xref: /linux/arch/x86/events/perf_event.h (revision e3610441d1fb47b1f00e4c38bdf333176e824729)
1 /*
2  * Performance events x86 architecture header
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 
17 #include <asm/fpu/xstate.h>
18 #include <asm/intel_ds.h>
19 #include <asm/cpu.h>
20 
21 /* To enable MSR tracing please use the generic trace points. */
22 
23 /*
24  *          |   NHM/WSM    |      SNB     |
25  * register -------------------------------
26  *          |  HT  | no HT |  HT  | no HT |
27  *-----------------------------------------
28  * offcore  | core | core  | cpu  | core  |
29  * lbr_sel  | core | core  | cpu  | core  |
30  * ld_lat   | cpu  | core  | cpu  | core  |
31  *-----------------------------------------
32  *
33  * Given that there is a small number of shared regs,
34  * we can pre-allocate their slot in the per-cpu
35  * per-core reg tables.
36  */
37 enum extra_reg_type {
38 	EXTRA_REG_NONE		= -1, /* not used */
39 
40 	EXTRA_REG_RSP_0		= 0,  /* offcore_response_0 */
41 	EXTRA_REG_RSP_1		= 1,  /* offcore_response_1 */
42 	EXTRA_REG_LBR		= 2,  /* lbr_select */
43 	EXTRA_REG_LDLAT		= 3,  /* ld_lat_threshold */
44 	EXTRA_REG_FE		= 4,  /* fe_* */
45 	EXTRA_REG_SNOOP_0	= 5,  /* snoop response 0 */
46 	EXTRA_REG_SNOOP_1	= 6,  /* snoop response 1 */
47 
48 	EXTRA_REG_MAX		      /* number of entries needed */
49 };
50 
51 struct event_constraint {
52 	union {
53 		unsigned long	idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
54 		u64		idxmsk64;
55 	};
56 	u64		code;
57 	u64		cmask;
58 	int		weight;
59 	int		overlap;
60 	int		flags;
61 	unsigned int	size;
62 };
63 
64 static inline bool constraint_match(struct event_constraint *c, u64 ecode)
65 {
66 	return ((ecode & c->cmask) - c->code) <= (u64)c->size;
67 }
68 
69 #define PERF_ARCH(name, val)	\
70 	PERF_X86_EVENT_##name = val,
71 
72 /*
73  * struct hw_perf_event.flags flags
74  */
75 enum {
76 #include "perf_event_flags.h"
77 };
78 
79 #undef PERF_ARCH
80 
81 #define PERF_ARCH(name, val)						\
82 	static_assert((PERF_X86_EVENT_##name & PERF_EVENT_FLAG_ARCH) ==	\
83 		      PERF_X86_EVENT_##name);
84 
85 #include "perf_event_flags.h"
86 
87 #undef PERF_ARCH
88 
89 static inline bool is_topdown_count(struct perf_event *event)
90 {
91 	return event->hw.flags & PERF_X86_EVENT_TOPDOWN;
92 }
93 
94 static inline bool is_metric_event(struct perf_event *event)
95 {
96 	u64 config = event->attr.config;
97 
98 	return ((config & ARCH_PERFMON_EVENTSEL_EVENT) == 0) &&
99 		((config & INTEL_ARCH_EVENT_MASK) >= INTEL_TD_METRIC_RETIRING)  &&
100 		((config & INTEL_ARCH_EVENT_MASK) <= INTEL_TD_METRIC_MAX);
101 }
102 
103 static inline bool is_slots_event(struct perf_event *event)
104 {
105 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_TD_SLOTS;
106 }
107 
108 static inline bool is_topdown_event(struct perf_event *event)
109 {
110 	return is_metric_event(event) || is_slots_event(event);
111 }
112 
113 static inline bool is_branch_counters_group(struct perf_event *event)
114 {
115 	return event->group_leader->hw.flags & PERF_X86_EVENT_BRANCH_COUNTERS;
116 }
117 
118 struct amd_nb {
119 	int nb_id;  /* NorthBridge id */
120 	int refcnt; /* reference count */
121 	struct perf_event *owners[X86_PMC_IDX_MAX];
122 	struct event_constraint event_constraints[X86_PMC_IDX_MAX];
123 };
124 
125 #define PEBS_COUNTER_MASK	((1ULL << MAX_PEBS_EVENTS) - 1)
126 #define PEBS_PMI_AFTER_EACH_RECORD BIT_ULL(60)
127 #define PEBS_OUTPUT_OFFSET	61
128 #define PEBS_OUTPUT_MASK	(3ull << PEBS_OUTPUT_OFFSET)
129 #define PEBS_OUTPUT_PT		(1ull << PEBS_OUTPUT_OFFSET)
130 #define PEBS_VIA_PT_MASK	(PEBS_OUTPUT_PT | PEBS_PMI_AFTER_EACH_RECORD)
131 
132 /*
133  * Flags PEBS can handle without an PMI.
134  *
135  * TID can only be handled by flushing at context switch.
136  * REGS_USER can be handled for events limited to ring 3.
137  *
138  */
139 #define LARGE_PEBS_FLAGS \
140 	(PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR | \
141 	PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | \
142 	PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER | \
143 	PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR | \
144 	PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER | \
145 	PERF_SAMPLE_PERIOD | PERF_SAMPLE_CODE_PAGE_SIZE | \
146 	PERF_SAMPLE_WEIGHT_TYPE)
147 
148 #define PEBS_GP_REGS			\
149 	((1ULL << PERF_REG_X86_AX)    | \
150 	 (1ULL << PERF_REG_X86_BX)    | \
151 	 (1ULL << PERF_REG_X86_CX)    | \
152 	 (1ULL << PERF_REG_X86_DX)    | \
153 	 (1ULL << PERF_REG_X86_DI)    | \
154 	 (1ULL << PERF_REG_X86_SI)    | \
155 	 (1ULL << PERF_REG_X86_SP)    | \
156 	 (1ULL << PERF_REG_X86_BP)    | \
157 	 (1ULL << PERF_REG_X86_IP)    | \
158 	 (1ULL << PERF_REG_X86_FLAGS) | \
159 	 (1ULL << PERF_REG_X86_R8)    | \
160 	 (1ULL << PERF_REG_X86_R9)    | \
161 	 (1ULL << PERF_REG_X86_R10)   | \
162 	 (1ULL << PERF_REG_X86_R11)   | \
163 	 (1ULL << PERF_REG_X86_R12)   | \
164 	 (1ULL << PERF_REG_X86_R13)   | \
165 	 (1ULL << PERF_REG_X86_R14)   | \
166 	 (1ULL << PERF_REG_X86_R15))
167 
168 /*
169  * Per register state.
170  */
171 struct er_account {
172 	raw_spinlock_t      lock;	/* per-core: protect structure */
173 	u64                 config;	/* extra MSR config */
174 	u64                 reg;	/* extra MSR number */
175 	atomic_t            ref;	/* reference count */
176 };
177 
178 /*
179  * Per core/cpu state
180  *
181  * Used to coordinate shared registers between HT threads or
182  * among events on a single PMU.
183  */
184 struct intel_shared_regs {
185 	struct er_account       regs[EXTRA_REG_MAX];
186 	int                     refcnt;		/* per-core: #HT threads */
187 	unsigned                core_id;	/* per-core: core id */
188 };
189 
190 enum intel_excl_state_type {
191 	INTEL_EXCL_UNUSED    = 0, /* counter is unused */
192 	INTEL_EXCL_SHARED    = 1, /* counter can be used by both threads */
193 	INTEL_EXCL_EXCLUSIVE = 2, /* counter can be used by one thread only */
194 };
195 
196 struct intel_excl_states {
197 	enum intel_excl_state_type state[X86_PMC_IDX_MAX];
198 	bool sched_started; /* true if scheduling has started */
199 };
200 
201 struct intel_excl_cntrs {
202 	raw_spinlock_t	lock;
203 
204 	struct intel_excl_states states[2];
205 
206 	union {
207 		u16	has_exclusive[2];
208 		u32	exclusive_present;
209 	};
210 
211 	int		refcnt;		/* per-core: #HT threads */
212 	unsigned	core_id;	/* per-core: core id */
213 };
214 
215 struct x86_perf_task_context;
216 #define MAX_LBR_ENTRIES		32
217 
218 enum {
219 	LBR_FORMAT_32		= 0x00,
220 	LBR_FORMAT_LIP		= 0x01,
221 	LBR_FORMAT_EIP		= 0x02,
222 	LBR_FORMAT_EIP_FLAGS	= 0x03,
223 	LBR_FORMAT_EIP_FLAGS2	= 0x04,
224 	LBR_FORMAT_INFO		= 0x05,
225 	LBR_FORMAT_TIME		= 0x06,
226 	LBR_FORMAT_INFO2	= 0x07,
227 	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_INFO2,
228 };
229 
230 enum {
231 	X86_PERF_KFREE_SHARED = 0,
232 	X86_PERF_KFREE_EXCL   = 1,
233 	X86_PERF_KFREE_MAX
234 };
235 
236 struct cpu_hw_events {
237 	/*
238 	 * Generic x86 PMC bits
239 	 */
240 	struct perf_event	*events[X86_PMC_IDX_MAX]; /* in counter order */
241 	unsigned long		active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
242 	unsigned long		dirty[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
243 	int			enabled;
244 
245 	int			n_events; /* the # of events in the below arrays */
246 	int			n_added;  /* the # last events in the below arrays;
247 					     they've never been enabled yet */
248 	int			n_txn;    /* the # last events in the below arrays;
249 					     added in the current transaction */
250 	int			n_txn_pair;
251 	int			n_txn_metric;
252 	int			assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
253 	u64			tags[X86_PMC_IDX_MAX];
254 
255 	struct perf_event	*event_list[X86_PMC_IDX_MAX]; /* in enabled order */
256 	struct event_constraint	*event_constraint[X86_PMC_IDX_MAX];
257 
258 	int			n_excl; /* the number of exclusive events */
259 
260 	unsigned int		txn_flags;
261 	int			is_fake;
262 
263 	/*
264 	 * Intel DebugStore bits
265 	 */
266 	struct debug_store	*ds;
267 	void			*ds_pebs_vaddr;
268 	void			*ds_bts_vaddr;
269 	u64			pebs_enabled;
270 	int			n_pebs;
271 	int			n_large_pebs;
272 	int			n_pebs_via_pt;
273 	int			pebs_output;
274 
275 	/* Current super set of events hardware configuration */
276 	u64			pebs_data_cfg;
277 	u64			active_pebs_data_cfg;
278 	int			pebs_record_size;
279 
280 	/* Intel Fixed counter configuration */
281 	u64			fixed_ctrl_val;
282 	u64			active_fixed_ctrl_val;
283 
284 	/*
285 	 * Intel LBR bits
286 	 */
287 	int				lbr_users;
288 	int				lbr_pebs_users;
289 	struct perf_branch_stack	lbr_stack;
290 	struct perf_branch_entry	lbr_entries[MAX_LBR_ENTRIES];
291 	u64				lbr_counters[MAX_LBR_ENTRIES]; /* branch stack extra */
292 	union {
293 		struct er_account		*lbr_sel;
294 		struct er_account		*lbr_ctl;
295 	};
296 	u64				br_sel;
297 	void				*last_task_ctx;
298 	int				last_log_id;
299 	int				lbr_select;
300 	void				*lbr_xsave;
301 
302 	/*
303 	 * Intel host/guest exclude bits
304 	 */
305 	u64				intel_ctrl_guest_mask;
306 	u64				intel_ctrl_host_mask;
307 	struct perf_guest_switch_msr	guest_switch_msrs[X86_PMC_IDX_MAX];
308 
309 	/*
310 	 * Intel checkpoint mask
311 	 */
312 	u64				intel_cp_status;
313 
314 	/*
315 	 * manage shared (per-core, per-cpu) registers
316 	 * used on Intel NHM/WSM/SNB
317 	 */
318 	struct intel_shared_regs	*shared_regs;
319 	/*
320 	 * manage exclusive counter access between hyperthread
321 	 */
322 	struct event_constraint *constraint_list; /* in enable order */
323 	struct intel_excl_cntrs		*excl_cntrs;
324 	int excl_thread_id; /* 0 or 1 */
325 
326 	/*
327 	 * SKL TSX_FORCE_ABORT shadow
328 	 */
329 	u64				tfa_shadow;
330 
331 	/*
332 	 * Perf Metrics
333 	 */
334 	/* number of accepted metrics events */
335 	int				n_metric;
336 
337 	/*
338 	 * AMD specific bits
339 	 */
340 	struct amd_nb			*amd_nb;
341 	int				brs_active; /* BRS is enabled */
342 
343 	/* Inverted mask of bits to clear in the perf_ctr ctrl registers */
344 	u64				perf_ctr_virt_mask;
345 	int				n_pair; /* Large increment events */
346 
347 	void				*kfree_on_online[X86_PERF_KFREE_MAX];
348 
349 	struct pmu			*pmu;
350 };
351 
352 #define __EVENT_CONSTRAINT_RANGE(c, e, n, m, w, o, f) {	\
353 	{ .idxmsk64 = (n) },		\
354 	.code = (c),			\
355 	.size = (e) - (c),		\
356 	.cmask = (m),			\
357 	.weight = (w),			\
358 	.overlap = (o),			\
359 	.flags = f,			\
360 }
361 
362 #define __EVENT_CONSTRAINT(c, n, m, w, o, f) \
363 	__EVENT_CONSTRAINT_RANGE(c, c, n, m, w, o, f)
364 
365 #define EVENT_CONSTRAINT(c, n, m)	\
366 	__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 0, 0)
367 
368 /*
369  * The constraint_match() function only works for 'simple' event codes
370  * and not for extended (AMD64_EVENTSEL_EVENT) events codes.
371  */
372 #define EVENT_CONSTRAINT_RANGE(c, e, n, m) \
373 	__EVENT_CONSTRAINT_RANGE(c, e, n, m, HWEIGHT(n), 0, 0)
374 
375 #define INTEL_EXCLEVT_CONSTRAINT(c, n)	\
376 	__EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT, HWEIGHT(n),\
377 			   0, PERF_X86_EVENT_EXCL)
378 
379 /*
380  * The overlap flag marks event constraints with overlapping counter
381  * masks. This is the case if the counter mask of such an event is not
382  * a subset of any other counter mask of a constraint with an equal or
383  * higher weight, e.g.:
384  *
385  *  c_overlaps = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
386  *  c_another1 = EVENT_CONSTRAINT(0, 0x07, 0);
387  *  c_another2 = EVENT_CONSTRAINT(0, 0x38, 0);
388  *
389  * The event scheduler may not select the correct counter in the first
390  * cycle because it needs to know which subsequent events will be
391  * scheduled. It may fail to schedule the events then. So we set the
392  * overlap flag for such constraints to give the scheduler a hint which
393  * events to select for counter rescheduling.
394  *
395  * Care must be taken as the rescheduling algorithm is O(n!) which
396  * will increase scheduling cycles for an over-committed system
397  * dramatically.  The number of such EVENT_CONSTRAINT_OVERLAP() macros
398  * and its counter masks must be kept at a minimum.
399  */
400 #define EVENT_CONSTRAINT_OVERLAP(c, n, m)	\
401 	__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 1, 0)
402 
403 /*
404  * Constraint on the Event code.
405  */
406 #define INTEL_EVENT_CONSTRAINT(c, n)	\
407 	EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
408 
409 /*
410  * Constraint on a range of Event codes
411  */
412 #define INTEL_EVENT_CONSTRAINT_RANGE(c, e, n)			\
413 	EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT)
414 
415 /*
416  * Constraint on the Event code + UMask + fixed-mask
417  *
418  * filter mask to validate fixed counter events.
419  * the following filters disqualify for fixed counters:
420  *  - inv
421  *  - edge
422  *  - cnt-mask
423  *  - in_tx
424  *  - in_tx_checkpointed
425  *  The other filters are supported by fixed counters.
426  *  The any-thread option is supported starting with v3.
427  */
428 #define FIXED_EVENT_FLAGS (X86_RAW_EVENT_MASK|HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)
429 #define FIXED_EVENT_CONSTRAINT(c, n)	\
430 	EVENT_CONSTRAINT(c, (1ULL << (32+n)), FIXED_EVENT_FLAGS)
431 
432 /*
433  * The special metric counters do not actually exist. They are calculated from
434  * the combination of the FxCtr3 + MSR_PERF_METRICS.
435  *
436  * The special metric counters are mapped to a dummy offset for the scheduler.
437  * The sharing between multiple users of the same metric without multiplexing
438  * is not allowed, even though the hardware supports that in principle.
439  */
440 
441 #define METRIC_EVENT_CONSTRAINT(c, n)					\
442 	EVENT_CONSTRAINT(c, (1ULL << (INTEL_PMC_IDX_METRIC_BASE + n)),	\
443 			 INTEL_ARCH_EVENT_MASK)
444 
445 /*
446  * Constraint on the Event code + UMask
447  */
448 #define INTEL_UEVENT_CONSTRAINT(c, n)	\
449 	EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
450 
451 /* Constraint on specific umask bit only + event */
452 #define INTEL_UBIT_EVENT_CONSTRAINT(c, n)	\
453 	EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|(c))
454 
455 /* Like UEVENT_CONSTRAINT, but match flags too */
456 #define INTEL_FLAGS_UEVENT_CONSTRAINT(c, n)	\
457 	EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS)
458 
459 #define INTEL_EXCLUEVT_CONSTRAINT(c, n)	\
460 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK, \
461 			   HWEIGHT(n), 0, PERF_X86_EVENT_EXCL)
462 
463 #define INTEL_PLD_CONSTRAINT(c, n)	\
464 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
465 			   HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LDLAT)
466 
467 #define INTEL_PSD_CONSTRAINT(c, n)	\
468 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
469 			   HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_STLAT)
470 
471 #define INTEL_PST_CONSTRAINT(c, n)	\
472 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
473 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST)
474 
475 #define INTEL_HYBRID_LAT_CONSTRAINT(c, n)	\
476 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
477 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID)
478 
479 #define INTEL_HYBRID_LDLAT_CONSTRAINT(c, n)	\
480 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
481 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID|PERF_X86_EVENT_PEBS_LD_HSW)
482 
483 #define INTEL_HYBRID_STLAT_CONSTRAINT(c, n)	\
484 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
485 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID|PERF_X86_EVENT_PEBS_ST_HSW)
486 
487 /* Event constraint, but match on all event flags too. */
488 #define INTEL_FLAGS_EVENT_CONSTRAINT(c, n) \
489 	EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS)
490 
491 #define INTEL_FLAGS_EVENT_CONSTRAINT_RANGE(c, e, n)			\
492 	EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS)
493 
494 /* Check only flags, but allow all event/umask */
495 #define INTEL_ALL_EVENT_CONSTRAINT(code, n)	\
496 	EVENT_CONSTRAINT(code, n, X86_ALL_EVENT_FLAGS)
497 
498 /* Check flags and event code, and set the HSW store flag */
499 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_ST(code, n) \
500 	__EVENT_CONSTRAINT(code, n, 			\
501 			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
502 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW)
503 
504 /* Check flags and event code, and set the HSW load flag */
505 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(code, n) \
506 	__EVENT_CONSTRAINT(code, n,			\
507 			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
508 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
509 
510 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(code, end, n) \
511 	__EVENT_CONSTRAINT_RANGE(code, end, n,				\
512 			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
513 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
514 
515 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(code, n) \
516 	__EVENT_CONSTRAINT(code, n,			\
517 			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
518 			  HWEIGHT(n), 0, \
519 			  PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL)
520 
521 /* Check flags and event code/umask, and set the HSW store flag */
522 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(code, n) \
523 	__EVENT_CONSTRAINT(code, n, 			\
524 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
525 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW)
526 
527 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(code, n) \
528 	__EVENT_CONSTRAINT(code, n,			\
529 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
530 			  HWEIGHT(n), 0, \
531 			  PERF_X86_EVENT_PEBS_ST_HSW|PERF_X86_EVENT_EXCL)
532 
533 /* Check flags and event code/umask, and set the HSW load flag */
534 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(code, n) \
535 	__EVENT_CONSTRAINT(code, n, 			\
536 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
537 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
538 
539 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(code, n) \
540 	__EVENT_CONSTRAINT(code, n,			\
541 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
542 			  HWEIGHT(n), 0, \
543 			  PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL)
544 
545 /* Check flags and event code/umask, and set the HSW N/A flag */
546 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(code, n) \
547 	__EVENT_CONSTRAINT(code, n, 			\
548 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
549 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_NA_HSW)
550 
551 
552 /*
553  * We define the end marker as having a weight of -1
554  * to enable blacklisting of events using a counter bitmask
555  * of zero and thus a weight of zero.
556  * The end marker has a weight that cannot possibly be
557  * obtained from counting the bits in the bitmask.
558  */
559 #define EVENT_CONSTRAINT_END { .weight = -1 }
560 
561 /*
562  * Check for end marker with weight == -1
563  */
564 #define for_each_event_constraint(e, c)	\
565 	for ((e) = (c); (e)->weight != -1; (e)++)
566 
567 /*
568  * Extra registers for specific events.
569  *
570  * Some events need large masks and require external MSRs.
571  * Those extra MSRs end up being shared for all events on
572  * a PMU and sometimes between PMU of sibling HT threads.
573  * In either case, the kernel needs to handle conflicting
574  * accesses to those extra, shared, regs. The data structure
575  * to manage those registers is stored in cpu_hw_event.
576  */
577 struct extra_reg {
578 	unsigned int		event;
579 	unsigned int		msr;
580 	u64			config_mask;
581 	u64			valid_mask;
582 	int			idx;  /* per_xxx->regs[] reg index */
583 	bool			extra_msr_access;
584 };
585 
586 #define EVENT_EXTRA_REG(e, ms, m, vm, i) {	\
587 	.event = (e),			\
588 	.msr = (ms),			\
589 	.config_mask = (m),		\
590 	.valid_mask = (vm),		\
591 	.idx = EXTRA_REG_##i,		\
592 	.extra_msr_access = true,	\
593 	}
594 
595 #define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx)	\
596 	EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx)
597 
598 #define INTEL_UEVENT_EXTRA_REG(event, msr, vm, idx) \
599 	EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT | \
600 			ARCH_PERFMON_EVENTSEL_UMASK, vm, idx)
601 
602 #define INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(c) \
603 	INTEL_UEVENT_EXTRA_REG(c, \
604 			       MSR_PEBS_LD_LAT_THRESHOLD, \
605 			       0xffff, \
606 			       LDLAT)
607 
608 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0)
609 
610 union perf_capabilities {
611 	struct {
612 		u64	lbr_format:6;
613 		u64	pebs_trap:1;
614 		u64	pebs_arch_reg:1;
615 		u64	pebs_format:4;
616 		u64	smm_freeze:1;
617 		/*
618 		 * PMU supports separate counter range for writing
619 		 * values > 32bit.
620 		 */
621 		u64	full_width_write:1;
622 		u64     pebs_baseline:1;
623 		u64	perf_metrics:1;
624 		u64	pebs_output_pt_available:1;
625 		u64	pebs_timing_info:1;
626 		u64	anythread_deprecated:1;
627 		u64	rdpmc_metrics_clear:1;
628 	};
629 	u64	capabilities;
630 };
631 
632 struct x86_pmu_quirk {
633 	struct x86_pmu_quirk *next;
634 	void (*func)(void);
635 };
636 
637 union x86_pmu_config {
638 	struct {
639 		u64 event:8,
640 		    umask:8,
641 		    usr:1,
642 		    os:1,
643 		    edge:1,
644 		    pc:1,
645 		    interrupt:1,
646 		    __reserved1:1,
647 		    en:1,
648 		    inv:1,
649 		    cmask:8,
650 		    event2:4,
651 		    __reserved2:4,
652 		    go:1,
653 		    ho:1;
654 	} bits;
655 	u64 value;
656 };
657 
658 #define X86_CONFIG(args...) ((union x86_pmu_config){.bits = {args}}).value
659 
660 enum {
661 	x86_lbr_exclusive_lbr,
662 	x86_lbr_exclusive_bts,
663 	x86_lbr_exclusive_pt,
664 	x86_lbr_exclusive_max,
665 };
666 
667 #define PERF_PEBS_DATA_SOURCE_MAX	0x100
668 #define PERF_PEBS_DATA_SOURCE_MASK	(PERF_PEBS_DATA_SOURCE_MAX - 1)
669 #define PERF_PEBS_DATA_SOURCE_GRT_MAX	0x10
670 #define PERF_PEBS_DATA_SOURCE_GRT_MASK	(PERF_PEBS_DATA_SOURCE_GRT_MAX - 1)
671 
672 /*
673  * CPUID.1AH.EAX[31:0] uniquely identifies the microarchitecture
674  * of the core. Bits 31-24 indicates its core type (Core or Atom)
675  * and Bits [23:0] indicates the native model ID of the core.
676  * Core type and native model ID are defined in below enumerations.
677  */
678 enum hybrid_cpu_type {
679 	HYBRID_INTEL_NONE,
680 	HYBRID_INTEL_ATOM	= 0x20,
681 	HYBRID_INTEL_CORE	= 0x40,
682 };
683 
684 #define X86_HYBRID_PMU_ATOM_IDX		0
685 #define X86_HYBRID_PMU_CORE_IDX		1
686 #define X86_HYBRID_PMU_TINY_IDX		2
687 
688 enum hybrid_pmu_type {
689 	not_hybrid,
690 	hybrid_small		= BIT(X86_HYBRID_PMU_ATOM_IDX),
691 	hybrid_big		= BIT(X86_HYBRID_PMU_CORE_IDX),
692 	hybrid_tiny		= BIT(X86_HYBRID_PMU_TINY_IDX),
693 
694 	/* The belows are only used for matching */
695 	hybrid_big_small	= hybrid_big   | hybrid_small,
696 	hybrid_small_tiny	= hybrid_small | hybrid_tiny,
697 	hybrid_big_small_tiny	= hybrid_big   | hybrid_small_tiny,
698 };
699 
700 enum atom_native_id {
701 	cmt_native_id           = 0x2,  /* Crestmont */
702 	skt_native_id           = 0x3,  /* Skymont */
703 };
704 
705 struct x86_hybrid_pmu {
706 	struct pmu			pmu;
707 	const char			*name;
708 	enum hybrid_pmu_type		pmu_type;
709 	cpumask_t			supported_cpus;
710 	union perf_capabilities		intel_cap;
711 	u64				intel_ctrl;
712 	u64				pebs_events_mask;
713 	u64				config_mask;
714 	union {
715 			u64		cntr_mask64;
716 			unsigned long	cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
717 	};
718 	union {
719 			u64		fixed_cntr_mask64;
720 			unsigned long	fixed_cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
721 	};
722 	struct event_constraint		unconstrained;
723 
724 	u64				hw_cache_event_ids
725 					[PERF_COUNT_HW_CACHE_MAX]
726 					[PERF_COUNT_HW_CACHE_OP_MAX]
727 					[PERF_COUNT_HW_CACHE_RESULT_MAX];
728 	u64				hw_cache_extra_regs
729 					[PERF_COUNT_HW_CACHE_MAX]
730 					[PERF_COUNT_HW_CACHE_OP_MAX]
731 					[PERF_COUNT_HW_CACHE_RESULT_MAX];
732 	struct event_constraint		*event_constraints;
733 	struct event_constraint		*pebs_constraints;
734 	struct extra_reg		*extra_regs;
735 
736 	unsigned int			late_ack	:1,
737 					mid_ack		:1,
738 					enabled_ack	:1;
739 
740 	u64				pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX];
741 };
742 
743 static __always_inline struct x86_hybrid_pmu *hybrid_pmu(struct pmu *pmu)
744 {
745 	return container_of(pmu, struct x86_hybrid_pmu, pmu);
746 }
747 
748 extern struct static_key_false perf_is_hybrid;
749 #define is_hybrid()		static_branch_unlikely(&perf_is_hybrid)
750 
751 #define hybrid(_pmu, _field)				\
752 (*({							\
753 	typeof(&x86_pmu._field) __Fp = &x86_pmu._field;	\
754 							\
755 	if (is_hybrid() && (_pmu))			\
756 		__Fp = &hybrid_pmu(_pmu)->_field;	\
757 							\
758 	__Fp;						\
759 }))
760 
761 #define hybrid_var(_pmu, _var)				\
762 (*({							\
763 	typeof(&_var) __Fp = &_var;			\
764 							\
765 	if (is_hybrid() && (_pmu))			\
766 		__Fp = &hybrid_pmu(_pmu)->_var;		\
767 							\
768 	__Fp;						\
769 }))
770 
771 #define hybrid_bit(_pmu, _field)			\
772 ({							\
773 	bool __Fp = x86_pmu._field;			\
774 							\
775 	if (is_hybrid() && (_pmu))			\
776 		__Fp = hybrid_pmu(_pmu)->_field;	\
777 							\
778 	__Fp;						\
779 })
780 
781 /*
782  * struct x86_pmu - generic x86 pmu
783  */
784 struct x86_pmu {
785 	/*
786 	 * Generic x86 PMC bits
787 	 */
788 	const char	*name;
789 	int		version;
790 	int		(*handle_irq)(struct pt_regs *);
791 	void		(*disable_all)(void);
792 	void		(*enable_all)(int added);
793 	void		(*enable)(struct perf_event *);
794 	void		(*disable)(struct perf_event *);
795 	void		(*assign)(struct perf_event *event, int idx);
796 	void		(*add)(struct perf_event *);
797 	void		(*del)(struct perf_event *);
798 	void		(*read)(struct perf_event *event);
799 	int		(*set_period)(struct perf_event *event);
800 	u64		(*update)(struct perf_event *event);
801 	int		(*hw_config)(struct perf_event *event);
802 	int		(*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
803 	unsigned	eventsel;
804 	unsigned	perfctr;
805 	unsigned	fixedctr;
806 	int		(*addr_offset)(int index, bool eventsel);
807 	int		(*rdpmc_index)(int index);
808 	u64		(*event_map)(int);
809 	int		max_events;
810 	u64		config_mask;
811 	union {
812 			u64		cntr_mask64;
813 			unsigned long	cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
814 	};
815 	union {
816 			u64		fixed_cntr_mask64;
817 			unsigned long	fixed_cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
818 	};
819 	int		cntval_bits;
820 	u64		cntval_mask;
821 	union {
822 			unsigned long events_maskl;
823 			unsigned long events_mask[BITS_TO_LONGS(ARCH_PERFMON_EVENTS_COUNT)];
824 	};
825 	int		events_mask_len;
826 	int		apic;
827 	u64		max_period;
828 	struct event_constraint *
829 			(*get_event_constraints)(struct cpu_hw_events *cpuc,
830 						 int idx,
831 						 struct perf_event *event);
832 
833 	void		(*put_event_constraints)(struct cpu_hw_events *cpuc,
834 						 struct perf_event *event);
835 
836 	void		(*start_scheduling)(struct cpu_hw_events *cpuc);
837 
838 	void		(*commit_scheduling)(struct cpu_hw_events *cpuc, int idx, int cntr);
839 
840 	void		(*stop_scheduling)(struct cpu_hw_events *cpuc);
841 
842 	struct event_constraint *event_constraints;
843 	struct x86_pmu_quirk *quirks;
844 	void		(*limit_period)(struct perf_event *event, s64 *l);
845 
846 	/* PMI handler bits */
847 	unsigned int	late_ack		:1,
848 			mid_ack			:1,
849 			enabled_ack		:1;
850 	/*
851 	 * sysfs attrs
852 	 */
853 	int		attr_rdpmc_broken;
854 	int		attr_rdpmc;
855 	struct attribute **format_attrs;
856 
857 	ssize_t		(*events_sysfs_show)(char *page, u64 config);
858 	const struct attribute_group **attr_update;
859 
860 	unsigned long	attr_freeze_on_smi;
861 
862 	/*
863 	 * CPU Hotplug hooks
864 	 */
865 	int		(*cpu_prepare)(int cpu);
866 	void		(*cpu_starting)(int cpu);
867 	void		(*cpu_dying)(int cpu);
868 	void		(*cpu_dead)(int cpu);
869 
870 	void		(*check_microcode)(void);
871 	void		(*sched_task)(struct perf_event_pmu_context *pmu_ctx,
872 				      bool sched_in);
873 
874 	/*
875 	 * Intel Arch Perfmon v2+
876 	 */
877 	u64			intel_ctrl;
878 	union perf_capabilities intel_cap;
879 
880 	/*
881 	 * Intel DebugStore bits
882 	 */
883 	unsigned int	bts			:1,
884 			bts_active		:1,
885 			pebs			:1,
886 			pebs_active		:1,
887 			pebs_broken		:1,
888 			pebs_prec_dist		:1,
889 			pebs_no_tlb		:1,
890 			pebs_no_isolation	:1,
891 			pebs_block		:1,
892 			pebs_ept		:1;
893 	int		pebs_record_size;
894 	int		pebs_buffer_size;
895 	u64		pebs_events_mask;
896 	void		(*drain_pebs)(struct pt_regs *regs, struct perf_sample_data *data);
897 	struct event_constraint *pebs_constraints;
898 	void		(*pebs_aliases)(struct perf_event *event);
899 	u64		(*pebs_latency_data)(struct perf_event *event, u64 status);
900 	unsigned long	large_pebs_flags;
901 	u64		rtm_abort_event;
902 	u64		pebs_capable;
903 
904 	/*
905 	 * Intel LBR
906 	 */
907 	unsigned int	lbr_tos, lbr_from, lbr_to,
908 			lbr_info, lbr_nr;	   /* LBR base regs and size */
909 	union {
910 		u64	lbr_sel_mask;		   /* LBR_SELECT valid bits */
911 		u64	lbr_ctl_mask;		   /* LBR_CTL valid bits */
912 	};
913 	union {
914 		const int	*lbr_sel_map;	   /* lbr_select mappings */
915 		int		*lbr_ctl_map;	   /* LBR_CTL mappings */
916 	};
917 	bool		lbr_double_abort;	   /* duplicated lbr aborts */
918 	bool		lbr_pt_coexist;		   /* (LBR|BTS) may coexist with PT */
919 
920 	unsigned int	lbr_has_info:1;
921 	unsigned int	lbr_has_tsx:1;
922 	unsigned int	lbr_from_flags:1;
923 	unsigned int	lbr_to_cycles:1;
924 
925 	/*
926 	 * Intel Architectural LBR CPUID Enumeration
927 	 */
928 	unsigned int	lbr_depth_mask:8;
929 	unsigned int	lbr_deep_c_reset:1;
930 	unsigned int	lbr_lip:1;
931 	unsigned int	lbr_cpl:1;
932 	unsigned int	lbr_filter:1;
933 	unsigned int	lbr_call_stack:1;
934 	unsigned int	lbr_mispred:1;
935 	unsigned int	lbr_timed_lbr:1;
936 	unsigned int	lbr_br_type:1;
937 	unsigned int	lbr_counters:4;
938 
939 	void		(*lbr_reset)(void);
940 	void		(*lbr_read)(struct cpu_hw_events *cpuc);
941 	void		(*lbr_save)(void *ctx);
942 	void		(*lbr_restore)(void *ctx);
943 
944 	/*
945 	 * Intel PT/LBR/BTS are exclusive
946 	 */
947 	atomic_t	lbr_exclusive[x86_lbr_exclusive_max];
948 
949 	/*
950 	 * Intel perf metrics
951 	 */
952 	int		num_topdown_events;
953 
954 	/*
955 	 * perf task context (i.e. struct perf_event_pmu_context::task_ctx_data)
956 	 * switch helper to bridge calls from perf/core to perf/x86.
957 	 * See struct pmu::swap_task_ctx() usage for examples;
958 	 */
959 	void		(*swap_task_ctx)(struct perf_event_pmu_context *prev_epc,
960 					 struct perf_event_pmu_context *next_epc);
961 
962 	/*
963 	 * AMD bits
964 	 */
965 	unsigned int	amd_nb_constraints : 1;
966 	u64		perf_ctr_pair_en;
967 
968 	/*
969 	 * Extra registers for events
970 	 */
971 	struct extra_reg *extra_regs;
972 	unsigned int flags;
973 
974 	/*
975 	 * Intel host/guest support (KVM)
976 	 */
977 	struct perf_guest_switch_msr *(*guest_get_msrs)(int *nr, void *data);
978 
979 	/*
980 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
981 	 */
982 	int (*check_period) (struct perf_event *event, u64 period);
983 
984 	int (*aux_output_match) (struct perf_event *event);
985 
986 	void (*filter)(struct pmu *pmu, int cpu, bool *ret);
987 	/*
988 	 * Hybrid support
989 	 *
990 	 * Most PMU capabilities are the same among different hybrid PMUs.
991 	 * The global x86_pmu saves the architecture capabilities, which
992 	 * are available for all PMUs. The hybrid_pmu only includes the
993 	 * unique capabilities.
994 	 */
995 	int				num_hybrid_pmus;
996 	struct x86_hybrid_pmu		*hybrid_pmu;
997 	enum hybrid_cpu_type (*get_hybrid_cpu_type)	(void);
998 };
999 
1000 struct x86_perf_task_context_opt {
1001 	int lbr_callstack_users;
1002 	int lbr_stack_state;
1003 	int log_id;
1004 };
1005 
1006 struct x86_perf_task_context {
1007 	u64 lbr_sel;
1008 	int tos;
1009 	int valid_lbrs;
1010 	struct x86_perf_task_context_opt opt;
1011 	struct lbr_entry lbr[MAX_LBR_ENTRIES];
1012 };
1013 
1014 struct x86_perf_task_context_arch_lbr {
1015 	struct x86_perf_task_context_opt opt;
1016 	struct lbr_entry entries[];
1017 };
1018 
1019 /*
1020  * Add padding to guarantee the 64-byte alignment of the state buffer.
1021  *
1022  * The structure is dynamically allocated. The size of the LBR state may vary
1023  * based on the number of LBR registers.
1024  *
1025  * Do not put anything after the LBR state.
1026  */
1027 struct x86_perf_task_context_arch_lbr_xsave {
1028 	struct x86_perf_task_context_opt		opt;
1029 
1030 	union {
1031 		struct xregs_state			xsave;
1032 		struct {
1033 			struct fxregs_state		i387;
1034 			struct xstate_header		header;
1035 			struct arch_lbr_state		lbr;
1036 		} __attribute__ ((packed, aligned (XSAVE_ALIGNMENT)));
1037 	};
1038 };
1039 
1040 #define x86_add_quirk(func_)						\
1041 do {									\
1042 	static struct x86_pmu_quirk __quirk __initdata = {		\
1043 		.func = func_,						\
1044 	};								\
1045 	__quirk.next = x86_pmu.quirks;					\
1046 	x86_pmu.quirks = &__quirk;					\
1047 } while (0)
1048 
1049 /*
1050  * x86_pmu flags
1051  */
1052 #define PMU_FL_NO_HT_SHARING	0x1 /* no hyper-threading resource sharing */
1053 #define PMU_FL_HAS_RSP_1	0x2 /* has 2 equivalent offcore_rsp regs   */
1054 #define PMU_FL_EXCL_CNTRS	0x4 /* has exclusive counter requirements  */
1055 #define PMU_FL_EXCL_ENABLED	0x8 /* exclusive counter active */
1056 #define PMU_FL_PEBS_ALL		0x10 /* all events are valid PEBS events */
1057 #define PMU_FL_TFA		0x20 /* deal with TSX force abort */
1058 #define PMU_FL_PAIR		0x40 /* merge counters for large incr. events */
1059 #define PMU_FL_INSTR_LATENCY	0x80 /* Support Instruction Latency in PEBS Memory Info Record */
1060 #define PMU_FL_MEM_LOADS_AUX	0x100 /* Require an auxiliary event for the complete memory info */
1061 #define PMU_FL_RETIRE_LATENCY	0x200 /* Support Retire Latency in PEBS */
1062 #define PMU_FL_BR_CNTR		0x400 /* Support branch counter logging */
1063 
1064 #define EVENT_VAR(_id)  event_attr_##_id
1065 #define EVENT_PTR(_id) &event_attr_##_id.attr.attr
1066 
1067 #define EVENT_ATTR(_name, _id)						\
1068 static struct perf_pmu_events_attr EVENT_VAR(_id) = {			\
1069 	.attr		= __ATTR(_name, 0444, events_sysfs_show, NULL),	\
1070 	.id		= PERF_COUNT_HW_##_id,				\
1071 	.event_str	= NULL,						\
1072 };
1073 
1074 #define EVENT_ATTR_STR(_name, v, str)					\
1075 static struct perf_pmu_events_attr event_attr_##v = {			\
1076 	.attr		= __ATTR(_name, 0444, events_sysfs_show, NULL),	\
1077 	.id		= 0,						\
1078 	.event_str	= str,						\
1079 };
1080 
1081 #define EVENT_ATTR_STR_HT(_name, v, noht, ht)				\
1082 static struct perf_pmu_events_ht_attr event_attr_##v = {		\
1083 	.attr		= __ATTR(_name, 0444, events_ht_sysfs_show, NULL),\
1084 	.id		= 0,						\
1085 	.event_str_noht	= noht,						\
1086 	.event_str_ht	= ht,						\
1087 }
1088 
1089 #define EVENT_ATTR_STR_HYBRID(_name, v, str, _pmu)			\
1090 static struct perf_pmu_events_hybrid_attr event_attr_##v = {		\
1091 	.attr		= __ATTR(_name, 0444, events_hybrid_sysfs_show, NULL),\
1092 	.id		= 0,						\
1093 	.event_str	= str,						\
1094 	.pmu_type	= _pmu,						\
1095 }
1096 
1097 #define FORMAT_HYBRID_PTR(_id) (&format_attr_hybrid_##_id.attr.attr)
1098 
1099 #define FORMAT_ATTR_HYBRID(_name, _pmu)					\
1100 static struct perf_pmu_format_hybrid_attr format_attr_hybrid_##_name = {\
1101 	.attr		= __ATTR_RO(_name),				\
1102 	.pmu_type	= _pmu,						\
1103 }
1104 
1105 struct pmu *x86_get_pmu(unsigned int cpu);
1106 extern struct x86_pmu x86_pmu __read_mostly;
1107 
1108 DECLARE_STATIC_CALL(x86_pmu_set_period, *x86_pmu.set_period);
1109 DECLARE_STATIC_CALL(x86_pmu_update,     *x86_pmu.update);
1110 
1111 static __always_inline struct x86_perf_task_context_opt *task_context_opt(void *ctx)
1112 {
1113 	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
1114 		return &((struct x86_perf_task_context_arch_lbr *)ctx)->opt;
1115 
1116 	return &((struct x86_perf_task_context *)ctx)->opt;
1117 }
1118 
1119 static inline bool x86_pmu_has_lbr_callstack(void)
1120 {
1121 	return  x86_pmu.lbr_sel_map &&
1122 		x86_pmu.lbr_sel_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] > 0;
1123 }
1124 
1125 DECLARE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
1126 DECLARE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1127 
1128 int x86_perf_event_set_period(struct perf_event *event);
1129 
1130 /*
1131  * Generalized hw caching related hw_event table, filled
1132  * in on a per model basis. A value of 0 means
1133  * 'not supported', -1 means 'hw_event makes no sense on
1134  * this CPU', any other value means the raw hw_event
1135  * ID.
1136  */
1137 
1138 #define C(x) PERF_COUNT_HW_CACHE_##x
1139 
1140 extern u64 __read_mostly hw_cache_event_ids
1141 				[PERF_COUNT_HW_CACHE_MAX]
1142 				[PERF_COUNT_HW_CACHE_OP_MAX]
1143 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
1144 extern u64 __read_mostly hw_cache_extra_regs
1145 				[PERF_COUNT_HW_CACHE_MAX]
1146 				[PERF_COUNT_HW_CACHE_OP_MAX]
1147 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
1148 
1149 u64 x86_perf_event_update(struct perf_event *event);
1150 
1151 static inline unsigned int x86_pmu_config_addr(int index)
1152 {
1153 	return x86_pmu.eventsel + (x86_pmu.addr_offset ?
1154 				   x86_pmu.addr_offset(index, true) : index);
1155 }
1156 
1157 static inline unsigned int x86_pmu_event_addr(int index)
1158 {
1159 	return x86_pmu.perfctr + (x86_pmu.addr_offset ?
1160 				  x86_pmu.addr_offset(index, false) : index);
1161 }
1162 
1163 static inline unsigned int x86_pmu_fixed_ctr_addr(int index)
1164 {
1165 	return x86_pmu.fixedctr + (x86_pmu.addr_offset ?
1166 				   x86_pmu.addr_offset(index, false) : index);
1167 }
1168 
1169 static inline int x86_pmu_rdpmc_index(int index)
1170 {
1171 	return x86_pmu.rdpmc_index ? x86_pmu.rdpmc_index(index) : index;
1172 }
1173 
1174 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask,
1175 		     unsigned long *fixed_cntr_mask);
1176 
1177 int x86_add_exclusive(unsigned int what);
1178 
1179 void x86_del_exclusive(unsigned int what);
1180 
1181 int x86_reserve_hardware(void);
1182 
1183 void x86_release_hardware(void);
1184 
1185 int x86_pmu_max_precise(void);
1186 
1187 void hw_perf_lbr_event_destroy(struct perf_event *event);
1188 
1189 int x86_setup_perfctr(struct perf_event *event);
1190 
1191 int x86_pmu_hw_config(struct perf_event *event);
1192 
1193 void x86_pmu_disable_all(void);
1194 
1195 static inline bool has_amd_brs(struct hw_perf_event *hwc)
1196 {
1197 	return hwc->flags & PERF_X86_EVENT_AMD_BRS;
1198 }
1199 
1200 static inline bool is_counter_pair(struct hw_perf_event *hwc)
1201 {
1202 	return hwc->flags & PERF_X86_EVENT_PAIR;
1203 }
1204 
1205 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
1206 					  u64 enable_mask)
1207 {
1208 	u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask);
1209 
1210 	if (hwc->extra_reg.reg)
1211 		wrmsrl(hwc->extra_reg.reg, hwc->extra_reg.config);
1212 
1213 	/*
1214 	 * Add enabled Merge event on next counter
1215 	 * if large increment event being enabled on this counter
1216 	 */
1217 	if (is_counter_pair(hwc))
1218 		wrmsrl(x86_pmu_config_addr(hwc->idx + 1), x86_pmu.perf_ctr_pair_en);
1219 
1220 	wrmsrl(hwc->config_base, (hwc->config | enable_mask) & ~disable_mask);
1221 }
1222 
1223 void x86_pmu_enable_all(int added);
1224 
1225 int perf_assign_events(struct event_constraint **constraints, int n,
1226 			int wmin, int wmax, int gpmax, int *assign);
1227 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign);
1228 
1229 void x86_pmu_stop(struct perf_event *event, int flags);
1230 
1231 static inline void x86_pmu_disable_event(struct perf_event *event)
1232 {
1233 	u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask);
1234 	struct hw_perf_event *hwc = &event->hw;
1235 
1236 	wrmsrl(hwc->config_base, hwc->config & ~disable_mask);
1237 
1238 	if (is_counter_pair(hwc))
1239 		wrmsrl(x86_pmu_config_addr(hwc->idx + 1), 0);
1240 }
1241 
1242 void x86_pmu_enable_event(struct perf_event *event);
1243 
1244 int x86_pmu_handle_irq(struct pt_regs *regs);
1245 
1246 void x86_pmu_show_pmu_cap(struct pmu *pmu);
1247 
1248 static inline int x86_pmu_num_counters(struct pmu *pmu)
1249 {
1250 	return hweight64(hybrid(pmu, cntr_mask64));
1251 }
1252 
1253 static inline int x86_pmu_max_num_counters(struct pmu *pmu)
1254 {
1255 	return fls64(hybrid(pmu, cntr_mask64));
1256 }
1257 
1258 static inline int x86_pmu_num_counters_fixed(struct pmu *pmu)
1259 {
1260 	return hweight64(hybrid(pmu, fixed_cntr_mask64));
1261 }
1262 
1263 static inline int x86_pmu_max_num_counters_fixed(struct pmu *pmu)
1264 {
1265 	return fls64(hybrid(pmu, fixed_cntr_mask64));
1266 }
1267 
1268 static inline u64 x86_pmu_get_event_config(struct perf_event *event)
1269 {
1270 	return event->attr.config & hybrid(event->pmu, config_mask);
1271 }
1272 
1273 extern struct event_constraint emptyconstraint;
1274 
1275 extern struct event_constraint unconstrained;
1276 
1277 static inline bool kernel_ip(unsigned long ip)
1278 {
1279 #ifdef CONFIG_X86_32
1280 	return ip > PAGE_OFFSET;
1281 #else
1282 	return (long)ip < 0;
1283 #endif
1284 }
1285 
1286 /*
1287  * Not all PMUs provide the right context information to place the reported IP
1288  * into full context. Specifically segment registers are typically not
1289  * supplied.
1290  *
1291  * Assuming the address is a linear address (it is for IBS), we fake the CS and
1292  * vm86 mode using the known zero-based code segment and 'fix up' the registers
1293  * to reflect this.
1294  *
1295  * Intel PEBS/LBR appear to typically provide the effective address, nothing
1296  * much we can do about that but pray and treat it like a linear address.
1297  */
1298 static inline void set_linear_ip(struct pt_regs *regs, unsigned long ip)
1299 {
1300 	regs->cs = kernel_ip(ip) ? __KERNEL_CS : __USER_CS;
1301 	if (regs->flags & X86_VM_MASK)
1302 		regs->flags ^= (PERF_EFLAGS_VM | X86_VM_MASK);
1303 	regs->ip = ip;
1304 }
1305 
1306 /*
1307  * x86control flow change classification
1308  * x86control flow changes include branches, interrupts, traps, faults
1309  */
1310 enum {
1311 	X86_BR_NONE		= 0,      /* unknown */
1312 
1313 	X86_BR_USER		= 1 << 0, /* branch target is user */
1314 	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */
1315 
1316 	X86_BR_CALL		= 1 << 2, /* call */
1317 	X86_BR_RET		= 1 << 3, /* return */
1318 	X86_BR_SYSCALL		= 1 << 4, /* syscall */
1319 	X86_BR_SYSRET		= 1 << 5, /* syscall return */
1320 	X86_BR_INT		= 1 << 6, /* sw interrupt */
1321 	X86_BR_IRET		= 1 << 7, /* return from interrupt */
1322 	X86_BR_JCC		= 1 << 8, /* conditional */
1323 	X86_BR_JMP		= 1 << 9, /* jump */
1324 	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
1325 	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
1326 	X86_BR_ABORT		= 1 << 12,/* transaction abort */
1327 	X86_BR_IN_TX		= 1 << 13,/* in transaction */
1328 	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
1329 	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
1330 	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
1331 	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
1332 
1333 	X86_BR_TYPE_SAVE	= 1 << 18,/* indicate to save branch type */
1334 
1335 };
1336 
1337 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
1338 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
1339 
1340 #define X86_BR_ANY       \
1341 	(X86_BR_CALL    |\
1342 	 X86_BR_RET     |\
1343 	 X86_BR_SYSCALL |\
1344 	 X86_BR_SYSRET  |\
1345 	 X86_BR_INT     |\
1346 	 X86_BR_IRET    |\
1347 	 X86_BR_JCC     |\
1348 	 X86_BR_JMP	 |\
1349 	 X86_BR_IRQ	 |\
1350 	 X86_BR_ABORT	 |\
1351 	 X86_BR_IND_CALL |\
1352 	 X86_BR_IND_JMP  |\
1353 	 X86_BR_ZERO_CALL)
1354 
1355 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
1356 
1357 #define X86_BR_ANY_CALL		 \
1358 	(X86_BR_CALL		|\
1359 	 X86_BR_IND_CALL	|\
1360 	 X86_BR_ZERO_CALL	|\
1361 	 X86_BR_SYSCALL		|\
1362 	 X86_BR_IRQ		|\
1363 	 X86_BR_INT)
1364 
1365 int common_branch_type(int type);
1366 int branch_type(unsigned long from, unsigned long to, int abort);
1367 int branch_type_fused(unsigned long from, unsigned long to, int abort,
1368 		      int *offset);
1369 
1370 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event);
1371 ssize_t intel_event_sysfs_show(char *page, u64 config);
1372 
1373 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1374 			  char *page);
1375 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1376 			  char *page);
1377 ssize_t events_hybrid_sysfs_show(struct device *dev,
1378 				 struct device_attribute *attr,
1379 				 char *page);
1380 
1381 static inline bool fixed_counter_disabled(int i, struct pmu *pmu)
1382 {
1383 	u64 intel_ctrl = hybrid(pmu, intel_ctrl);
1384 
1385 	return !(intel_ctrl >> (i + INTEL_PMC_IDX_FIXED));
1386 }
1387 
1388 #ifdef CONFIG_CPU_SUP_AMD
1389 
1390 int amd_pmu_init(void);
1391 
1392 int amd_pmu_lbr_init(void);
1393 void amd_pmu_lbr_reset(void);
1394 void amd_pmu_lbr_read(void);
1395 void amd_pmu_lbr_add(struct perf_event *event);
1396 void amd_pmu_lbr_del(struct perf_event *event);
1397 void amd_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
1398 void amd_pmu_lbr_enable_all(void);
1399 void amd_pmu_lbr_disable_all(void);
1400 int amd_pmu_lbr_hw_config(struct perf_event *event);
1401 
1402 static __always_inline void __amd_pmu_lbr_disable(void)
1403 {
1404 	u64 dbg_ctl, dbg_extn_cfg;
1405 
1406 	rdmsrl(MSR_AMD_DBG_EXTN_CFG, dbg_extn_cfg);
1407 	wrmsrl(MSR_AMD_DBG_EXTN_CFG, dbg_extn_cfg & ~DBG_EXTN_CFG_LBRV2EN);
1408 
1409 	if (cpu_feature_enabled(X86_FEATURE_AMD_LBR_PMC_FREEZE)) {
1410 		rdmsrl(MSR_IA32_DEBUGCTLMSR, dbg_ctl);
1411 		wrmsrl(MSR_IA32_DEBUGCTLMSR, dbg_ctl & ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
1412 	}
1413 }
1414 
1415 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1416 
1417 #define AMD_FAM19H_BRS_EVENT 0xc4 /* RETIRED_TAKEN_BRANCH_INSTRUCTIONS */
1418 
1419 int amd_brs_init(void);
1420 void amd_brs_disable(void);
1421 void amd_brs_enable(void);
1422 void amd_brs_enable_all(void);
1423 void amd_brs_disable_all(void);
1424 void amd_brs_drain(void);
1425 void amd_brs_lopwr_init(void);
1426 int amd_brs_hw_config(struct perf_event *event);
1427 void amd_brs_reset(void);
1428 
1429 static inline void amd_pmu_brs_add(struct perf_event *event)
1430 {
1431 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1432 
1433 	perf_sched_cb_inc(event->pmu);
1434 	cpuc->lbr_users++;
1435 	/*
1436 	 * No need to reset BRS because it is reset
1437 	 * on brs_enable() and it is saturating
1438 	 */
1439 }
1440 
1441 static inline void amd_pmu_brs_del(struct perf_event *event)
1442 {
1443 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1444 
1445 	cpuc->lbr_users--;
1446 	WARN_ON_ONCE(cpuc->lbr_users < 0);
1447 
1448 	perf_sched_cb_dec(event->pmu);
1449 }
1450 
1451 void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
1452 #else
1453 static inline int amd_brs_init(void)
1454 {
1455 	return 0;
1456 }
1457 static inline void amd_brs_disable(void) {}
1458 static inline void amd_brs_enable(void) {}
1459 static inline void amd_brs_drain(void) {}
1460 static inline void amd_brs_lopwr_init(void) {}
1461 static inline void amd_brs_disable_all(void) {}
1462 static inline int amd_brs_hw_config(struct perf_event *event)
1463 {
1464 	return 0;
1465 }
1466 static inline void amd_brs_reset(void) {}
1467 
1468 static inline void amd_pmu_brs_add(struct perf_event *event)
1469 {
1470 }
1471 
1472 static inline void amd_pmu_brs_del(struct perf_event *event)
1473 {
1474 }
1475 
1476 static inline void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1477 {
1478 }
1479 
1480 static inline void amd_brs_enable_all(void)
1481 {
1482 }
1483 
1484 #endif
1485 
1486 #else /* CONFIG_CPU_SUP_AMD */
1487 
1488 static inline int amd_pmu_init(void)
1489 {
1490 	return 0;
1491 }
1492 
1493 static inline int amd_brs_init(void)
1494 {
1495 	return -EOPNOTSUPP;
1496 }
1497 
1498 static inline void amd_brs_drain(void)
1499 {
1500 }
1501 
1502 static inline void amd_brs_enable_all(void)
1503 {
1504 }
1505 
1506 static inline void amd_brs_disable_all(void)
1507 {
1508 }
1509 #endif /* CONFIG_CPU_SUP_AMD */
1510 
1511 static inline int is_pebs_pt(struct perf_event *event)
1512 {
1513 	return !!(event->hw.flags & PERF_X86_EVENT_PEBS_VIA_PT);
1514 }
1515 
1516 #ifdef CONFIG_CPU_SUP_INTEL
1517 
1518 static inline bool intel_pmu_has_bts_period(struct perf_event *event, u64 period)
1519 {
1520 	struct hw_perf_event *hwc = &event->hw;
1521 	unsigned int hw_event, bts_event;
1522 
1523 	if (event->attr.freq)
1524 		return false;
1525 
1526 	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1527 	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1528 
1529 	return hw_event == bts_event && period == 1;
1530 }
1531 
1532 static inline bool intel_pmu_has_bts(struct perf_event *event)
1533 {
1534 	struct hw_perf_event *hwc = &event->hw;
1535 
1536 	return intel_pmu_has_bts_period(event, hwc->sample_period);
1537 }
1538 
1539 static __always_inline void __intel_pmu_pebs_disable_all(void)
1540 {
1541 	wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1542 }
1543 
1544 static __always_inline void __intel_pmu_arch_lbr_disable(void)
1545 {
1546 	wrmsrl(MSR_ARCH_LBR_CTL, 0);
1547 }
1548 
1549 static __always_inline void __intel_pmu_lbr_disable(void)
1550 {
1551 	u64 debugctl;
1552 
1553 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1554 	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
1555 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1556 }
1557 
1558 int intel_pmu_save_and_restart(struct perf_event *event);
1559 
1560 struct event_constraint *
1561 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1562 			  struct perf_event *event);
1563 
1564 extern int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu);
1565 extern void intel_cpuc_finish(struct cpu_hw_events *cpuc);
1566 
1567 int intel_pmu_init(void);
1568 
1569 void init_debug_store_on_cpu(int cpu);
1570 
1571 void fini_debug_store_on_cpu(int cpu);
1572 
1573 void release_ds_buffers(void);
1574 
1575 void reserve_ds_buffers(void);
1576 
1577 void release_lbr_buffers(void);
1578 
1579 void reserve_lbr_buffers(void);
1580 
1581 extern struct event_constraint bts_constraint;
1582 extern struct event_constraint vlbr_constraint;
1583 
1584 void intel_pmu_enable_bts(u64 config);
1585 
1586 void intel_pmu_disable_bts(void);
1587 
1588 int intel_pmu_drain_bts_buffer(void);
1589 
1590 u64 grt_latency_data(struct perf_event *event, u64 status);
1591 
1592 u64 cmt_latency_data(struct perf_event *event, u64 status);
1593 
1594 u64 lnl_latency_data(struct perf_event *event, u64 status);
1595 
1596 u64 arl_h_latency_data(struct perf_event *event, u64 status);
1597 
1598 extern struct event_constraint intel_core2_pebs_event_constraints[];
1599 
1600 extern struct event_constraint intel_atom_pebs_event_constraints[];
1601 
1602 extern struct event_constraint intel_slm_pebs_event_constraints[];
1603 
1604 extern struct event_constraint intel_glm_pebs_event_constraints[];
1605 
1606 extern struct event_constraint intel_glp_pebs_event_constraints[];
1607 
1608 extern struct event_constraint intel_grt_pebs_event_constraints[];
1609 
1610 extern struct event_constraint intel_nehalem_pebs_event_constraints[];
1611 
1612 extern struct event_constraint intel_westmere_pebs_event_constraints[];
1613 
1614 extern struct event_constraint intel_snb_pebs_event_constraints[];
1615 
1616 extern struct event_constraint intel_ivb_pebs_event_constraints[];
1617 
1618 extern struct event_constraint intel_hsw_pebs_event_constraints[];
1619 
1620 extern struct event_constraint intel_bdw_pebs_event_constraints[];
1621 
1622 extern struct event_constraint intel_skl_pebs_event_constraints[];
1623 
1624 extern struct event_constraint intel_icl_pebs_event_constraints[];
1625 
1626 extern struct event_constraint intel_glc_pebs_event_constraints[];
1627 
1628 extern struct event_constraint intel_lnc_pebs_event_constraints[];
1629 
1630 struct event_constraint *intel_pebs_constraints(struct perf_event *event);
1631 
1632 void intel_pmu_pebs_add(struct perf_event *event);
1633 
1634 void intel_pmu_pebs_del(struct perf_event *event);
1635 
1636 void intel_pmu_pebs_enable(struct perf_event *event);
1637 
1638 void intel_pmu_pebs_disable(struct perf_event *event);
1639 
1640 void intel_pmu_pebs_enable_all(void);
1641 
1642 void intel_pmu_pebs_disable_all(void);
1643 
1644 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
1645 
1646 void intel_pmu_auto_reload_read(struct perf_event *event);
1647 
1648 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr);
1649 
1650 void intel_ds_init(void);
1651 
1652 void intel_pmu_lbr_save_brstack(struct perf_sample_data *data,
1653 				struct cpu_hw_events *cpuc,
1654 				struct perf_event *event);
1655 
1656 void intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
1657 				 struct perf_event_pmu_context *next_epc);
1658 
1659 void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
1660 
1661 u64 lbr_from_signext_quirk_wr(u64 val);
1662 
1663 void intel_pmu_lbr_reset(void);
1664 
1665 void intel_pmu_lbr_reset_32(void);
1666 
1667 void intel_pmu_lbr_reset_64(void);
1668 
1669 void intel_pmu_lbr_add(struct perf_event *event);
1670 
1671 void intel_pmu_lbr_del(struct perf_event *event);
1672 
1673 void intel_pmu_lbr_enable_all(bool pmi);
1674 
1675 void intel_pmu_lbr_disable_all(void);
1676 
1677 void intel_pmu_lbr_read(void);
1678 
1679 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc);
1680 
1681 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc);
1682 
1683 void intel_pmu_lbr_save(void *ctx);
1684 
1685 void intel_pmu_lbr_restore(void *ctx);
1686 
1687 void intel_pmu_lbr_init_core(void);
1688 
1689 void intel_pmu_lbr_init_nhm(void);
1690 
1691 void intel_pmu_lbr_init_atom(void);
1692 
1693 void intel_pmu_lbr_init_slm(void);
1694 
1695 void intel_pmu_lbr_init_snb(void);
1696 
1697 void intel_pmu_lbr_init_hsw(void);
1698 
1699 void intel_pmu_lbr_init_skl(void);
1700 
1701 void intel_pmu_lbr_init_knl(void);
1702 
1703 void intel_pmu_lbr_init(void);
1704 
1705 void intel_pmu_arch_lbr_init(void);
1706 
1707 void intel_pmu_pebs_data_source_nhm(void);
1708 
1709 void intel_pmu_pebs_data_source_skl(bool pmem);
1710 
1711 void intel_pmu_pebs_data_source_adl(void);
1712 
1713 void intel_pmu_pebs_data_source_grt(void);
1714 
1715 void intel_pmu_pebs_data_source_mtl(void);
1716 
1717 void intel_pmu_pebs_data_source_arl_h(void);
1718 
1719 void intel_pmu_pebs_data_source_cmt(void);
1720 
1721 void intel_pmu_pebs_data_source_lnl(void);
1722 
1723 int intel_pmu_setup_lbr_filter(struct perf_event *event);
1724 
1725 void intel_pt_interrupt(void);
1726 
1727 int intel_bts_interrupt(void);
1728 
1729 void intel_bts_enable_local(void);
1730 
1731 void intel_bts_disable_local(void);
1732 
1733 int p4_pmu_init(void);
1734 
1735 int p6_pmu_init(void);
1736 
1737 int knc_pmu_init(void);
1738 
1739 static inline int is_ht_workaround_enabled(void)
1740 {
1741 	return !!(x86_pmu.flags & PMU_FL_EXCL_ENABLED);
1742 }
1743 
1744 static inline u64 intel_pmu_pebs_mask(u64 cntr_mask)
1745 {
1746 	return MAX_PEBS_EVENTS_MASK & cntr_mask;
1747 }
1748 
1749 static inline int intel_pmu_max_num_pebs(struct pmu *pmu)
1750 {
1751 	static_assert(MAX_PEBS_EVENTS == 32);
1752 	return fls((u32)hybrid(pmu, pebs_events_mask));
1753 }
1754 
1755 #else /* CONFIG_CPU_SUP_INTEL */
1756 
1757 static inline void reserve_ds_buffers(void)
1758 {
1759 }
1760 
1761 static inline void release_ds_buffers(void)
1762 {
1763 }
1764 
1765 static inline void release_lbr_buffers(void)
1766 {
1767 }
1768 
1769 static inline void reserve_lbr_buffers(void)
1770 {
1771 }
1772 
1773 static inline int intel_pmu_init(void)
1774 {
1775 	return 0;
1776 }
1777 
1778 static inline int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
1779 {
1780 	return 0;
1781 }
1782 
1783 static inline void intel_cpuc_finish(struct cpu_hw_events *cpuc)
1784 {
1785 }
1786 
1787 static inline int is_ht_workaround_enabled(void)
1788 {
1789 	return 0;
1790 }
1791 #endif /* CONFIG_CPU_SUP_INTEL */
1792 
1793 #if ((defined CONFIG_CPU_SUP_CENTAUR) || (defined CONFIG_CPU_SUP_ZHAOXIN))
1794 int zhaoxin_pmu_init(void);
1795 #else
1796 static inline int zhaoxin_pmu_init(void)
1797 {
1798 	return 0;
1799 }
1800 #endif /*CONFIG_CPU_SUP_CENTAUR or CONFIG_CPU_SUP_ZHAOXIN*/
1801