC (%s mode)",
308 			x2apic_enabled() ? "x2apic" : "xapic");
309 		/*
310 		 * When in x2apic mode, don't use the Hyper-V specific APIC
311 		 * accessors since the field layout in the ICR register is
312 		 * different in x2apic mode. Furthermore, the architectural
313 		 * x2apic MSRs function just as well as the Hyper-V
314 		 * synthetic APIC MSRs, so there's no benefit in having
315 		 * separate Hyper-V accessors for x2apic mode. The only
316 		 * exception is hv_apic_eoi_write, because it benefits from
317 		 * lazy EOI when available, but the same accessor works for
318 		 * both xapic and x2apic because the field layout is the same.
319 		 */
320 		apic_update_callback(eoi, hv_apic_eoi_write);
321 		if (!x2apic_enabled()) {
322 			apic_update_callback(read, hv_apic_read);
323 			apic_update_callback(write, hv_apic_write);
324 			apic_update_callback(icr_write, hv_apic_icr_write);
325 			apic_update_callback(icr_read, hv_apic_icr_read);
326 		}
327 	}
328 }
329