1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Intel(R) Processor Trace PMU driver for perf 4 * Copyright (c) 2013-2014, Intel Corporation. 5 * 6 * Intel PT is specified in the Intel Architecture Instruction Set Extensions 7 * Programming Reference: 8 * http://software.intel.com/en-us/intel-isa-extensions 9 */ 10 11 #undef DEBUG 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 19 #include <asm/perf_event.h> 20 #include <asm/insn.h> 21 #include <asm/io.h> 22 #include <asm/intel_pt.h> 23 #include <asm/intel-family.h> 24 25 #include "../perf_event.h" 26 #include "pt.h" 27 28 static DEFINE_PER_CPU(struct pt, pt_ctx); 29 30 static struct pt_pmu pt_pmu; 31 32 /* 33 * Capabilities of Intel PT hardware, such as number of address bits or 34 * supported output schemes, are cached and exported to userspace as "caps" 35 * attribute group of pt pmu device 36 * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store 37 * relevant bits together with intel_pt traces. 38 * 39 * These are necessary for both trace decoding (payloads_lip, contains address 40 * width encoded in IP-related packets), and event configuration (bitmasks with 41 * permitted values for certain bit fields). 42 */ 43 #define PT_CAP(_n, _l, _r, _m) \ 44 [PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l, \ 45 .reg = _r, .mask = _m } 46 47 static struct pt_cap_desc { 48 const char *name; 49 u32 leaf; 50 u8 reg; 51 u32 mask; 52 } pt_caps[] = { 53 PT_CAP(max_subleaf, 0, CPUID_EAX, 0xffffffff), 54 PT_CAP(cr3_filtering, 0, CPUID_EBX, BIT(0)), 55 PT_CAP(psb_cyc, 0, CPUID_EBX, BIT(1)), 56 PT_CAP(ip_filtering, 0, CPUID_EBX, BIT(2)), 57 PT_CAP(mtc, 0, CPUID_EBX, BIT(3)), 58 PT_CAP(ptwrite, 0, CPUID_EBX, BIT(4)), 59 PT_CAP(power_event_trace, 0, CPUID_EBX, BIT(5)), 60 PT_CAP(topa_output, 0, CPUID_ECX, BIT(0)), 61 PT_CAP(topa_multiple_entries, 0, CPUID_ECX, BIT(1)), 62 PT_CAP(single_range_output, 0, CPUID_ECX, BIT(2)), 63 PT_CAP(output_subsys, 0, CPUID_ECX, BIT(3)), 64 PT_CAP(payloads_lip, 0, CPUID_ECX, BIT(31)), 65 PT_CAP(num_address_ranges, 1, CPUID_EAX, 0x3), 66 PT_CAP(mtc_periods, 1, CPUID_EAX, 0xffff0000), 67 PT_CAP(cycle_thresholds, 1, CPUID_EBX, 0xffff), 68 PT_CAP(psb_periods, 1, CPUID_EBX, 0xffff0000), 69 }; 70 71 u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability) 72 { 73 struct pt_cap_desc *cd = &pt_caps[capability]; 74 u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg]; 75 unsigned int shift = __ffs(cd->mask); 76 77 return (c & cd->mask) >> shift; 78 } 79 EXPORT_SYMBOL_GPL(intel_pt_validate_cap); 80 81 u32 intel_pt_validate_hw_cap(enum pt_capabilities cap) 82 { 83 return intel_pt_validate_cap(pt_pmu.caps, cap); 84 } 85 EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap); 86 87 static ssize_t pt_cap_show(struct device *cdev, 88 struct device_attribute *attr, 89 char *buf) 90 { 91 struct dev_ext_attribute *ea = 92 container_of(attr, struct dev_ext_attribute, attr); 93 enum pt_capabilities cap = (long)ea->var; 94 95 return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap)); 96 } 97 98 static struct attribute_group pt_cap_group __ro_after_init = { 99 .name = "caps", 100 }; 101 102 PMU_FORMAT_ATTR(pt, "config:0" ); 103 PMU_FORMAT_ATTR(cyc, "config:1" ); 104 PMU_FORMAT_ATTR(pwr_evt, "config:4" ); 105 PMU_FORMAT_ATTR(fup_on_ptw, "config:5" ); 106 PMU_FORMAT_ATTR(mtc, "config:9" ); 107 PMU_FORMAT_ATTR(tsc, "config:10" ); 108 PMU_FORMAT_ATTR(noretcomp, "config:11" ); 109 PMU_FORMAT_ATTR(ptw, "config:12" ); 110 PMU_FORMAT_ATTR(branch, "config:13" ); 111 PMU_FORMAT_ATTR(mtc_period, "config:14-17" ); 112 PMU_FORMAT_ATTR(cyc_thresh, "config:19-22" ); 113 PMU_FORMAT_ATTR(psb_period, "config:24-27" ); 114 115 static struct attribute *pt_formats_attr[] = { 116 &format_attr_pt.attr, 117 &format_attr_cyc.attr, 118 &format_attr_pwr_evt.attr, 119 &format_attr_fup_on_ptw.attr, 120 &format_attr_mtc.attr, 121 &format_attr_tsc.attr, 122 &format_attr_noretcomp.attr, 123 &format_attr_ptw.attr, 124 &format_attr_branch.attr, 125 &format_attr_mtc_period.attr, 126 &format_attr_cyc_thresh.attr, 127 &format_attr_psb_period.attr, 128 NULL, 129 }; 130 131 static struct attribute_group pt_format_group = { 132 .name = "format", 133 .attrs = pt_formats_attr, 134 }; 135 136 static ssize_t 137 pt_timing_attr_show(struct device *dev, struct device_attribute *attr, 138 char *page) 139 { 140 struct perf_pmu_events_attr *pmu_attr = 141 container_of(attr, struct perf_pmu_events_attr, attr); 142 143 switch (pmu_attr->id) { 144 case 0: 145 return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio); 146 case 1: 147 return sprintf(page, "%u:%u\n", 148 pt_pmu.tsc_art_num, 149 pt_pmu.tsc_art_den); 150 default: 151 break; 152 } 153 154 return -EINVAL; 155 } 156 157 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0, 158 pt_timing_attr_show); 159 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1, 160 pt_timing_attr_show); 161 162 static struct attribute *pt_timing_attr[] = { 163 &timing_attr_max_nonturbo_ratio.attr.attr, 164 &timing_attr_tsc_art_ratio.attr.attr, 165 NULL, 166 }; 167 168 static struct attribute_group pt_timing_group = { 169 .attrs = pt_timing_attr, 170 }; 171 172 static const struct attribute_group *pt_attr_groups[] = { 173 &pt_cap_group, 174 &pt_format_group, 175 &pt_timing_group, 176 NULL, 177 }; 178 179 static int __init pt_pmu_hw_init(void) 180 { 181 struct dev_ext_attribute *de_attrs; 182 struct attribute **attrs; 183 size_t size; 184 u64 reg; 185 int ret; 186 long i; 187 188 rdmsrl(MSR_PLATFORM_INFO, reg); 189 pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8; 190 191 /* 192 * if available, read in TSC to core crystal clock ratio, 193 * otherwise, zero for numerator stands for "not enumerated" 194 * as per SDM 195 */ 196 if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) { 197 u32 eax, ebx, ecx, edx; 198 199 cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx); 200 201 pt_pmu.tsc_art_num = ebx; 202 pt_pmu.tsc_art_den = eax; 203 } 204 205 /* model-specific quirks */ 206 switch (boot_cpu_data.x86_model) { 207 case INTEL_FAM6_BROADWELL: 208 case INTEL_FAM6_BROADWELL_D: 209 case INTEL_FAM6_BROADWELL_G: 210 case INTEL_FAM6_BROADWELL_X: 211 /* not setting BRANCH_EN will #GP, erratum BDM106 */ 212 pt_pmu.branch_en_always_on = true; 213 break; 214 default: 215 break; 216 } 217 218 if (boot_cpu_has(X86_FEATURE_VMX)) { 219 /* 220 * Intel SDM, 36.5 "Tracing post-VMXON" says that 221 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace 222 * post-VMXON. 223 */ 224 rdmsrl(MSR_IA32_VMX_MISC, reg); 225 if (reg & BIT(14)) 226 pt_pmu.vmx = true; 227 } 228 229 attrs = NULL; 230 231 for (i = 0; i < PT_CPUID_LEAVES; i++) { 232 cpuid_count(20, i, 233 &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM], 234 &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM], 235 &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM], 236 &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]); 237 } 238 239 ret = -ENOMEM; 240 size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1); 241 attrs = kzalloc(size, GFP_KERNEL); 242 if (!attrs) 243 goto fail; 244 245 size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1); 246 de_attrs = kzalloc(size, GFP_KERNEL); 247 if (!de_attrs) 248 goto fail; 249 250 for (i = 0; i < ARRAY_SIZE(pt_caps); i++) { 251 struct dev_ext_attribute *de_attr = de_attrs + i; 252 253 de_attr->attr.attr.name = pt_caps[i].name; 254 255 sysfs_attr_init(&de_attr->attr.attr); 256 257 de_attr->attr.attr.mode = S_IRUGO; 258 de_attr->attr.show = pt_cap_show; 259 de_attr->var = (void *)i; 260 261 attrs[i] = &de_attr->attr.attr; 262 } 263 264 pt_cap_group.attrs = attrs; 265 266 return 0; 267 268 fail: 269 kfree(attrs); 270 271 return ret; 272 } 273 274 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC | \ 275 RTIT_CTL_CYC_THRESH | \ 276 RTIT_CTL_PSB_FREQ) 277 278 #define RTIT_CTL_MTC (RTIT_CTL_MTC_EN | \ 279 RTIT_CTL_MTC_RANGE) 280 281 #define RTIT_CTL_PTW (RTIT_CTL_PTW_EN | \ 282 RTIT_CTL_FUP_ON_PTW) 283 284 /* 285 * Bit 0 (TraceEn) in the attr.config is meaningless as the 286 * corresponding bit in the RTIT_CTL can only be controlled 287 * by the driver; therefore, repurpose it to mean: pass 288 * through the bit that was previously assumed to be always 289 * on for PT, thereby allowing the user to *not* set it if 290 * they so wish. See also pt_event_valid() and pt_config(). 291 */ 292 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN 293 294 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN | \ 295 RTIT_CTL_TSC_EN | \ 296 RTIT_CTL_DISRETC | \ 297 RTIT_CTL_BRANCH_EN | \ 298 RTIT_CTL_CYC_PSB | \ 299 RTIT_CTL_MTC | \ 300 RTIT_CTL_PWR_EVT_EN | \ 301 RTIT_CTL_FUP_ON_PTW | \ 302 RTIT_CTL_PTW_EN) 303 304 static bool pt_event_valid(struct perf_event *event) 305 { 306 u64 config = event->attr.config; 307 u64 allowed, requested; 308 309 if ((config & PT_CONFIG_MASK) != config) 310 return false; 311 312 if (config & RTIT_CTL_CYC_PSB) { 313 if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc)) 314 return false; 315 316 allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods); 317 requested = (config & RTIT_CTL_PSB_FREQ) >> 318 RTIT_CTL_PSB_FREQ_OFFSET; 319 if (requested && (!(allowed & BIT(requested)))) 320 return false; 321 322 allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds); 323 requested = (config & RTIT_CTL_CYC_THRESH) >> 324 RTIT_CTL_CYC_THRESH_OFFSET; 325 if (requested && (!(allowed & BIT(requested)))) 326 return false; 327 } 328 329 if (config & RTIT_CTL_MTC) { 330 /* 331 * In the unlikely case that CPUID lists valid mtc periods, 332 * but not the mtc capability, drop out here. 333 * 334 * Spec says that setting mtc period bits while mtc bit in 335 * CPUID is 0 will #GP, so better safe than sorry. 336 */ 337 if (!intel_pt_validate_hw_cap(PT_CAP_mtc)) 338 return false; 339 340 allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods); 341 if (!allowed) 342 return false; 343 344 requested = (config & RTIT_CTL_MTC_RANGE) >> 345 RTIT_CTL_MTC_RANGE_OFFSET; 346 347 if (!(allowed & BIT(requested))) 348 return false; 349 } 350 351 if (config & RTIT_CTL_PWR_EVT_EN && 352 !intel_pt_validate_hw_cap(PT_CAP_power_event_trace)) 353 return false; 354 355 if (config & RTIT_CTL_PTW) { 356 if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite)) 357 return false; 358 359 /* FUPonPTW without PTW doesn't make sense */ 360 if ((config & RTIT_CTL_FUP_ON_PTW) && 361 !(config & RTIT_CTL_PTW_EN)) 362 return false; 363 } 364 365 /* 366 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config 367 * clears the assomption that BranchEn must always be enabled, 368 * as was the case with the first implementation of PT. 369 * If this bit is not set, the legacy behavior is preserved 370 * for compatibility with the older userspace. 371 * 372 * Re-using bit 0 for this purpose is fine because it is never 373 * directly set by the user; previous attempts at setting it in 374 * the attr.config resulted in -EINVAL. 375 */ 376 if (config & RTIT_CTL_PASSTHROUGH) { 377 /* 378 * Disallow not setting BRANCH_EN where BRANCH_EN is 379 * always required. 380 */ 381 if (pt_pmu.branch_en_always_on && 382 !(config & RTIT_CTL_BRANCH_EN)) 383 return false; 384 } else { 385 /* 386 * Disallow BRANCH_EN without the PASSTHROUGH. 387 */ 388 if (config & RTIT_CTL_BRANCH_EN) 389 return false; 390 } 391 392 return true; 393 } 394 395 /* 396 * PT configuration helpers 397 * These all are cpu affine and operate on a local PT 398 */ 399 400 static void pt_config_start(struct perf_event *event) 401 { 402 struct pt *pt = this_cpu_ptr(&pt_ctx); 403 u64 ctl = event->hw.config; 404 405 ctl |= RTIT_CTL_TRACEEN; 406 if (READ_ONCE(pt->vmx_on)) 407 perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL); 408 else 409 wrmsrl(MSR_IA32_RTIT_CTL, ctl); 410 411 WRITE_ONCE(event->hw.config, ctl); 412 } 413 414 /* Address ranges and their corresponding msr configuration registers */ 415 static const struct pt_address_range { 416 unsigned long msr_a; 417 unsigned long msr_b; 418 unsigned int reg_off; 419 } pt_address_ranges[] = { 420 { 421 .msr_a = MSR_IA32_RTIT_ADDR0_A, 422 .msr_b = MSR_IA32_RTIT_ADDR0_B, 423 .reg_off = RTIT_CTL_ADDR0_OFFSET, 424 }, 425 { 426 .msr_a = MSR_IA32_RTIT_ADDR1_A, 427 .msr_b = MSR_IA32_RTIT_ADDR1_B, 428 .reg_off = RTIT_CTL_ADDR1_OFFSET, 429 }, 430 { 431 .msr_a = MSR_IA32_RTIT_ADDR2_A, 432 .msr_b = MSR_IA32_RTIT_ADDR2_B, 433 .reg_off = RTIT_CTL_ADDR2_OFFSET, 434 }, 435 { 436 .msr_a = MSR_IA32_RTIT_ADDR3_A, 437 .msr_b = MSR_IA32_RTIT_ADDR3_B, 438 .reg_off = RTIT_CTL_ADDR3_OFFSET, 439 } 440 }; 441 442 static u64 pt_config_filters(struct perf_event *event) 443 { 444 struct pt_filters *filters = event->hw.addr_filters; 445 struct pt *pt = this_cpu_ptr(&pt_ctx); 446 unsigned int range = 0; 447 u64 rtit_ctl = 0; 448 449 if (!filters) 450 return 0; 451 452 perf_event_addr_filters_sync(event); 453 454 for (range = 0; range < filters->nr_filters; range++) { 455 struct pt_filter *filter = &filters->filter[range]; 456 457 /* 458 * Note, if the range has zero start/end addresses due 459 * to its dynamic object not being loaded yet, we just 460 * go ahead and program zeroed range, which will simply 461 * produce no data. Note^2: if executable code at 0x0 462 * is a concern, we can set up an "invalid" configuration 463 * such as msr_b < msr_a. 464 */ 465 466 /* avoid redundant msr writes */ 467 if (pt->filters.filter[range].msr_a != filter->msr_a) { 468 wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a); 469 pt->filters.filter[range].msr_a = filter->msr_a; 470 } 471 472 if (pt->filters.filter[range].msr_b != filter->msr_b) { 473 wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b); 474 pt->filters.filter[range].msr_b = filter->msr_b; 475 } 476 477 rtit_ctl |= filter->config << pt_address_ranges[range].reg_off; 478 } 479 480 return rtit_ctl; 481 } 482 483 static void pt_config(struct perf_event *event) 484 { 485 struct pt *pt = this_cpu_ptr(&pt_ctx); 486 struct pt_buffer *buf = perf_get_aux(&pt->handle); 487 u64 reg; 488 489 /* First round: clear STATUS, in particular the PSB byte counter. */ 490 if (!event->hw.config) { 491 perf_event_itrace_started(event); 492 wrmsrl(MSR_IA32_RTIT_STATUS, 0); 493 } 494 495 reg = pt_config_filters(event); 496 reg |= RTIT_CTL_TRACEEN; 497 if (!buf->single) 498 reg |= RTIT_CTL_TOPA; 499 500 /* 501 * Previously, we had BRANCH_EN on by default, but now that PT has 502 * grown features outside of branch tracing, it is useful to allow 503 * the user to disable it. Setting bit 0 in the event's attr.config 504 * allows BRANCH_EN to pass through instead of being always on. See 505 * also the comment in pt_event_valid(). 506 */ 507 if (event->attr.config & BIT(0)) { 508 reg |= event->attr.config & RTIT_CTL_BRANCH_EN; 509 } else { 510 reg |= RTIT_CTL_BRANCH_EN; 511 } 512 513 if (!event->attr.exclude_kernel) 514 reg |= RTIT_CTL_OS; 515 if (!event->attr.exclude_user) 516 reg |= RTIT_CTL_USR; 517 518 reg |= (event->attr.config & PT_CONFIG_MASK); 519 520 event->hw.config = reg; 521 pt_config_start(event); 522 } 523 524 static void pt_config_stop(struct perf_event *event) 525 { 526 struct pt *pt = this_cpu_ptr(&pt_ctx); 527 u64 ctl = READ_ONCE(event->hw.config); 528 529 /* may be already stopped by a PMI */ 530 if (!(ctl & RTIT_CTL_TRACEEN)) 531 return; 532 533 ctl &= ~RTIT_CTL_TRACEEN; 534 if (!READ_ONCE(pt->vmx_on)) 535 wrmsrl(MSR_IA32_RTIT_CTL, ctl); 536 537 WRITE_ONCE(event->hw.config, ctl); 538 539 /* 540 * A wrmsr that disables trace generation serializes other PT 541 * registers and causes all data packets to be written to memory, 542 * but a fence is required for the data to become globally visible. 543 * 544 * The below WMB, separating data store and aux_head store matches 545 * the consumer's RMB that separates aux_head load and data load. 546 */ 547 wmb(); 548 } 549 550 /** 551 * struct topa - ToPA metadata 552 * @list: linkage to struct pt_buffer's list of tables 553 * @offset: offset of the first entry in this table in the buffer 554 * @size: total size of all entries in this table 555 * @last: index of the last initialized entry in this table 556 * @z_count: how many times the first entry repeats 557 */ 558 struct topa { 559 struct list_head list; 560 u64 offset; 561 size_t size; 562 int last; 563 unsigned int z_count; 564 }; 565 566 /* 567 * Keep ToPA table-related metadata on the same page as the actual table, 568 * taking up a few words from the top 569 */ 570 571 #define TENTS_PER_PAGE \ 572 ((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry)) 573 574 /** 575 * struct topa_page - page-sized ToPA table with metadata at the top 576 * @table: actual ToPA table entries, as understood by PT hardware 577 * @topa: metadata 578 */ 579 struct topa_page { 580 struct topa_entry table[TENTS_PER_PAGE]; 581 struct topa topa; 582 }; 583 584 static inline struct topa_page *topa_to_page(struct topa *topa) 585 { 586 return container_of(topa, struct topa_page, topa); 587 } 588 589 static inline struct topa_page *topa_entry_to_page(struct topa_entry *te) 590 { 591 return (struct topa_page *)((unsigned long)te & PAGE_MASK); 592 } 593 594 static inline phys_addr_t topa_pfn(struct topa *topa) 595 { 596 return PFN_DOWN(virt_to_phys(topa_to_page(topa))); 597 } 598 599 /* make -1 stand for the last table entry */ 600 #define TOPA_ENTRY(t, i) \ 601 ((i) == -1 \ 602 ? &topa_to_page(t)->table[(t)->last] \ 603 : &topa_to_page(t)->table[(i)]) 604 #define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size)) 605 #define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size) 606 607 static void pt_config_buffer(struct pt_buffer *buf) 608 { 609 struct pt *pt = this_cpu_ptr(&pt_ctx); 610 u64 reg, mask; 611 void *base; 612 613 if (buf->single) { 614 base = buf->data_pages[0]; 615 mask = (buf->nr_pages * PAGE_SIZE - 1) >> 7; 616 } else { 617 base = topa_to_page(buf->cur)->table; 618 mask = (u64)buf->cur_idx; 619 } 620 621 reg = virt_to_phys(base); 622 if (pt->output_base != reg) { 623 pt->output_base = reg; 624 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, reg); 625 } 626 627 reg = 0x7f | (mask << 7) | ((u64)buf->output_off << 32); 628 if (pt->output_mask != reg) { 629 pt->output_mask = reg; 630 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg); 631 } 632 } 633 634 /** 635 * topa_alloc() - allocate page-sized ToPA table 636 * @cpu: CPU on which to allocate. 637 * @gfp: Allocation flags. 638 * 639 * Return: On success, return the pointer to ToPA table page. 640 */ 641 static struct topa *topa_alloc(int cpu, gfp_t gfp) 642 { 643 int node = cpu_to_node(cpu); 644 struct topa_page *tp; 645 struct page *p; 646 647 p = alloc_pages_node(node, gfp | __GFP_ZERO, 0); 648 if (!p) 649 return NULL; 650 651 tp = page_address(p); 652 tp->topa.last = 0; 653 654 /* 655 * In case of singe-entry ToPA, always put the self-referencing END 656 * link as the 2nd entry in the table 657 */ 658 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 659 TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT; 660 TOPA_ENTRY(&tp->topa, 1)->end = 1; 661 } 662 663 return &tp->topa; 664 } 665 666 /** 667 * topa_free() - free a page-sized ToPA table 668 * @topa: Table to deallocate. 669 */ 670 static void topa_free(struct topa *topa) 671 { 672 free_page((unsigned long)topa); 673 } 674 675 /** 676 * topa_insert_table() - insert a ToPA table into a buffer 677 * @buf: PT buffer that's being extended. 678 * @topa: New topa table to be inserted. 679 * 680 * If it's the first table in this buffer, set up buffer's pointers 681 * accordingly; otherwise, add a END=1 link entry to @topa to the current 682 * "last" table and adjust the last table pointer to @topa. 683 */ 684 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa) 685 { 686 struct topa *last = buf->last; 687 688 list_add_tail(&topa->list, &buf->tables); 689 690 if (!buf->first) { 691 buf->first = buf->last = buf->cur = topa; 692 return; 693 } 694 695 topa->offset = last->offset + last->size; 696 buf->last = topa; 697 698 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 699 return; 700 701 BUG_ON(last->last != TENTS_PER_PAGE - 1); 702 703 TOPA_ENTRY(last, -1)->base = topa_pfn(topa); 704 TOPA_ENTRY(last, -1)->end = 1; 705 } 706 707 /** 708 * topa_table_full() - check if a ToPA table is filled up 709 * @topa: ToPA table. 710 */ 711 static bool topa_table_full(struct topa *topa) 712 { 713 /* single-entry ToPA is a special case */ 714 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 715 return !!topa->last; 716 717 return topa->last == TENTS_PER_PAGE - 1; 718 } 719 720 /** 721 * topa_insert_pages() - create a list of ToPA tables 722 * @buf: PT buffer being initialized. 723 * @gfp: Allocation flags. 724 * 725 * This initializes a list of ToPA tables with entries from 726 * the data_pages provided by rb_alloc_aux(). 727 * 728 * Return: 0 on success or error code. 729 */ 730 static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp) 731 { 732 struct topa *topa = buf->last; 733 int order = 0; 734 struct page *p; 735 736 p = virt_to_page(buf->data_pages[buf->nr_pages]); 737 if (PagePrivate(p)) 738 order = page_private(p); 739 740 if (topa_table_full(topa)) { 741 topa = topa_alloc(cpu, gfp); 742 if (!topa) 743 return -ENOMEM; 744 745 topa_insert_table(buf, topa); 746 } 747 748 if (topa->z_count == topa->last - 1) { 749 if (order == TOPA_ENTRY(topa, topa->last - 1)->size) 750 topa->z_count++; 751 } 752 753 TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT; 754 TOPA_ENTRY(topa, -1)->size = order; 755 if (!buf->snapshot && 756 !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 757 TOPA_ENTRY(topa, -1)->intr = 1; 758 TOPA_ENTRY(topa, -1)->stop = 1; 759 } 760 761 topa->last++; 762 topa->size += sizes(order); 763 764 buf->nr_pages += 1ul << order; 765 766 return 0; 767 } 768 769 /** 770 * pt_topa_dump() - print ToPA tables and their entries 771 * @buf: PT buffer. 772 */ 773 static void pt_topa_dump(struct pt_buffer *buf) 774 { 775 struct topa *topa; 776 777 list_for_each_entry(topa, &buf->tables, list) { 778 struct topa_page *tp = topa_to_page(topa); 779 int i; 780 781 pr_debug("# table @%p, off %llx size %zx\n", tp->table, 782 topa->offset, topa->size); 783 for (i = 0; i < TENTS_PER_PAGE; i++) { 784 pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n", 785 &tp->table[i], 786 (unsigned long)tp->table[i].base << TOPA_SHIFT, 787 sizes(tp->table[i].size), 788 tp->table[i].end ? 'E' : ' ', 789 tp->table[i].intr ? 'I' : ' ', 790 tp->table[i].stop ? 'S' : ' ', 791 *(u64 *)&tp->table[i]); 792 if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && 793 tp->table[i].stop) || 794 tp->table[i].end) 795 break; 796 if (!i && topa->z_count) 797 i += topa->z_count; 798 } 799 } 800 } 801 802 /** 803 * pt_buffer_advance() - advance to the next output region 804 * @buf: PT buffer. 805 * 806 * Advance the current pointers in the buffer to the next ToPA entry. 807 */ 808 static void pt_buffer_advance(struct pt_buffer *buf) 809 { 810 buf->output_off = 0; 811 buf->cur_idx++; 812 813 if (buf->cur_idx == buf->cur->last) { 814 if (buf->cur == buf->last) 815 buf->cur = buf->first; 816 else 817 buf->cur = list_entry(buf->cur->list.next, struct topa, 818 list); 819 buf->cur_idx = 0; 820 } 821 } 822 823 /** 824 * pt_update_head() - calculate current offsets and sizes 825 * @pt: Per-cpu pt context. 826 * 827 * Update buffer's current write pointer position and data size. 828 */ 829 static void pt_update_head(struct pt *pt) 830 { 831 struct pt_buffer *buf = perf_get_aux(&pt->handle); 832 u64 topa_idx, base, old; 833 834 if (buf->single) { 835 local_set(&buf->data_size, buf->output_off); 836 return; 837 } 838 839 /* offset of the first region in this table from the beginning of buf */ 840 base = buf->cur->offset + buf->output_off; 841 842 /* offset of the current output region within this table */ 843 for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++) 844 base += TOPA_ENTRY_SIZE(buf->cur, topa_idx); 845 846 if (buf->snapshot) { 847 local_set(&buf->data_size, base); 848 } else { 849 old = (local64_xchg(&buf->head, base) & 850 ((buf->nr_pages << PAGE_SHIFT) - 1)); 851 if (base < old) 852 base += buf->nr_pages << PAGE_SHIFT; 853 854 local_add(base - old, &buf->data_size); 855 } 856 } 857 858 /** 859 * pt_buffer_region() - obtain current output region's address 860 * @buf: PT buffer. 861 */ 862 static void *pt_buffer_region(struct pt_buffer *buf) 863 { 864 return phys_to_virt(TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT); 865 } 866 867 /** 868 * pt_buffer_region_size() - obtain current output region's size 869 * @buf: PT buffer. 870 */ 871 static size_t pt_buffer_region_size(struct pt_buffer *buf) 872 { 873 return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx); 874 } 875 876 /** 877 * pt_handle_status() - take care of possible status conditions 878 * @pt: Per-cpu pt context. 879 */ 880 static void pt_handle_status(struct pt *pt) 881 { 882 struct pt_buffer *buf = perf_get_aux(&pt->handle); 883 int advance = 0; 884 u64 status; 885 886 rdmsrl(MSR_IA32_RTIT_STATUS, status); 887 888 if (status & RTIT_STATUS_ERROR) { 889 pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n"); 890 pt_topa_dump(buf); 891 status &= ~RTIT_STATUS_ERROR; 892 } 893 894 if (status & RTIT_STATUS_STOPPED) { 895 status &= ~RTIT_STATUS_STOPPED; 896 897 /* 898 * On systems that only do single-entry ToPA, hitting STOP 899 * means we are already losing data; need to let the decoder 900 * know. 901 */ 902 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) || 903 buf->output_off == pt_buffer_region_size(buf)) { 904 perf_aux_output_flag(&pt->handle, 905 PERF_AUX_FLAG_TRUNCATED); 906 advance++; 907 } 908 } 909 910 /* 911 * Also on single-entry ToPA implementations, interrupt will come 912 * before the output reaches its output region's boundary. 913 */ 914 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && 915 !buf->snapshot && 916 pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) { 917 void *head = pt_buffer_region(buf); 918 919 /* everything within this margin needs to be zeroed out */ 920 memset(head + buf->output_off, 0, 921 pt_buffer_region_size(buf) - 922 buf->output_off); 923 advance++; 924 } 925 926 if (advance) 927 pt_buffer_advance(buf); 928 929 wrmsrl(MSR_IA32_RTIT_STATUS, status); 930 } 931 932 /** 933 * pt_read_offset() - translate registers into buffer pointers 934 * @buf: PT buffer. 935 * 936 * Set buffer's output pointers from MSR values. 937 */ 938 static void pt_read_offset(struct pt_buffer *buf) 939 { 940 struct pt *pt = this_cpu_ptr(&pt_ctx); 941 struct topa_page *tp; 942 943 if (!buf->single) { 944 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, pt->output_base); 945 tp = phys_to_virt(pt->output_base); 946 buf->cur = &tp->topa; 947 } 948 949 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, pt->output_mask); 950 /* offset within current output region */ 951 buf->output_off = pt->output_mask >> 32; 952 /* index of current output region within this table */ 953 if (!buf->single) 954 buf->cur_idx = (pt->output_mask & 0xffffff80) >> 7; 955 } 956 957 static struct topa_entry * 958 pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg) 959 { 960 struct topa_page *tp; 961 struct topa *topa; 962 unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0; 963 964 /* 965 * Indicates a bug in the caller. 966 */ 967 if (WARN_ON_ONCE(pg >= buf->nr_pages)) 968 return NULL; 969 970 /* 971 * First, find the ToPA table where @pg fits. With high 972 * order allocations, there shouldn't be many of these. 973 */ 974 list_for_each_entry(topa, &buf->tables, list) { 975 if (topa->offset + topa->size > pg << PAGE_SHIFT) 976 goto found; 977 } 978 979 /* 980 * Hitting this means we have a problem in the ToPA 981 * allocation code. 982 */ 983 WARN_ON_ONCE(1); 984 985 return NULL; 986 987 found: 988 /* 989 * Indicates a problem in the ToPA allocation code. 990 */ 991 if (WARN_ON_ONCE(topa->last == -1)) 992 return NULL; 993 994 tp = topa_to_page(topa); 995 cur_pg = PFN_DOWN(topa->offset); 996 if (topa->z_count) { 997 z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1); 998 start_idx = topa->z_count + 1; 999 } 1000 1001 /* 1002 * Multiple entries at the beginning of the table have the same size, 1003 * ideally all of them; if @pg falls there, the search is done. 1004 */ 1005 if (pg >= cur_pg && pg < cur_pg + z_pg) { 1006 idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0); 1007 return &tp->table[idx]; 1008 } 1009 1010 /* 1011 * Otherwise, slow path: iterate through the remaining entries. 1012 */ 1013 for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) { 1014 if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg) 1015 return &tp->table[idx]; 1016 1017 cur_pg += TOPA_ENTRY_PAGES(topa, idx); 1018 } 1019 1020 /* 1021 * Means we couldn't find a ToPA entry in the table that does match. 1022 */ 1023 WARN_ON_ONCE(1); 1024 1025 return NULL; 1026 } 1027 1028 static struct topa_entry * 1029 pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te) 1030 { 1031 unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1); 1032 struct topa_page *tp; 1033 struct topa *topa; 1034 1035 tp = (struct topa_page *)table; 1036 if (tp->table != te) 1037 return --te; 1038 1039 topa = &tp->topa; 1040 if (topa == buf->first) 1041 topa = buf->last; 1042 else 1043 topa = list_prev_entry(topa, list); 1044 1045 tp = topa_to_page(topa); 1046 1047 return &tp->table[topa->last - 1]; 1048 } 1049 1050 /** 1051 * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer 1052 * @buf: PT buffer. 1053 * @handle: Current output handle. 1054 * 1055 * Place INT and STOP marks to prevent overwriting old data that the consumer 1056 * hasn't yet collected and waking up the consumer after a certain fraction of 1057 * the buffer has filled up. Only needed and sensible for non-snapshot counters. 1058 * 1059 * This obviously relies on buf::head to figure out buffer markers, so it has 1060 * to be called after pt_buffer_reset_offsets() and before the hardware tracing 1061 * is enabled. 1062 */ 1063 static int pt_buffer_reset_markers(struct pt_buffer *buf, 1064 struct perf_output_handle *handle) 1065 1066 { 1067 unsigned long head = local64_read(&buf->head); 1068 unsigned long idx, npages, wakeup; 1069 1070 if (buf->single) 1071 return 0; 1072 1073 /* can't stop in the middle of an output region */ 1074 if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) { 1075 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1076 return -EINVAL; 1077 } 1078 1079 1080 /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */ 1081 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 1082 return 0; 1083 1084 /* clear STOP and INT from current entry */ 1085 if (buf->stop_te) { 1086 buf->stop_te->stop = 0; 1087 buf->stop_te->intr = 0; 1088 } 1089 1090 if (buf->intr_te) 1091 buf->intr_te->intr = 0; 1092 1093 /* how many pages till the STOP marker */ 1094 npages = handle->size >> PAGE_SHIFT; 1095 1096 /* if it's on a page boundary, fill up one more page */ 1097 if (!offset_in_page(head + handle->size + 1)) 1098 npages++; 1099 1100 idx = (head >> PAGE_SHIFT) + npages; 1101 idx &= buf->nr_pages - 1; 1102 1103 if (idx != buf->stop_pos) { 1104 buf->stop_pos = idx; 1105 buf->stop_te = pt_topa_entry_for_page(buf, idx); 1106 buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te); 1107 } 1108 1109 wakeup = handle->wakeup >> PAGE_SHIFT; 1110 1111 /* in the worst case, wake up the consumer one page before hard stop */ 1112 idx = (head >> PAGE_SHIFT) + npages - 1; 1113 if (idx > wakeup) 1114 idx = wakeup; 1115 1116 idx &= buf->nr_pages - 1; 1117 if (idx != buf->intr_pos) { 1118 buf->intr_pos = idx; 1119 buf->intr_te = pt_topa_entry_for_page(buf, idx); 1120 buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te); 1121 } 1122 1123 buf->stop_te->stop = 1; 1124 buf->stop_te->intr = 1; 1125 buf->intr_te->intr = 1; 1126 1127 return 0; 1128 } 1129 1130 /** 1131 * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head 1132 * @buf: PT buffer. 1133 * @head: Write pointer (aux_head) from AUX buffer. 1134 * 1135 * Find the ToPA table and entry corresponding to given @head and set buffer's 1136 * "current" pointers accordingly. This is done after we have obtained the 1137 * current aux_head position from a successful call to perf_aux_output_begin() 1138 * to make sure the hardware is writing to the right place. 1139 * 1140 * This function modifies buf::{cur,cur_idx,output_off} that will be programmed 1141 * into PT msrs when the tracing is enabled and buf::head and buf::data_size, 1142 * which are used to determine INT and STOP markers' locations by a subsequent 1143 * call to pt_buffer_reset_markers(). 1144 */ 1145 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head) 1146 { 1147 struct topa_page *cur_tp; 1148 struct topa_entry *te; 1149 int pg; 1150 1151 if (buf->snapshot) 1152 head &= (buf->nr_pages << PAGE_SHIFT) - 1; 1153 1154 if (!buf->single) { 1155 pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1); 1156 te = pt_topa_entry_for_page(buf, pg); 1157 1158 cur_tp = topa_entry_to_page(te); 1159 buf->cur = &cur_tp->topa; 1160 buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0); 1161 buf->output_off = head & (pt_buffer_region_size(buf) - 1); 1162 } else { 1163 buf->output_off = head; 1164 } 1165 1166 local64_set(&buf->head, head); 1167 local_set(&buf->data_size, 0); 1168 } 1169 1170 /** 1171 * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer 1172 * @buf: PT buffer. 1173 */ 1174 static void pt_buffer_fini_topa(struct pt_buffer *buf) 1175 { 1176 struct topa *topa, *iter; 1177 1178 if (buf->single) 1179 return; 1180 1181 list_for_each_entry_safe(topa, iter, &buf->tables, list) { 1182 /* 1183 * right now, this is in free_aux() path only, so 1184 * no need to unlink this table from the list 1185 */ 1186 topa_free(topa); 1187 } 1188 } 1189 1190 /** 1191 * pt_buffer_init_topa() - initialize ToPA table for pt buffer 1192 * @buf: PT buffer. 1193 * @size: Total size of all regions within this ToPA. 1194 * @gfp: Allocation flags. 1195 */ 1196 static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu, 1197 unsigned long nr_pages, gfp_t gfp) 1198 { 1199 struct topa *topa; 1200 int err; 1201 1202 topa = topa_alloc(cpu, gfp); 1203 if (!topa) 1204 return -ENOMEM; 1205 1206 topa_insert_table(buf, topa); 1207 1208 while (buf->nr_pages < nr_pages) { 1209 err = topa_insert_pages(buf, cpu, gfp); 1210 if (err) { 1211 pt_buffer_fini_topa(buf); 1212 return -ENOMEM; 1213 } 1214 } 1215 1216 /* link last table to the first one, unless we're double buffering */ 1217 if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 1218 TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first); 1219 TOPA_ENTRY(buf->last, -1)->end = 1; 1220 } 1221 1222 pt_topa_dump(buf); 1223 return 0; 1224 } 1225 1226 static int pt_buffer_try_single(struct pt_buffer *buf, int nr_pages) 1227 { 1228 struct page *p = virt_to_page(buf->data_pages[0]); 1229 int ret = -ENOTSUPP, order = 0; 1230 1231 /* 1232 * We can use single range output mode 1233 * + in snapshot mode, where we don't need interrupts; 1234 * + if the hardware supports it; 1235 * + if the entire buffer is one contiguous allocation. 1236 */ 1237 if (!buf->snapshot) 1238 goto out; 1239 1240 if (!intel_pt_validate_hw_cap(PT_CAP_single_range_output)) 1241 goto out; 1242 1243 if (PagePrivate(p)) 1244 order = page_private(p); 1245 1246 if (1 << order != nr_pages) 1247 goto out; 1248 1249 buf->single = true; 1250 buf->nr_pages = nr_pages; 1251 ret = 0; 1252 out: 1253 return ret; 1254 } 1255 1256 /** 1257 * pt_buffer_setup_aux() - set up topa tables for a PT buffer 1258 * @cpu: Cpu on which to allocate, -1 means current. 1259 * @pages: Array of pointers to buffer pages passed from perf core. 1260 * @nr_pages: Number of pages in the buffer. 1261 * @snapshot: If this is a snapshot/overwrite counter. 1262 * 1263 * This is a pmu::setup_aux callback that sets up ToPA tables and all the 1264 * bookkeeping for an AUX buffer. 1265 * 1266 * Return: Our private PT buffer structure. 1267 */ 1268 static void * 1269 pt_buffer_setup_aux(struct perf_event *event, void **pages, 1270 int nr_pages, bool snapshot) 1271 { 1272 struct pt_buffer *buf; 1273 int node, ret, cpu = event->cpu; 1274 1275 if (!nr_pages) 1276 return NULL; 1277 1278 /* 1279 * Only support AUX sampling in snapshot mode, where we don't 1280 * generate NMIs. 1281 */ 1282 if (event->attr.aux_sample_size && !snapshot) 1283 return NULL; 1284 1285 if (cpu == -1) 1286 cpu = raw_smp_processor_id(); 1287 node = cpu_to_node(cpu); 1288 1289 buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node); 1290 if (!buf) 1291 return NULL; 1292 1293 buf->snapshot = snapshot; 1294 buf->data_pages = pages; 1295 buf->stop_pos = -1; 1296 buf->intr_pos = -1; 1297 1298 INIT_LIST_HEAD(&buf->tables); 1299 1300 ret = pt_buffer_try_single(buf, nr_pages); 1301 if (!ret) 1302 return buf; 1303 1304 ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL); 1305 if (ret) { 1306 kfree(buf); 1307 return NULL; 1308 } 1309 1310 return buf; 1311 } 1312 1313 /** 1314 * pt_buffer_free_aux() - perf AUX deallocation path callback 1315 * @data: PT buffer. 1316 */ 1317 static void pt_buffer_free_aux(void *data) 1318 { 1319 struct pt_buffer *buf = data; 1320 1321 pt_buffer_fini_topa(buf); 1322 kfree(buf); 1323 } 1324 1325 static int pt_addr_filters_init(struct perf_event *event) 1326 { 1327 struct pt_filters *filters; 1328 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); 1329 1330 if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) 1331 return 0; 1332 1333 filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node); 1334 if (!filters) 1335 return -ENOMEM; 1336 1337 if (event->parent) 1338 memcpy(filters, event->parent->hw.addr_filters, 1339 sizeof(*filters)); 1340 1341 event->hw.addr_filters = filters; 1342 1343 return 0; 1344 } 1345 1346 static void pt_addr_filters_fini(struct perf_event *event) 1347 { 1348 kfree(event->hw.addr_filters); 1349 event->hw.addr_filters = NULL; 1350 } 1351 1352 static inline bool valid_kernel_ip(unsigned long ip) 1353 { 1354 return virt_addr_valid(ip) && kernel_ip(ip); 1355 } 1356 1357 static int pt_event_addr_filters_validate(struct list_head *filters) 1358 { 1359 struct perf_addr_filter *filter; 1360 int range = 0; 1361 1362 list_for_each_entry(filter, filters, entry) { 1363 /* 1364 * PT doesn't support single address triggers and 1365 * 'start' filters. 1366 */ 1367 if (!filter->size || 1368 filter->action == PERF_ADDR_FILTER_ACTION_START) 1369 return -EOPNOTSUPP; 1370 1371 if (!filter->path.dentry) { 1372 if (!valid_kernel_ip(filter->offset)) 1373 return -EINVAL; 1374 1375 if (!valid_kernel_ip(filter->offset + filter->size)) 1376 return -EINVAL; 1377 } 1378 1379 if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) 1380 return -EOPNOTSUPP; 1381 } 1382 1383 return 0; 1384 } 1385 1386 static void pt_event_addr_filters_sync(struct perf_event *event) 1387 { 1388 struct perf_addr_filters_head *head = perf_event_addr_filters(event); 1389 unsigned long msr_a, msr_b; 1390 struct perf_addr_filter_range *fr = event->addr_filter_ranges; 1391 struct pt_filters *filters = event->hw.addr_filters; 1392 struct perf_addr_filter *filter; 1393 int range = 0; 1394 1395 if (!filters) 1396 return; 1397 1398 list_for_each_entry(filter, &head->list, entry) { 1399 if (filter->path.dentry && !fr[range].start) { 1400 msr_a = msr_b = 0; 1401 } else { 1402 /* apply the offset */ 1403 msr_a = fr[range].start; 1404 msr_b = msr_a + fr[range].size - 1; 1405 } 1406 1407 filters->filter[range].msr_a = msr_a; 1408 filters->filter[range].msr_b = msr_b; 1409 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER) 1410 filters->filter[range].config = 1; 1411 else 1412 filters->filter[range].config = 2; 1413 range++; 1414 } 1415 1416 filters->nr_filters = range; 1417 } 1418 1419 /** 1420 * intel_pt_interrupt() - PT PMI handler 1421 */ 1422 void intel_pt_interrupt(void) 1423 { 1424 struct pt *pt = this_cpu_ptr(&pt_ctx); 1425 struct pt_buffer *buf; 1426 struct perf_event *event = pt->handle.event; 1427 1428 /* 1429 * There may be a dangling PT bit in the interrupt status register 1430 * after PT has been disabled by pt_event_stop(). Make sure we don't 1431 * do anything (particularly, re-enable) for this event here. 1432 */ 1433 if (!READ_ONCE(pt->handle_nmi)) 1434 return; 1435 1436 if (!event) 1437 return; 1438 1439 pt_config_stop(event); 1440 1441 buf = perf_get_aux(&pt->handle); 1442 if (!buf) 1443 return; 1444 1445 pt_read_offset(buf); 1446 1447 pt_handle_status(pt); 1448 1449 pt_update_head(pt); 1450 1451 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0)); 1452 1453 if (!event->hw.state) { 1454 int ret; 1455 1456 buf = perf_aux_output_begin(&pt->handle, event); 1457 if (!buf) { 1458 event->hw.state = PERF_HES_STOPPED; 1459 return; 1460 } 1461 1462 pt_buffer_reset_offsets(buf, pt->handle.head); 1463 /* snapshot counters don't use PMI, so it's safe */ 1464 ret = pt_buffer_reset_markers(buf, &pt->handle); 1465 if (ret) { 1466 perf_aux_output_end(&pt->handle, 0); 1467 return; 1468 } 1469 1470 pt_config_buffer(buf); 1471 pt_config_start(event); 1472 } 1473 } 1474 1475 void intel_pt_handle_vmx(int on) 1476 { 1477 struct pt *pt = this_cpu_ptr(&pt_ctx); 1478 struct perf_event *event; 1479 unsigned long flags; 1480 1481 /* PT plays nice with VMX, do nothing */ 1482 if (pt_pmu.vmx) 1483 return; 1484 1485 /* 1486 * VMXON will clear RTIT_CTL.TraceEn; we need to make 1487 * sure to not try to set it while VMX is on. Disable 1488 * interrupts to avoid racing with pmu callbacks; 1489 * concurrent PMI should be handled fine. 1490 */ 1491 local_irq_save(flags); 1492 WRITE_ONCE(pt->vmx_on, on); 1493 1494 /* 1495 * If an AUX transaction is in progress, it will contain 1496 * gap(s), so flag it PARTIAL to inform the user. 1497 */ 1498 event = pt->handle.event; 1499 if (event) 1500 perf_aux_output_flag(&pt->handle, 1501 PERF_AUX_FLAG_PARTIAL); 1502 1503 /* Turn PTs back on */ 1504 if (!on && event) 1505 wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config); 1506 1507 local_irq_restore(flags); 1508 } 1509 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx); 1510 1511 /* 1512 * PMU callbacks 1513 */ 1514 1515 static void pt_event_start(struct perf_event *event, int mode) 1516 { 1517 struct hw_perf_event *hwc = &event->hw; 1518 struct pt *pt = this_cpu_ptr(&pt_ctx); 1519 struct pt_buffer *buf; 1520 1521 buf = perf_aux_output_begin(&pt->handle, event); 1522 if (!buf) 1523 goto fail_stop; 1524 1525 pt_buffer_reset_offsets(buf, pt->handle.head); 1526 if (!buf->snapshot) { 1527 if (pt_buffer_reset_markers(buf, &pt->handle)) 1528 goto fail_end_stop; 1529 } 1530 1531 WRITE_ONCE(pt->handle_nmi, 1); 1532 hwc->state = 0; 1533 1534 pt_config_buffer(buf); 1535 pt_config(event); 1536 1537 return; 1538 1539 fail_end_stop: 1540 perf_aux_output_end(&pt->handle, 0); 1541 fail_stop: 1542 hwc->state = PERF_HES_STOPPED; 1543 } 1544 1545 static void pt_event_stop(struct perf_event *event, int mode) 1546 { 1547 struct pt *pt = this_cpu_ptr(&pt_ctx); 1548 1549 /* 1550 * Protect against the PMI racing with disabling wrmsr, 1551 * see comment in intel_pt_interrupt(). 1552 */ 1553 WRITE_ONCE(pt->handle_nmi, 0); 1554 1555 pt_config_stop(event); 1556 1557 if (event->hw.state == PERF_HES_STOPPED) 1558 return; 1559 1560 event->hw.state = PERF_HES_STOPPED; 1561 1562 if (mode & PERF_EF_UPDATE) { 1563 struct pt_buffer *buf = perf_get_aux(&pt->handle); 1564 1565 if (!buf) 1566 return; 1567 1568 if (WARN_ON_ONCE(pt->handle.event != event)) 1569 return; 1570 1571 pt_read_offset(buf); 1572 1573 pt_handle_status(pt); 1574 1575 pt_update_head(pt); 1576 1577 if (buf->snapshot) 1578 pt->handle.head = 1579 local_xchg(&buf->data_size, 1580 buf->nr_pages << PAGE_SHIFT); 1581 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0)); 1582 } 1583 } 1584 1585 static long pt_event_snapshot_aux(struct perf_event *event, 1586 struct perf_output_handle *handle, 1587 unsigned long size) 1588 { 1589 struct pt *pt = this_cpu_ptr(&pt_ctx); 1590 struct pt_buffer *buf = perf_get_aux(&pt->handle); 1591 unsigned long from = 0, to; 1592 long ret; 1593 1594 if (WARN_ON_ONCE(!buf)) 1595 return 0; 1596 1597 /* 1598 * Sampling is only allowed on snapshot events; 1599 * see pt_buffer_setup_aux(). 1600 */ 1601 if (WARN_ON_ONCE(!buf->snapshot)) 1602 return 0; 1603 1604 /* 1605 * Here, handle_nmi tells us if the tracing is on 1606 */ 1607 if (READ_ONCE(pt->handle_nmi)) 1608 pt_config_stop(event); 1609 1610 pt_read_offset(buf); 1611 pt_update_head(pt); 1612 1613 to = local_read(&buf->data_size); 1614 if (to < size) 1615 from = buf->nr_pages << PAGE_SHIFT; 1616 from += to - size; 1617 1618 ret = perf_output_copy_aux(&pt->handle, handle, from, to); 1619 1620 /* 1621 * If the tracing was on when we turned up, restart it. 1622 * Compiler barrier not needed as we couldn't have been 1623 * preempted by anything that touches pt->handle_nmi. 1624 */ 1625 if (pt->handle_nmi) 1626 pt_config_start(event); 1627 1628 return ret; 1629 } 1630 1631 static void pt_event_del(struct perf_event *event, int mode) 1632 { 1633 pt_event_stop(event, PERF_EF_UPDATE); 1634 } 1635 1636 static int pt_event_add(struct perf_event *event, int mode) 1637 { 1638 struct pt *pt = this_cpu_ptr(&pt_ctx); 1639 struct hw_perf_event *hwc = &event->hw; 1640 int ret = -EBUSY; 1641 1642 if (pt->handle.event) 1643 goto fail; 1644 1645 if (mode & PERF_EF_START) { 1646 pt_event_start(event, 0); 1647 ret = -EINVAL; 1648 if (hwc->state == PERF_HES_STOPPED) 1649 goto fail; 1650 } else { 1651 hwc->state = PERF_HES_STOPPED; 1652 } 1653 1654 ret = 0; 1655 fail: 1656 1657 return ret; 1658 } 1659 1660 static void pt_event_read(struct perf_event *event) 1661 { 1662 } 1663 1664 static void pt_event_destroy(struct perf_event *event) 1665 { 1666 pt_addr_filters_fini(event); 1667 x86_del_exclusive(x86_lbr_exclusive_pt); 1668 } 1669 1670 static int pt_event_init(struct perf_event *event) 1671 { 1672 if (event->attr.type != pt_pmu.pmu.type) 1673 return -ENOENT; 1674 1675 if (!pt_event_valid(event)) 1676 return -EINVAL; 1677 1678 if (x86_add_exclusive(x86_lbr_exclusive_pt)) 1679 return -EBUSY; 1680 1681 if (pt_addr_filters_init(event)) { 1682 x86_del_exclusive(x86_lbr_exclusive_pt); 1683 return -ENOMEM; 1684 } 1685 1686 event->destroy = pt_event_destroy; 1687 1688 return 0; 1689 } 1690 1691 void cpu_emergency_stop_pt(void) 1692 { 1693 struct pt *pt = this_cpu_ptr(&pt_ctx); 1694 1695 if (pt->handle.event) 1696 pt_event_stop(pt->handle.event, PERF_EF_UPDATE); 1697 } 1698 1699 int is_intel_pt_event(struct perf_event *event) 1700 { 1701 return event->pmu == &pt_pmu.pmu; 1702 } 1703 1704 static __init int pt_init(void) 1705 { 1706 int ret, cpu, prior_warn = 0; 1707 1708 BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE); 1709 1710 if (!boot_cpu_has(X86_FEATURE_INTEL_PT)) 1711 return -ENODEV; 1712 1713 get_online_cpus(); 1714 for_each_online_cpu(cpu) { 1715 u64 ctl; 1716 1717 ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl); 1718 if (!ret && (ctl & RTIT_CTL_TRACEEN)) 1719 prior_warn++; 1720 } 1721 put_online_cpus(); 1722 1723 if (prior_warn) { 1724 x86_add_exclusive(x86_lbr_exclusive_pt); 1725 pr_warn("PT is enabled at boot time, doing nothing\n"); 1726 1727 return -EBUSY; 1728 } 1729 1730 ret = pt_pmu_hw_init(); 1731 if (ret) 1732 return ret; 1733 1734 if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) { 1735 pr_warn("ToPA output is not supported on this CPU\n"); 1736 return -ENODEV; 1737 } 1738 1739 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 1740 pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG; 1741 1742 pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE; 1743 pt_pmu.pmu.attr_groups = pt_attr_groups; 1744 pt_pmu.pmu.task_ctx_nr = perf_sw_context; 1745 pt_pmu.pmu.event_init = pt_event_init; 1746 pt_pmu.pmu.add = pt_event_add; 1747 pt_pmu.pmu.del = pt_event_del; 1748 pt_pmu.pmu.start = pt_event_start; 1749 pt_pmu.pmu.stop = pt_event_stop; 1750 pt_pmu.pmu.snapshot_aux = pt_event_snapshot_aux; 1751 pt_pmu.pmu.read = pt_event_read; 1752 pt_pmu.pmu.setup_aux = pt_buffer_setup_aux; 1753 pt_pmu.pmu.free_aux = pt_buffer_free_aux; 1754 pt_pmu.pmu.addr_filters_sync = pt_event_addr_filters_sync; 1755 pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate; 1756 pt_pmu.pmu.nr_addr_filters = 1757 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges); 1758 1759 ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1); 1760 1761 return ret; 1762 } 1763 arch_initcall(pt_init); 1764