1 /* 2 * Netburst Performance Events (P4, old Xeon) 3 * 4 * Copyright (C) 2010 Parallels, Inc., Cyrill Gorcunov <gorcunov@openvz.org> 5 * Copyright (C) 2010 Intel Corporation, Lin Ming <ming.m.lin@intel.com> 6 * 7 * For licencing details see kernel-base/COPYING 8 */ 9 10 #include <linux/perf_event.h> 11 12 #include <asm/perf_event_p4.h> 13 #include <asm/cpu_device_id.h> 14 #include <asm/hardirq.h> 15 #include <asm/apic.h> 16 #include <asm/msr.h> 17 18 #include "../perf_event.h" 19 20 #define P4_CNTR_LIMIT 3 21 /* 22 * array indices: 0,1 - HT threads, used with HT enabled cpu 23 */ 24 struct p4_event_bind { 25 unsigned int opcode; /* Event code and ESCR selector */ 26 unsigned int escr_msr[2]; /* ESCR MSR for this event */ 27 unsigned int escr_emask; /* valid ESCR EventMask bits */ 28 unsigned int shared; /* event is shared across threads */ 29 signed char cntr[2][P4_CNTR_LIMIT]; /* counter index (offset), -1 on absence */ 30 }; 31 32 struct p4_pebs_bind { 33 unsigned int metric_pebs; 34 unsigned int metric_vert; 35 }; 36 37 /* it sets P4_PEBS_ENABLE_UOP_TAG as well */ 38 #define P4_GEN_PEBS_BIND(name, pebs, vert) \ 39 [P4_PEBS_METRIC__##name] = { \ 40 .metric_pebs = pebs | P4_PEBS_ENABLE_UOP_TAG, \ 41 .metric_vert = vert, \ 42 } 43 44 /* 45 * note we have P4_PEBS_ENABLE_UOP_TAG always set here 46 * 47 * it's needed for mapping P4_PEBS_CONFIG_METRIC_MASK bits of 48 * event configuration to find out which values are to be 49 * written into MSR_IA32_PEBS_ENABLE and MSR_P4_PEBS_MATRIX_VERT 50 * registers 51 */ 52 static struct p4_pebs_bind p4_pebs_bind_map[] = { 53 P4_GEN_PEBS_BIND(1stl_cache_load_miss_retired, 0x0000001, 0x0000001), 54 P4_GEN_PEBS_BIND(2ndl_cache_load_miss_retired, 0x0000002, 0x0000001), 55 P4_GEN_PEBS_BIND(dtlb_load_miss_retired, 0x0000004, 0x0000001), 56 P4_GEN_PEBS_BIND(dtlb_store_miss_retired, 0x0000004, 0x0000002), 57 P4_GEN_PEBS_BIND(dtlb_all_miss_retired, 0x0000004, 0x0000003), 58 P4_GEN_PEBS_BIND(tagged_mispred_branch, 0x0018000, 0x0000010), 59 P4_GEN_PEBS_BIND(mob_load_replay_retired, 0x0000200, 0x0000001), 60 P4_GEN_PEBS_BIND(split_load_retired, 0x0000400, 0x0000001), 61 P4_GEN_PEBS_BIND(split_store_retired, 0x0000400, 0x0000002), 62 }; 63 64 /* 65 * Note that we don't use CCCR1 here, there is an 66 * exception for P4_BSQ_ALLOCATION but we just have 67 * no workaround 68 * 69 * consider this binding as resources which particular 70 * event may borrow, it doesn't contain EventMask, 71 * Tags and friends -- they are left to a caller 72 */ 73 static struct p4_event_bind p4_event_bind_map[] = { 74 [P4_EVENT_TC_DELIVER_MODE] = { 75 .opcode = P4_OPCODE(P4_EVENT_TC_DELIVER_MODE), 76 .escr_msr = { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 }, 77 .escr_emask = 78 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DD) | 79 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DB) | 80 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DI) | 81 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BD) | 82 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BB) | 83 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BI) | 84 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, ID), 85 .shared = 1, 86 .cntr = { {4, 5, -1}, {6, 7, -1} }, 87 }, 88 [P4_EVENT_BPU_FETCH_REQUEST] = { 89 .opcode = P4_OPCODE(P4_EVENT_BPU_FETCH_REQUEST), 90 .escr_msr = { MSR_P4_BPU_ESCR0, MSR_P4_BPU_ESCR1 }, 91 .escr_emask = 92 P4_ESCR_EMASK_BIT(P4_EVENT_BPU_FETCH_REQUEST, TCMISS), 93 .cntr = { {0, -1, -1}, {2, -1, -1} }, 94 }, 95 [P4_EVENT_ITLB_REFERENCE] = { 96 .opcode = P4_OPCODE(P4_EVENT_ITLB_REFERENCE), 97 .escr_msr = { MSR_P4_ITLB_ESCR0, MSR_P4_ITLB_ESCR1 }, 98 .escr_emask = 99 P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT) | 100 P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, MISS) | 101 P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT_UK), 102 .cntr = { {0, -1, -1}, {2, -1, -1} }, 103 }, 104 [P4_EVENT_MEMORY_CANCEL] = { 105 .opcode = P4_OPCODE(P4_EVENT_MEMORY_CANCEL), 106 .escr_msr = { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 }, 107 .escr_emask = 108 P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, ST_RB_FULL) | 109 P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, 64K_CONF), 110 .cntr = { {8, 9, -1}, {10, 11, -1} }, 111 }, 112 [P4_EVENT_MEMORY_COMPLETE] = { 113 .opcode = P4_OPCODE(P4_EVENT_MEMORY_COMPLETE), 114 .escr_msr = { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 }, 115 .escr_emask = 116 P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, LSC) | 117 P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, SSC), 118 .cntr = { {8, 9, -1}, {10, 11, -1} }, 119 }, 120 [P4_EVENT_LOAD_PORT_REPLAY] = { 121 .opcode = P4_OPCODE(P4_EVENT_LOAD_PORT_REPLAY), 122 .escr_msr = { MSR_P4_SAAT_ESCR0, MSR_P4_SAAT_ESCR1 }, 123 .escr_emask = 124 P4_ESCR_EMASK_BIT(P4_EVENT_LOAD_PORT_REPLAY, SPLIT_LD), 125 .cntr = { {8, 9, -1}, {10, 11, -1} }, 126 }, 127 [P4_EVENT_STORE_PORT_REPLAY] = { 128 .opcode = P4_OPCODE(P4_EVENT_STORE_PORT_REPLAY), 129 .escr_msr = { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 }, 130 .escr_emask = 131 P4_ESCR_EMASK_BIT(P4_EVENT_STORE_PORT_REPLAY, SPLIT_ST), 132 .cntr = { {8, 9, -1}, {10, 11, -1} }, 133 }, 134 [P4_EVENT_MOB_LOAD_REPLAY] = { 135 .opcode = P4_OPCODE(P4_EVENT_MOB_LOAD_REPLAY), 136 .escr_msr = { MSR_P4_MOB_ESCR0, MSR_P4_MOB_ESCR1 }, 137 .escr_emask = 138 P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STA) | 139 P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STD) | 140 P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, PARTIAL_DATA) | 141 P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, UNALGN_ADDR), 142 .cntr = { {0, -1, -1}, {2, -1, -1} }, 143 }, 144 [P4_EVENT_PAGE_WALK_TYPE] = { 145 .opcode = P4_OPCODE(P4_EVENT_PAGE_WALK_TYPE), 146 .escr_msr = { MSR_P4_PMH_ESCR0, MSR_P4_PMH_ESCR1 }, 147 .escr_emask = 148 P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, DTMISS) | 149 P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, ITMISS), 150 .shared = 1, 151 .cntr = { {0, -1, -1}, {2, -1, -1} }, 152 }, 153 [P4_EVENT_BSQ_CACHE_REFERENCE] = { 154 .opcode = P4_OPCODE(P4_EVENT_BSQ_CACHE_REFERENCE), 155 .escr_msr = { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR1 }, 156 .escr_emask = 157 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS) | 158 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE) | 159 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM) | 160 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS) | 161 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE) | 162 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM) | 163 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS) | 164 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS) | 165 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS), 166 .cntr = { {0, -1, -1}, {2, -1, -1} }, 167 }, 168 [P4_EVENT_IOQ_ALLOCATION] = { 169 .opcode = P4_OPCODE(P4_EVENT_IOQ_ALLOCATION), 170 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 171 .escr_emask = 172 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, DEFAULT) | 173 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_READ) | 174 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_WRITE) | 175 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_UC) | 176 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WC) | 177 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WT) | 178 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WP) | 179 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WB) | 180 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OWN) | 181 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OTHER) | 182 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, PREFETCH), 183 .cntr = { {0, -1, -1}, {2, -1, -1} }, 184 }, 185 [P4_EVENT_IOQ_ACTIVE_ENTRIES] = { /* shared ESCR */ 186 .opcode = P4_OPCODE(P4_EVENT_IOQ_ACTIVE_ENTRIES), 187 .escr_msr = { MSR_P4_FSB_ESCR1, MSR_P4_FSB_ESCR1 }, 188 .escr_emask = 189 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, DEFAULT) | 190 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_READ) | 191 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_WRITE) | 192 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_UC) | 193 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WC) | 194 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WT) | 195 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WP) | 196 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WB) | 197 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OWN) | 198 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OTHER) | 199 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, PREFETCH), 200 .cntr = { {2, -1, -1}, {3, -1, -1} }, 201 }, 202 [P4_EVENT_FSB_DATA_ACTIVITY] = { 203 .opcode = P4_OPCODE(P4_EVENT_FSB_DATA_ACTIVITY), 204 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 205 .escr_emask = 206 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV) | 207 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN) | 208 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OTHER) | 209 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_DRV) | 210 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OWN) | 211 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OTHER), 212 .shared = 1, 213 .cntr = { {0, -1, -1}, {2, -1, -1} }, 214 }, 215 [P4_EVENT_BSQ_ALLOCATION] = { /* shared ESCR, broken CCCR1 */ 216 .opcode = P4_OPCODE(P4_EVENT_BSQ_ALLOCATION), 217 .escr_msr = { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR0 }, 218 .escr_emask = 219 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE0) | 220 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE1) | 221 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN0) | 222 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN1) | 223 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_IO_TYPE) | 224 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LOCK_TYPE) | 225 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_CACHE_TYPE) | 226 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_SPLIT_TYPE) | 227 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_DEM_TYPE) | 228 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_ORD_TYPE) | 229 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE0) | 230 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE1) | 231 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE2), 232 .cntr = { {0, -1, -1}, {1, -1, -1} }, 233 }, 234 [P4_EVENT_BSQ_ACTIVE_ENTRIES] = { /* shared ESCR */ 235 .opcode = P4_OPCODE(P4_EVENT_BSQ_ACTIVE_ENTRIES), 236 .escr_msr = { MSR_P4_BSU_ESCR1 , MSR_P4_BSU_ESCR1 }, 237 .escr_emask = 238 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE0) | 239 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE1) | 240 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN0) | 241 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN1) | 242 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_IO_TYPE) | 243 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LOCK_TYPE) | 244 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_CACHE_TYPE) | 245 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_SPLIT_TYPE) | 246 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_DEM_TYPE) | 247 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_ORD_TYPE) | 248 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE0) | 249 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE1) | 250 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE2), 251 .cntr = { {2, -1, -1}, {3, -1, -1} }, 252 }, 253 [P4_EVENT_SSE_INPUT_ASSIST] = { 254 .opcode = P4_OPCODE(P4_EVENT_SSE_INPUT_ASSIST), 255 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 256 .escr_emask = 257 P4_ESCR_EMASK_BIT(P4_EVENT_SSE_INPUT_ASSIST, ALL), 258 .shared = 1, 259 .cntr = { {8, 9, -1}, {10, 11, -1} }, 260 }, 261 [P4_EVENT_PACKED_SP_UOP] = { 262 .opcode = P4_OPCODE(P4_EVENT_PACKED_SP_UOP), 263 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 264 .escr_emask = 265 P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_SP_UOP, ALL), 266 .shared = 1, 267 .cntr = { {8, 9, -1}, {10, 11, -1} }, 268 }, 269 [P4_EVENT_PACKED_DP_UOP] = { 270 .opcode = P4_OPCODE(P4_EVENT_PACKED_DP_UOP), 271 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 272 .escr_emask = 273 P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_DP_UOP, ALL), 274 .shared = 1, 275 .cntr = { {8, 9, -1}, {10, 11, -1} }, 276 }, 277 [P4_EVENT_SCALAR_SP_UOP] = { 278 .opcode = P4_OPCODE(P4_EVENT_SCALAR_SP_UOP), 279 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 280 .escr_emask = 281 P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_SP_UOP, ALL), 282 .shared = 1, 283 .cntr = { {8, 9, -1}, {10, 11, -1} }, 284 }, 285 [P4_EVENT_SCALAR_DP_UOP] = { 286 .opcode = P4_OPCODE(P4_EVENT_SCALAR_DP_UOP), 287 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 288 .escr_emask = 289 P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_DP_UOP, ALL), 290 .shared = 1, 291 .cntr = { {8, 9, -1}, {10, 11, -1} }, 292 }, 293 [P4_EVENT_64BIT_MMX_UOP] = { 294 .opcode = P4_OPCODE(P4_EVENT_64BIT_MMX_UOP), 295 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 296 .escr_emask = 297 P4_ESCR_EMASK_BIT(P4_EVENT_64BIT_MMX_UOP, ALL), 298 .shared = 1, 299 .cntr = { {8, 9, -1}, {10, 11, -1} }, 300 }, 301 [P4_EVENT_128BIT_MMX_UOP] = { 302 .opcode = P4_OPCODE(P4_EVENT_128BIT_MMX_UOP), 303 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 304 .escr_emask = 305 P4_ESCR_EMASK_BIT(P4_EVENT_128BIT_MMX_UOP, ALL), 306 .shared = 1, 307 .cntr = { {8, 9, -1}, {10, 11, -1} }, 308 }, 309 [P4_EVENT_X87_FP_UOP] = { 310 .opcode = P4_OPCODE(P4_EVENT_X87_FP_UOP), 311 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 312 .escr_emask = 313 P4_ESCR_EMASK_BIT(P4_EVENT_X87_FP_UOP, ALL), 314 .shared = 1, 315 .cntr = { {8, 9, -1}, {10, 11, -1} }, 316 }, 317 [P4_EVENT_TC_MISC] = { 318 .opcode = P4_OPCODE(P4_EVENT_TC_MISC), 319 .escr_msr = { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 }, 320 .escr_emask = 321 P4_ESCR_EMASK_BIT(P4_EVENT_TC_MISC, FLUSH), 322 .cntr = { {4, 5, -1}, {6, 7, -1} }, 323 }, 324 [P4_EVENT_GLOBAL_POWER_EVENTS] = { 325 .opcode = P4_OPCODE(P4_EVENT_GLOBAL_POWER_EVENTS), 326 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 327 .escr_emask = 328 P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING), 329 .cntr = { {0, -1, -1}, {2, -1, -1} }, 330 }, 331 [P4_EVENT_TC_MS_XFER] = { 332 .opcode = P4_OPCODE(P4_EVENT_TC_MS_XFER), 333 .escr_msr = { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 }, 334 .escr_emask = 335 P4_ESCR_EMASK_BIT(P4_EVENT_TC_MS_XFER, CISC), 336 .cntr = { {4, 5, -1}, {6, 7, -1} }, 337 }, 338 [P4_EVENT_UOP_QUEUE_WRITES] = { 339 .opcode = P4_OPCODE(P4_EVENT_UOP_QUEUE_WRITES), 340 .escr_msr = { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 }, 341 .escr_emask = 342 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_BUILD) | 343 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_DELIVER) | 344 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_ROM), 345 .cntr = { {4, 5, -1}, {6, 7, -1} }, 346 }, 347 [P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE] = { 348 .opcode = P4_OPCODE(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE), 349 .escr_msr = { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR0 }, 350 .escr_emask = 351 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CONDITIONAL) | 352 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CALL) | 353 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, RETURN) | 354 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, INDIRECT), 355 .cntr = { {4, 5, -1}, {6, 7, -1} }, 356 }, 357 [P4_EVENT_RETIRED_BRANCH_TYPE] = { 358 .opcode = P4_OPCODE(P4_EVENT_RETIRED_BRANCH_TYPE), 359 .escr_msr = { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR1 }, 360 .escr_emask = 361 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL) | 362 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL) | 363 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN) | 364 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT), 365 .cntr = { {4, 5, -1}, {6, 7, -1} }, 366 }, 367 [P4_EVENT_RESOURCE_STALL] = { 368 .opcode = P4_OPCODE(P4_EVENT_RESOURCE_STALL), 369 .escr_msr = { MSR_P4_ALF_ESCR0, MSR_P4_ALF_ESCR1 }, 370 .escr_emask = 371 P4_ESCR_EMASK_BIT(P4_EVENT_RESOURCE_STALL, SBFULL), 372 .cntr = { {12, 13, 16}, {14, 15, 17} }, 373 }, 374 [P4_EVENT_WC_BUFFER] = { 375 .opcode = P4_OPCODE(P4_EVENT_WC_BUFFER), 376 .escr_msr = { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 }, 377 .escr_emask = 378 P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_EVICTS) | 379 P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_FULL_EVICTS), 380 .shared = 1, 381 .cntr = { {8, 9, -1}, {10, 11, -1} }, 382 }, 383 [P4_EVENT_B2B_CYCLES] = { 384 .opcode = P4_OPCODE(P4_EVENT_B2B_CYCLES), 385 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 386 .escr_emask = 0, 387 .cntr = { {0, -1, -1}, {2, -1, -1} }, 388 }, 389 [P4_EVENT_BNR] = { 390 .opcode = P4_OPCODE(P4_EVENT_BNR), 391 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 392 .escr_emask = 0, 393 .cntr = { {0, -1, -1}, {2, -1, -1} }, 394 }, 395 [P4_EVENT_SNOOP] = { 396 .opcode = P4_OPCODE(P4_EVENT_SNOOP), 397 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 398 .escr_emask = 0, 399 .cntr = { {0, -1, -1}, {2, -1, -1} }, 400 }, 401 [P4_EVENT_RESPONSE] = { 402 .opcode = P4_OPCODE(P4_EVENT_RESPONSE), 403 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 404 .escr_emask = 0, 405 .cntr = { {0, -1, -1}, {2, -1, -1} }, 406 }, 407 [P4_EVENT_FRONT_END_EVENT] = { 408 .opcode = P4_OPCODE(P4_EVENT_FRONT_END_EVENT), 409 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, 410 .escr_emask = 411 P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, NBOGUS) | 412 P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, BOGUS), 413 .cntr = { {12, 13, 16}, {14, 15, 17} }, 414 }, 415 [P4_EVENT_EXECUTION_EVENT] = { 416 .opcode = P4_OPCODE(P4_EVENT_EXECUTION_EVENT), 417 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, 418 .escr_emask = 419 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0) | 420 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1) | 421 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2) | 422 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3) | 423 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0) | 424 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1) | 425 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2) | 426 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3), 427 .cntr = { {12, 13, 16}, {14, 15, 17} }, 428 }, 429 [P4_EVENT_REPLAY_EVENT] = { 430 .opcode = P4_OPCODE(P4_EVENT_REPLAY_EVENT), 431 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, 432 .escr_emask = 433 P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, NBOGUS) | 434 P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, BOGUS), 435 .cntr = { {12, 13, 16}, {14, 15, 17} }, 436 }, 437 [P4_EVENT_INSTR_RETIRED] = { 438 .opcode = P4_OPCODE(P4_EVENT_INSTR_RETIRED), 439 .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 }, 440 .escr_emask = 441 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG) | 442 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSTAG) | 443 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG) | 444 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSTAG), 445 .cntr = { {12, 13, 16}, {14, 15, 17} }, 446 }, 447 [P4_EVENT_UOPS_RETIRED] = { 448 .opcode = P4_OPCODE(P4_EVENT_UOPS_RETIRED), 449 .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 }, 450 .escr_emask = 451 P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, NBOGUS) | 452 P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, BOGUS), 453 .cntr = { {12, 13, 16}, {14, 15, 17} }, 454 }, 455 [P4_EVENT_UOP_TYPE] = { 456 .opcode = P4_OPCODE(P4_EVENT_UOP_TYPE), 457 .escr_msr = { MSR_P4_RAT_ESCR0, MSR_P4_RAT_ESCR1 }, 458 .escr_emask = 459 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGLOADS) | 460 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGSTORES), 461 .cntr = { {12, 13, 16}, {14, 15, 17} }, 462 }, 463 [P4_EVENT_BRANCH_RETIRED] = { 464 .opcode = P4_OPCODE(P4_EVENT_BRANCH_RETIRED), 465 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, 466 .escr_emask = 467 P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNP) | 468 P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNM) | 469 P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTP) | 470 P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTM), 471 .cntr = { {12, 13, 16}, {14, 15, 17} }, 472 }, 473 [P4_EVENT_MISPRED_BRANCH_RETIRED] = { 474 .opcode = P4_OPCODE(P4_EVENT_MISPRED_BRANCH_RETIRED), 475 .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 }, 476 .escr_emask = 477 P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS), 478 .cntr = { {12, 13, 16}, {14, 15, 17} }, 479 }, 480 [P4_EVENT_X87_ASSIST] = { 481 .opcode = P4_OPCODE(P4_EVENT_X87_ASSIST), 482 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, 483 .escr_emask = 484 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSU) | 485 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSO) | 486 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAO) | 487 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAU) | 488 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, PREA), 489 .cntr = { {12, 13, 16}, {14, 15, 17} }, 490 }, 491 [P4_EVENT_MACHINE_CLEAR] = { 492 .opcode = P4_OPCODE(P4_EVENT_MACHINE_CLEAR), 493 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, 494 .escr_emask = 495 P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, CLEAR) | 496 P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, MOCLEAR) | 497 P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, SMCLEAR), 498 .cntr = { {12, 13, 16}, {14, 15, 17} }, 499 }, 500 [P4_EVENT_INSTR_COMPLETED] = { 501 .opcode = P4_OPCODE(P4_EVENT_INSTR_COMPLETED), 502 .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 }, 503 .escr_emask = 504 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, NBOGUS) | 505 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, BOGUS), 506 .cntr = { {12, 13, 16}, {14, 15, 17} }, 507 }, 508 }; 509 510 #define P4_GEN_CACHE_EVENT(event, bit, metric) \ 511 p4_config_pack_escr(P4_ESCR_EVENT(event) | \ 512 P4_ESCR_EMASK_BIT(event, bit)) | \ 513 p4_config_pack_cccr(metric | \ 514 P4_CCCR_ESEL(P4_OPCODE_ESEL(P4_OPCODE(event)))) 515 516 static __initconst const u64 p4_hw_cache_event_ids 517 [PERF_COUNT_HW_CACHE_MAX] 518 [PERF_COUNT_HW_CACHE_OP_MAX] 519 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 520 { 521 [ C(L1D ) ] = { 522 [ C(OP_READ) ] = { 523 [ C(RESULT_ACCESS) ] = 0x0, 524 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS, 525 P4_PEBS_METRIC__1stl_cache_load_miss_retired), 526 }, 527 }, 528 [ C(LL ) ] = { 529 [ C(OP_READ) ] = { 530 [ C(RESULT_ACCESS) ] = 0x0, 531 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS, 532 P4_PEBS_METRIC__2ndl_cache_load_miss_retired), 533 }, 534 }, 535 [ C(DTLB) ] = { 536 [ C(OP_READ) ] = { 537 [ C(RESULT_ACCESS) ] = 0x0, 538 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS, 539 P4_PEBS_METRIC__dtlb_load_miss_retired), 540 }, 541 [ C(OP_WRITE) ] = { 542 [ C(RESULT_ACCESS) ] = 0x0, 543 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS, 544 P4_PEBS_METRIC__dtlb_store_miss_retired), 545 }, 546 }, 547 [ C(ITLB) ] = { 548 [ C(OP_READ) ] = { 549 [ C(RESULT_ACCESS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, HIT, 550 P4_PEBS_METRIC__none), 551 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, MISS, 552 P4_PEBS_METRIC__none), 553 }, 554 [ C(OP_WRITE) ] = { 555 [ C(RESULT_ACCESS) ] = -1, 556 [ C(RESULT_MISS) ] = -1, 557 }, 558 [ C(OP_PREFETCH) ] = { 559 [ C(RESULT_ACCESS) ] = -1, 560 [ C(RESULT_MISS) ] = -1, 561 }, 562 }, 563 [ C(NODE) ] = { 564 [ C(OP_READ) ] = { 565 [ C(RESULT_ACCESS) ] = -1, 566 [ C(RESULT_MISS) ] = -1, 567 }, 568 [ C(OP_WRITE) ] = { 569 [ C(RESULT_ACCESS) ] = -1, 570 [ C(RESULT_MISS) ] = -1, 571 }, 572 [ C(OP_PREFETCH) ] = { 573 [ C(RESULT_ACCESS) ] = -1, 574 [ C(RESULT_MISS) ] = -1, 575 }, 576 }, 577 }; 578 579 /* 580 * Because of Netburst being quite restricted in how many 581 * identical events may run simultaneously, we introduce event aliases, 582 * ie the different events which have the same functionality but 583 * utilize non-intersected resources (ESCR/CCCR/counter registers). 584 * 585 * This allow us to relax restrictions a bit and run two or more 586 * identical events together. 587 * 588 * Never set any custom internal bits such as P4_CONFIG_HT, 589 * P4_CONFIG_ALIASABLE or bits for P4_PEBS_METRIC, they are 590 * either up to date automatically or not applicable at all. 591 */ 592 static struct p4_event_alias { 593 u64 original; 594 u64 alternative; 595 } p4_event_aliases[] = { 596 { 597 /* 598 * Non-halted cycles can be substituted with non-sleeping cycles (see 599 * Intel SDM Vol3b for details). We need this alias to be able 600 * to run nmi-watchdog and 'perf top' (or any other user space tool 601 * which is interested in running PERF_COUNT_HW_CPU_CYCLES) 602 * simultaneously. 603 */ 604 .original = 605 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS) | 606 P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)), 607 .alternative = 608 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_EXECUTION_EVENT) | 609 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)| 610 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)| 611 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)| 612 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)| 613 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0) | 614 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1) | 615 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2) | 616 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3))| 617 p4_config_pack_cccr(P4_CCCR_THRESHOLD(15) | P4_CCCR_COMPLEMENT | 618 P4_CCCR_COMPARE), 619 }, 620 }; 621 622 static u64 p4_get_alias_event(u64 config) 623 { 624 u64 config_match; 625 int i; 626 627 /* 628 * Only event with special mark is allowed, 629 * we're to be sure it didn't come as malformed 630 * RAW event. 631 */ 632 if (!(config & P4_CONFIG_ALIASABLE)) 633 return 0; 634 635 config_match = config & P4_CONFIG_EVENT_ALIAS_MASK; 636 637 for (i = 0; i < ARRAY_SIZE(p4_event_aliases); i++) { 638 if (config_match == p4_event_aliases[i].original) { 639 config_match = p4_event_aliases[i].alternative; 640 break; 641 } else if (config_match == p4_event_aliases[i].alternative) { 642 config_match = p4_event_aliases[i].original; 643 break; 644 } 645 } 646 647 if (i >= ARRAY_SIZE(p4_event_aliases)) 648 return 0; 649 650 return config_match | (config & P4_CONFIG_EVENT_ALIAS_IMMUTABLE_BITS); 651 } 652 653 static u64 p4_general_events[PERF_COUNT_HW_MAX] = { 654 /* non-halted CPU clocks */ 655 [PERF_COUNT_HW_CPU_CYCLES] = 656 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS) | 657 P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)) | 658 P4_CONFIG_ALIASABLE, 659 660 /* 661 * retired instructions 662 * in a sake of simplicity we don't use the FSB tagging 663 */ 664 [PERF_COUNT_HW_INSTRUCTIONS] = 665 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_INSTR_RETIRED) | 666 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG) | 667 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)), 668 669 /* cache hits */ 670 [PERF_COUNT_HW_CACHE_REFERENCES] = 671 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE) | 672 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS) | 673 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE) | 674 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM) | 675 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS) | 676 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE) | 677 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)), 678 679 /* cache misses */ 680 [PERF_COUNT_HW_CACHE_MISSES] = 681 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE) | 682 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS) | 683 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS) | 684 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS)), 685 686 /* branch instructions retired */ 687 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 688 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_RETIRED_BRANCH_TYPE) | 689 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL) | 690 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL) | 691 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN) | 692 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT)), 693 694 /* mispredicted branches retired */ 695 [PERF_COUNT_HW_BRANCH_MISSES] = 696 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_MISPRED_BRANCH_RETIRED) | 697 P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS)), 698 699 /* bus ready clocks (cpu is driving #DRDY_DRV\#DRDY_OWN): */ 700 [PERF_COUNT_HW_BUS_CYCLES] = 701 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_FSB_DATA_ACTIVITY) | 702 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV) | 703 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN)) | 704 p4_config_pack_cccr(P4_CCCR_EDGE | P4_CCCR_COMPARE), 705 }; 706 707 static struct p4_event_bind *p4_config_get_bind(u64 config) 708 { 709 unsigned int evnt = p4_config_unpack_event(config); 710 struct p4_event_bind *bind = NULL; 711 712 if (evnt < ARRAY_SIZE(p4_event_bind_map)) 713 bind = &p4_event_bind_map[evnt]; 714 715 return bind; 716 } 717 718 static u64 p4_pmu_event_map(int hw_event) 719 { 720 struct p4_event_bind *bind; 721 unsigned int esel; 722 u64 config; 723 724 config = p4_general_events[hw_event]; 725 bind = p4_config_get_bind(config); 726 esel = P4_OPCODE_ESEL(bind->opcode); 727 config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel)); 728 729 return config; 730 } 731 732 /* check cpu model specifics */ 733 static bool p4_event_match_cpu_model(unsigned int event_idx) 734 { 735 /* INSTR_COMPLETED event only exist for model 3, 4, 6 (Prescott) */ 736 if (event_idx == P4_EVENT_INSTR_COMPLETED) { 737 if (boot_cpu_data.x86_vfm != INTEL_P4_PRESCOTT && 738 boot_cpu_data.x86_vfm != INTEL_P4_PRESCOTT_2M && 739 boot_cpu_data.x86_vfm != INTEL_P4_CEDARMILL) 740 return false; 741 } 742 743 /* 744 * For info 745 * - IQ_ESCR0, IQ_ESCR1 only for models 1 and 2 746 */ 747 748 return true; 749 } 750 751 static int p4_validate_raw_event(struct perf_event *event) 752 { 753 unsigned int v, emask; 754 755 /* User data may have out-of-bound event index */ 756 v = p4_config_unpack_event(event->attr.config); 757 if (v >= ARRAY_SIZE(p4_event_bind_map)) 758 return -EINVAL; 759 760 /* It may be unsupported: */ 761 if (!p4_event_match_cpu_model(v)) 762 return -EINVAL; 763 764 /* 765 * NOTE: P4_CCCR_THREAD_ANY has not the same meaning as 766 * in Architectural Performance Monitoring, it means not 767 * on _which_ logical cpu to count but rather _when_, ie it 768 * depends on logical cpu state -- count event if one cpu active, 769 * none, both or any, so we just allow user to pass any value 770 * desired. 771 * 772 * In turn we always set Tx_OS/Tx_USR bits bound to logical 773 * cpu without their propagation to another cpu 774 */ 775 776 /* 777 * if an event is shared across the logical threads 778 * the user needs special permissions to be able to use it 779 */ 780 if (p4_ht_active() && p4_event_bind_map[v].shared) { 781 v = perf_allow_cpu(); 782 if (v) 783 return v; 784 } 785 786 /* ESCR EventMask bits may be invalid */ 787 emask = p4_config_unpack_escr(event->attr.config) & P4_ESCR_EVENTMASK_MASK; 788 if (emask & ~p4_event_bind_map[v].escr_emask) 789 return -EINVAL; 790 791 /* 792 * it may have some invalid PEBS bits 793 */ 794 if (p4_config_pebs_has(event->attr.config, P4_PEBS_CONFIG_ENABLE)) 795 return -EINVAL; 796 797 v = p4_config_unpack_metric(event->attr.config); 798 if (v >= ARRAY_SIZE(p4_pebs_bind_map)) 799 return -EINVAL; 800 801 return 0; 802 } 803 804 static int p4_hw_config(struct perf_event *event) 805 { 806 int cpu = get_cpu(); 807 int rc = 0; 808 u32 escr, cccr; 809 810 /* 811 * the reason we use cpu that early is that: if we get scheduled 812 * first time on the same cpu -- we will not need swap thread 813 * specific flags in config (and will save some cpu cycles) 814 */ 815 816 cccr = p4_default_cccr_conf(cpu); 817 escr = p4_default_escr_conf(cpu, event->attr.exclude_kernel, 818 event->attr.exclude_user); 819 event->hw.config = p4_config_pack_escr(escr) | 820 p4_config_pack_cccr(cccr); 821 822 if (p4_ht_active() && p4_ht_thread(cpu)) 823 event->hw.config = p4_set_ht_bit(event->hw.config); 824 825 if (event->attr.type == PERF_TYPE_RAW) { 826 struct p4_event_bind *bind; 827 unsigned int esel; 828 /* 829 * Clear bits we reserve to be managed by kernel itself 830 * and never allowed from a user space 831 */ 832 event->attr.config &= P4_CONFIG_MASK; 833 834 rc = p4_validate_raw_event(event); 835 if (rc) 836 goto out; 837 838 /* 839 * Note that for RAW events we allow user to use P4_CCCR_RESERVED 840 * bits since we keep additional info here (for cache events and etc) 841 */ 842 event->hw.config |= event->attr.config; 843 bind = p4_config_get_bind(event->attr.config); 844 if (!bind) { 845 rc = -EINVAL; 846 goto out; 847 } 848 esel = P4_OPCODE_ESEL(bind->opcode); 849 event->hw.config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel)); 850 } 851 852 rc = x86_setup_perfctr(event); 853 out: 854 put_cpu(); 855 return rc; 856 } 857 858 static inline int p4_pmu_clear_cccr_ovf(struct hw_perf_event *hwc) 859 { 860 u64 v; 861 862 /* an official way for overflow indication */ 863 rdmsrq(hwc->config_base, v); 864 if (v & P4_CCCR_OVF) { 865 wrmsrq(hwc->config_base, v & ~P4_CCCR_OVF); 866 return 1; 867 } 868 869 /* 870 * In some circumstances the overflow might issue an NMI but did 871 * not set P4_CCCR_OVF bit. Because a counter holds a negative value 872 * we simply check for high bit being set, if it's cleared it means 873 * the counter has reached zero value and continued counting before 874 * real NMI signal was received: 875 */ 876 rdmsrq(hwc->event_base, v); 877 if (!(v & ARCH_P4_UNFLAGGED_BIT)) 878 return 1; 879 880 return 0; 881 } 882 883 static void p4_pmu_disable_pebs(void) 884 { 885 /* 886 * FIXME 887 * 888 * It's still allowed that two threads setup same cache 889 * events so we can't simply clear metrics until we knew 890 * no one is depending on us, so we need kind of counter 891 * for "ReplayEvent" users. 892 * 893 * What is more complex -- RAW events, if user (for some 894 * reason) will pass some cache event metric with improper 895 * event opcode -- it's fine from hardware point of view 896 * but completely nonsense from "meaning" of such action. 897 * 898 * So at moment let leave metrics turned on forever -- it's 899 * ok for now but need to be revisited! 900 * 901 * (void)wrmsrq_safe(MSR_IA32_PEBS_ENABLE, 0); 902 * (void)wrmsrq_safe(MSR_P4_PEBS_MATRIX_VERT, 0); 903 */ 904 } 905 906 static inline void p4_pmu_disable_event(struct perf_event *event) 907 { 908 struct hw_perf_event *hwc = &event->hw; 909 910 /* 911 * If event gets disabled while counter is in overflowed 912 * state we need to clear P4_CCCR_OVF, otherwise interrupt get 913 * asserted again and again 914 */ 915 (void)wrmsrq_safe(hwc->config_base, 916 p4_config_unpack_cccr(hwc->config) & ~P4_CCCR_ENABLE & ~P4_CCCR_OVF & ~P4_CCCR_RESERVED); 917 } 918 919 static void p4_pmu_disable_all(void) 920 { 921 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 922 int idx; 923 924 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 925 struct perf_event *event = cpuc->events[idx]; 926 if (!test_bit(idx, cpuc->active_mask)) 927 continue; 928 p4_pmu_disable_event(event); 929 } 930 931 p4_pmu_disable_pebs(); 932 } 933 934 /* configuration must be valid */ 935 static void p4_pmu_enable_pebs(u64 config) 936 { 937 struct p4_pebs_bind *bind; 938 unsigned int idx; 939 940 BUILD_BUG_ON(P4_PEBS_METRIC__max > P4_PEBS_CONFIG_METRIC_MASK); 941 942 idx = p4_config_unpack_metric(config); 943 if (idx == P4_PEBS_METRIC__none) 944 return; 945 946 bind = &p4_pebs_bind_map[idx]; 947 948 (void)wrmsrq_safe(MSR_IA32_PEBS_ENABLE, (u64)bind->metric_pebs); 949 (void)wrmsrq_safe(MSR_P4_PEBS_MATRIX_VERT, (u64)bind->metric_vert); 950 } 951 952 static void __p4_pmu_enable_event(struct perf_event *event) 953 { 954 struct hw_perf_event *hwc = &event->hw; 955 int thread = p4_ht_config_thread(hwc->config); 956 u64 escr_conf = p4_config_unpack_escr(p4_clear_ht_bit(hwc->config)); 957 unsigned int idx = p4_config_unpack_event(hwc->config); 958 struct p4_event_bind *bind; 959 u64 escr_addr, cccr; 960 961 bind = &p4_event_bind_map[idx]; 962 escr_addr = bind->escr_msr[thread]; 963 964 /* 965 * - we dont support cascaded counters yet 966 * - and counter 1 is broken (erratum) 967 */ 968 WARN_ON_ONCE(p4_is_event_cascaded(hwc->config)); 969 WARN_ON_ONCE(hwc->idx == 1); 970 971 /* we need a real Event value */ 972 escr_conf &= ~P4_ESCR_EVENT_MASK; 973 escr_conf |= P4_ESCR_EVENT(P4_OPCODE_EVNT(bind->opcode)); 974 975 cccr = p4_config_unpack_cccr(hwc->config); 976 977 /* 978 * it could be Cache event so we need to write metrics 979 * into additional MSRs 980 */ 981 p4_pmu_enable_pebs(hwc->config); 982 983 (void)wrmsrq_safe(escr_addr, escr_conf); 984 (void)wrmsrq_safe(hwc->config_base, 985 (cccr & ~P4_CCCR_RESERVED) | P4_CCCR_ENABLE); 986 } 987 988 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(X86_PMC_IDX_MAX)], p4_running); 989 990 static void p4_pmu_enable_event(struct perf_event *event) 991 { 992 int idx = event->hw.idx; 993 994 __set_bit(idx, per_cpu(p4_running, smp_processor_id())); 995 __p4_pmu_enable_event(event); 996 } 997 998 static void p4_pmu_enable_all(int added) 999 { 1000 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1001 int idx; 1002 1003 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 1004 struct perf_event *event = cpuc->events[idx]; 1005 if (!test_bit(idx, cpuc->active_mask)) 1006 continue; 1007 __p4_pmu_enable_event(event); 1008 } 1009 } 1010 1011 static int p4_pmu_set_period(struct perf_event *event) 1012 { 1013 struct hw_perf_event *hwc = &event->hw; 1014 s64 left = this_cpu_read(pmc_prev_left[hwc->idx]); 1015 int ret; 1016 1017 ret = x86_perf_event_set_period(event); 1018 1019 if (hwc->event_base) { 1020 /* 1021 * This handles erratum N15 in intel doc 249199-029, 1022 * the counter may not be updated correctly on write 1023 * so we need a second write operation to do the trick 1024 * (the official workaround didn't work) 1025 * 1026 * the former idea is taken from OProfile code 1027 */ 1028 wrmsrq(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); 1029 } 1030 1031 return ret; 1032 } 1033 1034 static int p4_pmu_handle_irq(struct pt_regs *regs) 1035 { 1036 struct perf_sample_data data; 1037 struct cpu_hw_events *cpuc; 1038 struct perf_event *event; 1039 struct hw_perf_event *hwc; 1040 int idx, handled = 0; 1041 u64 val; 1042 1043 cpuc = this_cpu_ptr(&cpu_hw_events); 1044 1045 for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 1046 int overflow; 1047 1048 if (!test_bit(idx, cpuc->active_mask)) { 1049 /* catch in-flight IRQs */ 1050 if (__test_and_clear_bit(idx, per_cpu(p4_running, smp_processor_id()))) 1051 handled++; 1052 continue; 1053 } 1054 1055 event = cpuc->events[idx]; 1056 hwc = &event->hw; 1057 1058 WARN_ON_ONCE(hwc->idx != idx); 1059 1060 /* it might be unflagged overflow */ 1061 overflow = p4_pmu_clear_cccr_ovf(hwc); 1062 1063 val = x86_perf_event_update(event); 1064 if (!overflow && (val & (1ULL << (x86_pmu.cntval_bits - 1)))) 1065 continue; 1066 1067 handled += overflow; 1068 1069 /* event overflow for sure */ 1070 perf_sample_data_init(&data, 0, hwc->last_period); 1071 1072 if (!static_call(x86_pmu_set_period)(event)) 1073 continue; 1074 1075 1076 perf_event_overflow(event, &data, regs); 1077 } 1078 1079 if (handled) 1080 inc_irq_stat(apic_perf_irqs); 1081 1082 /* 1083 * When dealing with the unmasking of the LVTPC on P4 perf hw, it has 1084 * been observed that the OVF bit flag has to be cleared first _before_ 1085 * the LVTPC can be unmasked. 1086 * 1087 * The reason is the NMI line will continue to be asserted while the OVF 1088 * bit is set. This causes a second NMI to generate if the LVTPC is 1089 * unmasked before the OVF bit is cleared, leading to unknown NMI 1090 * messages. 1091 */ 1092 apic_write(APIC_LVTPC, APIC_DM_NMI); 1093 1094 return handled; 1095 } 1096 1097 /* 1098 * swap thread specific fields according to a thread 1099 * we are going to run on 1100 */ 1101 static void p4_pmu_swap_config_ts(struct hw_perf_event *hwc, int cpu) 1102 { 1103 u32 escr, cccr; 1104 1105 /* 1106 * we either lucky and continue on same cpu or no HT support 1107 */ 1108 if (!p4_should_swap_ts(hwc->config, cpu)) 1109 return; 1110 1111 /* 1112 * the event is migrated from an another logical 1113 * cpu, so we need to swap thread specific flags 1114 */ 1115 1116 escr = p4_config_unpack_escr(hwc->config); 1117 cccr = p4_config_unpack_cccr(hwc->config); 1118 1119 if (p4_ht_thread(cpu)) { 1120 cccr &= ~P4_CCCR_OVF_PMI_T0; 1121 cccr |= P4_CCCR_OVF_PMI_T1; 1122 if (escr & P4_ESCR_T0_OS) { 1123 escr &= ~P4_ESCR_T0_OS; 1124 escr |= P4_ESCR_T1_OS; 1125 } 1126 if (escr & P4_ESCR_T0_USR) { 1127 escr &= ~P4_ESCR_T0_USR; 1128 escr |= P4_ESCR_T1_USR; 1129 } 1130 hwc->config = p4_config_pack_escr(escr); 1131 hwc->config |= p4_config_pack_cccr(cccr); 1132 hwc->config |= P4_CONFIG_HT; 1133 } else { 1134 cccr &= ~P4_CCCR_OVF_PMI_T1; 1135 cccr |= P4_CCCR_OVF_PMI_T0; 1136 if (escr & P4_ESCR_T1_OS) { 1137 escr &= ~P4_ESCR_T1_OS; 1138 escr |= P4_ESCR_T0_OS; 1139 } 1140 if (escr & P4_ESCR_T1_USR) { 1141 escr &= ~P4_ESCR_T1_USR; 1142 escr |= P4_ESCR_T0_USR; 1143 } 1144 hwc->config = p4_config_pack_escr(escr); 1145 hwc->config |= p4_config_pack_cccr(cccr); 1146 hwc->config &= ~P4_CONFIG_HT; 1147 } 1148 } 1149 1150 /* 1151 * ESCR address hashing is tricky, ESCRs are not sequential 1152 * in memory but all starts from MSR_P4_BSU_ESCR0 (0x03a0) and 1153 * the metric between any ESCRs is laid in range [0xa0,0xe1] 1154 * 1155 * so we make ~70% filled hashtable 1156 */ 1157 1158 #define P4_ESCR_MSR_BASE 0x000003a0 1159 #define P4_ESCR_MSR_MAX 0x000003e1 1160 #define P4_ESCR_MSR_TABLE_SIZE (P4_ESCR_MSR_MAX - P4_ESCR_MSR_BASE + 1) 1161 #define P4_ESCR_MSR_IDX(msr) (msr - P4_ESCR_MSR_BASE) 1162 #define P4_ESCR_MSR_TABLE_ENTRY(msr) [P4_ESCR_MSR_IDX(msr)] = msr 1163 1164 static const unsigned int p4_escr_table[P4_ESCR_MSR_TABLE_SIZE] = { 1165 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR0), 1166 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR1), 1167 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR0), 1168 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR1), 1169 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR0), 1170 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR1), 1171 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR0), 1172 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR1), 1173 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR2), 1174 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR3), 1175 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR4), 1176 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR5), 1177 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR0), 1178 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR1), 1179 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR0), 1180 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR1), 1181 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR0), 1182 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR1), 1183 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR0), 1184 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR1), 1185 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR0), 1186 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR1), 1187 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR0), 1188 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR1), 1189 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR0), 1190 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR1), 1191 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR0), 1192 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR1), 1193 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR0), 1194 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR1), 1195 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR0), 1196 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR1), 1197 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR0), 1198 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR1), 1199 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR0), 1200 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR1), 1201 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR0), 1202 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR1), 1203 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR0), 1204 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR1), 1205 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR0), 1206 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR1), 1207 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR0), 1208 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR1), 1209 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR0), 1210 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR1), 1211 }; 1212 1213 static int p4_get_escr_idx(unsigned int addr) 1214 { 1215 unsigned int idx = P4_ESCR_MSR_IDX(addr); 1216 1217 if (unlikely(idx >= P4_ESCR_MSR_TABLE_SIZE || 1218 !p4_escr_table[idx] || 1219 p4_escr_table[idx] != addr)) { 1220 WARN_ONCE(1, "P4 PMU: Wrong address passed: %x\n", addr); 1221 return -1; 1222 } 1223 1224 return idx; 1225 } 1226 1227 static int p4_next_cntr(int thread, unsigned long *used_mask, 1228 struct p4_event_bind *bind) 1229 { 1230 int i, j; 1231 1232 for (i = 0; i < P4_CNTR_LIMIT; i++) { 1233 j = bind->cntr[thread][i]; 1234 if (j != -1 && !test_bit(j, used_mask)) 1235 return j; 1236 } 1237 1238 return -1; 1239 } 1240 1241 static int p4_pmu_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) 1242 { 1243 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 1244 unsigned long escr_mask[BITS_TO_LONGS(P4_ESCR_MSR_TABLE_SIZE)]; 1245 int cpu = smp_processor_id(); 1246 struct hw_perf_event *hwc; 1247 struct p4_event_bind *bind; 1248 unsigned int i, thread, num; 1249 int cntr_idx, escr_idx; 1250 u64 config_alias; 1251 int pass; 1252 1253 bitmap_zero(used_mask, X86_PMC_IDX_MAX); 1254 bitmap_zero(escr_mask, P4_ESCR_MSR_TABLE_SIZE); 1255 1256 for (i = 0, num = n; i < n; i++, num--) { 1257 1258 hwc = &cpuc->event_list[i]->hw; 1259 thread = p4_ht_thread(cpu); 1260 pass = 0; 1261 1262 again: 1263 /* 1264 * It's possible to hit a circular lock 1265 * between original and alternative events 1266 * if both are scheduled already. 1267 */ 1268 if (pass > 2) 1269 goto done; 1270 1271 bind = p4_config_get_bind(hwc->config); 1272 escr_idx = p4_get_escr_idx(bind->escr_msr[thread]); 1273 if (unlikely(escr_idx == -1)) 1274 goto done; 1275 1276 if (hwc->idx != -1 && !p4_should_swap_ts(hwc->config, cpu)) { 1277 cntr_idx = hwc->idx; 1278 if (assign) 1279 assign[i] = hwc->idx; 1280 goto reserve; 1281 } 1282 1283 cntr_idx = p4_next_cntr(thread, used_mask, bind); 1284 if (cntr_idx == -1 || test_bit(escr_idx, escr_mask)) { 1285 /* 1286 * Check whether an event alias is still available. 1287 */ 1288 config_alias = p4_get_alias_event(hwc->config); 1289 if (!config_alias) 1290 goto done; 1291 hwc->config = config_alias; 1292 pass++; 1293 goto again; 1294 } 1295 /* 1296 * Perf does test runs to see if a whole group can be assigned 1297 * together successfully. There can be multiple rounds of this. 1298 * Unfortunately, p4_pmu_swap_config_ts touches the hwc->config 1299 * bits, such that the next round of group assignments will 1300 * cause the above p4_should_swap_ts to pass instead of fail. 1301 * This leads to counters exclusive to thread0 being used by 1302 * thread1. 1303 * 1304 * Solve this with a cheap hack, reset the idx back to -1 to 1305 * force a new lookup (p4_next_cntr) to get the right counter 1306 * for the right thread. 1307 * 1308 * This probably doesn't comply with the general spirit of how 1309 * perf wants to work, but P4 is special. :-( 1310 */ 1311 if (p4_should_swap_ts(hwc->config, cpu)) 1312 hwc->idx = -1; 1313 p4_pmu_swap_config_ts(hwc, cpu); 1314 if (assign) 1315 assign[i] = cntr_idx; 1316 reserve: 1317 set_bit(cntr_idx, used_mask); 1318 set_bit(escr_idx, escr_mask); 1319 } 1320 1321 done: 1322 return num ? -EINVAL : 0; 1323 } 1324 1325 PMU_FORMAT_ATTR(cccr, "config:0-31" ); 1326 PMU_FORMAT_ATTR(escr, "config:32-62"); 1327 PMU_FORMAT_ATTR(ht, "config:63" ); 1328 1329 static struct attribute *intel_p4_formats_attr[] = { 1330 &format_attr_cccr.attr, 1331 &format_attr_escr.attr, 1332 &format_attr_ht.attr, 1333 NULL, 1334 }; 1335 1336 static __initconst const struct x86_pmu p4_pmu = { 1337 .name = "Netburst P4/Xeon", 1338 .handle_irq = p4_pmu_handle_irq, 1339 .disable_all = p4_pmu_disable_all, 1340 .enable_all = p4_pmu_enable_all, 1341 .enable = p4_pmu_enable_event, 1342 .disable = p4_pmu_disable_event, 1343 1344 .set_period = p4_pmu_set_period, 1345 1346 .eventsel = MSR_P4_BPU_CCCR0, 1347 .perfctr = MSR_P4_BPU_PERFCTR0, 1348 .event_map = p4_pmu_event_map, 1349 .max_events = ARRAY_SIZE(p4_general_events), 1350 .get_event_constraints = x86_get_event_constraints, 1351 /* 1352 * IF HT disabled we may need to use all 1353 * ARCH_P4_MAX_CCCR counters simultaneously 1354 * though leave it restricted at moment assuming 1355 * HT is on 1356 */ 1357 .cntr_mask64 = GENMASK_ULL(ARCH_P4_MAX_CCCR - 1, 0), 1358 .apic = 1, 1359 .cntval_bits = ARCH_P4_CNTRVAL_BITS, 1360 .cntval_mask = ARCH_P4_CNTRVAL_MASK, 1361 .max_period = (1ULL << (ARCH_P4_CNTRVAL_BITS - 1)) - 1, 1362 .hw_config = p4_hw_config, 1363 .schedule_events = p4_pmu_schedule_events, 1364 1365 .format_attrs = intel_p4_formats_attr, 1366 }; 1367 1368 __init int p4_pmu_init(void) 1369 { 1370 unsigned int low, high; 1371 int i, reg; 1372 1373 /* If we get stripped -- indexing fails */ 1374 BUILD_BUG_ON(ARCH_P4_MAX_CCCR > INTEL_PMC_MAX_GENERIC); 1375 1376 rdmsr(MSR_IA32_MISC_ENABLE, low, high); 1377 if (!(low & (1 << 7))) { 1378 pr_cont("unsupported Netburst CPU model %d ", 1379 boot_cpu_data.x86_model); 1380 return -ENODEV; 1381 } 1382 1383 memcpy(hw_cache_event_ids, p4_hw_cache_event_ids, 1384 sizeof(hw_cache_event_ids)); 1385 1386 pr_cont("Netburst events, "); 1387 1388 x86_pmu = p4_pmu; 1389 1390 /* 1391 * Even though the counters are configured to interrupt a particular 1392 * logical processor when an overflow happens, testing has shown that 1393 * on kdump kernels (which uses a single cpu), thread1's counter 1394 * continues to run and will report an NMI on thread0. Due to the 1395 * overflow bug, this leads to a stream of unknown NMIs. 1396 * 1397 * Solve this by zero'ing out the registers to mimic a reset. 1398 */ 1399 for_each_set_bit(i, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { 1400 reg = x86_pmu_config_addr(i); 1401 wrmsrq_safe(reg, 0ULL); 1402 } 1403 1404 return 0; 1405 } 1406