xref: /linux/arch/x86/events/intel/pt.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel(R) Processor Trace PMU driver for perf
4  * Copyright (c) 2013-2014, Intel Corporation.
5  *
6  * Intel PT is specified in the Intel Architecture Instruction Set Extensions
7  * Programming Reference:
8  * http://software.intel.com/en-us/intel-isa-extensions
9  */
10 
11 #undef DEBUG
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/types.h>
16 #include <linux/bits.h>
17 #include <linux/limits.h>
18 #include <linux/slab.h>
19 #include <linux/device.h>
20 
21 #include <asm/cpuid.h>
22 #include <asm/perf_event.h>
23 #include <asm/insn.h>
24 #include <asm/io.h>
25 #include <asm/intel_pt.h>
26 #include <asm/cpu_device_id.h>
27 
28 #include "../perf_event.h"
29 #include "pt.h"
30 
31 static DEFINE_PER_CPU(struct pt, pt_ctx);
32 
33 static struct pt_pmu pt_pmu;
34 
35 /*
36  * Capabilities of Intel PT hardware, such as number of address bits or
37  * supported output schemes, are cached and exported to userspace as "caps"
38  * attribute group of pt pmu device
39  * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
40  * relevant bits together with intel_pt traces.
41  *
42  * These are necessary for both trace decoding (payloads_lip, contains address
43  * width encoded in IP-related packets), and event configuration (bitmasks with
44  * permitted values for certain bit fields).
45  */
46 #define PT_CAP(_n, _l, _r, _m)						\
47 	[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,	\
48 			    .reg = _r, .mask = _m }
49 
50 static struct pt_cap_desc {
51 	const char	*name;
52 	u32		leaf;
53 	u8		reg;
54 	u32		mask;
55 } pt_caps[] = {
56 	PT_CAP(max_subleaf,		0, CPUID_EAX, 0xffffffff),
57 	PT_CAP(cr3_filtering,		0, CPUID_EBX, BIT(0)),
58 	PT_CAP(psb_cyc,			0, CPUID_EBX, BIT(1)),
59 	PT_CAP(ip_filtering,		0, CPUID_EBX, BIT(2)),
60 	PT_CAP(mtc,			0, CPUID_EBX, BIT(3)),
61 	PT_CAP(ptwrite,			0, CPUID_EBX, BIT(4)),
62 	PT_CAP(power_event_trace,	0, CPUID_EBX, BIT(5)),
63 	PT_CAP(event_trace,		0, CPUID_EBX, BIT(7)),
64 	PT_CAP(tnt_disable,		0, CPUID_EBX, BIT(8)),
65 	PT_CAP(topa_output,		0, CPUID_ECX, BIT(0)),
66 	PT_CAP(topa_multiple_entries,	0, CPUID_ECX, BIT(1)),
67 	PT_CAP(single_range_output,	0, CPUID_ECX, BIT(2)),
68 	PT_CAP(output_subsys,		0, CPUID_ECX, BIT(3)),
69 	PT_CAP(payloads_lip,		0, CPUID_ECX, BIT(31)),
70 	PT_CAP(num_address_ranges,	1, CPUID_EAX, 0x7),
71 	PT_CAP(mtc_periods,		1, CPUID_EAX, 0xffff0000),
72 	PT_CAP(cycle_thresholds,	1, CPUID_EBX, 0xffff),
73 	PT_CAP(psb_periods,		1, CPUID_EBX, 0xffff0000),
74 };
75 
76 u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
77 {
78 	struct pt_cap_desc *cd = &pt_caps[capability];
79 	u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
80 	unsigned int shift = __ffs(cd->mask);
81 
82 	return (c & cd->mask) >> shift;
83 }
84 EXPORT_SYMBOL_GPL(intel_pt_validate_cap);
85 
86 u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
87 {
88 	return intel_pt_validate_cap(pt_pmu.caps, cap);
89 }
90 EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap);
91 
92 static ssize_t pt_cap_show(struct device *cdev,
93 			   struct device_attribute *attr,
94 			   char *buf)
95 {
96 	struct dev_ext_attribute *ea =
97 		container_of(attr, struct dev_ext_attribute, attr);
98 	enum pt_capabilities cap = (long)ea->var;
99 
100 	return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
101 }
102 
103 static struct attribute_group pt_cap_group __ro_after_init = {
104 	.name	= "caps",
105 };
106 
107 PMU_FORMAT_ATTR(pt,		"config:0"	);
108 PMU_FORMAT_ATTR(cyc,		"config:1"	);
109 PMU_FORMAT_ATTR(pwr_evt,	"config:4"	);
110 PMU_FORMAT_ATTR(fup_on_ptw,	"config:5"	);
111 PMU_FORMAT_ATTR(mtc,		"config:9"	);
112 PMU_FORMAT_ATTR(tsc,		"config:10"	);
113 PMU_FORMAT_ATTR(noretcomp,	"config:11"	);
114 PMU_FORMAT_ATTR(ptw,		"config:12"	);
115 PMU_FORMAT_ATTR(branch,		"config:13"	);
116 PMU_FORMAT_ATTR(event,		"config:31"	);
117 PMU_FORMAT_ATTR(notnt,		"config:55"	);
118 PMU_FORMAT_ATTR(mtc_period,	"config:14-17"	);
119 PMU_FORMAT_ATTR(cyc_thresh,	"config:19-22"	);
120 PMU_FORMAT_ATTR(psb_period,	"config:24-27"	);
121 
122 static struct attribute *pt_formats_attr[] = {
123 	&format_attr_pt.attr,
124 	&format_attr_cyc.attr,
125 	&format_attr_pwr_evt.attr,
126 	&format_attr_event.attr,
127 	&format_attr_notnt.attr,
128 	&format_attr_fup_on_ptw.attr,
129 	&format_attr_mtc.attr,
130 	&format_attr_tsc.attr,
131 	&format_attr_noretcomp.attr,
132 	&format_attr_ptw.attr,
133 	&format_attr_branch.attr,
134 	&format_attr_mtc_period.attr,
135 	&format_attr_cyc_thresh.attr,
136 	&format_attr_psb_period.attr,
137 	NULL,
138 };
139 
140 static struct attribute_group pt_format_group = {
141 	.name	= "format",
142 	.attrs	= pt_formats_attr,
143 };
144 
145 static ssize_t
146 pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
147 		    char *page)
148 {
149 	struct perf_pmu_events_attr *pmu_attr =
150 		container_of(attr, struct perf_pmu_events_attr, attr);
151 
152 	switch (pmu_attr->id) {
153 	case 0:
154 		return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
155 	case 1:
156 		return sprintf(page, "%u:%u\n",
157 			       pt_pmu.tsc_art_num,
158 			       pt_pmu.tsc_art_den);
159 	default:
160 		break;
161 	}
162 
163 	return -EINVAL;
164 }
165 
166 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
167 	       pt_timing_attr_show);
168 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
169 	       pt_timing_attr_show);
170 
171 static struct attribute *pt_timing_attr[] = {
172 	&timing_attr_max_nonturbo_ratio.attr.attr,
173 	&timing_attr_tsc_art_ratio.attr.attr,
174 	NULL,
175 };
176 
177 static struct attribute_group pt_timing_group = {
178 	.attrs	= pt_timing_attr,
179 };
180 
181 static const struct attribute_group *pt_attr_groups[] = {
182 	&pt_cap_group,
183 	&pt_format_group,
184 	&pt_timing_group,
185 	NULL,
186 };
187 
188 static int __init pt_pmu_hw_init(void)
189 {
190 	struct dev_ext_attribute *de_attrs;
191 	struct attribute **attrs;
192 	size_t size;
193 	u64 reg;
194 	int ret;
195 	long i;
196 
197 	rdmsrl(MSR_PLATFORM_INFO, reg);
198 	pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
199 
200 	/*
201 	 * if available, read in TSC to core crystal clock ratio,
202 	 * otherwise, zero for numerator stands for "not enumerated"
203 	 * as per SDM
204 	 */
205 	if (boot_cpu_data.cpuid_level >= CPUID_LEAF_TSC) {
206 		u32 eax, ebx, ecx, edx;
207 
208 		cpuid(CPUID_LEAF_TSC, &eax, &ebx, &ecx, &edx);
209 
210 		pt_pmu.tsc_art_num = ebx;
211 		pt_pmu.tsc_art_den = eax;
212 	}
213 
214 	/* model-specific quirks */
215 	switch (boot_cpu_data.x86_vfm) {
216 	case INTEL_BROADWELL:
217 	case INTEL_BROADWELL_D:
218 	case INTEL_BROADWELL_G:
219 	case INTEL_BROADWELL_X:
220 		/* not setting BRANCH_EN will #GP, erratum BDM106 */
221 		pt_pmu.branch_en_always_on = true;
222 		break;
223 	default:
224 		break;
225 	}
226 
227 	if (boot_cpu_has(X86_FEATURE_VMX)) {
228 		/*
229 		 * Intel SDM, 36.5 "Tracing post-VMXON" says that
230 		 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
231 		 * post-VMXON.
232 		 */
233 		rdmsrl(MSR_IA32_VMX_MISC, reg);
234 		if (reg & BIT(14))
235 			pt_pmu.vmx = true;
236 	}
237 
238 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
239 		cpuid_count(20, i,
240 			    &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
241 			    &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
242 			    &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
243 			    &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
244 	}
245 
246 	ret = -ENOMEM;
247 	size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
248 	attrs = kzalloc(size, GFP_KERNEL);
249 	if (!attrs)
250 		goto fail;
251 
252 	size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
253 	de_attrs = kzalloc(size, GFP_KERNEL);
254 	if (!de_attrs)
255 		goto fail;
256 
257 	for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
258 		struct dev_ext_attribute *de_attr = de_attrs + i;
259 
260 		de_attr->attr.attr.name = pt_caps[i].name;
261 
262 		sysfs_attr_init(&de_attr->attr.attr);
263 
264 		de_attr->attr.attr.mode		= S_IRUGO;
265 		de_attr->attr.show		= pt_cap_show;
266 		de_attr->var			= (void *)i;
267 
268 		attrs[i] = &de_attr->attr.attr;
269 	}
270 
271 	pt_cap_group.attrs = attrs;
272 
273 	return 0;
274 
275 fail:
276 	kfree(attrs);
277 
278 	return ret;
279 }
280 
281 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC	| \
282 			  RTIT_CTL_CYC_THRESH	| \
283 			  RTIT_CTL_PSB_FREQ)
284 
285 #define RTIT_CTL_MTC	(RTIT_CTL_MTC_EN	| \
286 			 RTIT_CTL_MTC_RANGE)
287 
288 #define RTIT_CTL_PTW	(RTIT_CTL_PTW_EN	| \
289 			 RTIT_CTL_FUP_ON_PTW)
290 
291 /*
292  * Bit 0 (TraceEn) in the attr.config is meaningless as the
293  * corresponding bit in the RTIT_CTL can only be controlled
294  * by the driver; therefore, repurpose it to mean: pass
295  * through the bit that was previously assumed to be always
296  * on for PT, thereby allowing the user to *not* set it if
297  * they so wish. See also pt_event_valid() and pt_config().
298  */
299 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
300 
301 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN	| \
302 			RTIT_CTL_TSC_EN		| \
303 			RTIT_CTL_DISRETC	| \
304 			RTIT_CTL_BRANCH_EN	| \
305 			RTIT_CTL_CYC_PSB	| \
306 			RTIT_CTL_MTC		| \
307 			RTIT_CTL_PWR_EVT_EN	| \
308 			RTIT_CTL_EVENT_EN	| \
309 			RTIT_CTL_NOTNT		| \
310 			RTIT_CTL_FUP_ON_PTW	| \
311 			RTIT_CTL_PTW_EN)
312 
313 static bool pt_event_valid(struct perf_event *event)
314 {
315 	u64 config = event->attr.config;
316 	u64 allowed, requested;
317 
318 	if ((config & PT_CONFIG_MASK) != config)
319 		return false;
320 
321 	if (config & RTIT_CTL_CYC_PSB) {
322 		if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
323 			return false;
324 
325 		allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
326 		requested = (config & RTIT_CTL_PSB_FREQ) >>
327 			RTIT_CTL_PSB_FREQ_OFFSET;
328 		if (requested && (!(allowed & BIT(requested))))
329 			return false;
330 
331 		allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
332 		requested = (config & RTIT_CTL_CYC_THRESH) >>
333 			RTIT_CTL_CYC_THRESH_OFFSET;
334 		if (requested && (!(allowed & BIT(requested))))
335 			return false;
336 	}
337 
338 	if (config & RTIT_CTL_MTC) {
339 		/*
340 		 * In the unlikely case that CPUID lists valid mtc periods,
341 		 * but not the mtc capability, drop out here.
342 		 *
343 		 * Spec says that setting mtc period bits while mtc bit in
344 		 * CPUID is 0 will #GP, so better safe than sorry.
345 		 */
346 		if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
347 			return false;
348 
349 		allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
350 		if (!allowed)
351 			return false;
352 
353 		requested = (config & RTIT_CTL_MTC_RANGE) >>
354 			RTIT_CTL_MTC_RANGE_OFFSET;
355 
356 		if (!(allowed & BIT(requested)))
357 			return false;
358 	}
359 
360 	if (config & RTIT_CTL_PWR_EVT_EN &&
361 	    !intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
362 		return false;
363 
364 	if (config & RTIT_CTL_EVENT_EN &&
365 	    !intel_pt_validate_hw_cap(PT_CAP_event_trace))
366 		return false;
367 
368 	if (config & RTIT_CTL_NOTNT &&
369 	    !intel_pt_validate_hw_cap(PT_CAP_tnt_disable))
370 		return false;
371 
372 	if (config & RTIT_CTL_PTW) {
373 		if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
374 			return false;
375 
376 		/* FUPonPTW without PTW doesn't make sense */
377 		if ((config & RTIT_CTL_FUP_ON_PTW) &&
378 		    !(config & RTIT_CTL_PTW_EN))
379 			return false;
380 	}
381 
382 	/*
383 	 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
384 	 * clears the assumption that BranchEn must always be enabled,
385 	 * as was the case with the first implementation of PT.
386 	 * If this bit is not set, the legacy behavior is preserved
387 	 * for compatibility with the older userspace.
388 	 *
389 	 * Re-using bit 0 for this purpose is fine because it is never
390 	 * directly set by the user; previous attempts at setting it in
391 	 * the attr.config resulted in -EINVAL.
392 	 */
393 	if (config & RTIT_CTL_PASSTHROUGH) {
394 		/*
395 		 * Disallow not setting BRANCH_EN where BRANCH_EN is
396 		 * always required.
397 		 */
398 		if (pt_pmu.branch_en_always_on &&
399 		    !(config & RTIT_CTL_BRANCH_EN))
400 			return false;
401 	} else {
402 		/*
403 		 * Disallow BRANCH_EN without the PASSTHROUGH.
404 		 */
405 		if (config & RTIT_CTL_BRANCH_EN)
406 			return false;
407 	}
408 
409 	return true;
410 }
411 
412 /*
413  * PT configuration helpers
414  * These all are cpu affine and operate on a local PT
415  */
416 
417 static void pt_config_start(struct perf_event *event)
418 {
419 	struct pt *pt = this_cpu_ptr(&pt_ctx);
420 	u64 ctl = event->hw.aux_config;
421 
422 	if (READ_ONCE(event->hw.aux_paused))
423 		return;
424 
425 	ctl |= RTIT_CTL_TRACEEN;
426 	if (READ_ONCE(pt->vmx_on))
427 		perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
428 	else
429 		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
430 
431 	WRITE_ONCE(event->hw.aux_config, ctl);
432 }
433 
434 /* Address ranges and their corresponding msr configuration registers */
435 static const struct pt_address_range {
436 	unsigned long	msr_a;
437 	unsigned long	msr_b;
438 	unsigned int	reg_off;
439 } pt_address_ranges[] = {
440 	{
441 		.msr_a	 = MSR_IA32_RTIT_ADDR0_A,
442 		.msr_b	 = MSR_IA32_RTIT_ADDR0_B,
443 		.reg_off = RTIT_CTL_ADDR0_OFFSET,
444 	},
445 	{
446 		.msr_a	 = MSR_IA32_RTIT_ADDR1_A,
447 		.msr_b	 = MSR_IA32_RTIT_ADDR1_B,
448 		.reg_off = RTIT_CTL_ADDR1_OFFSET,
449 	},
450 	{
451 		.msr_a	 = MSR_IA32_RTIT_ADDR2_A,
452 		.msr_b	 = MSR_IA32_RTIT_ADDR2_B,
453 		.reg_off = RTIT_CTL_ADDR2_OFFSET,
454 	},
455 	{
456 		.msr_a	 = MSR_IA32_RTIT_ADDR3_A,
457 		.msr_b	 = MSR_IA32_RTIT_ADDR3_B,
458 		.reg_off = RTIT_CTL_ADDR3_OFFSET,
459 	}
460 };
461 
462 static u64 pt_config_filters(struct perf_event *event)
463 {
464 	struct pt_filters *filters = event->hw.addr_filters;
465 	struct pt *pt = this_cpu_ptr(&pt_ctx);
466 	unsigned int range = 0;
467 	u64 rtit_ctl = 0;
468 
469 	if (!filters)
470 		return 0;
471 
472 	perf_event_addr_filters_sync(event);
473 
474 	for (range = 0; range < filters->nr_filters; range++) {
475 		struct pt_filter *filter = &filters->filter[range];
476 
477 		/*
478 		 * Note, if the range has zero start/end addresses due
479 		 * to its dynamic object not being loaded yet, we just
480 		 * go ahead and program zeroed range, which will simply
481 		 * produce no data. Note^2: if executable code at 0x0
482 		 * is a concern, we can set up an "invalid" configuration
483 		 * such as msr_b < msr_a.
484 		 */
485 
486 		/* avoid redundant msr writes */
487 		if (pt->filters.filter[range].msr_a != filter->msr_a) {
488 			wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
489 			pt->filters.filter[range].msr_a = filter->msr_a;
490 		}
491 
492 		if (pt->filters.filter[range].msr_b != filter->msr_b) {
493 			wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
494 			pt->filters.filter[range].msr_b = filter->msr_b;
495 		}
496 
497 		rtit_ctl |= (u64)filter->config << pt_address_ranges[range].reg_off;
498 	}
499 
500 	return rtit_ctl;
501 }
502 
503 static void pt_config(struct perf_event *event)
504 {
505 	struct pt *pt = this_cpu_ptr(&pt_ctx);
506 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
507 	u64 reg;
508 
509 	/* First round: clear STATUS, in particular the PSB byte counter. */
510 	if (!event->hw.aux_config) {
511 		perf_event_itrace_started(event);
512 		wrmsrl(MSR_IA32_RTIT_STATUS, 0);
513 	}
514 
515 	reg = pt_config_filters(event);
516 	reg |= RTIT_CTL_TRACEEN;
517 	if (!buf->single)
518 		reg |= RTIT_CTL_TOPA;
519 
520 	/*
521 	 * Previously, we had BRANCH_EN on by default, but now that PT has
522 	 * grown features outside of branch tracing, it is useful to allow
523 	 * the user to disable it. Setting bit 0 in the event's attr.config
524 	 * allows BRANCH_EN to pass through instead of being always on. See
525 	 * also the comment in pt_event_valid().
526 	 */
527 	if (event->attr.config & BIT(0)) {
528 		reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
529 	} else {
530 		reg |= RTIT_CTL_BRANCH_EN;
531 	}
532 
533 	if (!event->attr.exclude_kernel)
534 		reg |= RTIT_CTL_OS;
535 	if (!event->attr.exclude_user)
536 		reg |= RTIT_CTL_USR;
537 
538 	reg |= (event->attr.config & PT_CONFIG_MASK);
539 
540 	event->hw.aux_config = reg;
541 
542 	/*
543 	 * Allow resume before starting so as not to overwrite a value set by a
544 	 * PMI.
545 	 */
546 	barrier();
547 	WRITE_ONCE(pt->resume_allowed, 1);
548 	/* Configuration is complete, it is now OK to handle an NMI */
549 	barrier();
550 	WRITE_ONCE(pt->handle_nmi, 1);
551 	barrier();
552 	pt_config_start(event);
553 	barrier();
554 	/*
555 	 * Allow pause after starting so its pt_config_stop() doesn't race with
556 	 * pt_config_start().
557 	 */
558 	WRITE_ONCE(pt->pause_allowed, 1);
559 }
560 
561 static void pt_config_stop(struct perf_event *event)
562 {
563 	struct pt *pt = this_cpu_ptr(&pt_ctx);
564 	u64 ctl = READ_ONCE(event->hw.aux_config);
565 
566 	/* may be already stopped by a PMI */
567 	if (!(ctl & RTIT_CTL_TRACEEN))
568 		return;
569 
570 	ctl &= ~RTIT_CTL_TRACEEN;
571 	if (!READ_ONCE(pt->vmx_on))
572 		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
573 
574 	WRITE_ONCE(event->hw.aux_config, ctl);
575 
576 	/*
577 	 * A wrmsr that disables trace generation serializes other PT
578 	 * registers and causes all data packets to be written to memory,
579 	 * but a fence is required for the data to become globally visible.
580 	 *
581 	 * The below WMB, separating data store and aux_head store matches
582 	 * the consumer's RMB that separates aux_head load and data load.
583 	 */
584 	wmb();
585 }
586 
587 /**
588  * struct topa - ToPA metadata
589  * @list:	linkage to struct pt_buffer's list of tables
590  * @offset:	offset of the first entry in this table in the buffer
591  * @size:	total size of all entries in this table
592  * @last:	index of the last initialized entry in this table
593  * @z_count:	how many times the first entry repeats
594  */
595 struct topa {
596 	struct list_head	list;
597 	u64			offset;
598 	size_t			size;
599 	int			last;
600 	unsigned int		z_count;
601 };
602 
603 /*
604  * Keep ToPA table-related metadata on the same page as the actual table,
605  * taking up a few words from the top
606  */
607 
608 #define TENTS_PER_PAGE	\
609 	((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry))
610 
611 /**
612  * struct topa_page - page-sized ToPA table with metadata at the top
613  * @table:	actual ToPA table entries, as understood by PT hardware
614  * @topa:	metadata
615  */
616 struct topa_page {
617 	struct topa_entry	table[TENTS_PER_PAGE];
618 	struct topa		topa;
619 };
620 
621 static inline struct topa_page *topa_to_page(struct topa *topa)
622 {
623 	return container_of(topa, struct topa_page, topa);
624 }
625 
626 static inline struct topa_page *topa_entry_to_page(struct topa_entry *te)
627 {
628 	return (struct topa_page *)((unsigned long)te & PAGE_MASK);
629 }
630 
631 static inline phys_addr_t topa_pfn(struct topa *topa)
632 {
633 	return PFN_DOWN(virt_to_phys(topa_to_page(topa)));
634 }
635 
636 /* make -1 stand for the last table entry */
637 #define TOPA_ENTRY(t, i)				\
638 	((i) == -1					\
639 		? &topa_to_page(t)->table[(t)->last]	\
640 		: &topa_to_page(t)->table[(i)])
641 #define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size))
642 #define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size)
643 
644 static void pt_config_buffer(struct pt_buffer *buf)
645 {
646 	struct pt *pt = this_cpu_ptr(&pt_ctx);
647 	u64 reg, mask;
648 	void *base;
649 
650 	if (buf->single) {
651 		base = buf->data_pages[0];
652 		mask = (buf->nr_pages * PAGE_SIZE - 1) >> 7;
653 	} else {
654 		base = topa_to_page(buf->cur)->table;
655 		mask = (u64)buf->cur_idx;
656 	}
657 
658 	reg = virt_to_phys(base);
659 	if (pt->output_base != reg) {
660 		pt->output_base = reg;
661 		wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, reg);
662 	}
663 
664 	reg = 0x7f | (mask << 7) | ((u64)buf->output_off << 32);
665 	if (pt->output_mask != reg) {
666 		pt->output_mask = reg;
667 		wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
668 	}
669 }
670 
671 /**
672  * topa_alloc() - allocate page-sized ToPA table
673  * @cpu:	CPU on which to allocate.
674  * @gfp:	Allocation flags.
675  *
676  * Return:	On success, return the pointer to ToPA table page.
677  */
678 static struct topa *topa_alloc(int cpu, gfp_t gfp)
679 {
680 	int node = cpu_to_node(cpu);
681 	struct topa_page *tp;
682 	struct page *p;
683 
684 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
685 	if (!p)
686 		return NULL;
687 
688 	tp = page_address(p);
689 	tp->topa.last = 0;
690 
691 	/*
692 	 * In case of singe-entry ToPA, always put the self-referencing END
693 	 * link as the 2nd entry in the table
694 	 */
695 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
696 		TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT;
697 		TOPA_ENTRY(&tp->topa, 1)->end = 1;
698 	}
699 
700 	return &tp->topa;
701 }
702 
703 /**
704  * topa_free() - free a page-sized ToPA table
705  * @topa:	Table to deallocate.
706  */
707 static void topa_free(struct topa *topa)
708 {
709 	free_page((unsigned long)topa);
710 }
711 
712 /**
713  * topa_insert_table() - insert a ToPA table into a buffer
714  * @buf:	 PT buffer that's being extended.
715  * @topa:	 New topa table to be inserted.
716  *
717  * If it's the first table in this buffer, set up buffer's pointers
718  * accordingly; otherwise, add a END=1 link entry to @topa to the current
719  * "last" table and adjust the last table pointer to @topa.
720  */
721 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
722 {
723 	struct topa *last = buf->last;
724 
725 	list_add_tail(&topa->list, &buf->tables);
726 
727 	if (!buf->first) {
728 		buf->first = buf->last = buf->cur = topa;
729 		return;
730 	}
731 
732 	topa->offset = last->offset + last->size;
733 	buf->last = topa;
734 
735 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
736 		return;
737 
738 	BUG_ON(last->last != TENTS_PER_PAGE - 1);
739 
740 	TOPA_ENTRY(last, -1)->base = topa_pfn(topa);
741 	TOPA_ENTRY(last, -1)->end = 1;
742 }
743 
744 /**
745  * topa_table_full() - check if a ToPA table is filled up
746  * @topa:	ToPA table.
747  */
748 static bool topa_table_full(struct topa *topa)
749 {
750 	/* single-entry ToPA is a special case */
751 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
752 		return !!topa->last;
753 
754 	return topa->last == TENTS_PER_PAGE - 1;
755 }
756 
757 /**
758  * topa_insert_pages() - create a list of ToPA tables
759  * @buf:	PT buffer being initialized.
760  * @cpu:	CPU on which to allocate.
761  * @gfp:	Allocation flags.
762  *
763  * This initializes a list of ToPA tables with entries from
764  * the data_pages provided by rb_alloc_aux().
765  *
766  * Return:	0 on success or error code.
767  */
768 static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp)
769 {
770 	struct topa *topa = buf->last;
771 	int order = 0;
772 	struct page *p;
773 
774 	p = virt_to_page(buf->data_pages[buf->nr_pages]);
775 	if (PagePrivate(p))
776 		order = page_private(p);
777 
778 	if (topa_table_full(topa)) {
779 		topa = topa_alloc(cpu, gfp);
780 		if (!topa)
781 			return -ENOMEM;
782 
783 		topa_insert_table(buf, topa);
784 	}
785 
786 	if (topa->z_count == topa->last - 1) {
787 		if (order == TOPA_ENTRY(topa, topa->last - 1)->size)
788 			topa->z_count++;
789 	}
790 
791 	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
792 	TOPA_ENTRY(topa, -1)->size = order;
793 	if (!buf->snapshot &&
794 	    !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
795 		TOPA_ENTRY(topa, -1)->intr = 1;
796 		TOPA_ENTRY(topa, -1)->stop = 1;
797 	}
798 
799 	topa->last++;
800 	topa->size += sizes(order);
801 
802 	buf->nr_pages += 1ul << order;
803 
804 	return 0;
805 }
806 
807 /**
808  * pt_topa_dump() - print ToPA tables and their entries
809  * @buf:	PT buffer.
810  */
811 static void pt_topa_dump(struct pt_buffer *buf)
812 {
813 	struct topa *topa;
814 
815 	list_for_each_entry(topa, &buf->tables, list) {
816 		struct topa_page *tp = topa_to_page(topa);
817 		int i;
818 
819 		pr_debug("# table @%p, off %llx size %zx\n", tp->table,
820 			 topa->offset, topa->size);
821 		for (i = 0; i < TENTS_PER_PAGE; i++) {
822 			pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
823 				 &tp->table[i],
824 				 (unsigned long)tp->table[i].base << TOPA_SHIFT,
825 				 sizes(tp->table[i].size),
826 				 tp->table[i].end ?  'E' : ' ',
827 				 tp->table[i].intr ? 'I' : ' ',
828 				 tp->table[i].stop ? 'S' : ' ',
829 				 *(u64 *)&tp->table[i]);
830 			if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
831 			     tp->table[i].stop) ||
832 			    tp->table[i].end)
833 				break;
834 			if (!i && topa->z_count)
835 				i += topa->z_count;
836 		}
837 	}
838 }
839 
840 /**
841  * pt_buffer_advance() - advance to the next output region
842  * @buf:	PT buffer.
843  *
844  * Advance the current pointers in the buffer to the next ToPA entry.
845  */
846 static void pt_buffer_advance(struct pt_buffer *buf)
847 {
848 	buf->output_off = 0;
849 	buf->cur_idx++;
850 
851 	if (buf->cur_idx == buf->cur->last) {
852 		if (buf->cur == buf->last) {
853 			buf->cur = buf->first;
854 			buf->wrapped = true;
855 		} else {
856 			buf->cur = list_entry(buf->cur->list.next, struct topa,
857 					      list);
858 		}
859 		buf->cur_idx = 0;
860 	}
861 }
862 
863 /**
864  * pt_update_head() - calculate current offsets and sizes
865  * @pt:		Per-cpu pt context.
866  *
867  * Update buffer's current write pointer position and data size.
868  */
869 static void pt_update_head(struct pt *pt)
870 {
871 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
872 	bool wrapped = buf->wrapped;
873 	u64 topa_idx, base, old;
874 
875 	buf->wrapped = false;
876 
877 	if (buf->single) {
878 		local_set(&buf->data_size, buf->output_off);
879 		return;
880 	}
881 
882 	/* offset of the first region in this table from the beginning of buf */
883 	base = buf->cur->offset + buf->output_off;
884 
885 	/* offset of the current output region within this table */
886 	for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
887 		base += TOPA_ENTRY_SIZE(buf->cur, topa_idx);
888 
889 	if (buf->snapshot) {
890 		local_set(&buf->data_size, base);
891 	} else {
892 		old = (local64_xchg(&buf->head, base) &
893 		       ((buf->nr_pages << PAGE_SHIFT) - 1));
894 		if (base < old || (base == old && wrapped))
895 			base += buf->nr_pages << PAGE_SHIFT;
896 
897 		local_add(base - old, &buf->data_size);
898 	}
899 }
900 
901 /**
902  * pt_buffer_region() - obtain current output region's address
903  * @buf:	PT buffer.
904  */
905 static void *pt_buffer_region(struct pt_buffer *buf)
906 {
907 	return phys_to_virt((phys_addr_t)TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT);
908 }
909 
910 /**
911  * pt_buffer_region_size() - obtain current output region's size
912  * @buf:	PT buffer.
913  */
914 static size_t pt_buffer_region_size(struct pt_buffer *buf)
915 {
916 	return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx);
917 }
918 
919 /**
920  * pt_handle_status() - take care of possible status conditions
921  * @pt:		Per-cpu pt context.
922  */
923 static void pt_handle_status(struct pt *pt)
924 {
925 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
926 	int advance = 0;
927 	u64 status;
928 
929 	rdmsrl(MSR_IA32_RTIT_STATUS, status);
930 
931 	if (status & RTIT_STATUS_ERROR) {
932 		pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
933 		pt_topa_dump(buf);
934 		status &= ~RTIT_STATUS_ERROR;
935 	}
936 
937 	if (status & RTIT_STATUS_STOPPED) {
938 		status &= ~RTIT_STATUS_STOPPED;
939 
940 		/*
941 		 * On systems that only do single-entry ToPA, hitting STOP
942 		 * means we are already losing data; need to let the decoder
943 		 * know.
944 		 */
945 		if (!buf->single &&
946 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
947 		     buf->output_off == pt_buffer_region_size(buf))) {
948 			perf_aux_output_flag(&pt->handle,
949 			                     PERF_AUX_FLAG_TRUNCATED);
950 			advance++;
951 		}
952 	}
953 
954 	/*
955 	 * Also on single-entry ToPA implementations, interrupt will come
956 	 * before the output reaches its output region's boundary.
957 	 */
958 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
959 	    !buf->snapshot &&
960 	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
961 		void *head = pt_buffer_region(buf);
962 
963 		/* everything within this margin needs to be zeroed out */
964 		memset(head + buf->output_off, 0,
965 		       pt_buffer_region_size(buf) -
966 		       buf->output_off);
967 		advance++;
968 	}
969 
970 	if (advance)
971 		pt_buffer_advance(buf);
972 
973 	wrmsrl(MSR_IA32_RTIT_STATUS, status);
974 }
975 
976 /**
977  * pt_read_offset() - translate registers into buffer pointers
978  * @buf:	PT buffer.
979  *
980  * Set buffer's output pointers from MSR values.
981  */
982 static void pt_read_offset(struct pt_buffer *buf)
983 {
984 	struct pt *pt = this_cpu_ptr(&pt_ctx);
985 	struct topa_page *tp;
986 
987 	if (!buf->single) {
988 		rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, pt->output_base);
989 		tp = phys_to_virt(pt->output_base);
990 		buf->cur = &tp->topa;
991 	}
992 
993 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, pt->output_mask);
994 	/* offset within current output region */
995 	buf->output_off = pt->output_mask >> 32;
996 	/* index of current output region within this table */
997 	if (!buf->single)
998 		buf->cur_idx = (pt->output_mask & 0xffffff80) >> 7;
999 }
1000 
1001 static struct topa_entry *
1002 pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg)
1003 {
1004 	struct topa_page *tp;
1005 	struct topa *topa;
1006 	unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0;
1007 
1008 	/*
1009 	 * Indicates a bug in the caller.
1010 	 */
1011 	if (WARN_ON_ONCE(pg >= buf->nr_pages))
1012 		return NULL;
1013 
1014 	/*
1015 	 * First, find the ToPA table where @pg fits. With high
1016 	 * order allocations, there shouldn't be many of these.
1017 	 */
1018 	list_for_each_entry(topa, &buf->tables, list) {
1019 		if (topa->offset + topa->size > (unsigned long)pg << PAGE_SHIFT)
1020 			goto found;
1021 	}
1022 
1023 	/*
1024 	 * Hitting this means we have a problem in the ToPA
1025 	 * allocation code.
1026 	 */
1027 	WARN_ON_ONCE(1);
1028 
1029 	return NULL;
1030 
1031 found:
1032 	/*
1033 	 * Indicates a problem in the ToPA allocation code.
1034 	 */
1035 	if (WARN_ON_ONCE(topa->last == -1))
1036 		return NULL;
1037 
1038 	tp = topa_to_page(topa);
1039 	cur_pg = PFN_DOWN(topa->offset);
1040 	if (topa->z_count) {
1041 		z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1);
1042 		start_idx = topa->z_count + 1;
1043 	}
1044 
1045 	/*
1046 	 * Multiple entries at the beginning of the table have the same size,
1047 	 * ideally all of them; if @pg falls there, the search is done.
1048 	 */
1049 	if (pg >= cur_pg && pg < cur_pg + z_pg) {
1050 		idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0);
1051 		return &tp->table[idx];
1052 	}
1053 
1054 	/*
1055 	 * Otherwise, slow path: iterate through the remaining entries.
1056 	 */
1057 	for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) {
1058 		if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg)
1059 			return &tp->table[idx];
1060 
1061 		cur_pg += TOPA_ENTRY_PAGES(topa, idx);
1062 	}
1063 
1064 	/*
1065 	 * Means we couldn't find a ToPA entry in the table that does match.
1066 	 */
1067 	WARN_ON_ONCE(1);
1068 
1069 	return NULL;
1070 }
1071 
1072 static struct topa_entry *
1073 pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te)
1074 {
1075 	unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1);
1076 	struct topa_page *tp;
1077 	struct topa *topa;
1078 
1079 	tp = (struct topa_page *)table;
1080 	if (tp->table != te)
1081 		return --te;
1082 
1083 	topa = &tp->topa;
1084 	if (topa == buf->first)
1085 		topa = buf->last;
1086 	else
1087 		topa = list_prev_entry(topa, list);
1088 
1089 	tp = topa_to_page(topa);
1090 
1091 	return &tp->table[topa->last - 1];
1092 }
1093 
1094 /**
1095  * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
1096  * @buf:	PT buffer.
1097  * @handle:	Current output handle.
1098  *
1099  * Place INT and STOP marks to prevent overwriting old data that the consumer
1100  * hasn't yet collected and waking up the consumer after a certain fraction of
1101  * the buffer has filled up. Only needed and sensible for non-snapshot counters.
1102  *
1103  * This obviously relies on buf::head to figure out buffer markers, so it has
1104  * to be called after pt_buffer_reset_offsets() and before the hardware tracing
1105  * is enabled.
1106  */
1107 static int pt_buffer_reset_markers(struct pt_buffer *buf,
1108 				   struct perf_output_handle *handle)
1109 
1110 {
1111 	unsigned long head = local64_read(&buf->head);
1112 	unsigned long idx, npages, wakeup;
1113 
1114 	if (buf->single)
1115 		return 0;
1116 
1117 	/* can't stop in the middle of an output region */
1118 	if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) {
1119 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1120 		return -EINVAL;
1121 	}
1122 
1123 
1124 	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
1125 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1126 		return 0;
1127 
1128 	/* clear STOP and INT from current entry */
1129 	if (buf->stop_te) {
1130 		buf->stop_te->stop = 0;
1131 		buf->stop_te->intr = 0;
1132 	}
1133 
1134 	if (buf->intr_te)
1135 		buf->intr_te->intr = 0;
1136 
1137 	/* how many pages till the STOP marker */
1138 	npages = handle->size >> PAGE_SHIFT;
1139 
1140 	/* if it's on a page boundary, fill up one more page */
1141 	if (!offset_in_page(head + handle->size + 1))
1142 		npages++;
1143 
1144 	idx = (head >> PAGE_SHIFT) + npages;
1145 	idx &= buf->nr_pages - 1;
1146 
1147 	if (idx != buf->stop_pos) {
1148 		buf->stop_pos = idx;
1149 		buf->stop_te = pt_topa_entry_for_page(buf, idx);
1150 		buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te);
1151 	}
1152 
1153 	wakeup = handle->wakeup >> PAGE_SHIFT;
1154 
1155 	/* in the worst case, wake up the consumer one page before hard stop */
1156 	idx = (head >> PAGE_SHIFT) + npages - 1;
1157 	if (idx > wakeup)
1158 		idx = wakeup;
1159 
1160 	idx &= buf->nr_pages - 1;
1161 	if (idx != buf->intr_pos) {
1162 		buf->intr_pos = idx;
1163 		buf->intr_te = pt_topa_entry_for_page(buf, idx);
1164 		buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te);
1165 	}
1166 
1167 	buf->stop_te->stop = 1;
1168 	buf->stop_te->intr = 1;
1169 	buf->intr_te->intr = 1;
1170 
1171 	return 0;
1172 }
1173 
1174 /**
1175  * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1176  * @buf:	PT buffer.
1177  * @head:	Write pointer (aux_head) from AUX buffer.
1178  *
1179  * Find the ToPA table and entry corresponding to given @head and set buffer's
1180  * "current" pointers accordingly. This is done after we have obtained the
1181  * current aux_head position from a successful call to perf_aux_output_begin()
1182  * to make sure the hardware is writing to the right place.
1183  *
1184  * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1185  * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1186  * which are used to determine INT and STOP markers' locations by a subsequent
1187  * call to pt_buffer_reset_markers().
1188  */
1189 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1190 {
1191 	struct topa_page *cur_tp;
1192 	struct topa_entry *te;
1193 	int pg;
1194 
1195 	if (buf->snapshot)
1196 		head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1197 
1198 	if (!buf->single) {
1199 		pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1200 		te = pt_topa_entry_for_page(buf, pg);
1201 
1202 		cur_tp = topa_entry_to_page(te);
1203 		buf->cur = &cur_tp->topa;
1204 		buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0);
1205 		buf->output_off = head & (pt_buffer_region_size(buf) - 1);
1206 	} else {
1207 		buf->output_off = head;
1208 	}
1209 
1210 	local64_set(&buf->head, head);
1211 	local_set(&buf->data_size, 0);
1212 }
1213 
1214 /**
1215  * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1216  * @buf:	PT buffer.
1217  */
1218 static void pt_buffer_fini_topa(struct pt_buffer *buf)
1219 {
1220 	struct topa *topa, *iter;
1221 
1222 	if (buf->single)
1223 		return;
1224 
1225 	list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1226 		/*
1227 		 * right now, this is in free_aux() path only, so
1228 		 * no need to unlink this table from the list
1229 		 */
1230 		topa_free(topa);
1231 	}
1232 }
1233 
1234 /**
1235  * pt_buffer_init_topa() - initialize ToPA table for pt buffer
1236  * @buf:	PT buffer.
1237  * @cpu:	CPU on which to allocate.
1238  * @nr_pages:	No. of pages to allocate.
1239  * @gfp:	Allocation flags.
1240  *
1241  * Return:	0 on success or error code.
1242  */
1243 static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu,
1244 			       unsigned long nr_pages, gfp_t gfp)
1245 {
1246 	struct topa *topa;
1247 	int err;
1248 
1249 	topa = topa_alloc(cpu, gfp);
1250 	if (!topa)
1251 		return -ENOMEM;
1252 
1253 	topa_insert_table(buf, topa);
1254 
1255 	while (buf->nr_pages < nr_pages) {
1256 		err = topa_insert_pages(buf, cpu, gfp);
1257 		if (err) {
1258 			pt_buffer_fini_topa(buf);
1259 			return -ENOMEM;
1260 		}
1261 	}
1262 
1263 	/* link last table to the first one, unless we're double buffering */
1264 	if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
1265 		TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first);
1266 		TOPA_ENTRY(buf->last, -1)->end = 1;
1267 	}
1268 
1269 	pt_topa_dump(buf);
1270 	return 0;
1271 }
1272 
1273 static int pt_buffer_try_single(struct pt_buffer *buf, int nr_pages)
1274 {
1275 	struct page *p = virt_to_page(buf->data_pages[0]);
1276 	int ret = -ENOTSUPP, order = 0;
1277 
1278 	/*
1279 	 * We can use single range output mode
1280 	 * + in snapshot mode, where we don't need interrupts;
1281 	 * + if the hardware supports it;
1282 	 * + if the entire buffer is one contiguous allocation.
1283 	 */
1284 	if (!buf->snapshot)
1285 		goto out;
1286 
1287 	if (!intel_pt_validate_hw_cap(PT_CAP_single_range_output))
1288 		goto out;
1289 
1290 	if (PagePrivate(p))
1291 		order = page_private(p);
1292 
1293 	if (1 << order != nr_pages)
1294 		goto out;
1295 
1296 	/*
1297 	 * Some processors cannot always support single range for more than
1298 	 * 4KB - refer errata TGL052, ADL037 and RPL017. Future processors might
1299 	 * also be affected, so for now rather than trying to keep track of
1300 	 * which ones, just disable it for all.
1301 	 */
1302 	if (nr_pages > 1)
1303 		goto out;
1304 
1305 	buf->single = true;
1306 	buf->nr_pages = nr_pages;
1307 	ret = 0;
1308 out:
1309 	return ret;
1310 }
1311 
1312 /**
1313  * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1314  * @event:	Performance event
1315  * @pages:	Array of pointers to buffer pages passed from perf core.
1316  * @nr_pages:	Number of pages in the buffer.
1317  * @snapshot:	If this is a snapshot/overwrite counter.
1318  *
1319  * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1320  * bookkeeping for an AUX buffer.
1321  *
1322  * Return:	Our private PT buffer structure.
1323  */
1324 static void *
1325 pt_buffer_setup_aux(struct perf_event *event, void **pages,
1326 		    int nr_pages, bool snapshot)
1327 {
1328 	struct pt_buffer *buf;
1329 	int node, ret, cpu = event->cpu;
1330 
1331 	if (!nr_pages)
1332 		return NULL;
1333 
1334 	/*
1335 	 * Only support AUX sampling in snapshot mode, where we don't
1336 	 * generate NMIs.
1337 	 */
1338 	if (event->attr.aux_sample_size && !snapshot)
1339 		return NULL;
1340 
1341 	if (cpu == -1)
1342 		cpu = raw_smp_processor_id();
1343 	node = cpu_to_node(cpu);
1344 
1345 	buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node);
1346 	if (!buf)
1347 		return NULL;
1348 
1349 	buf->snapshot = snapshot;
1350 	buf->data_pages = pages;
1351 	buf->stop_pos = -1;
1352 	buf->intr_pos = -1;
1353 
1354 	INIT_LIST_HEAD(&buf->tables);
1355 
1356 	ret = pt_buffer_try_single(buf, nr_pages);
1357 	if (!ret)
1358 		return buf;
1359 
1360 	ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL);
1361 	if (ret) {
1362 		kfree(buf);
1363 		return NULL;
1364 	}
1365 
1366 	return buf;
1367 }
1368 
1369 /**
1370  * pt_buffer_free_aux() - perf AUX deallocation path callback
1371  * @data:	PT buffer.
1372  */
1373 static void pt_buffer_free_aux(void *data)
1374 {
1375 	struct pt_buffer *buf = data;
1376 
1377 	pt_buffer_fini_topa(buf);
1378 	kfree(buf);
1379 }
1380 
1381 static int pt_addr_filters_init(struct perf_event *event)
1382 {
1383 	struct pt_filters *filters;
1384 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1385 
1386 	if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1387 		return 0;
1388 
1389 	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1390 	if (!filters)
1391 		return -ENOMEM;
1392 
1393 	if (event->parent)
1394 		memcpy(filters, event->parent->hw.addr_filters,
1395 		       sizeof(*filters));
1396 
1397 	event->hw.addr_filters = filters;
1398 
1399 	return 0;
1400 }
1401 
1402 static void pt_addr_filters_fini(struct perf_event *event)
1403 {
1404 	kfree(event->hw.addr_filters);
1405 	event->hw.addr_filters = NULL;
1406 }
1407 
1408 #ifdef CONFIG_X86_64
1409 /* Clamp to a canonical address greater-than-or-equal-to the address given */
1410 static u64 clamp_to_ge_canonical_addr(u64 vaddr, u8 vaddr_bits)
1411 {
1412 	return __is_canonical_address(vaddr, vaddr_bits) ?
1413 	       vaddr :
1414 	       -BIT_ULL(vaddr_bits - 1);
1415 }
1416 
1417 /* Clamp to a canonical address less-than-or-equal-to the address given */
1418 static u64 clamp_to_le_canonical_addr(u64 vaddr, u8 vaddr_bits)
1419 {
1420 	return __is_canonical_address(vaddr, vaddr_bits) ?
1421 	       vaddr :
1422 	       BIT_ULL(vaddr_bits - 1) - 1;
1423 }
1424 #else
1425 #define clamp_to_ge_canonical_addr(x, y) (x)
1426 #define clamp_to_le_canonical_addr(x, y) (x)
1427 #endif
1428 
1429 static int pt_event_addr_filters_validate(struct list_head *filters)
1430 {
1431 	struct perf_addr_filter *filter;
1432 	int range = 0;
1433 
1434 	list_for_each_entry(filter, filters, entry) {
1435 		/*
1436 		 * PT doesn't support single address triggers and
1437 		 * 'start' filters.
1438 		 */
1439 		if (!filter->size ||
1440 		    filter->action == PERF_ADDR_FILTER_ACTION_START)
1441 			return -EOPNOTSUPP;
1442 
1443 		if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1444 			return -EOPNOTSUPP;
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 static void pt_event_addr_filters_sync(struct perf_event *event)
1451 {
1452 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1453 	unsigned long msr_a, msr_b;
1454 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
1455 	struct pt_filters *filters = event->hw.addr_filters;
1456 	struct perf_addr_filter *filter;
1457 	int range = 0;
1458 
1459 	if (!filters)
1460 		return;
1461 
1462 	list_for_each_entry(filter, &head->list, entry) {
1463 		if (filter->path.dentry && !fr[range].start) {
1464 			msr_a = msr_b = 0;
1465 		} else {
1466 			unsigned long n = fr[range].size - 1;
1467 			unsigned long a = fr[range].start;
1468 			unsigned long b;
1469 
1470 			if (a > ULONG_MAX - n)
1471 				b = ULONG_MAX;
1472 			else
1473 				b = a + n;
1474 			/*
1475 			 * Apply the offset. 64-bit addresses written to the
1476 			 * MSRs must be canonical, but the range can encompass
1477 			 * non-canonical addresses. Since software cannot
1478 			 * execute at non-canonical addresses, adjusting to
1479 			 * canonical addresses does not affect the result of the
1480 			 * address filter.
1481 			 */
1482 			msr_a = clamp_to_ge_canonical_addr(a, boot_cpu_data.x86_virt_bits);
1483 			msr_b = clamp_to_le_canonical_addr(b, boot_cpu_data.x86_virt_bits);
1484 			if (msr_b < msr_a)
1485 				msr_a = msr_b = 0;
1486 		}
1487 
1488 		filters->filter[range].msr_a  = msr_a;
1489 		filters->filter[range].msr_b  = msr_b;
1490 		if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER)
1491 			filters->filter[range].config = 1;
1492 		else
1493 			filters->filter[range].config = 2;
1494 		range++;
1495 	}
1496 
1497 	filters->nr_filters = range;
1498 }
1499 
1500 /**
1501  * intel_pt_interrupt() - PT PMI handler
1502  */
1503 void intel_pt_interrupt(void)
1504 {
1505 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1506 	struct pt_buffer *buf;
1507 	struct perf_event *event = pt->handle.event;
1508 
1509 	/*
1510 	 * There may be a dangling PT bit in the interrupt status register
1511 	 * after PT has been disabled by pt_event_stop(). Make sure we don't
1512 	 * do anything (particularly, re-enable) for this event here.
1513 	 */
1514 	if (!READ_ONCE(pt->handle_nmi))
1515 		return;
1516 
1517 	if (!event)
1518 		return;
1519 
1520 	pt_config_stop(event);
1521 
1522 	buf = perf_get_aux(&pt->handle);
1523 	if (!buf)
1524 		return;
1525 
1526 	pt_read_offset(buf);
1527 
1528 	pt_handle_status(pt);
1529 
1530 	pt_update_head(pt);
1531 
1532 	perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1533 
1534 	if (!event->hw.state) {
1535 		int ret;
1536 
1537 		buf = perf_aux_output_begin(&pt->handle, event);
1538 		if (!buf) {
1539 			event->hw.state = PERF_HES_STOPPED;
1540 			WRITE_ONCE(pt->resume_allowed, 0);
1541 			return;
1542 		}
1543 
1544 		pt_buffer_reset_offsets(buf, pt->handle.head);
1545 		/* snapshot counters don't use PMI, so it's safe */
1546 		ret = pt_buffer_reset_markers(buf, &pt->handle);
1547 		if (ret) {
1548 			perf_aux_output_end(&pt->handle, 0);
1549 			WRITE_ONCE(pt->resume_allowed, 0);
1550 			return;
1551 		}
1552 
1553 		pt_config_buffer(buf);
1554 		pt_config_start(event);
1555 	}
1556 }
1557 
1558 void intel_pt_handle_vmx(int on)
1559 {
1560 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1561 	struct perf_event *event;
1562 	unsigned long flags;
1563 
1564 	/* PT plays nice with VMX, do nothing */
1565 	if (pt_pmu.vmx)
1566 		return;
1567 
1568 	/*
1569 	 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1570 	 * sure to not try to set it while VMX is on. Disable
1571 	 * interrupts to avoid racing with pmu callbacks;
1572 	 * concurrent PMI should be handled fine.
1573 	 */
1574 	local_irq_save(flags);
1575 	WRITE_ONCE(pt->vmx_on, on);
1576 
1577 	/*
1578 	 * If an AUX transaction is in progress, it will contain
1579 	 * gap(s), so flag it PARTIAL to inform the user.
1580 	 */
1581 	event = pt->handle.event;
1582 	if (event)
1583 		perf_aux_output_flag(&pt->handle,
1584 		                     PERF_AUX_FLAG_PARTIAL);
1585 
1586 	/* Turn PTs back on */
1587 	if (!on && event)
1588 		wrmsrl(MSR_IA32_RTIT_CTL, event->hw.aux_config);
1589 
1590 	local_irq_restore(flags);
1591 }
1592 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1593 
1594 /*
1595  * PMU callbacks
1596  */
1597 
1598 static void pt_event_start(struct perf_event *event, int mode)
1599 {
1600 	struct hw_perf_event *hwc = &event->hw;
1601 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1602 	struct pt_buffer *buf;
1603 
1604 	if (mode & PERF_EF_RESUME) {
1605 		if (READ_ONCE(pt->resume_allowed)) {
1606 			u64 status;
1607 
1608 			/*
1609 			 * Only if the trace is not active and the error and
1610 			 * stopped bits are clear, is it safe to start, but a
1611 			 * PMI might have just cleared these, so resume_allowed
1612 			 * must be checked again also.
1613 			 */
1614 			rdmsrl(MSR_IA32_RTIT_STATUS, status);
1615 			if (!(status & (RTIT_STATUS_TRIGGEREN |
1616 					RTIT_STATUS_ERROR |
1617 					RTIT_STATUS_STOPPED)) &&
1618 			   READ_ONCE(pt->resume_allowed))
1619 				pt_config_start(event);
1620 		}
1621 		return;
1622 	}
1623 
1624 	buf = perf_aux_output_begin(&pt->handle, event);
1625 	if (!buf)
1626 		goto fail_stop;
1627 
1628 	pt_buffer_reset_offsets(buf, pt->handle.head);
1629 	if (!buf->snapshot) {
1630 		if (pt_buffer_reset_markers(buf, &pt->handle))
1631 			goto fail_end_stop;
1632 	}
1633 
1634 	hwc->state = 0;
1635 
1636 	pt_config_buffer(buf);
1637 	pt_config(event);
1638 
1639 	return;
1640 
1641 fail_end_stop:
1642 	perf_aux_output_end(&pt->handle, 0);
1643 fail_stop:
1644 	hwc->state = PERF_HES_STOPPED;
1645 }
1646 
1647 static void pt_event_stop(struct perf_event *event, int mode)
1648 {
1649 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1650 
1651 	if (mode & PERF_EF_PAUSE) {
1652 		if (READ_ONCE(pt->pause_allowed))
1653 			pt_config_stop(event);
1654 		return;
1655 	}
1656 
1657 	/*
1658 	 * Protect against the PMI racing with disabling wrmsr,
1659 	 * see comment in intel_pt_interrupt().
1660 	 */
1661 	WRITE_ONCE(pt->handle_nmi, 0);
1662 	barrier();
1663 
1664 	/*
1665 	 * Prevent a resume from attempting to restart tracing, or a pause
1666 	 * during a subsequent start. Do this after clearing handle_nmi so that
1667 	 * pt_event_snapshot_aux() will not re-allow them.
1668 	 */
1669 	WRITE_ONCE(pt->pause_allowed, 0);
1670 	WRITE_ONCE(pt->resume_allowed, 0);
1671 	barrier();
1672 
1673 	pt_config_stop(event);
1674 
1675 	if (event->hw.state == PERF_HES_STOPPED)
1676 		return;
1677 
1678 	event->hw.state = PERF_HES_STOPPED;
1679 
1680 	if (mode & PERF_EF_UPDATE) {
1681 		struct pt_buffer *buf = perf_get_aux(&pt->handle);
1682 
1683 		if (!buf)
1684 			return;
1685 
1686 		if (WARN_ON_ONCE(pt->handle.event != event))
1687 			return;
1688 
1689 		pt_read_offset(buf);
1690 
1691 		pt_handle_status(pt);
1692 
1693 		pt_update_head(pt);
1694 
1695 		if (buf->snapshot)
1696 			pt->handle.head =
1697 				local_xchg(&buf->data_size,
1698 					   buf->nr_pages << PAGE_SHIFT);
1699 		perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1700 	}
1701 }
1702 
1703 static long pt_event_snapshot_aux(struct perf_event *event,
1704 				  struct perf_output_handle *handle,
1705 				  unsigned long size)
1706 {
1707 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1708 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
1709 	unsigned long from = 0, to;
1710 	long ret;
1711 
1712 	if (WARN_ON_ONCE(!buf))
1713 		return 0;
1714 
1715 	/*
1716 	 * Sampling is only allowed on snapshot events;
1717 	 * see pt_buffer_setup_aux().
1718 	 */
1719 	if (WARN_ON_ONCE(!buf->snapshot))
1720 		return 0;
1721 
1722 	/* Prevent pause/resume from attempting to start/stop tracing */
1723 	WRITE_ONCE(pt->pause_allowed, 0);
1724 	WRITE_ONCE(pt->resume_allowed, 0);
1725 	barrier();
1726 	/*
1727 	 * There is no PT interrupt in this mode, so stop the trace and it will
1728 	 * remain stopped while the buffer is copied.
1729 	 */
1730 	pt_config_stop(event);
1731 	pt_read_offset(buf);
1732 	pt_update_head(pt);
1733 
1734 	to = local_read(&buf->data_size);
1735 	if (to < size)
1736 		from = buf->nr_pages << PAGE_SHIFT;
1737 	from += to - size;
1738 
1739 	ret = perf_output_copy_aux(&pt->handle, handle, from, to);
1740 
1741 	/*
1742 	 * Here, handle_nmi tells us if the tracing was on.
1743 	 * If the tracing was on, restart it.
1744 	 */
1745 	if (READ_ONCE(pt->handle_nmi)) {
1746 		WRITE_ONCE(pt->resume_allowed, 1);
1747 		barrier();
1748 		pt_config_start(event);
1749 		barrier();
1750 		WRITE_ONCE(pt->pause_allowed, 1);
1751 	}
1752 
1753 	return ret;
1754 }
1755 
1756 static void pt_event_del(struct perf_event *event, int mode)
1757 {
1758 	pt_event_stop(event, PERF_EF_UPDATE);
1759 }
1760 
1761 static int pt_event_add(struct perf_event *event, int mode)
1762 {
1763 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1764 	struct hw_perf_event *hwc = &event->hw;
1765 	int ret = -EBUSY;
1766 
1767 	if (pt->handle.event)
1768 		goto fail;
1769 
1770 	if (mode & PERF_EF_START) {
1771 		pt_event_start(event, 0);
1772 		ret = -EINVAL;
1773 		if (hwc->state == PERF_HES_STOPPED)
1774 			goto fail;
1775 	} else {
1776 		hwc->state = PERF_HES_STOPPED;
1777 	}
1778 
1779 	ret = 0;
1780 fail:
1781 
1782 	return ret;
1783 }
1784 
1785 static void pt_event_read(struct perf_event *event)
1786 {
1787 }
1788 
1789 static void pt_event_destroy(struct perf_event *event)
1790 {
1791 	pt_addr_filters_fini(event);
1792 	x86_del_exclusive(x86_lbr_exclusive_pt);
1793 }
1794 
1795 static int pt_event_init(struct perf_event *event)
1796 {
1797 	if (event->attr.type != pt_pmu.pmu.type)
1798 		return -ENOENT;
1799 
1800 	if (!pt_event_valid(event))
1801 		return -EINVAL;
1802 
1803 	if (x86_add_exclusive(x86_lbr_exclusive_pt))
1804 		return -EBUSY;
1805 
1806 	if (pt_addr_filters_init(event)) {
1807 		x86_del_exclusive(x86_lbr_exclusive_pt);
1808 		return -ENOMEM;
1809 	}
1810 
1811 	event->destroy = pt_event_destroy;
1812 
1813 	return 0;
1814 }
1815 
1816 void cpu_emergency_stop_pt(void)
1817 {
1818 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1819 
1820 	if (pt->handle.event)
1821 		pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1822 }
1823 
1824 int is_intel_pt_event(struct perf_event *event)
1825 {
1826 	return event->pmu == &pt_pmu.pmu;
1827 }
1828 
1829 static __init int pt_init(void)
1830 {
1831 	int ret, cpu, prior_warn = 0;
1832 
1833 	BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1834 
1835 	if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1836 		return -ENODEV;
1837 
1838 	cpus_read_lock();
1839 	for_each_online_cpu(cpu) {
1840 		u64 ctl;
1841 
1842 		ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1843 		if (!ret && (ctl & RTIT_CTL_TRACEEN))
1844 			prior_warn++;
1845 	}
1846 	cpus_read_unlock();
1847 
1848 	if (prior_warn) {
1849 		x86_add_exclusive(x86_lbr_exclusive_pt);
1850 		pr_warn("PT is enabled at boot time, doing nothing\n");
1851 
1852 		return -EBUSY;
1853 	}
1854 
1855 	ret = pt_pmu_hw_init();
1856 	if (ret)
1857 		return ret;
1858 
1859 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
1860 		pr_warn("ToPA output is not supported on this CPU\n");
1861 		return -ENODEV;
1862 	}
1863 
1864 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1865 		pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG;
1866 
1867 	pt_pmu.pmu.capabilities		|= PERF_PMU_CAP_EXCLUSIVE |
1868 					   PERF_PMU_CAP_ITRACE |
1869 					   PERF_PMU_CAP_AUX_PAUSE;
1870 	pt_pmu.pmu.attr_groups		 = pt_attr_groups;
1871 	pt_pmu.pmu.task_ctx_nr		 = perf_sw_context;
1872 	pt_pmu.pmu.event_init		 = pt_event_init;
1873 	pt_pmu.pmu.add			 = pt_event_add;
1874 	pt_pmu.pmu.del			 = pt_event_del;
1875 	pt_pmu.pmu.start		 = pt_event_start;
1876 	pt_pmu.pmu.stop			 = pt_event_stop;
1877 	pt_pmu.pmu.snapshot_aux		 = pt_event_snapshot_aux;
1878 	pt_pmu.pmu.read			 = pt_event_read;
1879 	pt_pmu.pmu.setup_aux		 = pt_buffer_setup_aux;
1880 	pt_pmu.pmu.free_aux		 = pt_buffer_free_aux;
1881 	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1882 	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1883 	pt_pmu.pmu.nr_addr_filters       =
1884 		intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
1885 
1886 	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1887 
1888 	return ret;
1889 }
1890 arch_initcall(pt_init);
1891