xref: /linux/arch/x86/events/intel/pt.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel(R) Processor Trace PMU driver for perf
4  * Copyright (c) 2013-2014, Intel Corporation.
5  *
6  * Intel PT is specified in the Intel Architecture Instruction Set Extensions
7  * Programming Reference:
8  * http://software.intel.com/en-us/intel-isa-extensions
9  */
10 
11 #undef DEBUG
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/types.h>
16 #include <linux/bits.h>
17 #include <linux/limits.h>
18 #include <linux/slab.h>
19 #include <linux/device.h>
20 
21 #include <asm/perf_event.h>
22 #include <asm/insn.h>
23 #include <asm/io.h>
24 #include <asm/intel_pt.h>
25 #include <asm/cpu_device_id.h>
26 
27 #include "../perf_event.h"
28 #include "pt.h"
29 
30 static DEFINE_PER_CPU(struct pt, pt_ctx);
31 
32 static struct pt_pmu pt_pmu;
33 
34 /*
35  * Capabilities of Intel PT hardware, such as number of address bits or
36  * supported output schemes, are cached and exported to userspace as "caps"
37  * attribute group of pt pmu device
38  * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
39  * relevant bits together with intel_pt traces.
40  *
41  * These are necessary for both trace decoding (payloads_lip, contains address
42  * width encoded in IP-related packets), and event configuration (bitmasks with
43  * permitted values for certain bit fields).
44  */
45 #define PT_CAP(_n, _l, _r, _m)						\
46 	[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,	\
47 			    .reg = _r, .mask = _m }
48 
49 static struct pt_cap_desc {
50 	const char	*name;
51 	u32		leaf;
52 	u8		reg;
53 	u32		mask;
54 } pt_caps[] = {
55 	PT_CAP(max_subleaf,		0, CPUID_EAX, 0xffffffff),
56 	PT_CAP(cr3_filtering,		0, CPUID_EBX, BIT(0)),
57 	PT_CAP(psb_cyc,			0, CPUID_EBX, BIT(1)),
58 	PT_CAP(ip_filtering,		0, CPUID_EBX, BIT(2)),
59 	PT_CAP(mtc,			0, CPUID_EBX, BIT(3)),
60 	PT_CAP(ptwrite,			0, CPUID_EBX, BIT(4)),
61 	PT_CAP(power_event_trace,	0, CPUID_EBX, BIT(5)),
62 	PT_CAP(event_trace,		0, CPUID_EBX, BIT(7)),
63 	PT_CAP(tnt_disable,		0, CPUID_EBX, BIT(8)),
64 	PT_CAP(topa_output,		0, CPUID_ECX, BIT(0)),
65 	PT_CAP(topa_multiple_entries,	0, CPUID_ECX, BIT(1)),
66 	PT_CAP(single_range_output,	0, CPUID_ECX, BIT(2)),
67 	PT_CAP(output_subsys,		0, CPUID_ECX, BIT(3)),
68 	PT_CAP(payloads_lip,		0, CPUID_ECX, BIT(31)),
69 	PT_CAP(num_address_ranges,	1, CPUID_EAX, 0x7),
70 	PT_CAP(mtc_periods,		1, CPUID_EAX, 0xffff0000),
71 	PT_CAP(cycle_thresholds,	1, CPUID_EBX, 0xffff),
72 	PT_CAP(psb_periods,		1, CPUID_EBX, 0xffff0000),
73 };
74 
75 u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
76 {
77 	struct pt_cap_desc *cd = &pt_caps[capability];
78 	u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
79 	unsigned int shift = __ffs(cd->mask);
80 
81 	return (c & cd->mask) >> shift;
82 }
83 EXPORT_SYMBOL_GPL(intel_pt_validate_cap);
84 
85 u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
86 {
87 	return intel_pt_validate_cap(pt_pmu.caps, cap);
88 }
89 EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap);
90 
91 static ssize_t pt_cap_show(struct device *cdev,
92 			   struct device_attribute *attr,
93 			   char *buf)
94 {
95 	struct dev_ext_attribute *ea =
96 		container_of(attr, struct dev_ext_attribute, attr);
97 	enum pt_capabilities cap = (long)ea->var;
98 
99 	return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
100 }
101 
102 static struct attribute_group pt_cap_group __ro_after_init = {
103 	.name	= "caps",
104 };
105 
106 PMU_FORMAT_ATTR(pt,		"config:0"	);
107 PMU_FORMAT_ATTR(cyc,		"config:1"	);
108 PMU_FORMAT_ATTR(pwr_evt,	"config:4"	);
109 PMU_FORMAT_ATTR(fup_on_ptw,	"config:5"	);
110 PMU_FORMAT_ATTR(mtc,		"config:9"	);
111 PMU_FORMAT_ATTR(tsc,		"config:10"	);
112 PMU_FORMAT_ATTR(noretcomp,	"config:11"	);
113 PMU_FORMAT_ATTR(ptw,		"config:12"	);
114 PMU_FORMAT_ATTR(branch,		"config:13"	);
115 PMU_FORMAT_ATTR(event,		"config:31"	);
116 PMU_FORMAT_ATTR(notnt,		"config:55"	);
117 PMU_FORMAT_ATTR(mtc_period,	"config:14-17"	);
118 PMU_FORMAT_ATTR(cyc_thresh,	"config:19-22"	);
119 PMU_FORMAT_ATTR(psb_period,	"config:24-27"	);
120 
121 static struct attribute *pt_formats_attr[] = {
122 	&format_attr_pt.attr,
123 	&format_attr_cyc.attr,
124 	&format_attr_pwr_evt.attr,
125 	&format_attr_event.attr,
126 	&format_attr_notnt.attr,
127 	&format_attr_fup_on_ptw.attr,
128 	&format_attr_mtc.attr,
129 	&format_attr_tsc.attr,
130 	&format_attr_noretcomp.attr,
131 	&format_attr_ptw.attr,
132 	&format_attr_branch.attr,
133 	&format_attr_mtc_period.attr,
134 	&format_attr_cyc_thresh.attr,
135 	&format_attr_psb_period.attr,
136 	NULL,
137 };
138 
139 static struct attribute_group pt_format_group = {
140 	.name	= "format",
141 	.attrs	= pt_formats_attr,
142 };
143 
144 static ssize_t
145 pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
146 		    char *page)
147 {
148 	struct perf_pmu_events_attr *pmu_attr =
149 		container_of(attr, struct perf_pmu_events_attr, attr);
150 
151 	switch (pmu_attr->id) {
152 	case 0:
153 		return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
154 	case 1:
155 		return sprintf(page, "%u:%u\n",
156 			       pt_pmu.tsc_art_num,
157 			       pt_pmu.tsc_art_den);
158 	default:
159 		break;
160 	}
161 
162 	return -EINVAL;
163 }
164 
165 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
166 	       pt_timing_attr_show);
167 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
168 	       pt_timing_attr_show);
169 
170 static struct attribute *pt_timing_attr[] = {
171 	&timing_attr_max_nonturbo_ratio.attr.attr,
172 	&timing_attr_tsc_art_ratio.attr.attr,
173 	NULL,
174 };
175 
176 static struct attribute_group pt_timing_group = {
177 	.attrs	= pt_timing_attr,
178 };
179 
180 static const struct attribute_group *pt_attr_groups[] = {
181 	&pt_cap_group,
182 	&pt_format_group,
183 	&pt_timing_group,
184 	NULL,
185 };
186 
187 static int __init pt_pmu_hw_init(void)
188 {
189 	struct dev_ext_attribute *de_attrs;
190 	struct attribute **attrs;
191 	size_t size;
192 	u64 reg;
193 	int ret;
194 	long i;
195 
196 	rdmsrl(MSR_PLATFORM_INFO, reg);
197 	pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
198 
199 	/*
200 	 * if available, read in TSC to core crystal clock ratio,
201 	 * otherwise, zero for numerator stands for "not enumerated"
202 	 * as per SDM
203 	 */
204 	if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
205 		u32 eax, ebx, ecx, edx;
206 
207 		cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
208 
209 		pt_pmu.tsc_art_num = ebx;
210 		pt_pmu.tsc_art_den = eax;
211 	}
212 
213 	/* model-specific quirks */
214 	switch (boot_cpu_data.x86_vfm) {
215 	case INTEL_BROADWELL:
216 	case INTEL_BROADWELL_D:
217 	case INTEL_BROADWELL_G:
218 	case INTEL_BROADWELL_X:
219 		/* not setting BRANCH_EN will #GP, erratum BDM106 */
220 		pt_pmu.branch_en_always_on = true;
221 		break;
222 	default:
223 		break;
224 	}
225 
226 	if (boot_cpu_has(X86_FEATURE_VMX)) {
227 		/*
228 		 * Intel SDM, 36.5 "Tracing post-VMXON" says that
229 		 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
230 		 * post-VMXON.
231 		 */
232 		rdmsrl(MSR_IA32_VMX_MISC, reg);
233 		if (reg & BIT(14))
234 			pt_pmu.vmx = true;
235 	}
236 
237 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
238 		cpuid_count(20, i,
239 			    &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
240 			    &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
241 			    &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
242 			    &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
243 	}
244 
245 	ret = -ENOMEM;
246 	size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
247 	attrs = kzalloc(size, GFP_KERNEL);
248 	if (!attrs)
249 		goto fail;
250 
251 	size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
252 	de_attrs = kzalloc(size, GFP_KERNEL);
253 	if (!de_attrs)
254 		goto fail;
255 
256 	for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
257 		struct dev_ext_attribute *de_attr = de_attrs + i;
258 
259 		de_attr->attr.attr.name = pt_caps[i].name;
260 
261 		sysfs_attr_init(&de_attr->attr.attr);
262 
263 		de_attr->attr.attr.mode		= S_IRUGO;
264 		de_attr->attr.show		= pt_cap_show;
265 		de_attr->var			= (void *)i;
266 
267 		attrs[i] = &de_attr->attr.attr;
268 	}
269 
270 	pt_cap_group.attrs = attrs;
271 
272 	return 0;
273 
274 fail:
275 	kfree(attrs);
276 
277 	return ret;
278 }
279 
280 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC	| \
281 			  RTIT_CTL_CYC_THRESH	| \
282 			  RTIT_CTL_PSB_FREQ)
283 
284 #define RTIT_CTL_MTC	(RTIT_CTL_MTC_EN	| \
285 			 RTIT_CTL_MTC_RANGE)
286 
287 #define RTIT_CTL_PTW	(RTIT_CTL_PTW_EN	| \
288 			 RTIT_CTL_FUP_ON_PTW)
289 
290 /*
291  * Bit 0 (TraceEn) in the attr.config is meaningless as the
292  * corresponding bit in the RTIT_CTL can only be controlled
293  * by the driver; therefore, repurpose it to mean: pass
294  * through the bit that was previously assumed to be always
295  * on for PT, thereby allowing the user to *not* set it if
296  * they so wish. See also pt_event_valid() and pt_config().
297  */
298 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
299 
300 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN	| \
301 			RTIT_CTL_TSC_EN		| \
302 			RTIT_CTL_DISRETC	| \
303 			RTIT_CTL_BRANCH_EN	| \
304 			RTIT_CTL_CYC_PSB	| \
305 			RTIT_CTL_MTC		| \
306 			RTIT_CTL_PWR_EVT_EN	| \
307 			RTIT_CTL_EVENT_EN	| \
308 			RTIT_CTL_NOTNT		| \
309 			RTIT_CTL_FUP_ON_PTW	| \
310 			RTIT_CTL_PTW_EN)
311 
312 static bool pt_event_valid(struct perf_event *event)
313 {
314 	u64 config = event->attr.config;
315 	u64 allowed, requested;
316 
317 	if ((config & PT_CONFIG_MASK) != config)
318 		return false;
319 
320 	if (config & RTIT_CTL_CYC_PSB) {
321 		if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
322 			return false;
323 
324 		allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
325 		requested = (config & RTIT_CTL_PSB_FREQ) >>
326 			RTIT_CTL_PSB_FREQ_OFFSET;
327 		if (requested && (!(allowed & BIT(requested))))
328 			return false;
329 
330 		allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
331 		requested = (config & RTIT_CTL_CYC_THRESH) >>
332 			RTIT_CTL_CYC_THRESH_OFFSET;
333 		if (requested && (!(allowed & BIT(requested))))
334 			return false;
335 	}
336 
337 	if (config & RTIT_CTL_MTC) {
338 		/*
339 		 * In the unlikely case that CPUID lists valid mtc periods,
340 		 * but not the mtc capability, drop out here.
341 		 *
342 		 * Spec says that setting mtc period bits while mtc bit in
343 		 * CPUID is 0 will #GP, so better safe than sorry.
344 		 */
345 		if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
346 			return false;
347 
348 		allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
349 		if (!allowed)
350 			return false;
351 
352 		requested = (config & RTIT_CTL_MTC_RANGE) >>
353 			RTIT_CTL_MTC_RANGE_OFFSET;
354 
355 		if (!(allowed & BIT(requested)))
356 			return false;
357 	}
358 
359 	if (config & RTIT_CTL_PWR_EVT_EN &&
360 	    !intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
361 		return false;
362 
363 	if (config & RTIT_CTL_EVENT_EN &&
364 	    !intel_pt_validate_hw_cap(PT_CAP_event_trace))
365 		return false;
366 
367 	if (config & RTIT_CTL_NOTNT &&
368 	    !intel_pt_validate_hw_cap(PT_CAP_tnt_disable))
369 		return false;
370 
371 	if (config & RTIT_CTL_PTW) {
372 		if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
373 			return false;
374 
375 		/* FUPonPTW without PTW doesn't make sense */
376 		if ((config & RTIT_CTL_FUP_ON_PTW) &&
377 		    !(config & RTIT_CTL_PTW_EN))
378 			return false;
379 	}
380 
381 	/*
382 	 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
383 	 * clears the assumption that BranchEn must always be enabled,
384 	 * as was the case with the first implementation of PT.
385 	 * If this bit is not set, the legacy behavior is preserved
386 	 * for compatibility with the older userspace.
387 	 *
388 	 * Re-using bit 0 for this purpose is fine because it is never
389 	 * directly set by the user; previous attempts at setting it in
390 	 * the attr.config resulted in -EINVAL.
391 	 */
392 	if (config & RTIT_CTL_PASSTHROUGH) {
393 		/*
394 		 * Disallow not setting BRANCH_EN where BRANCH_EN is
395 		 * always required.
396 		 */
397 		if (pt_pmu.branch_en_always_on &&
398 		    !(config & RTIT_CTL_BRANCH_EN))
399 			return false;
400 	} else {
401 		/*
402 		 * Disallow BRANCH_EN without the PASSTHROUGH.
403 		 */
404 		if (config & RTIT_CTL_BRANCH_EN)
405 			return false;
406 	}
407 
408 	return true;
409 }
410 
411 /*
412  * PT configuration helpers
413  * These all are cpu affine and operate on a local PT
414  */
415 
416 static void pt_config_start(struct perf_event *event)
417 {
418 	struct pt *pt = this_cpu_ptr(&pt_ctx);
419 	u64 ctl = event->hw.aux_config;
420 
421 	if (READ_ONCE(event->hw.aux_paused))
422 		return;
423 
424 	ctl |= RTIT_CTL_TRACEEN;
425 	if (READ_ONCE(pt->vmx_on))
426 		perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
427 	else
428 		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
429 
430 	WRITE_ONCE(event->hw.aux_config, ctl);
431 }
432 
433 /* Address ranges and their corresponding msr configuration registers */
434 static const struct pt_address_range {
435 	unsigned long	msr_a;
436 	unsigned long	msr_b;
437 	unsigned int	reg_off;
438 } pt_address_ranges[] = {
439 	{
440 		.msr_a	 = MSR_IA32_RTIT_ADDR0_A,
441 		.msr_b	 = MSR_IA32_RTIT_ADDR0_B,
442 		.reg_off = RTIT_CTL_ADDR0_OFFSET,
443 	},
444 	{
445 		.msr_a	 = MSR_IA32_RTIT_ADDR1_A,
446 		.msr_b	 = MSR_IA32_RTIT_ADDR1_B,
447 		.reg_off = RTIT_CTL_ADDR1_OFFSET,
448 	},
449 	{
450 		.msr_a	 = MSR_IA32_RTIT_ADDR2_A,
451 		.msr_b	 = MSR_IA32_RTIT_ADDR2_B,
452 		.reg_off = RTIT_CTL_ADDR2_OFFSET,
453 	},
454 	{
455 		.msr_a	 = MSR_IA32_RTIT_ADDR3_A,
456 		.msr_b	 = MSR_IA32_RTIT_ADDR3_B,
457 		.reg_off = RTIT_CTL_ADDR3_OFFSET,
458 	}
459 };
460 
461 static u64 pt_config_filters(struct perf_event *event)
462 {
463 	struct pt_filters *filters = event->hw.addr_filters;
464 	struct pt *pt = this_cpu_ptr(&pt_ctx);
465 	unsigned int range = 0;
466 	u64 rtit_ctl = 0;
467 
468 	if (!filters)
469 		return 0;
470 
471 	perf_event_addr_filters_sync(event);
472 
473 	for (range = 0; range < filters->nr_filters; range++) {
474 		struct pt_filter *filter = &filters->filter[range];
475 
476 		/*
477 		 * Note, if the range has zero start/end addresses due
478 		 * to its dynamic object not being loaded yet, we just
479 		 * go ahead and program zeroed range, which will simply
480 		 * produce no data. Note^2: if executable code at 0x0
481 		 * is a concern, we can set up an "invalid" configuration
482 		 * such as msr_b < msr_a.
483 		 */
484 
485 		/* avoid redundant msr writes */
486 		if (pt->filters.filter[range].msr_a != filter->msr_a) {
487 			wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
488 			pt->filters.filter[range].msr_a = filter->msr_a;
489 		}
490 
491 		if (pt->filters.filter[range].msr_b != filter->msr_b) {
492 			wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
493 			pt->filters.filter[range].msr_b = filter->msr_b;
494 		}
495 
496 		rtit_ctl |= (u64)filter->config << pt_address_ranges[range].reg_off;
497 	}
498 
499 	return rtit_ctl;
500 }
501 
502 static void pt_config(struct perf_event *event)
503 {
504 	struct pt *pt = this_cpu_ptr(&pt_ctx);
505 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
506 	u64 reg;
507 
508 	/* First round: clear STATUS, in particular the PSB byte counter. */
509 	if (!event->hw.aux_config) {
510 		perf_event_itrace_started(event);
511 		wrmsrl(MSR_IA32_RTIT_STATUS, 0);
512 	}
513 
514 	reg = pt_config_filters(event);
515 	reg |= RTIT_CTL_TRACEEN;
516 	if (!buf->single)
517 		reg |= RTIT_CTL_TOPA;
518 
519 	/*
520 	 * Previously, we had BRANCH_EN on by default, but now that PT has
521 	 * grown features outside of branch tracing, it is useful to allow
522 	 * the user to disable it. Setting bit 0 in the event's attr.config
523 	 * allows BRANCH_EN to pass through instead of being always on. See
524 	 * also the comment in pt_event_valid().
525 	 */
526 	if (event->attr.config & BIT(0)) {
527 		reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
528 	} else {
529 		reg |= RTIT_CTL_BRANCH_EN;
530 	}
531 
532 	if (!event->attr.exclude_kernel)
533 		reg |= RTIT_CTL_OS;
534 	if (!event->attr.exclude_user)
535 		reg |= RTIT_CTL_USR;
536 
537 	reg |= (event->attr.config & PT_CONFIG_MASK);
538 
539 	event->hw.aux_config = reg;
540 
541 	/*
542 	 * Allow resume before starting so as not to overwrite a value set by a
543 	 * PMI.
544 	 */
545 	barrier();
546 	WRITE_ONCE(pt->resume_allowed, 1);
547 	/* Configuration is complete, it is now OK to handle an NMI */
548 	barrier();
549 	WRITE_ONCE(pt->handle_nmi, 1);
550 	barrier();
551 	pt_config_start(event);
552 	barrier();
553 	/*
554 	 * Allow pause after starting so its pt_config_stop() doesn't race with
555 	 * pt_config_start().
556 	 */
557 	WRITE_ONCE(pt->pause_allowed, 1);
558 }
559 
560 static void pt_config_stop(struct perf_event *event)
561 {
562 	struct pt *pt = this_cpu_ptr(&pt_ctx);
563 	u64 ctl = READ_ONCE(event->hw.aux_config);
564 
565 	/* may be already stopped by a PMI */
566 	if (!(ctl & RTIT_CTL_TRACEEN))
567 		return;
568 
569 	ctl &= ~RTIT_CTL_TRACEEN;
570 	if (!READ_ONCE(pt->vmx_on))
571 		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
572 
573 	WRITE_ONCE(event->hw.aux_config, ctl);
574 
575 	/*
576 	 * A wrmsr that disables trace generation serializes other PT
577 	 * registers and causes all data packets to be written to memory,
578 	 * but a fence is required for the data to become globally visible.
579 	 *
580 	 * The below WMB, separating data store and aux_head store matches
581 	 * the consumer's RMB that separates aux_head load and data load.
582 	 */
583 	wmb();
584 }
585 
586 /**
587  * struct topa - ToPA metadata
588  * @list:	linkage to struct pt_buffer's list of tables
589  * @offset:	offset of the first entry in this table in the buffer
590  * @size:	total size of all entries in this table
591  * @last:	index of the last initialized entry in this table
592  * @z_count:	how many times the first entry repeats
593  */
594 struct topa {
595 	struct list_head	list;
596 	u64			offset;
597 	size_t			size;
598 	int			last;
599 	unsigned int		z_count;
600 };
601 
602 /*
603  * Keep ToPA table-related metadata on the same page as the actual table,
604  * taking up a few words from the top
605  */
606 
607 #define TENTS_PER_PAGE	\
608 	((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry))
609 
610 /**
611  * struct topa_page - page-sized ToPA table with metadata at the top
612  * @table:	actual ToPA table entries, as understood by PT hardware
613  * @topa:	metadata
614  */
615 struct topa_page {
616 	struct topa_entry	table[TENTS_PER_PAGE];
617 	struct topa		topa;
618 };
619 
620 static inline struct topa_page *topa_to_page(struct topa *topa)
621 {
622 	return container_of(topa, struct topa_page, topa);
623 }
624 
625 static inline struct topa_page *topa_entry_to_page(struct topa_entry *te)
626 {
627 	return (struct topa_page *)((unsigned long)te & PAGE_MASK);
628 }
629 
630 static inline phys_addr_t topa_pfn(struct topa *topa)
631 {
632 	return PFN_DOWN(virt_to_phys(topa_to_page(topa)));
633 }
634 
635 /* make -1 stand for the last table entry */
636 #define TOPA_ENTRY(t, i)				\
637 	((i) == -1					\
638 		? &topa_to_page(t)->table[(t)->last]	\
639 		: &topa_to_page(t)->table[(i)])
640 #define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size))
641 #define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size)
642 
643 static void pt_config_buffer(struct pt_buffer *buf)
644 {
645 	struct pt *pt = this_cpu_ptr(&pt_ctx);
646 	u64 reg, mask;
647 	void *base;
648 
649 	if (buf->single) {
650 		base = buf->data_pages[0];
651 		mask = (buf->nr_pages * PAGE_SIZE - 1) >> 7;
652 	} else {
653 		base = topa_to_page(buf->cur)->table;
654 		mask = (u64)buf->cur_idx;
655 	}
656 
657 	reg = virt_to_phys(base);
658 	if (pt->output_base != reg) {
659 		pt->output_base = reg;
660 		wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, reg);
661 	}
662 
663 	reg = 0x7f | (mask << 7) | ((u64)buf->output_off << 32);
664 	if (pt->output_mask != reg) {
665 		pt->output_mask = reg;
666 		wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
667 	}
668 }
669 
670 /**
671  * topa_alloc() - allocate page-sized ToPA table
672  * @cpu:	CPU on which to allocate.
673  * @gfp:	Allocation flags.
674  *
675  * Return:	On success, return the pointer to ToPA table page.
676  */
677 static struct topa *topa_alloc(int cpu, gfp_t gfp)
678 {
679 	int node = cpu_to_node(cpu);
680 	struct topa_page *tp;
681 	struct page *p;
682 
683 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
684 	if (!p)
685 		return NULL;
686 
687 	tp = page_address(p);
688 	tp->topa.last = 0;
689 
690 	/*
691 	 * In case of singe-entry ToPA, always put the self-referencing END
692 	 * link as the 2nd entry in the table
693 	 */
694 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
695 		TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT;
696 		TOPA_ENTRY(&tp->topa, 1)->end = 1;
697 	}
698 
699 	return &tp->topa;
700 }
701 
702 /**
703  * topa_free() - free a page-sized ToPA table
704  * @topa:	Table to deallocate.
705  */
706 static void topa_free(struct topa *topa)
707 {
708 	free_page((unsigned long)topa);
709 }
710 
711 /**
712  * topa_insert_table() - insert a ToPA table into a buffer
713  * @buf:	 PT buffer that's being extended.
714  * @topa:	 New topa table to be inserted.
715  *
716  * If it's the first table in this buffer, set up buffer's pointers
717  * accordingly; otherwise, add a END=1 link entry to @topa to the current
718  * "last" table and adjust the last table pointer to @topa.
719  */
720 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
721 {
722 	struct topa *last = buf->last;
723 
724 	list_add_tail(&topa->list, &buf->tables);
725 
726 	if (!buf->first) {
727 		buf->first = buf->last = buf->cur = topa;
728 		return;
729 	}
730 
731 	topa->offset = last->offset + last->size;
732 	buf->last = topa;
733 
734 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
735 		return;
736 
737 	BUG_ON(last->last != TENTS_PER_PAGE - 1);
738 
739 	TOPA_ENTRY(last, -1)->base = topa_pfn(topa);
740 	TOPA_ENTRY(last, -1)->end = 1;
741 }
742 
743 /**
744  * topa_table_full() - check if a ToPA table is filled up
745  * @topa:	ToPA table.
746  */
747 static bool topa_table_full(struct topa *topa)
748 {
749 	/* single-entry ToPA is a special case */
750 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
751 		return !!topa->last;
752 
753 	return topa->last == TENTS_PER_PAGE - 1;
754 }
755 
756 /**
757  * topa_insert_pages() - create a list of ToPA tables
758  * @buf:	PT buffer being initialized.
759  * @cpu:	CPU on which to allocate.
760  * @gfp:	Allocation flags.
761  *
762  * This initializes a list of ToPA tables with entries from
763  * the data_pages provided by rb_alloc_aux().
764  *
765  * Return:	0 on success or error code.
766  */
767 static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp)
768 {
769 	struct topa *topa = buf->last;
770 	int order = 0;
771 	struct page *p;
772 
773 	p = virt_to_page(buf->data_pages[buf->nr_pages]);
774 	if (PagePrivate(p))
775 		order = page_private(p);
776 
777 	if (topa_table_full(topa)) {
778 		topa = topa_alloc(cpu, gfp);
779 		if (!topa)
780 			return -ENOMEM;
781 
782 		topa_insert_table(buf, topa);
783 	}
784 
785 	if (topa->z_count == topa->last - 1) {
786 		if (order == TOPA_ENTRY(topa, topa->last - 1)->size)
787 			topa->z_count++;
788 	}
789 
790 	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
791 	TOPA_ENTRY(topa, -1)->size = order;
792 	if (!buf->snapshot &&
793 	    !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
794 		TOPA_ENTRY(topa, -1)->intr = 1;
795 		TOPA_ENTRY(topa, -1)->stop = 1;
796 	}
797 
798 	topa->last++;
799 	topa->size += sizes(order);
800 
801 	buf->nr_pages += 1ul << order;
802 
803 	return 0;
804 }
805 
806 /**
807  * pt_topa_dump() - print ToPA tables and their entries
808  * @buf:	PT buffer.
809  */
810 static void pt_topa_dump(struct pt_buffer *buf)
811 {
812 	struct topa *topa;
813 
814 	list_for_each_entry(topa, &buf->tables, list) {
815 		struct topa_page *tp = topa_to_page(topa);
816 		int i;
817 
818 		pr_debug("# table @%p, off %llx size %zx\n", tp->table,
819 			 topa->offset, topa->size);
820 		for (i = 0; i < TENTS_PER_PAGE; i++) {
821 			pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
822 				 &tp->table[i],
823 				 (unsigned long)tp->table[i].base << TOPA_SHIFT,
824 				 sizes(tp->table[i].size),
825 				 tp->table[i].end ?  'E' : ' ',
826 				 tp->table[i].intr ? 'I' : ' ',
827 				 tp->table[i].stop ? 'S' : ' ',
828 				 *(u64 *)&tp->table[i]);
829 			if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
830 			     tp->table[i].stop) ||
831 			    tp->table[i].end)
832 				break;
833 			if (!i && topa->z_count)
834 				i += topa->z_count;
835 		}
836 	}
837 }
838 
839 /**
840  * pt_buffer_advance() - advance to the next output region
841  * @buf:	PT buffer.
842  *
843  * Advance the current pointers in the buffer to the next ToPA entry.
844  */
845 static void pt_buffer_advance(struct pt_buffer *buf)
846 {
847 	buf->output_off = 0;
848 	buf->cur_idx++;
849 
850 	if (buf->cur_idx == buf->cur->last) {
851 		if (buf->cur == buf->last) {
852 			buf->cur = buf->first;
853 			buf->wrapped = true;
854 		} else {
855 			buf->cur = list_entry(buf->cur->list.next, struct topa,
856 					      list);
857 		}
858 		buf->cur_idx = 0;
859 	}
860 }
861 
862 /**
863  * pt_update_head() - calculate current offsets and sizes
864  * @pt:		Per-cpu pt context.
865  *
866  * Update buffer's current write pointer position and data size.
867  */
868 static void pt_update_head(struct pt *pt)
869 {
870 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
871 	bool wrapped = buf->wrapped;
872 	u64 topa_idx, base, old;
873 
874 	buf->wrapped = false;
875 
876 	if (buf->single) {
877 		local_set(&buf->data_size, buf->output_off);
878 		return;
879 	}
880 
881 	/* offset of the first region in this table from the beginning of buf */
882 	base = buf->cur->offset + buf->output_off;
883 
884 	/* offset of the current output region within this table */
885 	for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
886 		base += TOPA_ENTRY_SIZE(buf->cur, topa_idx);
887 
888 	if (buf->snapshot) {
889 		local_set(&buf->data_size, base);
890 	} else {
891 		old = (local64_xchg(&buf->head, base) &
892 		       ((buf->nr_pages << PAGE_SHIFT) - 1));
893 		if (base < old || (base == old && wrapped))
894 			base += buf->nr_pages << PAGE_SHIFT;
895 
896 		local_add(base - old, &buf->data_size);
897 	}
898 }
899 
900 /**
901  * pt_buffer_region() - obtain current output region's address
902  * @buf:	PT buffer.
903  */
904 static void *pt_buffer_region(struct pt_buffer *buf)
905 {
906 	return phys_to_virt((phys_addr_t)TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT);
907 }
908 
909 /**
910  * pt_buffer_region_size() - obtain current output region's size
911  * @buf:	PT buffer.
912  */
913 static size_t pt_buffer_region_size(struct pt_buffer *buf)
914 {
915 	return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx);
916 }
917 
918 /**
919  * pt_handle_status() - take care of possible status conditions
920  * @pt:		Per-cpu pt context.
921  */
922 static void pt_handle_status(struct pt *pt)
923 {
924 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
925 	int advance = 0;
926 	u64 status;
927 
928 	rdmsrl(MSR_IA32_RTIT_STATUS, status);
929 
930 	if (status & RTIT_STATUS_ERROR) {
931 		pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
932 		pt_topa_dump(buf);
933 		status &= ~RTIT_STATUS_ERROR;
934 	}
935 
936 	if (status & RTIT_STATUS_STOPPED) {
937 		status &= ~RTIT_STATUS_STOPPED;
938 
939 		/*
940 		 * On systems that only do single-entry ToPA, hitting STOP
941 		 * means we are already losing data; need to let the decoder
942 		 * know.
943 		 */
944 		if (!buf->single &&
945 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
946 		     buf->output_off == pt_buffer_region_size(buf))) {
947 			perf_aux_output_flag(&pt->handle,
948 			                     PERF_AUX_FLAG_TRUNCATED);
949 			advance++;
950 		}
951 	}
952 
953 	/*
954 	 * Also on single-entry ToPA implementations, interrupt will come
955 	 * before the output reaches its output region's boundary.
956 	 */
957 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
958 	    !buf->snapshot &&
959 	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
960 		void *head = pt_buffer_region(buf);
961 
962 		/* everything within this margin needs to be zeroed out */
963 		memset(head + buf->output_off, 0,
964 		       pt_buffer_region_size(buf) -
965 		       buf->output_off);
966 		advance++;
967 	}
968 
969 	if (advance)
970 		pt_buffer_advance(buf);
971 
972 	wrmsrl(MSR_IA32_RTIT_STATUS, status);
973 }
974 
975 /**
976  * pt_read_offset() - translate registers into buffer pointers
977  * @buf:	PT buffer.
978  *
979  * Set buffer's output pointers from MSR values.
980  */
981 static void pt_read_offset(struct pt_buffer *buf)
982 {
983 	struct pt *pt = this_cpu_ptr(&pt_ctx);
984 	struct topa_page *tp;
985 
986 	if (!buf->single) {
987 		rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, pt->output_base);
988 		tp = phys_to_virt(pt->output_base);
989 		buf->cur = &tp->topa;
990 	}
991 
992 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, pt->output_mask);
993 	/* offset within current output region */
994 	buf->output_off = pt->output_mask >> 32;
995 	/* index of current output region within this table */
996 	if (!buf->single)
997 		buf->cur_idx = (pt->output_mask & 0xffffff80) >> 7;
998 }
999 
1000 static struct topa_entry *
1001 pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg)
1002 {
1003 	struct topa_page *tp;
1004 	struct topa *topa;
1005 	unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0;
1006 
1007 	/*
1008 	 * Indicates a bug in the caller.
1009 	 */
1010 	if (WARN_ON_ONCE(pg >= buf->nr_pages))
1011 		return NULL;
1012 
1013 	/*
1014 	 * First, find the ToPA table where @pg fits. With high
1015 	 * order allocations, there shouldn't be many of these.
1016 	 */
1017 	list_for_each_entry(topa, &buf->tables, list) {
1018 		if (topa->offset + topa->size > (unsigned long)pg << PAGE_SHIFT)
1019 			goto found;
1020 	}
1021 
1022 	/*
1023 	 * Hitting this means we have a problem in the ToPA
1024 	 * allocation code.
1025 	 */
1026 	WARN_ON_ONCE(1);
1027 
1028 	return NULL;
1029 
1030 found:
1031 	/*
1032 	 * Indicates a problem in the ToPA allocation code.
1033 	 */
1034 	if (WARN_ON_ONCE(topa->last == -1))
1035 		return NULL;
1036 
1037 	tp = topa_to_page(topa);
1038 	cur_pg = PFN_DOWN(topa->offset);
1039 	if (topa->z_count) {
1040 		z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1);
1041 		start_idx = topa->z_count + 1;
1042 	}
1043 
1044 	/*
1045 	 * Multiple entries at the beginning of the table have the same size,
1046 	 * ideally all of them; if @pg falls there, the search is done.
1047 	 */
1048 	if (pg >= cur_pg && pg < cur_pg + z_pg) {
1049 		idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0);
1050 		return &tp->table[idx];
1051 	}
1052 
1053 	/*
1054 	 * Otherwise, slow path: iterate through the remaining entries.
1055 	 */
1056 	for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) {
1057 		if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg)
1058 			return &tp->table[idx];
1059 
1060 		cur_pg += TOPA_ENTRY_PAGES(topa, idx);
1061 	}
1062 
1063 	/*
1064 	 * Means we couldn't find a ToPA entry in the table that does match.
1065 	 */
1066 	WARN_ON_ONCE(1);
1067 
1068 	return NULL;
1069 }
1070 
1071 static struct topa_entry *
1072 pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te)
1073 {
1074 	unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1);
1075 	struct topa_page *tp;
1076 	struct topa *topa;
1077 
1078 	tp = (struct topa_page *)table;
1079 	if (tp->table != te)
1080 		return --te;
1081 
1082 	topa = &tp->topa;
1083 	if (topa == buf->first)
1084 		topa = buf->last;
1085 	else
1086 		topa = list_prev_entry(topa, list);
1087 
1088 	tp = topa_to_page(topa);
1089 
1090 	return &tp->table[topa->last - 1];
1091 }
1092 
1093 /**
1094  * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
1095  * @buf:	PT buffer.
1096  * @handle:	Current output handle.
1097  *
1098  * Place INT and STOP marks to prevent overwriting old data that the consumer
1099  * hasn't yet collected and waking up the consumer after a certain fraction of
1100  * the buffer has filled up. Only needed and sensible for non-snapshot counters.
1101  *
1102  * This obviously relies on buf::head to figure out buffer markers, so it has
1103  * to be called after pt_buffer_reset_offsets() and before the hardware tracing
1104  * is enabled.
1105  */
1106 static int pt_buffer_reset_markers(struct pt_buffer *buf,
1107 				   struct perf_output_handle *handle)
1108 
1109 {
1110 	unsigned long head = local64_read(&buf->head);
1111 	unsigned long idx, npages, wakeup;
1112 
1113 	if (buf->single)
1114 		return 0;
1115 
1116 	/* can't stop in the middle of an output region */
1117 	if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) {
1118 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1119 		return -EINVAL;
1120 	}
1121 
1122 
1123 	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
1124 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1125 		return 0;
1126 
1127 	/* clear STOP and INT from current entry */
1128 	if (buf->stop_te) {
1129 		buf->stop_te->stop = 0;
1130 		buf->stop_te->intr = 0;
1131 	}
1132 
1133 	if (buf->intr_te)
1134 		buf->intr_te->intr = 0;
1135 
1136 	/* how many pages till the STOP marker */
1137 	npages = handle->size >> PAGE_SHIFT;
1138 
1139 	/* if it's on a page boundary, fill up one more page */
1140 	if (!offset_in_page(head + handle->size + 1))
1141 		npages++;
1142 
1143 	idx = (head >> PAGE_SHIFT) + npages;
1144 	idx &= buf->nr_pages - 1;
1145 
1146 	if (idx != buf->stop_pos) {
1147 		buf->stop_pos = idx;
1148 		buf->stop_te = pt_topa_entry_for_page(buf, idx);
1149 		buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te);
1150 	}
1151 
1152 	wakeup = handle->wakeup >> PAGE_SHIFT;
1153 
1154 	/* in the worst case, wake up the consumer one page before hard stop */
1155 	idx = (head >> PAGE_SHIFT) + npages - 1;
1156 	if (idx > wakeup)
1157 		idx = wakeup;
1158 
1159 	idx &= buf->nr_pages - 1;
1160 	if (idx != buf->intr_pos) {
1161 		buf->intr_pos = idx;
1162 		buf->intr_te = pt_topa_entry_for_page(buf, idx);
1163 		buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te);
1164 	}
1165 
1166 	buf->stop_te->stop = 1;
1167 	buf->stop_te->intr = 1;
1168 	buf->intr_te->intr = 1;
1169 
1170 	return 0;
1171 }
1172 
1173 /**
1174  * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1175  * @buf:	PT buffer.
1176  * @head:	Write pointer (aux_head) from AUX buffer.
1177  *
1178  * Find the ToPA table and entry corresponding to given @head and set buffer's
1179  * "current" pointers accordingly. This is done after we have obtained the
1180  * current aux_head position from a successful call to perf_aux_output_begin()
1181  * to make sure the hardware is writing to the right place.
1182  *
1183  * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1184  * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1185  * which are used to determine INT and STOP markers' locations by a subsequent
1186  * call to pt_buffer_reset_markers().
1187  */
1188 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1189 {
1190 	struct topa_page *cur_tp;
1191 	struct topa_entry *te;
1192 	int pg;
1193 
1194 	if (buf->snapshot)
1195 		head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1196 
1197 	if (!buf->single) {
1198 		pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1199 		te = pt_topa_entry_for_page(buf, pg);
1200 
1201 		cur_tp = topa_entry_to_page(te);
1202 		buf->cur = &cur_tp->topa;
1203 		buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0);
1204 		buf->output_off = head & (pt_buffer_region_size(buf) - 1);
1205 	} else {
1206 		buf->output_off = head;
1207 	}
1208 
1209 	local64_set(&buf->head, head);
1210 	local_set(&buf->data_size, 0);
1211 }
1212 
1213 /**
1214  * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1215  * @buf:	PT buffer.
1216  */
1217 static void pt_buffer_fini_topa(struct pt_buffer *buf)
1218 {
1219 	struct topa *topa, *iter;
1220 
1221 	if (buf->single)
1222 		return;
1223 
1224 	list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1225 		/*
1226 		 * right now, this is in free_aux() path only, so
1227 		 * no need to unlink this table from the list
1228 		 */
1229 		topa_free(topa);
1230 	}
1231 }
1232 
1233 /**
1234  * pt_buffer_init_topa() - initialize ToPA table for pt buffer
1235  * @buf:	PT buffer.
1236  * @cpu:	CPU on which to allocate.
1237  * @nr_pages:	No. of pages to allocate.
1238  * @gfp:	Allocation flags.
1239  *
1240  * Return:	0 on success or error code.
1241  */
1242 static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu,
1243 			       unsigned long nr_pages, gfp_t gfp)
1244 {
1245 	struct topa *topa;
1246 	int err;
1247 
1248 	topa = topa_alloc(cpu, gfp);
1249 	if (!topa)
1250 		return -ENOMEM;
1251 
1252 	topa_insert_table(buf, topa);
1253 
1254 	while (buf->nr_pages < nr_pages) {
1255 		err = topa_insert_pages(buf, cpu, gfp);
1256 		if (err) {
1257 			pt_buffer_fini_topa(buf);
1258 			return -ENOMEM;
1259 		}
1260 	}
1261 
1262 	/* link last table to the first one, unless we're double buffering */
1263 	if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
1264 		TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first);
1265 		TOPA_ENTRY(buf->last, -1)->end = 1;
1266 	}
1267 
1268 	pt_topa_dump(buf);
1269 	return 0;
1270 }
1271 
1272 static int pt_buffer_try_single(struct pt_buffer *buf, int nr_pages)
1273 {
1274 	struct page *p = virt_to_page(buf->data_pages[0]);
1275 	int ret = -ENOTSUPP, order = 0;
1276 
1277 	/*
1278 	 * We can use single range output mode
1279 	 * + in snapshot mode, where we don't need interrupts;
1280 	 * + if the hardware supports it;
1281 	 * + if the entire buffer is one contiguous allocation.
1282 	 */
1283 	if (!buf->snapshot)
1284 		goto out;
1285 
1286 	if (!intel_pt_validate_hw_cap(PT_CAP_single_range_output))
1287 		goto out;
1288 
1289 	if (PagePrivate(p))
1290 		order = page_private(p);
1291 
1292 	if (1 << order != nr_pages)
1293 		goto out;
1294 
1295 	/*
1296 	 * Some processors cannot always support single range for more than
1297 	 * 4KB - refer errata TGL052, ADL037 and RPL017. Future processors might
1298 	 * also be affected, so for now rather than trying to keep track of
1299 	 * which ones, just disable it for all.
1300 	 */
1301 	if (nr_pages > 1)
1302 		goto out;
1303 
1304 	buf->single = true;
1305 	buf->nr_pages = nr_pages;
1306 	ret = 0;
1307 out:
1308 	return ret;
1309 }
1310 
1311 /**
1312  * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1313  * @event:	Performance event
1314  * @pages:	Array of pointers to buffer pages passed from perf core.
1315  * @nr_pages:	Number of pages in the buffer.
1316  * @snapshot:	If this is a snapshot/overwrite counter.
1317  *
1318  * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1319  * bookkeeping for an AUX buffer.
1320  *
1321  * Return:	Our private PT buffer structure.
1322  */
1323 static void *
1324 pt_buffer_setup_aux(struct perf_event *event, void **pages,
1325 		    int nr_pages, bool snapshot)
1326 {
1327 	struct pt_buffer *buf;
1328 	int node, ret, cpu = event->cpu;
1329 
1330 	if (!nr_pages)
1331 		return NULL;
1332 
1333 	/*
1334 	 * Only support AUX sampling in snapshot mode, where we don't
1335 	 * generate NMIs.
1336 	 */
1337 	if (event->attr.aux_sample_size && !snapshot)
1338 		return NULL;
1339 
1340 	if (cpu == -1)
1341 		cpu = raw_smp_processor_id();
1342 	node = cpu_to_node(cpu);
1343 
1344 	buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node);
1345 	if (!buf)
1346 		return NULL;
1347 
1348 	buf->snapshot = snapshot;
1349 	buf->data_pages = pages;
1350 	buf->stop_pos = -1;
1351 	buf->intr_pos = -1;
1352 
1353 	INIT_LIST_HEAD(&buf->tables);
1354 
1355 	ret = pt_buffer_try_single(buf, nr_pages);
1356 	if (!ret)
1357 		return buf;
1358 
1359 	ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL);
1360 	if (ret) {
1361 		kfree(buf);
1362 		return NULL;
1363 	}
1364 
1365 	return buf;
1366 }
1367 
1368 /**
1369  * pt_buffer_free_aux() - perf AUX deallocation path callback
1370  * @data:	PT buffer.
1371  */
1372 static void pt_buffer_free_aux(void *data)
1373 {
1374 	struct pt_buffer *buf = data;
1375 
1376 	pt_buffer_fini_topa(buf);
1377 	kfree(buf);
1378 }
1379 
1380 static int pt_addr_filters_init(struct perf_event *event)
1381 {
1382 	struct pt_filters *filters;
1383 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1384 
1385 	if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1386 		return 0;
1387 
1388 	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1389 	if (!filters)
1390 		return -ENOMEM;
1391 
1392 	if (event->parent)
1393 		memcpy(filters, event->parent->hw.addr_filters,
1394 		       sizeof(*filters));
1395 
1396 	event->hw.addr_filters = filters;
1397 
1398 	return 0;
1399 }
1400 
1401 static void pt_addr_filters_fini(struct perf_event *event)
1402 {
1403 	kfree(event->hw.addr_filters);
1404 	event->hw.addr_filters = NULL;
1405 }
1406 
1407 #ifdef CONFIG_X86_64
1408 /* Clamp to a canonical address greater-than-or-equal-to the address given */
1409 static u64 clamp_to_ge_canonical_addr(u64 vaddr, u8 vaddr_bits)
1410 {
1411 	return __is_canonical_address(vaddr, vaddr_bits) ?
1412 	       vaddr :
1413 	       -BIT_ULL(vaddr_bits - 1);
1414 }
1415 
1416 /* Clamp to a canonical address less-than-or-equal-to the address given */
1417 static u64 clamp_to_le_canonical_addr(u64 vaddr, u8 vaddr_bits)
1418 {
1419 	return __is_canonical_address(vaddr, vaddr_bits) ?
1420 	       vaddr :
1421 	       BIT_ULL(vaddr_bits - 1) - 1;
1422 }
1423 #else
1424 #define clamp_to_ge_canonical_addr(x, y) (x)
1425 #define clamp_to_le_canonical_addr(x, y) (x)
1426 #endif
1427 
1428 static int pt_event_addr_filters_validate(struct list_head *filters)
1429 {
1430 	struct perf_addr_filter *filter;
1431 	int range = 0;
1432 
1433 	list_for_each_entry(filter, filters, entry) {
1434 		/*
1435 		 * PT doesn't support single address triggers and
1436 		 * 'start' filters.
1437 		 */
1438 		if (!filter->size ||
1439 		    filter->action == PERF_ADDR_FILTER_ACTION_START)
1440 			return -EOPNOTSUPP;
1441 
1442 		if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1443 			return -EOPNOTSUPP;
1444 	}
1445 
1446 	return 0;
1447 }
1448 
1449 static void pt_event_addr_filters_sync(struct perf_event *event)
1450 {
1451 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1452 	unsigned long msr_a, msr_b;
1453 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
1454 	struct pt_filters *filters = event->hw.addr_filters;
1455 	struct perf_addr_filter *filter;
1456 	int range = 0;
1457 
1458 	if (!filters)
1459 		return;
1460 
1461 	list_for_each_entry(filter, &head->list, entry) {
1462 		if (filter->path.dentry && !fr[range].start) {
1463 			msr_a = msr_b = 0;
1464 		} else {
1465 			unsigned long n = fr[range].size - 1;
1466 			unsigned long a = fr[range].start;
1467 			unsigned long b;
1468 
1469 			if (a > ULONG_MAX - n)
1470 				b = ULONG_MAX;
1471 			else
1472 				b = a + n;
1473 			/*
1474 			 * Apply the offset. 64-bit addresses written to the
1475 			 * MSRs must be canonical, but the range can encompass
1476 			 * non-canonical addresses. Since software cannot
1477 			 * execute at non-canonical addresses, adjusting to
1478 			 * canonical addresses does not affect the result of the
1479 			 * address filter.
1480 			 */
1481 			msr_a = clamp_to_ge_canonical_addr(a, boot_cpu_data.x86_virt_bits);
1482 			msr_b = clamp_to_le_canonical_addr(b, boot_cpu_data.x86_virt_bits);
1483 			if (msr_b < msr_a)
1484 				msr_a = msr_b = 0;
1485 		}
1486 
1487 		filters->filter[range].msr_a  = msr_a;
1488 		filters->filter[range].msr_b  = msr_b;
1489 		if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER)
1490 			filters->filter[range].config = 1;
1491 		else
1492 			filters->filter[range].config = 2;
1493 		range++;
1494 	}
1495 
1496 	filters->nr_filters = range;
1497 }
1498 
1499 /**
1500  * intel_pt_interrupt() - PT PMI handler
1501  */
1502 void intel_pt_interrupt(void)
1503 {
1504 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1505 	struct pt_buffer *buf;
1506 	struct perf_event *event = pt->handle.event;
1507 
1508 	/*
1509 	 * There may be a dangling PT bit in the interrupt status register
1510 	 * after PT has been disabled by pt_event_stop(). Make sure we don't
1511 	 * do anything (particularly, re-enable) for this event here.
1512 	 */
1513 	if (!READ_ONCE(pt->handle_nmi))
1514 		return;
1515 
1516 	if (!event)
1517 		return;
1518 
1519 	pt_config_stop(event);
1520 
1521 	buf = perf_get_aux(&pt->handle);
1522 	if (!buf)
1523 		return;
1524 
1525 	pt_read_offset(buf);
1526 
1527 	pt_handle_status(pt);
1528 
1529 	pt_update_head(pt);
1530 
1531 	perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1532 
1533 	if (!event->hw.state) {
1534 		int ret;
1535 
1536 		buf = perf_aux_output_begin(&pt->handle, event);
1537 		if (!buf) {
1538 			event->hw.state = PERF_HES_STOPPED;
1539 			WRITE_ONCE(pt->resume_allowed, 0);
1540 			return;
1541 		}
1542 
1543 		pt_buffer_reset_offsets(buf, pt->handle.head);
1544 		/* snapshot counters don't use PMI, so it's safe */
1545 		ret = pt_buffer_reset_markers(buf, &pt->handle);
1546 		if (ret) {
1547 			perf_aux_output_end(&pt->handle, 0);
1548 			WRITE_ONCE(pt->resume_allowed, 0);
1549 			return;
1550 		}
1551 
1552 		pt_config_buffer(buf);
1553 		pt_config_start(event);
1554 	}
1555 }
1556 
1557 void intel_pt_handle_vmx(int on)
1558 {
1559 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1560 	struct perf_event *event;
1561 	unsigned long flags;
1562 
1563 	/* PT plays nice with VMX, do nothing */
1564 	if (pt_pmu.vmx)
1565 		return;
1566 
1567 	/*
1568 	 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1569 	 * sure to not try to set it while VMX is on. Disable
1570 	 * interrupts to avoid racing with pmu callbacks;
1571 	 * concurrent PMI should be handled fine.
1572 	 */
1573 	local_irq_save(flags);
1574 	WRITE_ONCE(pt->vmx_on, on);
1575 
1576 	/*
1577 	 * If an AUX transaction is in progress, it will contain
1578 	 * gap(s), so flag it PARTIAL to inform the user.
1579 	 */
1580 	event = pt->handle.event;
1581 	if (event)
1582 		perf_aux_output_flag(&pt->handle,
1583 		                     PERF_AUX_FLAG_PARTIAL);
1584 
1585 	/* Turn PTs back on */
1586 	if (!on && event)
1587 		wrmsrl(MSR_IA32_RTIT_CTL, event->hw.aux_config);
1588 
1589 	local_irq_restore(flags);
1590 }
1591 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1592 
1593 /*
1594  * PMU callbacks
1595  */
1596 
1597 static void pt_event_start(struct perf_event *event, int mode)
1598 {
1599 	struct hw_perf_event *hwc = &event->hw;
1600 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1601 	struct pt_buffer *buf;
1602 
1603 	if (mode & PERF_EF_RESUME) {
1604 		if (READ_ONCE(pt->resume_allowed)) {
1605 			u64 status;
1606 
1607 			/*
1608 			 * Only if the trace is not active and the error and
1609 			 * stopped bits are clear, is it safe to start, but a
1610 			 * PMI might have just cleared these, so resume_allowed
1611 			 * must be checked again also.
1612 			 */
1613 			rdmsrl(MSR_IA32_RTIT_STATUS, status);
1614 			if (!(status & (RTIT_STATUS_TRIGGEREN |
1615 					RTIT_STATUS_ERROR |
1616 					RTIT_STATUS_STOPPED)) &&
1617 			   READ_ONCE(pt->resume_allowed))
1618 				pt_config_start(event);
1619 		}
1620 		return;
1621 	}
1622 
1623 	buf = perf_aux_output_begin(&pt->handle, event);
1624 	if (!buf)
1625 		goto fail_stop;
1626 
1627 	pt_buffer_reset_offsets(buf, pt->handle.head);
1628 	if (!buf->snapshot) {
1629 		if (pt_buffer_reset_markers(buf, &pt->handle))
1630 			goto fail_end_stop;
1631 	}
1632 
1633 	hwc->state = 0;
1634 
1635 	pt_config_buffer(buf);
1636 	pt_config(event);
1637 
1638 	return;
1639 
1640 fail_end_stop:
1641 	perf_aux_output_end(&pt->handle, 0);
1642 fail_stop:
1643 	hwc->state = PERF_HES_STOPPED;
1644 }
1645 
1646 static void pt_event_stop(struct perf_event *event, int mode)
1647 {
1648 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1649 
1650 	if (mode & PERF_EF_PAUSE) {
1651 		if (READ_ONCE(pt->pause_allowed))
1652 			pt_config_stop(event);
1653 		return;
1654 	}
1655 
1656 	/*
1657 	 * Protect against the PMI racing with disabling wrmsr,
1658 	 * see comment in intel_pt_interrupt().
1659 	 */
1660 	WRITE_ONCE(pt->handle_nmi, 0);
1661 	barrier();
1662 
1663 	/*
1664 	 * Prevent a resume from attempting to restart tracing, or a pause
1665 	 * during a subsequent start. Do this after clearing handle_nmi so that
1666 	 * pt_event_snapshot_aux() will not re-allow them.
1667 	 */
1668 	WRITE_ONCE(pt->pause_allowed, 0);
1669 	WRITE_ONCE(pt->resume_allowed, 0);
1670 	barrier();
1671 
1672 	pt_config_stop(event);
1673 
1674 	if (event->hw.state == PERF_HES_STOPPED)
1675 		return;
1676 
1677 	event->hw.state = PERF_HES_STOPPED;
1678 
1679 	if (mode & PERF_EF_UPDATE) {
1680 		struct pt_buffer *buf = perf_get_aux(&pt->handle);
1681 
1682 		if (!buf)
1683 			return;
1684 
1685 		if (WARN_ON_ONCE(pt->handle.event != event))
1686 			return;
1687 
1688 		pt_read_offset(buf);
1689 
1690 		pt_handle_status(pt);
1691 
1692 		pt_update_head(pt);
1693 
1694 		if (buf->snapshot)
1695 			pt->handle.head =
1696 				local_xchg(&buf->data_size,
1697 					   buf->nr_pages << PAGE_SHIFT);
1698 		perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1699 	}
1700 }
1701 
1702 static long pt_event_snapshot_aux(struct perf_event *event,
1703 				  struct perf_output_handle *handle,
1704 				  unsigned long size)
1705 {
1706 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1707 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
1708 	unsigned long from = 0, to;
1709 	long ret;
1710 
1711 	if (WARN_ON_ONCE(!buf))
1712 		return 0;
1713 
1714 	/*
1715 	 * Sampling is only allowed on snapshot events;
1716 	 * see pt_buffer_setup_aux().
1717 	 */
1718 	if (WARN_ON_ONCE(!buf->snapshot))
1719 		return 0;
1720 
1721 	/* Prevent pause/resume from attempting to start/stop tracing */
1722 	WRITE_ONCE(pt->pause_allowed, 0);
1723 	WRITE_ONCE(pt->resume_allowed, 0);
1724 	barrier();
1725 	/*
1726 	 * There is no PT interrupt in this mode, so stop the trace and it will
1727 	 * remain stopped while the buffer is copied.
1728 	 */
1729 	pt_config_stop(event);
1730 	pt_read_offset(buf);
1731 	pt_update_head(pt);
1732 
1733 	to = local_read(&buf->data_size);
1734 	if (to < size)
1735 		from = buf->nr_pages << PAGE_SHIFT;
1736 	from += to - size;
1737 
1738 	ret = perf_output_copy_aux(&pt->handle, handle, from, to);
1739 
1740 	/*
1741 	 * Here, handle_nmi tells us if the tracing was on.
1742 	 * If the tracing was on, restart it.
1743 	 */
1744 	if (READ_ONCE(pt->handle_nmi)) {
1745 		WRITE_ONCE(pt->resume_allowed, 1);
1746 		barrier();
1747 		pt_config_start(event);
1748 		barrier();
1749 		WRITE_ONCE(pt->pause_allowed, 1);
1750 	}
1751 
1752 	return ret;
1753 }
1754 
1755 static void pt_event_del(struct perf_event *event, int mode)
1756 {
1757 	pt_event_stop(event, PERF_EF_UPDATE);
1758 }
1759 
1760 static int pt_event_add(struct perf_event *event, int mode)
1761 {
1762 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1763 	struct hw_perf_event *hwc = &event->hw;
1764 	int ret = -EBUSY;
1765 
1766 	if (pt->handle.event)
1767 		goto fail;
1768 
1769 	if (mode & PERF_EF_START) {
1770 		pt_event_start(event, 0);
1771 		ret = -EINVAL;
1772 		if (hwc->state == PERF_HES_STOPPED)
1773 			goto fail;
1774 	} else {
1775 		hwc->state = PERF_HES_STOPPED;
1776 	}
1777 
1778 	ret = 0;
1779 fail:
1780 
1781 	return ret;
1782 }
1783 
1784 static void pt_event_read(struct perf_event *event)
1785 {
1786 }
1787 
1788 static void pt_event_destroy(struct perf_event *event)
1789 {
1790 	pt_addr_filters_fini(event);
1791 	x86_del_exclusive(x86_lbr_exclusive_pt);
1792 }
1793 
1794 static int pt_event_init(struct perf_event *event)
1795 {
1796 	if (event->attr.type != pt_pmu.pmu.type)
1797 		return -ENOENT;
1798 
1799 	if (!pt_event_valid(event))
1800 		return -EINVAL;
1801 
1802 	if (x86_add_exclusive(x86_lbr_exclusive_pt))
1803 		return -EBUSY;
1804 
1805 	if (pt_addr_filters_init(event)) {
1806 		x86_del_exclusive(x86_lbr_exclusive_pt);
1807 		return -ENOMEM;
1808 	}
1809 
1810 	event->destroy = pt_event_destroy;
1811 
1812 	return 0;
1813 }
1814 
1815 void cpu_emergency_stop_pt(void)
1816 {
1817 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1818 
1819 	if (pt->handle.event)
1820 		pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1821 }
1822 
1823 int is_intel_pt_event(struct perf_event *event)
1824 {
1825 	return event->pmu == &pt_pmu.pmu;
1826 }
1827 
1828 static __init int pt_init(void)
1829 {
1830 	int ret, cpu, prior_warn = 0;
1831 
1832 	BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1833 
1834 	if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1835 		return -ENODEV;
1836 
1837 	cpus_read_lock();
1838 	for_each_online_cpu(cpu) {
1839 		u64 ctl;
1840 
1841 		ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1842 		if (!ret && (ctl & RTIT_CTL_TRACEEN))
1843 			prior_warn++;
1844 	}
1845 	cpus_read_unlock();
1846 
1847 	if (prior_warn) {
1848 		x86_add_exclusive(x86_lbr_exclusive_pt);
1849 		pr_warn("PT is enabled at boot time, doing nothing\n");
1850 
1851 		return -EBUSY;
1852 	}
1853 
1854 	ret = pt_pmu_hw_init();
1855 	if (ret)
1856 		return ret;
1857 
1858 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
1859 		pr_warn("ToPA output is not supported on this CPU\n");
1860 		return -ENODEV;
1861 	}
1862 
1863 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1864 		pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG;
1865 
1866 	pt_pmu.pmu.capabilities		|= PERF_PMU_CAP_EXCLUSIVE |
1867 					   PERF_PMU_CAP_ITRACE |
1868 					   PERF_PMU_CAP_AUX_PAUSE;
1869 	pt_pmu.pmu.attr_groups		 = pt_attr_groups;
1870 	pt_pmu.pmu.task_ctx_nr		 = perf_sw_context;
1871 	pt_pmu.pmu.event_init		 = pt_event_init;
1872 	pt_pmu.pmu.add			 = pt_event_add;
1873 	pt_pmu.pmu.del			 = pt_event_del;
1874 	pt_pmu.pmu.start		 = pt_event_start;
1875 	pt_pmu.pmu.stop			 = pt_event_stop;
1876 	pt_pmu.pmu.snapshot_aux		 = pt_event_snapshot_aux;
1877 	pt_pmu.pmu.read			 = pt_event_read;
1878 	pt_pmu.pmu.setup_aux		 = pt_buffer_setup_aux;
1879 	pt_pmu.pmu.free_aux		 = pt_buffer_free_aux;
1880 	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1881 	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1882 	pt_pmu.pmu.nr_addr_filters       =
1883 		intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
1884 
1885 	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1886 
1887 	return ret;
1888 }
1889 arch_initcall(pt_init);
1890