1 /* 2 * Performance events x86 architecture header 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2009 Jaswinder Singh Rajput 7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 15 #include <linux/perf_event.h> 16 17 #include <asm/fpu/xstate.h> 18 #include <asm/intel_ds.h> 19 #include <asm/cpu.h> 20 21 /* To enable MSR tracing please use the generic trace points. */ 22 23 /* 24 * | NHM/WSM | SNB | 25 * register ------------------------------- 26 * | HT | no HT | HT | no HT | 27 *----------------------------------------- 28 * offcore | core | core | cpu | core | 29 * lbr_sel | core | core | cpu | core | 30 * ld_lat | cpu | core | cpu | core | 31 *----------------------------------------- 32 * 33 * Given that there is a small number of shared regs, 34 * we can pre-allocate their slot in the per-cpu 35 * per-core reg tables. 36 */ 37 enum extra_reg_type { 38 EXTRA_REG_NONE = -1, /* not used */ 39 40 EXTRA_REG_RSP_0 = 0, /* offcore_response_0 */ 41 EXTRA_REG_RSP_1 = 1, /* offcore_response_1 */ 42 EXTRA_REG_LBR = 2, /* lbr_select */ 43 EXTRA_REG_LDLAT = 3, /* ld_lat_threshold */ 44 EXTRA_REG_FE = 4, /* fe_* */ 45 EXTRA_REG_SNOOP_0 = 5, /* snoop response 0 */ 46 EXTRA_REG_SNOOP_1 = 6, /* snoop response 1 */ 47 48 EXTRA_REG_MAX /* number of entries needed */ 49 }; 50 51 struct event_constraint { 52 union { 53 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 54 u64 idxmsk64; 55 }; 56 u64 code; 57 u64 cmask; 58 int weight; 59 int overlap; 60 int flags; 61 unsigned int size; 62 }; 63 64 static inline bool constraint_match(struct event_constraint *c, u64 ecode) 65 { 66 return ((ecode & c->cmask) - c->code) <= (u64)c->size; 67 } 68 69 #define PERF_ARCH(name, val) \ 70 PERF_X86_EVENT_##name = val, 71 72 /* 73 * struct hw_perf_event.flags flags 74 */ 75 enum { 76 #include "perf_event_flags.h" 77 }; 78 79 #undef PERF_ARCH 80 81 #define PERF_ARCH(name, val) \ 82 static_assert((PERF_X86_EVENT_##name & PERF_EVENT_FLAG_ARCH) == \ 83 PERF_X86_EVENT_##name); 84 85 #include "perf_event_flags.h" 86 87 #undef PERF_ARCH 88 89 static inline bool is_topdown_count(struct perf_event *event) 90 { 91 return event->hw.flags & PERF_X86_EVENT_TOPDOWN; 92 } 93 94 static inline bool is_metric_event(struct perf_event *event) 95 { 96 u64 config = event->attr.config; 97 98 return ((config & ARCH_PERFMON_EVENTSEL_EVENT) == 0) && 99 ((config & INTEL_ARCH_EVENT_MASK) >= INTEL_TD_METRIC_RETIRING) && 100 ((config & INTEL_ARCH_EVENT_MASK) <= INTEL_TD_METRIC_MAX); 101 } 102 103 static inline bool is_slots_event(struct perf_event *event) 104 { 105 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_TD_SLOTS; 106 } 107 108 static inline bool is_topdown_event(struct perf_event *event) 109 { 110 return is_metric_event(event) || is_slots_event(event); 111 } 112 113 static inline bool is_branch_counters_group(struct perf_event *event) 114 { 115 return event->group_leader->hw.flags & PERF_X86_EVENT_BRANCH_COUNTERS; 116 } 117 118 struct amd_nb { 119 int nb_id; /* NorthBridge id */ 120 int refcnt; /* reference count */ 121 struct perf_event *owners[X86_PMC_IDX_MAX]; 122 struct event_constraint event_constraints[X86_PMC_IDX_MAX]; 123 }; 124 125 #define PEBS_COUNTER_MASK ((1ULL << MAX_PEBS_EVENTS) - 1) 126 #define PEBS_PMI_AFTER_EACH_RECORD BIT_ULL(60) 127 #define PEBS_OUTPUT_OFFSET 61 128 #define PEBS_OUTPUT_MASK (3ull << PEBS_OUTPUT_OFFSET) 129 #define PEBS_OUTPUT_PT (1ull << PEBS_OUTPUT_OFFSET) 130 #define PEBS_VIA_PT_MASK (PEBS_OUTPUT_PT | PEBS_PMI_AFTER_EACH_RECORD) 131 132 /* 133 * Flags PEBS can handle without an PMI. 134 * 135 * TID can only be handled by flushing at context switch. 136 * REGS_USER can be handled for events limited to ring 3. 137 * 138 */ 139 #define LARGE_PEBS_FLAGS \ 140 (PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR | \ 141 PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | \ 142 PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER | \ 143 PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR | \ 144 PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER | \ 145 PERF_SAMPLE_PERIOD | PERF_SAMPLE_CODE_PAGE_SIZE | \ 146 PERF_SAMPLE_WEIGHT_TYPE) 147 148 #define PEBS_GP_REGS \ 149 ((1ULL << PERF_REG_X86_AX) | \ 150 (1ULL << PERF_REG_X86_BX) | \ 151 (1ULL << PERF_REG_X86_CX) | \ 152 (1ULL << PERF_REG_X86_DX) | \ 153 (1ULL << PERF_REG_X86_DI) | \ 154 (1ULL << PERF_REG_X86_SI) | \ 155 (1ULL << PERF_REG_X86_SP) | \ 156 (1ULL << PERF_REG_X86_BP) | \ 157 (1ULL << PERF_REG_X86_IP) | \ 158 (1ULL << PERF_REG_X86_FLAGS) | \ 159 (1ULL << PERF_REG_X86_R8) | \ 160 (1ULL << PERF_REG_X86_R9) | \ 161 (1ULL << PERF_REG_X86_R10) | \ 162 (1ULL << PERF_REG_X86_R11) | \ 163 (1ULL << PERF_REG_X86_R12) | \ 164 (1ULL << PERF_REG_X86_R13) | \ 165 (1ULL << PERF_REG_X86_R14) | \ 166 (1ULL << PERF_REG_X86_R15)) 167 168 /* 169 * Per register state. 170 */ 171 struct er_account { 172 raw_spinlock_t lock; /* per-core: protect structure */ 173 u64 config; /* extra MSR config */ 174 u64 reg; /* extra MSR number */ 175 atomic_t ref; /* reference count */ 176 }; 177 178 /* 179 * Per core/cpu state 180 * 181 * Used to coordinate shared registers between HT threads or 182 * among events on a single PMU. 183 */ 184 struct intel_shared_regs { 185 struct er_account regs[EXTRA_REG_MAX]; 186 int refcnt; /* per-core: #HT threads */ 187 unsigned core_id; /* per-core: core id */ 188 }; 189 190 enum intel_excl_state_type { 191 INTEL_EXCL_UNUSED = 0, /* counter is unused */ 192 INTEL_EXCL_SHARED = 1, /* counter can be used by both threads */ 193 INTEL_EXCL_EXCLUSIVE = 2, /* counter can be used by one thread only */ 194 }; 195 196 struct intel_excl_states { 197 enum intel_excl_state_type state[X86_PMC_IDX_MAX]; 198 bool sched_started; /* true if scheduling has started */ 199 }; 200 201 struct intel_excl_cntrs { 202 raw_spinlock_t lock; 203 204 struct intel_excl_states states[2]; 205 206 union { 207 u16 has_exclusive[2]; 208 u32 exclusive_present; 209 }; 210 211 int refcnt; /* per-core: #HT threads */ 212 unsigned core_id; /* per-core: core id */ 213 }; 214 215 struct x86_perf_task_context; 216 #define MAX_LBR_ENTRIES 32 217 218 enum { 219 LBR_FORMAT_32 = 0x00, 220 LBR_FORMAT_LIP = 0x01, 221 LBR_FORMAT_EIP = 0x02, 222 LBR_FORMAT_EIP_FLAGS = 0x03, 223 LBR_FORMAT_EIP_FLAGS2 = 0x04, 224 LBR_FORMAT_INFO = 0x05, 225 LBR_FORMAT_TIME = 0x06, 226 LBR_FORMAT_INFO2 = 0x07, 227 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_INFO2, 228 }; 229 230 enum { 231 X86_PERF_KFREE_SHARED = 0, 232 X86_PERF_KFREE_EXCL = 1, 233 X86_PERF_KFREE_MAX 234 }; 235 236 struct cpu_hw_events { 237 /* 238 * Generic x86 PMC bits 239 */ 240 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */ 241 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 242 unsigned long dirty[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 243 int enabled; 244 245 int n_events; /* the # of events in the below arrays */ 246 int n_added; /* the # last events in the below arrays; 247 they've never been enabled yet */ 248 int n_txn; /* the # last events in the below arrays; 249 added in the current transaction */ 250 int n_txn_pair; 251 int n_txn_metric; 252 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */ 253 u64 tags[X86_PMC_IDX_MAX]; 254 255 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */ 256 struct event_constraint *event_constraint[X86_PMC_IDX_MAX]; 257 258 int n_excl; /* the number of exclusive events */ 259 260 unsigned int txn_flags; 261 int is_fake; 262 263 /* 264 * Intel DebugStore bits 265 */ 266 struct debug_store *ds; 267 void *ds_pebs_vaddr; 268 void *ds_bts_vaddr; 269 u64 pebs_enabled; 270 int n_pebs; 271 int n_large_pebs; 272 int n_pebs_via_pt; 273 int pebs_output; 274 275 /* Current super set of events hardware configuration */ 276 u64 pebs_data_cfg; 277 u64 active_pebs_data_cfg; 278 int pebs_record_size; 279 280 /* Intel Fixed counter configuration */ 281 u64 fixed_ctrl_val; 282 u64 active_fixed_ctrl_val; 283 284 /* 285 * Intel LBR bits 286 */ 287 int lbr_users; 288 int lbr_pebs_users; 289 struct perf_branch_stack lbr_stack; 290 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES]; 291 u64 lbr_counters[MAX_LBR_ENTRIES]; /* branch stack extra */ 292 union { 293 struct er_account *lbr_sel; 294 struct er_account *lbr_ctl; 295 }; 296 u64 br_sel; 297 void *last_task_ctx; 298 int last_log_id; 299 int lbr_select; 300 void *lbr_xsave; 301 302 /* 303 * Intel host/guest exclude bits 304 */ 305 u64 intel_ctrl_guest_mask; 306 u64 intel_ctrl_host_mask; 307 struct perf_guest_switch_msr guest_switch_msrs[X86_PMC_IDX_MAX]; 308 309 /* 310 * Intel checkpoint mask 311 */ 312 u64 intel_cp_status; 313 314 /* 315 * manage shared (per-core, per-cpu) registers 316 * used on Intel NHM/WSM/SNB 317 */ 318 struct intel_shared_regs *shared_regs; 319 /* 320 * manage exclusive counter access between hyperthread 321 */ 322 struct event_constraint *constraint_list; /* in enable order */ 323 struct intel_excl_cntrs *excl_cntrs; 324 int excl_thread_id; /* 0 or 1 */ 325 326 /* 327 * SKL TSX_FORCE_ABORT shadow 328 */ 329 u64 tfa_shadow; 330 331 /* 332 * Perf Metrics 333 */ 334 /* number of accepted metrics events */ 335 int n_metric; 336 337 /* 338 * AMD specific bits 339 */ 340 struct amd_nb *amd_nb; 341 int brs_active; /* BRS is enabled */ 342 343 /* Inverted mask of bits to clear in the perf_ctr ctrl registers */ 344 u64 perf_ctr_virt_mask; 345 int n_pair; /* Large increment events */ 346 347 void *kfree_on_online[X86_PERF_KFREE_MAX]; 348 349 struct pmu *pmu; 350 }; 351 352 #define __EVENT_CONSTRAINT_RANGE(c, e, n, m, w, o, f) { \ 353 { .idxmsk64 = (n) }, \ 354 .code = (c), \ 355 .size = (e) - (c), \ 356 .cmask = (m), \ 357 .weight = (w), \ 358 .overlap = (o), \ 359 .flags = f, \ 360 } 361 362 #define __EVENT_CONSTRAINT(c, n, m, w, o, f) \ 363 __EVENT_CONSTRAINT_RANGE(c, c, n, m, w, o, f) 364 365 #define EVENT_CONSTRAINT(c, n, m) \ 366 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 0, 0) 367 368 /* 369 * The constraint_match() function only works for 'simple' event codes 370 * and not for extended (AMD64_EVENTSEL_EVENT) events codes. 371 */ 372 #define EVENT_CONSTRAINT_RANGE(c, e, n, m) \ 373 __EVENT_CONSTRAINT_RANGE(c, e, n, m, HWEIGHT(n), 0, 0) 374 375 #define INTEL_EXCLEVT_CONSTRAINT(c, n) \ 376 __EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT, HWEIGHT(n),\ 377 0, PERF_X86_EVENT_EXCL) 378 379 /* 380 * The overlap flag marks event constraints with overlapping counter 381 * masks. This is the case if the counter mask of such an event is not 382 * a subset of any other counter mask of a constraint with an equal or 383 * higher weight, e.g.: 384 * 385 * c_overlaps = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0); 386 * c_another1 = EVENT_CONSTRAINT(0, 0x07, 0); 387 * c_another2 = EVENT_CONSTRAINT(0, 0x38, 0); 388 * 389 * The event scheduler may not select the correct counter in the first 390 * cycle because it needs to know which subsequent events will be 391 * scheduled. It may fail to schedule the events then. So we set the 392 * overlap flag for such constraints to give the scheduler a hint which 393 * events to select for counter rescheduling. 394 * 395 * Care must be taken as the rescheduling algorithm is O(n!) which 396 * will increase scheduling cycles for an over-committed system 397 * dramatically. The number of such EVENT_CONSTRAINT_OVERLAP() macros 398 * and its counter masks must be kept at a minimum. 399 */ 400 #define EVENT_CONSTRAINT_OVERLAP(c, n, m) \ 401 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 1, 0) 402 403 /* 404 * Constraint on the Event code. 405 */ 406 #define INTEL_EVENT_CONSTRAINT(c, n) \ 407 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT) 408 409 /* 410 * Constraint on a range of Event codes 411 */ 412 #define INTEL_EVENT_CONSTRAINT_RANGE(c, e, n) \ 413 EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT) 414 415 /* 416 * Constraint on the Event code + UMask + fixed-mask 417 * 418 * filter mask to validate fixed counter events. 419 * the following filters disqualify for fixed counters: 420 * - inv 421 * - edge 422 * - cnt-mask 423 * - in_tx 424 * - in_tx_checkpointed 425 * The other filters are supported by fixed counters. 426 * The any-thread option is supported starting with v3. 427 */ 428 #define FIXED_EVENT_FLAGS (X86_RAW_EVENT_MASK|HSW_IN_TX|HSW_IN_TX_CHECKPOINTED) 429 #define FIXED_EVENT_CONSTRAINT(c, n) \ 430 EVENT_CONSTRAINT(c, (1ULL << (32+n)), FIXED_EVENT_FLAGS) 431 432 /* 433 * The special metric counters do not actually exist. They are calculated from 434 * the combination of the FxCtr3 + MSR_PERF_METRICS. 435 * 436 * The special metric counters are mapped to a dummy offset for the scheduler. 437 * The sharing between multiple users of the same metric without multiplexing 438 * is not allowed, even though the hardware supports that in principle. 439 */ 440 441 #define METRIC_EVENT_CONSTRAINT(c, n) \ 442 EVENT_CONSTRAINT(c, (1ULL << (INTEL_PMC_IDX_METRIC_BASE + n)), \ 443 INTEL_ARCH_EVENT_MASK) 444 445 /* 446 * Constraint on the Event code + UMask 447 */ 448 #define INTEL_UEVENT_CONSTRAINT(c, n) \ 449 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK) 450 451 /* Constraint on specific umask bit only + event */ 452 #define INTEL_UBIT_EVENT_CONSTRAINT(c, n) \ 453 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|(c)) 454 455 /* Like UEVENT_CONSTRAINT, but match flags too */ 456 #define INTEL_FLAGS_UEVENT_CONSTRAINT(c, n) \ 457 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS) 458 459 #define INTEL_EXCLUEVT_CONSTRAINT(c, n) \ 460 __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK, \ 461 HWEIGHT(n), 0, PERF_X86_EVENT_EXCL) 462 463 #define INTEL_PLD_CONSTRAINT(c, n) \ 464 __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 465 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LDLAT) 466 467 #define INTEL_PSD_CONSTRAINT(c, n) \ 468 __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 469 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_STLAT) 470 471 #define INTEL_PST_CONSTRAINT(c, n) \ 472 __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 473 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST) 474 475 #define INTEL_HYBRID_LAT_CONSTRAINT(c, n) \ 476 __EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 477 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID) 478 479 /* Event constraint, but match on all event flags too. */ 480 #define INTEL_FLAGS_EVENT_CONSTRAINT(c, n) \ 481 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS) 482 483 #define INTEL_FLAGS_EVENT_CONSTRAINT_RANGE(c, e, n) \ 484 EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS) 485 486 /* Check only flags, but allow all event/umask */ 487 #define INTEL_ALL_EVENT_CONSTRAINT(code, n) \ 488 EVENT_CONSTRAINT(code, n, X86_ALL_EVENT_FLAGS) 489 490 /* Check flags and event code, and set the HSW store flag */ 491 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_ST(code, n) \ 492 __EVENT_CONSTRAINT(code, n, \ 493 ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ 494 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW) 495 496 /* Check flags and event code, and set the HSW load flag */ 497 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(code, n) \ 498 __EVENT_CONSTRAINT(code, n, \ 499 ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ 500 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW) 501 502 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(code, end, n) \ 503 __EVENT_CONSTRAINT_RANGE(code, end, n, \ 504 ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ 505 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW) 506 507 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(code, n) \ 508 __EVENT_CONSTRAINT(code, n, \ 509 ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \ 510 HWEIGHT(n), 0, \ 511 PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL) 512 513 /* Check flags and event code/umask, and set the HSW store flag */ 514 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(code, n) \ 515 __EVENT_CONSTRAINT(code, n, \ 516 INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 517 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW) 518 519 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(code, n) \ 520 __EVENT_CONSTRAINT(code, n, \ 521 INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 522 HWEIGHT(n), 0, \ 523 PERF_X86_EVENT_PEBS_ST_HSW|PERF_X86_EVENT_EXCL) 524 525 /* Check flags and event code/umask, and set the HSW load flag */ 526 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(code, n) \ 527 __EVENT_CONSTRAINT(code, n, \ 528 INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 529 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW) 530 531 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(code, n) \ 532 __EVENT_CONSTRAINT(code, n, \ 533 INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 534 HWEIGHT(n), 0, \ 535 PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL) 536 537 /* Check flags and event code/umask, and set the HSW N/A flag */ 538 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(code, n) \ 539 __EVENT_CONSTRAINT(code, n, \ 540 INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \ 541 HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_NA_HSW) 542 543 544 /* 545 * We define the end marker as having a weight of -1 546 * to enable blacklisting of events using a counter bitmask 547 * of zero and thus a weight of zero. 548 * The end marker has a weight that cannot possibly be 549 * obtained from counting the bits in the bitmask. 550 */ 551 #define EVENT_CONSTRAINT_END { .weight = -1 } 552 553 /* 554 * Check for end marker with weight == -1 555 */ 556 #define for_each_event_constraint(e, c) \ 557 for ((e) = (c); (e)->weight != -1; (e)++) 558 559 /* 560 * Extra registers for specific events. 561 * 562 * Some events need large masks and require external MSRs. 563 * Those extra MSRs end up being shared for all events on 564 * a PMU and sometimes between PMU of sibling HT threads. 565 * In either case, the kernel needs to handle conflicting 566 * accesses to those extra, shared, regs. The data structure 567 * to manage those registers is stored in cpu_hw_event. 568 */ 569 struct extra_reg { 570 unsigned int event; 571 unsigned int msr; 572 u64 config_mask; 573 u64 valid_mask; 574 int idx; /* per_xxx->regs[] reg index */ 575 bool extra_msr_access; 576 }; 577 578 #define EVENT_EXTRA_REG(e, ms, m, vm, i) { \ 579 .event = (e), \ 580 .msr = (ms), \ 581 .config_mask = (m), \ 582 .valid_mask = (vm), \ 583 .idx = EXTRA_REG_##i, \ 584 .extra_msr_access = true, \ 585 } 586 587 #define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx) \ 588 EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx) 589 590 #define INTEL_UEVENT_EXTRA_REG(event, msr, vm, idx) \ 591 EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT | \ 592 ARCH_PERFMON_EVENTSEL_UMASK, vm, idx) 593 594 #define INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(c) \ 595 INTEL_UEVENT_EXTRA_REG(c, \ 596 MSR_PEBS_LD_LAT_THRESHOLD, \ 597 0xffff, \ 598 LDLAT) 599 600 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0) 601 602 union perf_capabilities { 603 struct { 604 u64 lbr_format:6; 605 u64 pebs_trap:1; 606 u64 pebs_arch_reg:1; 607 u64 pebs_format:4; 608 u64 smm_freeze:1; 609 /* 610 * PMU supports separate counter range for writing 611 * values > 32bit. 612 */ 613 u64 full_width_write:1; 614 u64 pebs_baseline:1; 615 u64 perf_metrics:1; 616 u64 pebs_output_pt_available:1; 617 u64 pebs_timing_info:1; 618 u64 anythread_deprecated:1; 619 }; 620 u64 capabilities; 621 }; 622 623 struct x86_pmu_quirk { 624 struct x86_pmu_quirk *next; 625 void (*func)(void); 626 }; 627 628 union x86_pmu_config { 629 struct { 630 u64 event:8, 631 umask:8, 632 usr:1, 633 os:1, 634 edge:1, 635 pc:1, 636 interrupt:1, 637 __reserved1:1, 638 en:1, 639 inv:1, 640 cmask:8, 641 event2:4, 642 __reserved2:4, 643 go:1, 644 ho:1; 645 } bits; 646 u64 value; 647 }; 648 649 #define X86_CONFIG(args...) ((union x86_pmu_config){.bits = {args}}).value 650 651 enum { 652 x86_lbr_exclusive_lbr, 653 x86_lbr_exclusive_bts, 654 x86_lbr_exclusive_pt, 655 x86_lbr_exclusive_max, 656 }; 657 658 #define PERF_PEBS_DATA_SOURCE_MAX 0x10 659 #define PERF_PEBS_DATA_SOURCE_MASK (PERF_PEBS_DATA_SOURCE_MAX - 1) 660 661 enum hybrid_cpu_type { 662 HYBRID_INTEL_NONE, 663 HYBRID_INTEL_ATOM = 0x20, 664 HYBRID_INTEL_CORE = 0x40, 665 }; 666 667 enum hybrid_pmu_type { 668 not_hybrid, 669 hybrid_small = BIT(0), 670 hybrid_big = BIT(1), 671 672 hybrid_big_small = hybrid_big | hybrid_small, /* only used for matching */ 673 }; 674 675 #define X86_HYBRID_PMU_ATOM_IDX 0 676 #define X86_HYBRID_PMU_CORE_IDX 1 677 678 #define X86_HYBRID_NUM_PMUS 2 679 680 struct x86_hybrid_pmu { 681 struct pmu pmu; 682 const char *name; 683 enum hybrid_pmu_type pmu_type; 684 cpumask_t supported_cpus; 685 union perf_capabilities intel_cap; 686 u64 intel_ctrl; 687 int max_pebs_events; 688 int num_counters; 689 int num_counters_fixed; 690 struct event_constraint unconstrained; 691 692 u64 hw_cache_event_ids 693 [PERF_COUNT_HW_CACHE_MAX] 694 [PERF_COUNT_HW_CACHE_OP_MAX] 695 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 696 u64 hw_cache_extra_regs 697 [PERF_COUNT_HW_CACHE_MAX] 698 [PERF_COUNT_HW_CACHE_OP_MAX] 699 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 700 struct event_constraint *event_constraints; 701 struct event_constraint *pebs_constraints; 702 struct extra_reg *extra_regs; 703 704 unsigned int late_ack :1, 705 mid_ack :1, 706 enabled_ack :1; 707 708 u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX]; 709 }; 710 711 static __always_inline struct x86_hybrid_pmu *hybrid_pmu(struct pmu *pmu) 712 { 713 return container_of(pmu, struct x86_hybrid_pmu, pmu); 714 } 715 716 extern struct static_key_false perf_is_hybrid; 717 #define is_hybrid() static_branch_unlikely(&perf_is_hybrid) 718 719 #define hybrid(_pmu, _field) \ 720 (*({ \ 721 typeof(&x86_pmu._field) __Fp = &x86_pmu._field; \ 722 \ 723 if (is_hybrid() && (_pmu)) \ 724 __Fp = &hybrid_pmu(_pmu)->_field; \ 725 \ 726 __Fp; \ 727 })) 728 729 #define hybrid_var(_pmu, _var) \ 730 (*({ \ 731 typeof(&_var) __Fp = &_var; \ 732 \ 733 if (is_hybrid() && (_pmu)) \ 734 __Fp = &hybrid_pmu(_pmu)->_var; \ 735 \ 736 __Fp; \ 737 })) 738 739 #define hybrid_bit(_pmu, _field) \ 740 ({ \ 741 bool __Fp = x86_pmu._field; \ 742 \ 743 if (is_hybrid() && (_pmu)) \ 744 __Fp = hybrid_pmu(_pmu)->_field; \ 745 \ 746 __Fp; \ 747 }) 748 749 /* 750 * struct x86_pmu - generic x86 pmu 751 */ 752 struct x86_pmu { 753 /* 754 * Generic x86 PMC bits 755 */ 756 const char *name; 757 int version; 758 int (*handle_irq)(struct pt_regs *); 759 void (*disable_all)(void); 760 void (*enable_all)(int added); 761 void (*enable)(struct perf_event *); 762 void (*disable)(struct perf_event *); 763 void (*assign)(struct perf_event *event, int idx); 764 void (*add)(struct perf_event *); 765 void (*del)(struct perf_event *); 766 void (*read)(struct perf_event *event); 767 int (*set_period)(struct perf_event *event); 768 u64 (*update)(struct perf_event *event); 769 int (*hw_config)(struct perf_event *event); 770 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign); 771 unsigned eventsel; 772 unsigned perfctr; 773 int (*addr_offset)(int index, bool eventsel); 774 int (*rdpmc_index)(int index); 775 u64 (*event_map)(int); 776 int max_events; 777 int num_counters; 778 int num_counters_fixed; 779 int cntval_bits; 780 u64 cntval_mask; 781 union { 782 unsigned long events_maskl; 783 unsigned long events_mask[BITS_TO_LONGS(ARCH_PERFMON_EVENTS_COUNT)]; 784 }; 785 int events_mask_len; 786 int apic; 787 u64 max_period; 788 struct event_constraint * 789 (*get_event_constraints)(struct cpu_hw_events *cpuc, 790 int idx, 791 struct perf_event *event); 792 793 void (*put_event_constraints)(struct cpu_hw_events *cpuc, 794 struct perf_event *event); 795 796 void (*start_scheduling)(struct cpu_hw_events *cpuc); 797 798 void (*commit_scheduling)(struct cpu_hw_events *cpuc, int idx, int cntr); 799 800 void (*stop_scheduling)(struct cpu_hw_events *cpuc); 801 802 struct event_constraint *event_constraints; 803 struct x86_pmu_quirk *quirks; 804 void (*limit_period)(struct perf_event *event, s64 *l); 805 806 /* PMI handler bits */ 807 unsigned int late_ack :1, 808 mid_ack :1, 809 enabled_ack :1; 810 /* 811 * sysfs attrs 812 */ 813 int attr_rdpmc_broken; 814 int attr_rdpmc; 815 struct attribute **format_attrs; 816 817 ssize_t (*events_sysfs_show)(char *page, u64 config); 818 const struct attribute_group **attr_update; 819 820 unsigned long attr_freeze_on_smi; 821 822 /* 823 * CPU Hotplug hooks 824 */ 825 int (*cpu_prepare)(int cpu); 826 void (*cpu_starting)(int cpu); 827 void (*cpu_dying)(int cpu); 828 void (*cpu_dead)(int cpu); 829 830 void (*check_microcode)(void); 831 void (*sched_task)(struct perf_event_pmu_context *pmu_ctx, 832 bool sched_in); 833 834 /* 835 * Intel Arch Perfmon v2+ 836 */ 837 u64 intel_ctrl; 838 union perf_capabilities intel_cap; 839 840 /* 841 * Intel DebugStore bits 842 */ 843 unsigned int bts :1, 844 bts_active :1, 845 pebs :1, 846 pebs_active :1, 847 pebs_broken :1, 848 pebs_prec_dist :1, 849 pebs_no_tlb :1, 850 pebs_no_isolation :1, 851 pebs_block :1, 852 pebs_ept :1; 853 int pebs_record_size; 854 int pebs_buffer_size; 855 int max_pebs_events; 856 void (*drain_pebs)(struct pt_regs *regs, struct perf_sample_data *data); 857 struct event_constraint *pebs_constraints; 858 void (*pebs_aliases)(struct perf_event *event); 859 u64 (*pebs_latency_data)(struct perf_event *event, u64 status); 860 unsigned long large_pebs_flags; 861 u64 rtm_abort_event; 862 u64 pebs_capable; 863 864 /* 865 * Intel LBR 866 */ 867 unsigned int lbr_tos, lbr_from, lbr_to, 868 lbr_info, lbr_nr; /* LBR base regs and size */ 869 union { 870 u64 lbr_sel_mask; /* LBR_SELECT valid bits */ 871 u64 lbr_ctl_mask; /* LBR_CTL valid bits */ 872 }; 873 union { 874 const int *lbr_sel_map; /* lbr_select mappings */ 875 int *lbr_ctl_map; /* LBR_CTL mappings */ 876 }; 877 bool lbr_double_abort; /* duplicated lbr aborts */ 878 bool lbr_pt_coexist; /* (LBR|BTS) may coexist with PT */ 879 880 unsigned int lbr_has_info:1; 881 unsigned int lbr_has_tsx:1; 882 unsigned int lbr_from_flags:1; 883 unsigned int lbr_to_cycles:1; 884 885 /* 886 * Intel Architectural LBR CPUID Enumeration 887 */ 888 unsigned int lbr_depth_mask:8; 889 unsigned int lbr_deep_c_reset:1; 890 unsigned int lbr_lip:1; 891 unsigned int lbr_cpl:1; 892 unsigned int lbr_filter:1; 893 unsigned int lbr_call_stack:1; 894 unsigned int lbr_mispred:1; 895 unsigned int lbr_timed_lbr:1; 896 unsigned int lbr_br_type:1; 897 unsigned int lbr_counters:4; 898 899 void (*lbr_reset)(void); 900 void (*lbr_read)(struct cpu_hw_events *cpuc); 901 void (*lbr_save)(void *ctx); 902 void (*lbr_restore)(void *ctx); 903 904 /* 905 * Intel PT/LBR/BTS are exclusive 906 */ 907 atomic_t lbr_exclusive[x86_lbr_exclusive_max]; 908 909 /* 910 * Intel perf metrics 911 */ 912 int num_topdown_events; 913 914 /* 915 * perf task context (i.e. struct perf_event_pmu_context::task_ctx_data) 916 * switch helper to bridge calls from perf/core to perf/x86. 917 * See struct pmu::swap_task_ctx() usage for examples; 918 */ 919 void (*swap_task_ctx)(struct perf_event_pmu_context *prev_epc, 920 struct perf_event_pmu_context *next_epc); 921 922 /* 923 * AMD bits 924 */ 925 unsigned int amd_nb_constraints : 1; 926 u64 perf_ctr_pair_en; 927 928 /* 929 * Extra registers for events 930 */ 931 struct extra_reg *extra_regs; 932 unsigned int flags; 933 934 /* 935 * Intel host/guest support (KVM) 936 */ 937 struct perf_guest_switch_msr *(*guest_get_msrs)(int *nr, void *data); 938 939 /* 940 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 941 */ 942 int (*check_period) (struct perf_event *event, u64 period); 943 944 int (*aux_output_match) (struct perf_event *event); 945 946 void (*filter)(struct pmu *pmu, int cpu, bool *ret); 947 /* 948 * Hybrid support 949 * 950 * Most PMU capabilities are the same among different hybrid PMUs. 951 * The global x86_pmu saves the architecture capabilities, which 952 * are available for all PMUs. The hybrid_pmu only includes the 953 * unique capabilities. 954 */ 955 int num_hybrid_pmus; 956 struct x86_hybrid_pmu *hybrid_pmu; 957 enum hybrid_cpu_type (*get_hybrid_cpu_type) (void); 958 }; 959 960 struct x86_perf_task_context_opt { 961 int lbr_callstack_users; 962 int lbr_stack_state; 963 int log_id; 964 }; 965 966 struct x86_perf_task_context { 967 u64 lbr_sel; 968 int tos; 969 int valid_lbrs; 970 struct x86_perf_task_context_opt opt; 971 struct lbr_entry lbr[MAX_LBR_ENTRIES]; 972 }; 973 974 struct x86_perf_task_context_arch_lbr { 975 struct x86_perf_task_context_opt opt; 976 struct lbr_entry entries[]; 977 }; 978 979 /* 980 * Add padding to guarantee the 64-byte alignment of the state buffer. 981 * 982 * The structure is dynamically allocated. The size of the LBR state may vary 983 * based on the number of LBR registers. 984 * 985 * Do not put anything after the LBR state. 986 */ 987 struct x86_perf_task_context_arch_lbr_xsave { 988 struct x86_perf_task_context_opt opt; 989 990 union { 991 struct xregs_state xsave; 992 struct { 993 struct fxregs_state i387; 994 struct xstate_header header; 995 struct arch_lbr_state lbr; 996 } __attribute__ ((packed, aligned (XSAVE_ALIGNMENT))); 997 }; 998 }; 999 1000 #define x86_add_quirk(func_) \ 1001 do { \ 1002 static struct x86_pmu_quirk __quirk __initdata = { \ 1003 .func = func_, \ 1004 }; \ 1005 __quirk.next = x86_pmu.quirks; \ 1006 x86_pmu.quirks = &__quirk; \ 1007 } while (0) 1008 1009 /* 1010 * x86_pmu flags 1011 */ 1012 #define PMU_FL_NO_HT_SHARING 0x1 /* no hyper-threading resource sharing */ 1013 #define PMU_FL_HAS_RSP_1 0x2 /* has 2 equivalent offcore_rsp regs */ 1014 #define PMU_FL_EXCL_CNTRS 0x4 /* has exclusive counter requirements */ 1015 #define PMU_FL_EXCL_ENABLED 0x8 /* exclusive counter active */ 1016 #define PMU_FL_PEBS_ALL 0x10 /* all events are valid PEBS events */ 1017 #define PMU_FL_TFA 0x20 /* deal with TSX force abort */ 1018 #define PMU_FL_PAIR 0x40 /* merge counters for large incr. events */ 1019 #define PMU_FL_INSTR_LATENCY 0x80 /* Support Instruction Latency in PEBS Memory Info Record */ 1020 #define PMU_FL_MEM_LOADS_AUX 0x100 /* Require an auxiliary event for the complete memory info */ 1021 #define PMU_FL_RETIRE_LATENCY 0x200 /* Support Retire Latency in PEBS */ 1022 #define PMU_FL_BR_CNTR 0x400 /* Support branch counter logging */ 1023 1024 #define EVENT_VAR(_id) event_attr_##_id 1025 #define EVENT_PTR(_id) &event_attr_##_id.attr.attr 1026 1027 #define EVENT_ATTR(_name, _id) \ 1028 static struct perf_pmu_events_attr EVENT_VAR(_id) = { \ 1029 .attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \ 1030 .id = PERF_COUNT_HW_##_id, \ 1031 .event_str = NULL, \ 1032 }; 1033 1034 #define EVENT_ATTR_STR(_name, v, str) \ 1035 static struct perf_pmu_events_attr event_attr_##v = { \ 1036 .attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \ 1037 .id = 0, \ 1038 .event_str = str, \ 1039 }; 1040 1041 #define EVENT_ATTR_STR_HT(_name, v, noht, ht) \ 1042 static struct perf_pmu_events_ht_attr event_attr_##v = { \ 1043 .attr = __ATTR(_name, 0444, events_ht_sysfs_show, NULL),\ 1044 .id = 0, \ 1045 .event_str_noht = noht, \ 1046 .event_str_ht = ht, \ 1047 } 1048 1049 #define EVENT_ATTR_STR_HYBRID(_name, v, str, _pmu) \ 1050 static struct perf_pmu_events_hybrid_attr event_attr_##v = { \ 1051 .attr = __ATTR(_name, 0444, events_hybrid_sysfs_show, NULL),\ 1052 .id = 0, \ 1053 .event_str = str, \ 1054 .pmu_type = _pmu, \ 1055 } 1056 1057 #define FORMAT_HYBRID_PTR(_id) (&format_attr_hybrid_##_id.attr.attr) 1058 1059 #define FORMAT_ATTR_HYBRID(_name, _pmu) \ 1060 static struct perf_pmu_format_hybrid_attr format_attr_hybrid_##_name = {\ 1061 .attr = __ATTR_RO(_name), \ 1062 .pmu_type = _pmu, \ 1063 } 1064 1065 struct pmu *x86_get_pmu(unsigned int cpu); 1066 extern struct x86_pmu x86_pmu __read_mostly; 1067 1068 DECLARE_STATIC_CALL(x86_pmu_set_period, *x86_pmu.set_period); 1069 DECLARE_STATIC_CALL(x86_pmu_update, *x86_pmu.update); 1070 1071 static __always_inline struct x86_perf_task_context_opt *task_context_opt(void *ctx) 1072 { 1073 if (static_cpu_has(X86_FEATURE_ARCH_LBR)) 1074 return &((struct x86_perf_task_context_arch_lbr *)ctx)->opt; 1075 1076 return &((struct x86_perf_task_context *)ctx)->opt; 1077 } 1078 1079 static inline bool x86_pmu_has_lbr_callstack(void) 1080 { 1081 return x86_pmu.lbr_sel_map && 1082 x86_pmu.lbr_sel_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] > 0; 1083 } 1084 1085 DECLARE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 1086 DECLARE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); 1087 1088 int x86_perf_event_set_period(struct perf_event *event); 1089 1090 /* 1091 * Generalized hw caching related hw_event table, filled 1092 * in on a per model basis. A value of 0 means 1093 * 'not supported', -1 means 'hw_event makes no sense on 1094 * this CPU', any other value means the raw hw_event 1095 * ID. 1096 */ 1097 1098 #define C(x) PERF_COUNT_HW_CACHE_##x 1099 1100 extern u64 __read_mostly hw_cache_event_ids 1101 [PERF_COUNT_HW_CACHE_MAX] 1102 [PERF_COUNT_HW_CACHE_OP_MAX] 1103 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 1104 extern u64 __read_mostly hw_cache_extra_regs 1105 [PERF_COUNT_HW_CACHE_MAX] 1106 [PERF_COUNT_HW_CACHE_OP_MAX] 1107 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 1108 1109 u64 x86_perf_event_update(struct perf_event *event); 1110 1111 static inline unsigned int x86_pmu_config_addr(int index) 1112 { 1113 return x86_pmu.eventsel + (x86_pmu.addr_offset ? 1114 x86_pmu.addr_offset(index, true) : index); 1115 } 1116 1117 static inline unsigned int x86_pmu_event_addr(int index) 1118 { 1119 return x86_pmu.perfctr + (x86_pmu.addr_offset ? 1120 x86_pmu.addr_offset(index, false) : index); 1121 } 1122 1123 static inline int x86_pmu_rdpmc_index(int index) 1124 { 1125 return x86_pmu.rdpmc_index ? x86_pmu.rdpmc_index(index) : index; 1126 } 1127 1128 bool check_hw_exists(struct pmu *pmu, int num_counters, 1129 int num_counters_fixed); 1130 1131 int x86_add_exclusive(unsigned int what); 1132 1133 void x86_del_exclusive(unsigned int what); 1134 1135 int x86_reserve_hardware(void); 1136 1137 void x86_release_hardware(void); 1138 1139 int x86_pmu_max_precise(void); 1140 1141 void hw_perf_lbr_event_destroy(struct perf_event *event); 1142 1143 int x86_setup_perfctr(struct perf_event *event); 1144 1145 int x86_pmu_hw_config(struct perf_event *event); 1146 1147 void x86_pmu_disable_all(void); 1148 1149 static inline bool has_amd_brs(struct hw_perf_event *hwc) 1150 { 1151 return hwc->flags & PERF_X86_EVENT_AMD_BRS; 1152 } 1153 1154 static inline bool is_counter_pair(struct hw_perf_event *hwc) 1155 { 1156 return hwc->flags & PERF_X86_EVENT_PAIR; 1157 } 1158 1159 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, 1160 u64 enable_mask) 1161 { 1162 u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask); 1163 1164 if (hwc->extra_reg.reg) 1165 wrmsrl(hwc->extra_reg.reg, hwc->extra_reg.config); 1166 1167 /* 1168 * Add enabled Merge event on next counter 1169 * if large increment event being enabled on this counter 1170 */ 1171 if (is_counter_pair(hwc)) 1172 wrmsrl(x86_pmu_config_addr(hwc->idx + 1), x86_pmu.perf_ctr_pair_en); 1173 1174 wrmsrl(hwc->config_base, (hwc->config | enable_mask) & ~disable_mask); 1175 } 1176 1177 void x86_pmu_enable_all(int added); 1178 1179 int perf_assign_events(struct event_constraint **constraints, int n, 1180 int wmin, int wmax, int gpmax, int *assign); 1181 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign); 1182 1183 void x86_pmu_stop(struct perf_event *event, int flags); 1184 1185 static inline void x86_pmu_disable_event(struct perf_event *event) 1186 { 1187 u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask); 1188 struct hw_perf_event *hwc = &event->hw; 1189 1190 wrmsrl(hwc->config_base, hwc->config & ~disable_mask); 1191 1192 if (is_counter_pair(hwc)) 1193 wrmsrl(x86_pmu_config_addr(hwc->idx + 1), 0); 1194 } 1195 1196 void x86_pmu_enable_event(struct perf_event *event); 1197 1198 int x86_pmu_handle_irq(struct pt_regs *regs); 1199 1200 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed, 1201 u64 intel_ctrl); 1202 1203 extern struct event_constraint emptyconstraint; 1204 1205 extern struct event_constraint unconstrained; 1206 1207 static inline bool kernel_ip(unsigned long ip) 1208 { 1209 #ifdef CONFIG_X86_32 1210 return ip > PAGE_OFFSET; 1211 #else 1212 return (long)ip < 0; 1213 #endif 1214 } 1215 1216 /* 1217 * Not all PMUs provide the right context information to place the reported IP 1218 * into full context. Specifically segment registers are typically not 1219 * supplied. 1220 * 1221 * Assuming the address is a linear address (it is for IBS), we fake the CS and 1222 * vm86 mode using the known zero-based code segment and 'fix up' the registers 1223 * to reflect this. 1224 * 1225 * Intel PEBS/LBR appear to typically provide the effective address, nothing 1226 * much we can do about that but pray and treat it like a linear address. 1227 */ 1228 static inline void set_linear_ip(struct pt_regs *regs, unsigned long ip) 1229 { 1230 regs->cs = kernel_ip(ip) ? __KERNEL_CS : __USER_CS; 1231 if (regs->flags & X86_VM_MASK) 1232 regs->flags ^= (PERF_EFLAGS_VM | X86_VM_MASK); 1233 regs->ip = ip; 1234 } 1235 1236 /* 1237 * x86control flow change classification 1238 * x86control flow changes include branches, interrupts, traps, faults 1239 */ 1240 enum { 1241 X86_BR_NONE = 0, /* unknown */ 1242 1243 X86_BR_USER = 1 << 0, /* branch target is user */ 1244 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */ 1245 1246 X86_BR_CALL = 1 << 2, /* call */ 1247 X86_BR_RET = 1 << 3, /* return */ 1248 X86_BR_SYSCALL = 1 << 4, /* syscall */ 1249 X86_BR_SYSRET = 1 << 5, /* syscall return */ 1250 X86_BR_INT = 1 << 6, /* sw interrupt */ 1251 X86_BR_IRET = 1 << 7, /* return from interrupt */ 1252 X86_BR_JCC = 1 << 8, /* conditional */ 1253 X86_BR_JMP = 1 << 9, /* jump */ 1254 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */ 1255 X86_BR_IND_CALL = 1 << 11,/* indirect calls */ 1256 X86_BR_ABORT = 1 << 12,/* transaction abort */ 1257 X86_BR_IN_TX = 1 << 13,/* in transaction */ 1258 X86_BR_NO_TX = 1 << 14,/* not in transaction */ 1259 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */ 1260 X86_BR_CALL_STACK = 1 << 16,/* call stack */ 1261 X86_BR_IND_JMP = 1 << 17,/* indirect jump */ 1262 1263 X86_BR_TYPE_SAVE = 1 << 18,/* indicate to save branch type */ 1264 1265 }; 1266 1267 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL) 1268 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX) 1269 1270 #define X86_BR_ANY \ 1271 (X86_BR_CALL |\ 1272 X86_BR_RET |\ 1273 X86_BR_SYSCALL |\ 1274 X86_BR_SYSRET |\ 1275 X86_BR_INT |\ 1276 X86_BR_IRET |\ 1277 X86_BR_JCC |\ 1278 X86_BR_JMP |\ 1279 X86_BR_IRQ |\ 1280 X86_BR_ABORT |\ 1281 X86_BR_IND_CALL |\ 1282 X86_BR_IND_JMP |\ 1283 X86_BR_ZERO_CALL) 1284 1285 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY) 1286 1287 #define X86_BR_ANY_CALL \ 1288 (X86_BR_CALL |\ 1289 X86_BR_IND_CALL |\ 1290 X86_BR_ZERO_CALL |\ 1291 X86_BR_SYSCALL |\ 1292 X86_BR_IRQ |\ 1293 X86_BR_INT) 1294 1295 int common_branch_type(int type); 1296 int branch_type(unsigned long from, unsigned long to, int abort); 1297 int branch_type_fused(unsigned long from, unsigned long to, int abort, 1298 int *offset); 1299 1300 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event); 1301 ssize_t intel_event_sysfs_show(char *page, u64 config); 1302 1303 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, 1304 char *page); 1305 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, 1306 char *page); 1307 ssize_t events_hybrid_sysfs_show(struct device *dev, 1308 struct device_attribute *attr, 1309 char *page); 1310 1311 static inline bool fixed_counter_disabled(int i, struct pmu *pmu) 1312 { 1313 u64 intel_ctrl = hybrid(pmu, intel_ctrl); 1314 1315 return !(intel_ctrl >> (i + INTEL_PMC_IDX_FIXED)); 1316 } 1317 1318 #ifdef CONFIG_CPU_SUP_AMD 1319 1320 int amd_pmu_init(void); 1321 1322 int amd_pmu_lbr_init(void); 1323 void amd_pmu_lbr_reset(void); 1324 void amd_pmu_lbr_read(void); 1325 void amd_pmu_lbr_add(struct perf_event *event); 1326 void amd_pmu_lbr_del(struct perf_event *event); 1327 void amd_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in); 1328 void amd_pmu_lbr_enable_all(void); 1329 void amd_pmu_lbr_disable_all(void); 1330 int amd_pmu_lbr_hw_config(struct perf_event *event); 1331 1332 #ifdef CONFIG_PERF_EVENTS_AMD_BRS 1333 1334 #define AMD_FAM19H_BRS_EVENT 0xc4 /* RETIRED_TAKEN_BRANCH_INSTRUCTIONS */ 1335 1336 int amd_brs_init(void); 1337 void amd_brs_disable(void); 1338 void amd_brs_enable(void); 1339 void amd_brs_enable_all(void); 1340 void amd_brs_disable_all(void); 1341 void amd_brs_drain(void); 1342 void amd_brs_lopwr_init(void); 1343 int amd_brs_hw_config(struct perf_event *event); 1344 void amd_brs_reset(void); 1345 1346 static inline void amd_pmu_brs_add(struct perf_event *event) 1347 { 1348 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1349 1350 perf_sched_cb_inc(event->pmu); 1351 cpuc->lbr_users++; 1352 /* 1353 * No need to reset BRS because it is reset 1354 * on brs_enable() and it is saturating 1355 */ 1356 } 1357 1358 static inline void amd_pmu_brs_del(struct perf_event *event) 1359 { 1360 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1361 1362 cpuc->lbr_users--; 1363 WARN_ON_ONCE(cpuc->lbr_users < 0); 1364 1365 perf_sched_cb_dec(event->pmu); 1366 } 1367 1368 void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in); 1369 #else 1370 static inline int amd_brs_init(void) 1371 { 1372 return 0; 1373 } 1374 static inline void amd_brs_disable(void) {} 1375 static inline void amd_brs_enable(void) {} 1376 static inline void amd_brs_drain(void) {} 1377 static inline void amd_brs_lopwr_init(void) {} 1378 static inline void amd_brs_disable_all(void) {} 1379 static inline int amd_brs_hw_config(struct perf_event *event) 1380 { 1381 return 0; 1382 } 1383 static inline void amd_brs_reset(void) {} 1384 1385 static inline void amd_pmu_brs_add(struct perf_event *event) 1386 { 1387 } 1388 1389 static inline void amd_pmu_brs_del(struct perf_event *event) 1390 { 1391 } 1392 1393 static inline void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) 1394 { 1395 } 1396 1397 static inline void amd_brs_enable_all(void) 1398 { 1399 } 1400 1401 #endif 1402 1403 #else /* CONFIG_CPU_SUP_AMD */ 1404 1405 static inline int amd_pmu_init(void) 1406 { 1407 return 0; 1408 } 1409 1410 static inline int amd_brs_init(void) 1411 { 1412 return -EOPNOTSUPP; 1413 } 1414 1415 static inline void amd_brs_drain(void) 1416 { 1417 } 1418 1419 static inline void amd_brs_enable_all(void) 1420 { 1421 } 1422 1423 static inline void amd_brs_disable_all(void) 1424 { 1425 } 1426 #endif /* CONFIG_CPU_SUP_AMD */ 1427 1428 static inline int is_pebs_pt(struct perf_event *event) 1429 { 1430 return !!(event->hw.flags & PERF_X86_EVENT_PEBS_VIA_PT); 1431 } 1432 1433 #ifdef CONFIG_CPU_SUP_INTEL 1434 1435 static inline bool intel_pmu_has_bts_period(struct perf_event *event, u64 period) 1436 { 1437 struct hw_perf_event *hwc = &event->hw; 1438 unsigned int hw_event, bts_event; 1439 1440 if (event->attr.freq) 1441 return false; 1442 1443 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; 1444 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 1445 1446 return hw_event == bts_event && period == 1; 1447 } 1448 1449 static inline bool intel_pmu_has_bts(struct perf_event *event) 1450 { 1451 struct hw_perf_event *hwc = &event->hw; 1452 1453 return intel_pmu_has_bts_period(event, hwc->sample_period); 1454 } 1455 1456 static __always_inline void __intel_pmu_pebs_disable_all(void) 1457 { 1458 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1459 } 1460 1461 static __always_inline void __intel_pmu_arch_lbr_disable(void) 1462 { 1463 wrmsrl(MSR_ARCH_LBR_CTL, 0); 1464 } 1465 1466 static __always_inline void __intel_pmu_lbr_disable(void) 1467 { 1468 u64 debugctl; 1469 1470 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1471 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI); 1472 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1473 } 1474 1475 int intel_pmu_save_and_restart(struct perf_event *event); 1476 1477 struct event_constraint * 1478 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 1479 struct perf_event *event); 1480 1481 extern int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu); 1482 extern void intel_cpuc_finish(struct cpu_hw_events *cpuc); 1483 1484 int intel_pmu_init(void); 1485 1486 void init_debug_store_on_cpu(int cpu); 1487 1488 void fini_debug_store_on_cpu(int cpu); 1489 1490 void release_ds_buffers(void); 1491 1492 void reserve_ds_buffers(void); 1493 1494 void release_lbr_buffers(void); 1495 1496 void reserve_lbr_buffers(void); 1497 1498 extern struct event_constraint bts_constraint; 1499 extern struct event_constraint vlbr_constraint; 1500 1501 void intel_pmu_enable_bts(u64 config); 1502 1503 void intel_pmu_disable_bts(void); 1504 1505 int intel_pmu_drain_bts_buffer(void); 1506 1507 u64 adl_latency_data_small(struct perf_event *event, u64 status); 1508 1509 u64 mtl_latency_data_small(struct perf_event *event, u64 status); 1510 1511 extern struct event_constraint intel_core2_pebs_event_constraints[]; 1512 1513 extern struct event_constraint intel_atom_pebs_event_constraints[]; 1514 1515 extern struct event_constraint intel_slm_pebs_event_constraints[]; 1516 1517 extern struct event_constraint intel_glm_pebs_event_constraints[]; 1518 1519 extern struct event_constraint intel_glp_pebs_event_constraints[]; 1520 1521 extern struct event_constraint intel_grt_pebs_event_constraints[]; 1522 1523 extern struct event_constraint intel_nehalem_pebs_event_constraints[]; 1524 1525 extern struct event_constraint intel_westmere_pebs_event_constraints[]; 1526 1527 extern struct event_constraint intel_snb_pebs_event_constraints[]; 1528 1529 extern struct event_constraint intel_ivb_pebs_event_constraints[]; 1530 1531 extern struct event_constraint intel_hsw_pebs_event_constraints[]; 1532 1533 extern struct event_constraint intel_bdw_pebs_event_constraints[]; 1534 1535 extern struct event_constraint intel_skl_pebs_event_constraints[]; 1536 1537 extern struct event_constraint intel_icl_pebs_event_constraints[]; 1538 1539 extern struct event_constraint intel_glc_pebs_event_constraints[]; 1540 1541 struct event_constraint *intel_pebs_constraints(struct perf_event *event); 1542 1543 void intel_pmu_pebs_add(struct perf_event *event); 1544 1545 void intel_pmu_pebs_del(struct perf_event *event); 1546 1547 void intel_pmu_pebs_enable(struct perf_event *event); 1548 1549 void intel_pmu_pebs_disable(struct perf_event *event); 1550 1551 void intel_pmu_pebs_enable_all(void); 1552 1553 void intel_pmu_pebs_disable_all(void); 1554 1555 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in); 1556 1557 void intel_pmu_auto_reload_read(struct perf_event *event); 1558 1559 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr); 1560 1561 void intel_ds_init(void); 1562 1563 void intel_pmu_lbr_save_brstack(struct perf_sample_data *data, 1564 struct cpu_hw_events *cpuc, 1565 struct perf_event *event); 1566 1567 void intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context *prev_epc, 1568 struct perf_event_pmu_context *next_epc); 1569 1570 void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in); 1571 1572 u64 lbr_from_signext_quirk_wr(u64 val); 1573 1574 void intel_pmu_lbr_reset(void); 1575 1576 void intel_pmu_lbr_reset_32(void); 1577 1578 void intel_pmu_lbr_reset_64(void); 1579 1580 void intel_pmu_lbr_add(struct perf_event *event); 1581 1582 void intel_pmu_lbr_del(struct perf_event *event); 1583 1584 void intel_pmu_lbr_enable_all(bool pmi); 1585 1586 void intel_pmu_lbr_disable_all(void); 1587 1588 void intel_pmu_lbr_read(void); 1589 1590 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc); 1591 1592 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc); 1593 1594 void intel_pmu_lbr_save(void *ctx); 1595 1596 void intel_pmu_lbr_restore(void *ctx); 1597 1598 void intel_pmu_lbr_init_core(void); 1599 1600 void intel_pmu_lbr_init_nhm(void); 1601 1602 void intel_pmu_lbr_init_atom(void); 1603 1604 void intel_pmu_lbr_init_slm(void); 1605 1606 void intel_pmu_lbr_init_snb(void); 1607 1608 void intel_pmu_lbr_init_hsw(void); 1609 1610 void intel_pmu_lbr_init_skl(void); 1611 1612 void intel_pmu_lbr_init_knl(void); 1613 1614 void intel_pmu_lbr_init(void); 1615 1616 void intel_pmu_arch_lbr_init(void); 1617 1618 void intel_pmu_pebs_data_source_nhm(void); 1619 1620 void intel_pmu_pebs_data_source_skl(bool pmem); 1621 1622 void intel_pmu_pebs_data_source_adl(void); 1623 1624 void intel_pmu_pebs_data_source_grt(void); 1625 1626 void intel_pmu_pebs_data_source_mtl(void); 1627 1628 void intel_pmu_pebs_data_source_cmt(void); 1629 1630 int intel_pmu_setup_lbr_filter(struct perf_event *event); 1631 1632 void intel_pt_interrupt(void); 1633 1634 int intel_bts_interrupt(void); 1635 1636 void intel_bts_enable_local(void); 1637 1638 void intel_bts_disable_local(void); 1639 1640 int p4_pmu_init(void); 1641 1642 int p6_pmu_init(void); 1643 1644 int knc_pmu_init(void); 1645 1646 static inline int is_ht_workaround_enabled(void) 1647 { 1648 return !!(x86_pmu.flags & PMU_FL_EXCL_ENABLED); 1649 } 1650 1651 #else /* CONFIG_CPU_SUP_INTEL */ 1652 1653 static inline void reserve_ds_buffers(void) 1654 { 1655 } 1656 1657 static inline void release_ds_buffers(void) 1658 { 1659 } 1660 1661 static inline void release_lbr_buffers(void) 1662 { 1663 } 1664 1665 static inline void reserve_lbr_buffers(void) 1666 { 1667 } 1668 1669 static inline int intel_pmu_init(void) 1670 { 1671 return 0; 1672 } 1673 1674 static inline int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu) 1675 { 1676 return 0; 1677 } 1678 1679 static inline void intel_cpuc_finish(struct cpu_hw_events *cpuc) 1680 { 1681 } 1682 1683 static inline int is_ht_workaround_enabled(void) 1684 { 1685 return 0; 1686 } 1687 #endif /* CONFIG_CPU_SUP_INTEL */ 1688 1689 #if ((defined CONFIG_CPU_SUP_CENTAUR) || (defined CONFIG_CPU_SUP_ZHAOXIN)) 1690 int zhaoxin_pmu_init(void); 1691 #else 1692 static inline int zhaoxin_pmu_init(void) 1693 { 1694 return 0; 1695 } 1696 #endif /*CONFIG_CPU_SUP_CENTAUR or CONFIG_CPU_SUP_ZHAOXIN*/ 1697