xref: /linux/arch/x86/events/intel/p4.c (revision 81ee0eb6c0fe34490ed92667538197d9295e899e)
1 /*
2  * Netburst Performance Events (P4, old Xeon)
3  *
4  *  Copyright (C) 2010 Parallels, Inc., Cyrill Gorcunov <gorcunov@openvz.org>
5  *  Copyright (C) 2010 Intel Corporation, Lin Ming <ming.m.lin@intel.com>
6  *
7  *  For licencing details see kernel-base/COPYING
8  */
9 
10 #include <linux/perf_event.h>
11 
12 #include <asm/perf_event_p4.h>
13 #include <asm/hardirq.h>
14 #include <asm/apic.h>
15 
16 #include "../perf_event.h"
17 
18 #define P4_CNTR_LIMIT 3
19 /*
20  * array indices: 0,1 - HT threads, used with HT enabled cpu
21  */
22 struct p4_event_bind {
23 	unsigned int opcode;			/* Event code and ESCR selector */
24 	unsigned int escr_msr[2];		/* ESCR MSR for this event */
25 	unsigned int escr_emask;		/* valid ESCR EventMask bits */
26 	unsigned int shared;			/* event is shared across threads */
27 	char cntr[2][P4_CNTR_LIMIT];		/* counter index (offset), -1 on absence */
28 };
29 
30 struct p4_pebs_bind {
31 	unsigned int metric_pebs;
32 	unsigned int metric_vert;
33 };
34 
35 /* it sets P4_PEBS_ENABLE_UOP_TAG as well */
36 #define P4_GEN_PEBS_BIND(name, pebs, vert)			\
37 	[P4_PEBS_METRIC__##name] = {				\
38 		.metric_pebs = pebs | P4_PEBS_ENABLE_UOP_TAG,	\
39 		.metric_vert = vert,				\
40 	}
41 
42 /*
43  * note we have P4_PEBS_ENABLE_UOP_TAG always set here
44  *
45  * it's needed for mapping P4_PEBS_CONFIG_METRIC_MASK bits of
46  * event configuration to find out which values are to be
47  * written into MSR_IA32_PEBS_ENABLE and MSR_P4_PEBS_MATRIX_VERT
48  * registers
49  */
50 static struct p4_pebs_bind p4_pebs_bind_map[] = {
51 	P4_GEN_PEBS_BIND(1stl_cache_load_miss_retired,	0x0000001, 0x0000001),
52 	P4_GEN_PEBS_BIND(2ndl_cache_load_miss_retired,	0x0000002, 0x0000001),
53 	P4_GEN_PEBS_BIND(dtlb_load_miss_retired,	0x0000004, 0x0000001),
54 	P4_GEN_PEBS_BIND(dtlb_store_miss_retired,	0x0000004, 0x0000002),
55 	P4_GEN_PEBS_BIND(dtlb_all_miss_retired,		0x0000004, 0x0000003),
56 	P4_GEN_PEBS_BIND(tagged_mispred_branch,		0x0018000, 0x0000010),
57 	P4_GEN_PEBS_BIND(mob_load_replay_retired,	0x0000200, 0x0000001),
58 	P4_GEN_PEBS_BIND(split_load_retired,		0x0000400, 0x0000001),
59 	P4_GEN_PEBS_BIND(split_store_retired,		0x0000400, 0x0000002),
60 };
61 
62 /*
63  * Note that we don't use CCCR1 here, there is an
64  * exception for P4_BSQ_ALLOCATION but we just have
65  * no workaround
66  *
67  * consider this binding as resources which particular
68  * event may borrow, it doesn't contain EventMask,
69  * Tags and friends -- they are left to a caller
70  */
71 static struct p4_event_bind p4_event_bind_map[] = {
72 	[P4_EVENT_TC_DELIVER_MODE] = {
73 		.opcode		= P4_OPCODE(P4_EVENT_TC_DELIVER_MODE),
74 		.escr_msr	= { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
75 		.escr_emask	=
76 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DD)			|
77 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DB)			|
78 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DI)			|
79 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BD)			|
80 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BB)			|
81 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BI)			|
82 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, ID),
83 		.shared		= 1,
84 		.cntr		= { {4, 5, -1}, {6, 7, -1} },
85 	},
86 	[P4_EVENT_BPU_FETCH_REQUEST] = {
87 		.opcode		= P4_OPCODE(P4_EVENT_BPU_FETCH_REQUEST),
88 		.escr_msr	= { MSR_P4_BPU_ESCR0, MSR_P4_BPU_ESCR1 },
89 		.escr_emask	=
90 			P4_ESCR_EMASK_BIT(P4_EVENT_BPU_FETCH_REQUEST, TCMISS),
91 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
92 	},
93 	[P4_EVENT_ITLB_REFERENCE] = {
94 		.opcode		= P4_OPCODE(P4_EVENT_ITLB_REFERENCE),
95 		.escr_msr	= { MSR_P4_ITLB_ESCR0, MSR_P4_ITLB_ESCR1 },
96 		.escr_emask	=
97 			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT)			|
98 			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, MISS)		|
99 			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT_UK),
100 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
101 	},
102 	[P4_EVENT_MEMORY_CANCEL] = {
103 		.opcode		= P4_OPCODE(P4_EVENT_MEMORY_CANCEL),
104 		.escr_msr	= { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
105 		.escr_emask	=
106 			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, ST_RB_FULL)		|
107 			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, 64K_CONF),
108 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
109 	},
110 	[P4_EVENT_MEMORY_COMPLETE] = {
111 		.opcode		= P4_OPCODE(P4_EVENT_MEMORY_COMPLETE),
112 		.escr_msr	= { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 },
113 		.escr_emask	=
114 			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, LSC)		|
115 			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, SSC),
116 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
117 	},
118 	[P4_EVENT_LOAD_PORT_REPLAY] = {
119 		.opcode		= P4_OPCODE(P4_EVENT_LOAD_PORT_REPLAY),
120 		.escr_msr	= { MSR_P4_SAAT_ESCR0, MSR_P4_SAAT_ESCR1 },
121 		.escr_emask	=
122 			P4_ESCR_EMASK_BIT(P4_EVENT_LOAD_PORT_REPLAY, SPLIT_LD),
123 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
124 	},
125 	[P4_EVENT_STORE_PORT_REPLAY] = {
126 		.opcode		= P4_OPCODE(P4_EVENT_STORE_PORT_REPLAY),
127 		.escr_msr	= { MSR_P4_SAAT_ESCR0 ,  MSR_P4_SAAT_ESCR1 },
128 		.escr_emask	=
129 			P4_ESCR_EMASK_BIT(P4_EVENT_STORE_PORT_REPLAY, SPLIT_ST),
130 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
131 	},
132 	[P4_EVENT_MOB_LOAD_REPLAY] = {
133 		.opcode		= P4_OPCODE(P4_EVENT_MOB_LOAD_REPLAY),
134 		.escr_msr	= { MSR_P4_MOB_ESCR0, MSR_P4_MOB_ESCR1 },
135 		.escr_emask	=
136 			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STA)		|
137 			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STD)		|
138 			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, PARTIAL_DATA)	|
139 			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, UNALGN_ADDR),
140 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
141 	},
142 	[P4_EVENT_PAGE_WALK_TYPE] = {
143 		.opcode		= P4_OPCODE(P4_EVENT_PAGE_WALK_TYPE),
144 		.escr_msr	= { MSR_P4_PMH_ESCR0, MSR_P4_PMH_ESCR1 },
145 		.escr_emask	=
146 			P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, DTMISS)		|
147 			P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, ITMISS),
148 		.shared		= 1,
149 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
150 	},
151 	[P4_EVENT_BSQ_CACHE_REFERENCE] = {
152 		.opcode		= P4_OPCODE(P4_EVENT_BSQ_CACHE_REFERENCE),
153 		.escr_msr	= { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR1 },
154 		.escr_emask	=
155 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS)	|
156 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE)	|
157 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM)	|
158 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS)	|
159 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE)	|
160 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)	|
161 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS)	|
162 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS)	|
163 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS),
164 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
165 	},
166 	[P4_EVENT_IOQ_ALLOCATION] = {
167 		.opcode		= P4_OPCODE(P4_EVENT_IOQ_ALLOCATION),
168 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
169 		.escr_emask	=
170 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, DEFAULT)		|
171 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_READ)		|
172 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_WRITE)		|
173 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_UC)		|
174 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WC)		|
175 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WT)		|
176 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WP)		|
177 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WB)		|
178 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OWN)			|
179 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OTHER)		|
180 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, PREFETCH),
181 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
182 	},
183 	[P4_EVENT_IOQ_ACTIVE_ENTRIES] = {	/* shared ESCR */
184 		.opcode		= P4_OPCODE(P4_EVENT_IOQ_ACTIVE_ENTRIES),
185 		.escr_msr	= { MSR_P4_FSB_ESCR1,  MSR_P4_FSB_ESCR1 },
186 		.escr_emask	=
187 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, DEFAULT)		|
188 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_READ)	|
189 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_WRITE)	|
190 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_UC)		|
191 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WC)		|
192 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WT)		|
193 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WP)		|
194 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WB)		|
195 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OWN)		|
196 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OTHER)		|
197 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, PREFETCH),
198 		.cntr		= { {2, -1, -1}, {3, -1, -1} },
199 	},
200 	[P4_EVENT_FSB_DATA_ACTIVITY] = {
201 		.opcode		= P4_OPCODE(P4_EVENT_FSB_DATA_ACTIVITY),
202 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
203 		.escr_emask	=
204 			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV)		|
205 			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN)		|
206 			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OTHER)	|
207 			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_DRV)		|
208 			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OWN)		|
209 			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OTHER),
210 		.shared		= 1,
211 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
212 	},
213 	[P4_EVENT_BSQ_ALLOCATION] = {		/* shared ESCR, broken CCCR1 */
214 		.opcode		= P4_OPCODE(P4_EVENT_BSQ_ALLOCATION),
215 		.escr_msr	= { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR0 },
216 		.escr_emask	=
217 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE0)		|
218 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE1)		|
219 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN0)		|
220 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN1)		|
221 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_IO_TYPE)		|
222 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LOCK_TYPE)	|
223 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_CACHE_TYPE)	|
224 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_SPLIT_TYPE)	|
225 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_DEM_TYPE)	|
226 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_ORD_TYPE)	|
227 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE0)		|
228 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE1)		|
229 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE2),
230 		.cntr		= { {0, -1, -1}, {1, -1, -1} },
231 	},
232 	[P4_EVENT_BSQ_ACTIVE_ENTRIES] = {	/* shared ESCR */
233 		.opcode		= P4_OPCODE(P4_EVENT_BSQ_ACTIVE_ENTRIES),
234 		.escr_msr	= { MSR_P4_BSU_ESCR1 , MSR_P4_BSU_ESCR1 },
235 		.escr_emask	=
236 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE0)	|
237 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE1)	|
238 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN0)	|
239 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN1)	|
240 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_IO_TYPE)	|
241 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LOCK_TYPE)	|
242 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_CACHE_TYPE)	|
243 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_SPLIT_TYPE)	|
244 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_DEM_TYPE)	|
245 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_ORD_TYPE)	|
246 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE0)	|
247 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE1)	|
248 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE2),
249 		.cntr		= { {2, -1, -1}, {3, -1, -1} },
250 	},
251 	[P4_EVENT_SSE_INPUT_ASSIST] = {
252 		.opcode		= P4_OPCODE(P4_EVENT_SSE_INPUT_ASSIST),
253 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
254 		.escr_emask	=
255 			P4_ESCR_EMASK_BIT(P4_EVENT_SSE_INPUT_ASSIST, ALL),
256 		.shared		= 1,
257 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
258 	},
259 	[P4_EVENT_PACKED_SP_UOP] = {
260 		.opcode		= P4_OPCODE(P4_EVENT_PACKED_SP_UOP),
261 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
262 		.escr_emask	=
263 			P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_SP_UOP, ALL),
264 		.shared		= 1,
265 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
266 	},
267 	[P4_EVENT_PACKED_DP_UOP] = {
268 		.opcode		= P4_OPCODE(P4_EVENT_PACKED_DP_UOP),
269 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
270 		.escr_emask	=
271 			P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_DP_UOP, ALL),
272 		.shared		= 1,
273 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
274 	},
275 	[P4_EVENT_SCALAR_SP_UOP] = {
276 		.opcode		= P4_OPCODE(P4_EVENT_SCALAR_SP_UOP),
277 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
278 		.escr_emask	=
279 			P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_SP_UOP, ALL),
280 		.shared		= 1,
281 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
282 	},
283 	[P4_EVENT_SCALAR_DP_UOP] = {
284 		.opcode		= P4_OPCODE(P4_EVENT_SCALAR_DP_UOP),
285 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
286 		.escr_emask	=
287 			P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_DP_UOP, ALL),
288 		.shared		= 1,
289 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
290 	},
291 	[P4_EVENT_64BIT_MMX_UOP] = {
292 		.opcode		= P4_OPCODE(P4_EVENT_64BIT_MMX_UOP),
293 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
294 		.escr_emask	=
295 			P4_ESCR_EMASK_BIT(P4_EVENT_64BIT_MMX_UOP, ALL),
296 		.shared		= 1,
297 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
298 	},
299 	[P4_EVENT_128BIT_MMX_UOP] = {
300 		.opcode		= P4_OPCODE(P4_EVENT_128BIT_MMX_UOP),
301 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
302 		.escr_emask	=
303 			P4_ESCR_EMASK_BIT(P4_EVENT_128BIT_MMX_UOP, ALL),
304 		.shared		= 1,
305 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
306 	},
307 	[P4_EVENT_X87_FP_UOP] = {
308 		.opcode		= P4_OPCODE(P4_EVENT_X87_FP_UOP),
309 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
310 		.escr_emask	=
311 			P4_ESCR_EMASK_BIT(P4_EVENT_X87_FP_UOP, ALL),
312 		.shared		= 1,
313 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
314 	},
315 	[P4_EVENT_TC_MISC] = {
316 		.opcode		= P4_OPCODE(P4_EVENT_TC_MISC),
317 		.escr_msr	= { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
318 		.escr_emask	=
319 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_MISC, FLUSH),
320 		.cntr		= { {4, 5, -1}, {6, 7, -1} },
321 	},
322 	[P4_EVENT_GLOBAL_POWER_EVENTS] = {
323 		.opcode		= P4_OPCODE(P4_EVENT_GLOBAL_POWER_EVENTS),
324 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
325 		.escr_emask	=
326 			P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING),
327 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
328 	},
329 	[P4_EVENT_TC_MS_XFER] = {
330 		.opcode		= P4_OPCODE(P4_EVENT_TC_MS_XFER),
331 		.escr_msr	= { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
332 		.escr_emask	=
333 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_MS_XFER, CISC),
334 		.cntr		= { {4, 5, -1}, {6, 7, -1} },
335 	},
336 	[P4_EVENT_UOP_QUEUE_WRITES] = {
337 		.opcode		= P4_OPCODE(P4_EVENT_UOP_QUEUE_WRITES),
338 		.escr_msr	= { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
339 		.escr_emask	=
340 			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_BUILD)	|
341 			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_DELIVER)	|
342 			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_ROM),
343 		.cntr		= { {4, 5, -1}, {6, 7, -1} },
344 	},
345 	[P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE] = {
346 		.opcode		= P4_OPCODE(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE),
347 		.escr_msr	= { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR0 },
348 		.escr_emask	=
349 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CONDITIONAL)	|
350 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CALL)		|
351 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, RETURN)		|
352 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, INDIRECT),
353 		.cntr		= { {4, 5, -1}, {6, 7, -1} },
354 	},
355 	[P4_EVENT_RETIRED_BRANCH_TYPE] = {
356 		.opcode		= P4_OPCODE(P4_EVENT_RETIRED_BRANCH_TYPE),
357 		.escr_msr	= { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR1 },
358 		.escr_emask	=
359 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL)	|
360 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL)		|
361 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN)		|
362 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT),
363 		.cntr		= { {4, 5, -1}, {6, 7, -1} },
364 	},
365 	[P4_EVENT_RESOURCE_STALL] = {
366 		.opcode		= P4_OPCODE(P4_EVENT_RESOURCE_STALL),
367 		.escr_msr	= { MSR_P4_ALF_ESCR0, MSR_P4_ALF_ESCR1 },
368 		.escr_emask	=
369 			P4_ESCR_EMASK_BIT(P4_EVENT_RESOURCE_STALL, SBFULL),
370 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
371 	},
372 	[P4_EVENT_WC_BUFFER] = {
373 		.opcode		= P4_OPCODE(P4_EVENT_WC_BUFFER),
374 		.escr_msr	= { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
375 		.escr_emask	=
376 			P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_EVICTS)		|
377 			P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_FULL_EVICTS),
378 		.shared		= 1,
379 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
380 	},
381 	[P4_EVENT_B2B_CYCLES] = {
382 		.opcode		= P4_OPCODE(P4_EVENT_B2B_CYCLES),
383 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
384 		.escr_emask	= 0,
385 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
386 	},
387 	[P4_EVENT_BNR] = {
388 		.opcode		= P4_OPCODE(P4_EVENT_BNR),
389 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
390 		.escr_emask	= 0,
391 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
392 	},
393 	[P4_EVENT_SNOOP] = {
394 		.opcode		= P4_OPCODE(P4_EVENT_SNOOP),
395 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
396 		.escr_emask	= 0,
397 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
398 	},
399 	[P4_EVENT_RESPONSE] = {
400 		.opcode		= P4_OPCODE(P4_EVENT_RESPONSE),
401 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
402 		.escr_emask	= 0,
403 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
404 	},
405 	[P4_EVENT_FRONT_END_EVENT] = {
406 		.opcode		= P4_OPCODE(P4_EVENT_FRONT_END_EVENT),
407 		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
408 		.escr_emask	=
409 			P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, NBOGUS)		|
410 			P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, BOGUS),
411 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
412 	},
413 	[P4_EVENT_EXECUTION_EVENT] = {
414 		.opcode		= P4_OPCODE(P4_EVENT_EXECUTION_EVENT),
415 		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
416 		.escr_emask	=
417 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)		|
418 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)		|
419 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)		|
420 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)		|
421 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0)		|
422 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1)		|
423 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2)		|
424 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3),
425 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
426 	},
427 	[P4_EVENT_REPLAY_EVENT] = {
428 		.opcode		= P4_OPCODE(P4_EVENT_REPLAY_EVENT),
429 		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
430 		.escr_emask	=
431 			P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, NBOGUS)		|
432 			P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, BOGUS),
433 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
434 	},
435 	[P4_EVENT_INSTR_RETIRED] = {
436 		.opcode		= P4_OPCODE(P4_EVENT_INSTR_RETIRED),
437 		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
438 		.escr_emask	=
439 			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG)		|
440 			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSTAG)		|
441 			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)		|
442 			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSTAG),
443 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
444 	},
445 	[P4_EVENT_UOPS_RETIRED] = {
446 		.opcode		= P4_OPCODE(P4_EVENT_UOPS_RETIRED),
447 		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
448 		.escr_emask	=
449 			P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, NBOGUS)		|
450 			P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, BOGUS),
451 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
452 	},
453 	[P4_EVENT_UOP_TYPE] = {
454 		.opcode		= P4_OPCODE(P4_EVENT_UOP_TYPE),
455 		.escr_msr	= { MSR_P4_RAT_ESCR0, MSR_P4_RAT_ESCR1 },
456 		.escr_emask	=
457 			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGLOADS)			|
458 			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGSTORES),
459 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
460 	},
461 	[P4_EVENT_BRANCH_RETIRED] = {
462 		.opcode		= P4_OPCODE(P4_EVENT_BRANCH_RETIRED),
463 		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
464 		.escr_emask	=
465 			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNP)		|
466 			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNM)		|
467 			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTP)		|
468 			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTM),
469 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
470 	},
471 	[P4_EVENT_MISPRED_BRANCH_RETIRED] = {
472 		.opcode		= P4_OPCODE(P4_EVENT_MISPRED_BRANCH_RETIRED),
473 		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
474 		.escr_emask	=
475 			P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS),
476 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
477 	},
478 	[P4_EVENT_X87_ASSIST] = {
479 		.opcode		= P4_OPCODE(P4_EVENT_X87_ASSIST),
480 		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
481 		.escr_emask	=
482 			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSU)			|
483 			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSO)			|
484 			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAO)			|
485 			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAU)			|
486 			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, PREA),
487 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
488 	},
489 	[P4_EVENT_MACHINE_CLEAR] = {
490 		.opcode		= P4_OPCODE(P4_EVENT_MACHINE_CLEAR),
491 		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
492 		.escr_emask	=
493 			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, CLEAR)		|
494 			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, MOCLEAR)		|
495 			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, SMCLEAR),
496 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
497 	},
498 	[P4_EVENT_INSTR_COMPLETED] = {
499 		.opcode		= P4_OPCODE(P4_EVENT_INSTR_COMPLETED),
500 		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
501 		.escr_emask	=
502 			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, NBOGUS)		|
503 			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, BOGUS),
504 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
505 	},
506 };
507 
508 #define P4_GEN_CACHE_EVENT(event, bit, metric)				  \
509 	p4_config_pack_escr(P4_ESCR_EVENT(event)			| \
510 			    P4_ESCR_EMASK_BIT(event, bit))		| \
511 	p4_config_pack_cccr(metric					| \
512 			    P4_CCCR_ESEL(P4_OPCODE_ESEL(P4_OPCODE(event))))
513 
514 static __initconst const u64 p4_hw_cache_event_ids
515 				[PERF_COUNT_HW_CACHE_MAX]
516 				[PERF_COUNT_HW_CACHE_OP_MAX]
517 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
518 {
519  [ C(L1D ) ] = {
520 	[ C(OP_READ) ] = {
521 		[ C(RESULT_ACCESS) ] = 0x0,
522 		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
523 						P4_PEBS_METRIC__1stl_cache_load_miss_retired),
524 	},
525  },
526  [ C(LL  ) ] = {
527 	[ C(OP_READ) ] = {
528 		[ C(RESULT_ACCESS) ] = 0x0,
529 		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
530 						P4_PEBS_METRIC__2ndl_cache_load_miss_retired),
531 	},
532 },
533  [ C(DTLB) ] = {
534 	[ C(OP_READ) ] = {
535 		[ C(RESULT_ACCESS) ] = 0x0,
536 		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
537 						P4_PEBS_METRIC__dtlb_load_miss_retired),
538 	},
539 	[ C(OP_WRITE) ] = {
540 		[ C(RESULT_ACCESS) ] = 0x0,
541 		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
542 						P4_PEBS_METRIC__dtlb_store_miss_retired),
543 	},
544  },
545  [ C(ITLB) ] = {
546 	[ C(OP_READ) ] = {
547 		[ C(RESULT_ACCESS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, HIT,
548 						P4_PEBS_METRIC__none),
549 		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, MISS,
550 						P4_PEBS_METRIC__none),
551 	},
552 	[ C(OP_WRITE) ] = {
553 		[ C(RESULT_ACCESS) ] = -1,
554 		[ C(RESULT_MISS)   ] = -1,
555 	},
556 	[ C(OP_PREFETCH) ] = {
557 		[ C(RESULT_ACCESS) ] = -1,
558 		[ C(RESULT_MISS)   ] = -1,
559 	},
560  },
561  [ C(NODE) ] = {
562 	[ C(OP_READ) ] = {
563 		[ C(RESULT_ACCESS) ] = -1,
564 		[ C(RESULT_MISS)   ] = -1,
565 	},
566 	[ C(OP_WRITE) ] = {
567 		[ C(RESULT_ACCESS) ] = -1,
568 		[ C(RESULT_MISS)   ] = -1,
569 	},
570 	[ C(OP_PREFETCH) ] = {
571 		[ C(RESULT_ACCESS) ] = -1,
572 		[ C(RESULT_MISS)   ] = -1,
573 	},
574  },
575 };
576 
577 /*
578  * Because of Netburst being quite restricted in how many
579  * identical events may run simultaneously, we introduce event aliases,
580  * ie the different events which have the same functionality but
581  * utilize non-intersected resources (ESCR/CCCR/counter registers).
582  *
583  * This allow us to relax restrictions a bit and run two or more
584  * identical events together.
585  *
586  * Never set any custom internal bits such as P4_CONFIG_HT,
587  * P4_CONFIG_ALIASABLE or bits for P4_PEBS_METRIC, they are
588  * either up to date automatically or not applicable at all.
589  */
590 static struct p4_event_alias {
591 	u64 original;
592 	u64 alternative;
593 } p4_event_aliases[] = {
594 	{
595 		/*
596 		 * Non-halted cycles can be substituted with non-sleeping cycles (see
597 		 * Intel SDM Vol3b for details). We need this alias to be able
598 		 * to run nmi-watchdog and 'perf top' (or any other user space tool
599 		 * which is interested in running PERF_COUNT_HW_CPU_CYCLES)
600 		 * simultaneously.
601 		 */
602 	.original	=
603 		p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS)		|
604 				    P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)),
605 	.alternative	=
606 		p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_EXECUTION_EVENT)		|
607 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)|
608 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)|
609 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)|
610 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)|
611 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0)	|
612 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1)	|
613 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2)	|
614 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3))|
615 		p4_config_pack_cccr(P4_CCCR_THRESHOLD(15) | P4_CCCR_COMPLEMENT		|
616 				    P4_CCCR_COMPARE),
617 	},
618 };
619 
620 static u64 p4_get_alias_event(u64 config)
621 {
622 	u64 config_match;
623 	int i;
624 
625 	/*
626 	 * Only event with special mark is allowed,
627 	 * we're to be sure it didn't come as malformed
628 	 * RAW event.
629 	 */
630 	if (!(config & P4_CONFIG_ALIASABLE))
631 		return 0;
632 
633 	config_match = config & P4_CONFIG_EVENT_ALIAS_MASK;
634 
635 	for (i = 0; i < ARRAY_SIZE(p4_event_aliases); i++) {
636 		if (config_match == p4_event_aliases[i].original) {
637 			config_match = p4_event_aliases[i].alternative;
638 			break;
639 		} else if (config_match == p4_event_aliases[i].alternative) {
640 			config_match = p4_event_aliases[i].original;
641 			break;
642 		}
643 	}
644 
645 	if (i >= ARRAY_SIZE(p4_event_aliases))
646 		return 0;
647 
648 	return config_match | (config & P4_CONFIG_EVENT_ALIAS_IMMUTABLE_BITS);
649 }
650 
651 static u64 p4_general_events[PERF_COUNT_HW_MAX] = {
652   /* non-halted CPU clocks */
653   [PERF_COUNT_HW_CPU_CYCLES] =
654 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS)		|
655 		P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING))	|
656 		P4_CONFIG_ALIASABLE,
657 
658   /*
659    * retired instructions
660    * in a sake of simplicity we don't use the FSB tagging
661    */
662   [PERF_COUNT_HW_INSTRUCTIONS] =
663 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_INSTR_RETIRED)		|
664 		P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG)		|
665 		P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)),
666 
667   /* cache hits */
668   [PERF_COUNT_HW_CACHE_REFERENCES] =
669 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE)		|
670 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS)	|
671 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE)	|
672 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM)	|
673 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS)	|
674 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE)	|
675 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)),
676 
677   /* cache misses */
678   [PERF_COUNT_HW_CACHE_MISSES] =
679 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE)		|
680 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS)	|
681 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS)	|
682 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS)),
683 
684   /* branch instructions retired */
685   [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] =
686 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_RETIRED_BRANCH_TYPE)		|
687 		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL)	|
688 		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL)		|
689 		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN)		|
690 		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT)),
691 
692   /* mispredicted branches retired */
693   [PERF_COUNT_HW_BRANCH_MISSES]	=
694 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_MISPRED_BRANCH_RETIRED)	|
695 		P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS)),
696 
697   /* bus ready clocks (cpu is driving #DRDY_DRV\#DRDY_OWN):  */
698   [PERF_COUNT_HW_BUS_CYCLES] =
699 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_FSB_DATA_ACTIVITY)		|
700 		P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV)		|
701 		P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN))	|
702 	p4_config_pack_cccr(P4_CCCR_EDGE | P4_CCCR_COMPARE),
703 };
704 
705 static struct p4_event_bind *p4_config_get_bind(u64 config)
706 {
707 	unsigned int evnt = p4_config_unpack_event(config);
708 	struct p4_event_bind *bind = NULL;
709 
710 	if (evnt < ARRAY_SIZE(p4_event_bind_map))
711 		bind = &p4_event_bind_map[evnt];
712 
713 	return bind;
714 }
715 
716 static u64 p4_pmu_event_map(int hw_event)
717 {
718 	struct p4_event_bind *bind;
719 	unsigned int esel;
720 	u64 config;
721 
722 	config = p4_general_events[hw_event];
723 	bind = p4_config_get_bind(config);
724 	esel = P4_OPCODE_ESEL(bind->opcode);
725 	config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
726 
727 	return config;
728 }
729 
730 /* check cpu model specifics */
731 static bool p4_event_match_cpu_model(unsigned int event_idx)
732 {
733 	/* INSTR_COMPLETED event only exist for model 3, 4, 6 (Prescott) */
734 	if (event_idx == P4_EVENT_INSTR_COMPLETED) {
735 		if (boot_cpu_data.x86_model != 3 &&
736 			boot_cpu_data.x86_model != 4 &&
737 			boot_cpu_data.x86_model != 6)
738 			return false;
739 	}
740 
741 	/*
742 	 * For info
743 	 * - IQ_ESCR0, IQ_ESCR1 only for models 1 and 2
744 	 */
745 
746 	return true;
747 }
748 
749 static int p4_validate_raw_event(struct perf_event *event)
750 {
751 	unsigned int v, emask;
752 
753 	/* User data may have out-of-bound event index */
754 	v = p4_config_unpack_event(event->attr.config);
755 	if (v >= ARRAY_SIZE(p4_event_bind_map))
756 		return -EINVAL;
757 
758 	/* It may be unsupported: */
759 	if (!p4_event_match_cpu_model(v))
760 		return -EINVAL;
761 
762 	/*
763 	 * NOTE: P4_CCCR_THREAD_ANY has not the same meaning as
764 	 * in Architectural Performance Monitoring, it means not
765 	 * on _which_ logical cpu to count but rather _when_, ie it
766 	 * depends on logical cpu state -- count event if one cpu active,
767 	 * none, both or any, so we just allow user to pass any value
768 	 * desired.
769 	 *
770 	 * In turn we always set Tx_OS/Tx_USR bits bound to logical
771 	 * cpu without their propagation to another cpu
772 	 */
773 
774 	/*
775 	 * if an event is shared across the logical threads
776 	 * the user needs special permissions to be able to use it
777 	 */
778 	if (p4_ht_active() && p4_event_bind_map[v].shared) {
779 		v = perf_allow_cpu(&event->attr);
780 		if (v)
781 			return v;
782 	}
783 
784 	/* ESCR EventMask bits may be invalid */
785 	emask = p4_config_unpack_escr(event->attr.config) & P4_ESCR_EVENTMASK_MASK;
786 	if (emask & ~p4_event_bind_map[v].escr_emask)
787 		return -EINVAL;
788 
789 	/*
790 	 * it may have some invalid PEBS bits
791 	 */
792 	if (p4_config_pebs_has(event->attr.config, P4_PEBS_CONFIG_ENABLE))
793 		return -EINVAL;
794 
795 	v = p4_config_unpack_metric(event->attr.config);
796 	if (v >= ARRAY_SIZE(p4_pebs_bind_map))
797 		return -EINVAL;
798 
799 	return 0;
800 }
801 
802 static int p4_hw_config(struct perf_event *event)
803 {
804 	int cpu = get_cpu();
805 	int rc = 0;
806 	u32 escr, cccr;
807 
808 	/*
809 	 * the reason we use cpu that early is that: if we get scheduled
810 	 * first time on the same cpu -- we will not need swap thread
811 	 * specific flags in config (and will save some cpu cycles)
812 	 */
813 
814 	cccr = p4_default_cccr_conf(cpu);
815 	escr = p4_default_escr_conf(cpu, event->attr.exclude_kernel,
816 					 event->attr.exclude_user);
817 	event->hw.config = p4_config_pack_escr(escr) |
818 			   p4_config_pack_cccr(cccr);
819 
820 	if (p4_ht_active() && p4_ht_thread(cpu))
821 		event->hw.config = p4_set_ht_bit(event->hw.config);
822 
823 	if (event->attr.type == PERF_TYPE_RAW) {
824 		struct p4_event_bind *bind;
825 		unsigned int esel;
826 		/*
827 		 * Clear bits we reserve to be managed by kernel itself
828 		 * and never allowed from a user space
829 		 */
830 		event->attr.config &= P4_CONFIG_MASK;
831 
832 		rc = p4_validate_raw_event(event);
833 		if (rc)
834 			goto out;
835 
836 		/*
837 		 * Note that for RAW events we allow user to use P4_CCCR_RESERVED
838 		 * bits since we keep additional info here (for cache events and etc)
839 		 */
840 		event->hw.config |= event->attr.config;
841 		bind = p4_config_get_bind(event->attr.config);
842 		if (!bind) {
843 			rc = -EINVAL;
844 			goto out;
845 		}
846 		esel = P4_OPCODE_ESEL(bind->opcode);
847 		event->hw.config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
848 	}
849 
850 	rc = x86_setup_perfctr(event);
851 out:
852 	put_cpu();
853 	return rc;
854 }
855 
856 static inline int p4_pmu_clear_cccr_ovf(struct hw_perf_event *hwc)
857 {
858 	u64 v;
859 
860 	/* an official way for overflow indication */
861 	rdmsrl(hwc->config_base, v);
862 	if (v & P4_CCCR_OVF) {
863 		wrmsrl(hwc->config_base, v & ~P4_CCCR_OVF);
864 		return 1;
865 	}
866 
867 	/*
868 	 * In some circumstances the overflow might issue an NMI but did
869 	 * not set P4_CCCR_OVF bit. Because a counter holds a negative value
870 	 * we simply check for high bit being set, if it's cleared it means
871 	 * the counter has reached zero value and continued counting before
872 	 * real NMI signal was received:
873 	 */
874 	rdmsrl(hwc->event_base, v);
875 	if (!(v & ARCH_P4_UNFLAGGED_BIT))
876 		return 1;
877 
878 	return 0;
879 }
880 
881 static void p4_pmu_disable_pebs(void)
882 {
883 	/*
884 	 * FIXME
885 	 *
886 	 * It's still allowed that two threads setup same cache
887 	 * events so we can't simply clear metrics until we knew
888 	 * no one is depending on us, so we need kind of counter
889 	 * for "ReplayEvent" users.
890 	 *
891 	 * What is more complex -- RAW events, if user (for some
892 	 * reason) will pass some cache event metric with improper
893 	 * event opcode -- it's fine from hardware point of view
894 	 * but completely nonsense from "meaning" of such action.
895 	 *
896 	 * So at moment let leave metrics turned on forever -- it's
897 	 * ok for now but need to be revisited!
898 	 *
899 	 * (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, 0);
900 	 * (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, 0);
901 	 */
902 }
903 
904 static inline void p4_pmu_disable_event(struct perf_event *event)
905 {
906 	struct hw_perf_event *hwc = &event->hw;
907 
908 	/*
909 	 * If event gets disabled while counter is in overflowed
910 	 * state we need to clear P4_CCCR_OVF, otherwise interrupt get
911 	 * asserted again and again
912 	 */
913 	(void)wrmsrl_safe(hwc->config_base,
914 		p4_config_unpack_cccr(hwc->config) & ~P4_CCCR_ENABLE & ~P4_CCCR_OVF & ~P4_CCCR_RESERVED);
915 }
916 
917 static void p4_pmu_disable_all(void)
918 {
919 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
920 	int idx;
921 
922 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
923 		struct perf_event *event = cpuc->events[idx];
924 		if (!test_bit(idx, cpuc->active_mask))
925 			continue;
926 		p4_pmu_disable_event(event);
927 	}
928 
929 	p4_pmu_disable_pebs();
930 }
931 
932 /* configuration must be valid */
933 static void p4_pmu_enable_pebs(u64 config)
934 {
935 	struct p4_pebs_bind *bind;
936 	unsigned int idx;
937 
938 	BUILD_BUG_ON(P4_PEBS_METRIC__max > P4_PEBS_CONFIG_METRIC_MASK);
939 
940 	idx = p4_config_unpack_metric(config);
941 	if (idx == P4_PEBS_METRIC__none)
942 		return;
943 
944 	bind = &p4_pebs_bind_map[idx];
945 
946 	(void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE,	(u64)bind->metric_pebs);
947 	(void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT,	(u64)bind->metric_vert);
948 }
949 
950 static void __p4_pmu_enable_event(struct perf_event *event)
951 {
952 	struct hw_perf_event *hwc = &event->hw;
953 	int thread = p4_ht_config_thread(hwc->config);
954 	u64 escr_conf = p4_config_unpack_escr(p4_clear_ht_bit(hwc->config));
955 	unsigned int idx = p4_config_unpack_event(hwc->config);
956 	struct p4_event_bind *bind;
957 	u64 escr_addr, cccr;
958 
959 	bind = &p4_event_bind_map[idx];
960 	escr_addr = bind->escr_msr[thread];
961 
962 	/*
963 	 * - we dont support cascaded counters yet
964 	 * - and counter 1 is broken (erratum)
965 	 */
966 	WARN_ON_ONCE(p4_is_event_cascaded(hwc->config));
967 	WARN_ON_ONCE(hwc->idx == 1);
968 
969 	/* we need a real Event value */
970 	escr_conf &= ~P4_ESCR_EVENT_MASK;
971 	escr_conf |= P4_ESCR_EVENT(P4_OPCODE_EVNT(bind->opcode));
972 
973 	cccr = p4_config_unpack_cccr(hwc->config);
974 
975 	/*
976 	 * it could be Cache event so we need to write metrics
977 	 * into additional MSRs
978 	 */
979 	p4_pmu_enable_pebs(hwc->config);
980 
981 	(void)wrmsrl_safe(escr_addr, escr_conf);
982 	(void)wrmsrl_safe(hwc->config_base,
983 				(cccr & ~P4_CCCR_RESERVED) | P4_CCCR_ENABLE);
984 }
985 
986 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(X86_PMC_IDX_MAX)], p4_running);
987 
988 static void p4_pmu_enable_event(struct perf_event *event)
989 {
990 	int idx = event->hw.idx;
991 
992 	__set_bit(idx, per_cpu(p4_running, smp_processor_id()));
993 	__p4_pmu_enable_event(event);
994 }
995 
996 static void p4_pmu_enable_all(int added)
997 {
998 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
999 	int idx;
1000 
1001 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1002 		struct perf_event *event = cpuc->events[idx];
1003 		if (!test_bit(idx, cpuc->active_mask))
1004 			continue;
1005 		__p4_pmu_enable_event(event);
1006 	}
1007 }
1008 
1009 static int p4_pmu_handle_irq(struct pt_regs *regs)
1010 {
1011 	struct perf_sample_data data;
1012 	struct cpu_hw_events *cpuc;
1013 	struct perf_event *event;
1014 	struct hw_perf_event *hwc;
1015 	int idx, handled = 0;
1016 	u64 val;
1017 
1018 	cpuc = this_cpu_ptr(&cpu_hw_events);
1019 
1020 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1021 		int overflow;
1022 
1023 		if (!test_bit(idx, cpuc->active_mask)) {
1024 			/* catch in-flight IRQs */
1025 			if (__test_and_clear_bit(idx, per_cpu(p4_running, smp_processor_id())))
1026 				handled++;
1027 			continue;
1028 		}
1029 
1030 		event = cpuc->events[idx];
1031 		hwc = &event->hw;
1032 
1033 		WARN_ON_ONCE(hwc->idx != idx);
1034 
1035 		/* it might be unflagged overflow */
1036 		overflow = p4_pmu_clear_cccr_ovf(hwc);
1037 
1038 		val = x86_perf_event_update(event);
1039 		if (!overflow && (val & (1ULL << (x86_pmu.cntval_bits - 1))))
1040 			continue;
1041 
1042 		handled += overflow;
1043 
1044 		/* event overflow for sure */
1045 		perf_sample_data_init(&data, 0, hwc->last_period);
1046 
1047 		if (!x86_perf_event_set_period(event))
1048 			continue;
1049 
1050 
1051 		if (perf_event_overflow(event, &data, regs))
1052 			x86_pmu_stop(event, 0);
1053 	}
1054 
1055 	if (handled)
1056 		inc_irq_stat(apic_perf_irqs);
1057 
1058 	/*
1059 	 * When dealing with the unmasking of the LVTPC on P4 perf hw, it has
1060 	 * been observed that the OVF bit flag has to be cleared first _before_
1061 	 * the LVTPC can be unmasked.
1062 	 *
1063 	 * The reason is the NMI line will continue to be asserted while the OVF
1064 	 * bit is set.  This causes a second NMI to generate if the LVTPC is
1065 	 * unmasked before the OVF bit is cleared, leading to unknown NMI
1066 	 * messages.
1067 	 */
1068 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1069 
1070 	return handled;
1071 }
1072 
1073 /*
1074  * swap thread specific fields according to a thread
1075  * we are going to run on
1076  */
1077 static void p4_pmu_swap_config_ts(struct hw_perf_event *hwc, int cpu)
1078 {
1079 	u32 escr, cccr;
1080 
1081 	/*
1082 	 * we either lucky and continue on same cpu or no HT support
1083 	 */
1084 	if (!p4_should_swap_ts(hwc->config, cpu))
1085 		return;
1086 
1087 	/*
1088 	 * the event is migrated from an another logical
1089 	 * cpu, so we need to swap thread specific flags
1090 	 */
1091 
1092 	escr = p4_config_unpack_escr(hwc->config);
1093 	cccr = p4_config_unpack_cccr(hwc->config);
1094 
1095 	if (p4_ht_thread(cpu)) {
1096 		cccr &= ~P4_CCCR_OVF_PMI_T0;
1097 		cccr |= P4_CCCR_OVF_PMI_T1;
1098 		if (escr & P4_ESCR_T0_OS) {
1099 			escr &= ~P4_ESCR_T0_OS;
1100 			escr |= P4_ESCR_T1_OS;
1101 		}
1102 		if (escr & P4_ESCR_T0_USR) {
1103 			escr &= ~P4_ESCR_T0_USR;
1104 			escr |= P4_ESCR_T1_USR;
1105 		}
1106 		hwc->config  = p4_config_pack_escr(escr);
1107 		hwc->config |= p4_config_pack_cccr(cccr);
1108 		hwc->config |= P4_CONFIG_HT;
1109 	} else {
1110 		cccr &= ~P4_CCCR_OVF_PMI_T1;
1111 		cccr |= P4_CCCR_OVF_PMI_T0;
1112 		if (escr & P4_ESCR_T1_OS) {
1113 			escr &= ~P4_ESCR_T1_OS;
1114 			escr |= P4_ESCR_T0_OS;
1115 		}
1116 		if (escr & P4_ESCR_T1_USR) {
1117 			escr &= ~P4_ESCR_T1_USR;
1118 			escr |= P4_ESCR_T0_USR;
1119 		}
1120 		hwc->config  = p4_config_pack_escr(escr);
1121 		hwc->config |= p4_config_pack_cccr(cccr);
1122 		hwc->config &= ~P4_CONFIG_HT;
1123 	}
1124 }
1125 
1126 /*
1127  * ESCR address hashing is tricky, ESCRs are not sequential
1128  * in memory but all starts from MSR_P4_BSU_ESCR0 (0x03a0) and
1129  * the metric between any ESCRs is laid in range [0xa0,0xe1]
1130  *
1131  * so we make ~70% filled hashtable
1132  */
1133 
1134 #define P4_ESCR_MSR_BASE		0x000003a0
1135 #define P4_ESCR_MSR_MAX			0x000003e1
1136 #define P4_ESCR_MSR_TABLE_SIZE		(P4_ESCR_MSR_MAX - P4_ESCR_MSR_BASE + 1)
1137 #define P4_ESCR_MSR_IDX(msr)		(msr - P4_ESCR_MSR_BASE)
1138 #define P4_ESCR_MSR_TABLE_ENTRY(msr)	[P4_ESCR_MSR_IDX(msr)] = msr
1139 
1140 static const unsigned int p4_escr_table[P4_ESCR_MSR_TABLE_SIZE] = {
1141 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR0),
1142 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR1),
1143 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR0),
1144 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR1),
1145 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR0),
1146 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR1),
1147 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR0),
1148 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR1),
1149 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR2),
1150 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR3),
1151 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR4),
1152 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR5),
1153 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR0),
1154 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR1),
1155 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR0),
1156 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR1),
1157 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR0),
1158 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR1),
1159 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR0),
1160 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR1),
1161 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR0),
1162 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR1),
1163 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR0),
1164 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR1),
1165 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR0),
1166 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR1),
1167 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR0),
1168 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR1),
1169 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR0),
1170 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR1),
1171 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR0),
1172 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR1),
1173 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR0),
1174 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR1),
1175 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR0),
1176 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR1),
1177 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR0),
1178 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR1),
1179 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR0),
1180 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR1),
1181 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR0),
1182 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR1),
1183 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR0),
1184 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR1),
1185 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR0),
1186 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR1),
1187 };
1188 
1189 static int p4_get_escr_idx(unsigned int addr)
1190 {
1191 	unsigned int idx = P4_ESCR_MSR_IDX(addr);
1192 
1193 	if (unlikely(idx >= P4_ESCR_MSR_TABLE_SIZE	||
1194 			!p4_escr_table[idx]		||
1195 			p4_escr_table[idx] != addr)) {
1196 		WARN_ONCE(1, "P4 PMU: Wrong address passed: %x\n", addr);
1197 		return -1;
1198 	}
1199 
1200 	return idx;
1201 }
1202 
1203 static int p4_next_cntr(int thread, unsigned long *used_mask,
1204 			struct p4_event_bind *bind)
1205 {
1206 	int i, j;
1207 
1208 	for (i = 0; i < P4_CNTR_LIMIT; i++) {
1209 		j = bind->cntr[thread][i];
1210 		if (j != -1 && !test_bit(j, used_mask))
1211 			return j;
1212 	}
1213 
1214 	return -1;
1215 }
1216 
1217 static int p4_pmu_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1218 {
1219 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
1220 	unsigned long escr_mask[BITS_TO_LONGS(P4_ESCR_MSR_TABLE_SIZE)];
1221 	int cpu = smp_processor_id();
1222 	struct hw_perf_event *hwc;
1223 	struct p4_event_bind *bind;
1224 	unsigned int i, thread, num;
1225 	int cntr_idx, escr_idx;
1226 	u64 config_alias;
1227 	int pass;
1228 
1229 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
1230 	bitmap_zero(escr_mask, P4_ESCR_MSR_TABLE_SIZE);
1231 
1232 	for (i = 0, num = n; i < n; i++, num--) {
1233 
1234 		hwc = &cpuc->event_list[i]->hw;
1235 		thread = p4_ht_thread(cpu);
1236 		pass = 0;
1237 
1238 again:
1239 		/*
1240 		 * It's possible to hit a circular lock
1241 		 * between original and alternative events
1242 		 * if both are scheduled already.
1243 		 */
1244 		if (pass > 2)
1245 			goto done;
1246 
1247 		bind = p4_config_get_bind(hwc->config);
1248 		escr_idx = p4_get_escr_idx(bind->escr_msr[thread]);
1249 		if (unlikely(escr_idx == -1))
1250 			goto done;
1251 
1252 		if (hwc->idx != -1 && !p4_should_swap_ts(hwc->config, cpu)) {
1253 			cntr_idx = hwc->idx;
1254 			if (assign)
1255 				assign[i] = hwc->idx;
1256 			goto reserve;
1257 		}
1258 
1259 		cntr_idx = p4_next_cntr(thread, used_mask, bind);
1260 		if (cntr_idx == -1 || test_bit(escr_idx, escr_mask)) {
1261 			/*
1262 			 * Check whether an event alias is still available.
1263 			 */
1264 			config_alias = p4_get_alias_event(hwc->config);
1265 			if (!config_alias)
1266 				goto done;
1267 			hwc->config = config_alias;
1268 			pass++;
1269 			goto again;
1270 		}
1271 		/*
1272 		 * Perf does test runs to see if a whole group can be assigned
1273 		 * together successfully.  There can be multiple rounds of this.
1274 		 * Unfortunately, p4_pmu_swap_config_ts touches the hwc->config
1275 		 * bits, such that the next round of group assignments will
1276 		 * cause the above p4_should_swap_ts to pass instead of fail.
1277 		 * This leads to counters exclusive to thread0 being used by
1278 		 * thread1.
1279 		 *
1280 		 * Solve this with a cheap hack, reset the idx back to -1 to
1281 		 * force a new lookup (p4_next_cntr) to get the right counter
1282 		 * for the right thread.
1283 		 *
1284 		 * This probably doesn't comply with the general spirit of how
1285 		 * perf wants to work, but P4 is special. :-(
1286 		 */
1287 		if (p4_should_swap_ts(hwc->config, cpu))
1288 			hwc->idx = -1;
1289 		p4_pmu_swap_config_ts(hwc, cpu);
1290 		if (assign)
1291 			assign[i] = cntr_idx;
1292 reserve:
1293 		set_bit(cntr_idx, used_mask);
1294 		set_bit(escr_idx, escr_mask);
1295 	}
1296 
1297 done:
1298 	return num ? -EINVAL : 0;
1299 }
1300 
1301 PMU_FORMAT_ATTR(cccr, "config:0-31" );
1302 PMU_FORMAT_ATTR(escr, "config:32-62");
1303 PMU_FORMAT_ATTR(ht,   "config:63"   );
1304 
1305 static struct attribute *intel_p4_formats_attr[] = {
1306 	&format_attr_cccr.attr,
1307 	&format_attr_escr.attr,
1308 	&format_attr_ht.attr,
1309 	NULL,
1310 };
1311 
1312 static __initconst const struct x86_pmu p4_pmu = {
1313 	.name			= "Netburst P4/Xeon",
1314 	.handle_irq		= p4_pmu_handle_irq,
1315 	.disable_all		= p4_pmu_disable_all,
1316 	.enable_all		= p4_pmu_enable_all,
1317 	.enable			= p4_pmu_enable_event,
1318 	.disable		= p4_pmu_disable_event,
1319 	.eventsel		= MSR_P4_BPU_CCCR0,
1320 	.perfctr		= MSR_P4_BPU_PERFCTR0,
1321 	.event_map		= p4_pmu_event_map,
1322 	.max_events		= ARRAY_SIZE(p4_general_events),
1323 	.get_event_constraints	= x86_get_event_constraints,
1324 	/*
1325 	 * IF HT disabled we may need to use all
1326 	 * ARCH_P4_MAX_CCCR counters simultaneously
1327 	 * though leave it restricted at moment assuming
1328 	 * HT is on
1329 	 */
1330 	.num_counters		= ARCH_P4_MAX_CCCR,
1331 	.apic			= 1,
1332 	.cntval_bits		= ARCH_P4_CNTRVAL_BITS,
1333 	.cntval_mask		= ARCH_P4_CNTRVAL_MASK,
1334 	.max_period		= (1ULL << (ARCH_P4_CNTRVAL_BITS - 1)) - 1,
1335 	.hw_config		= p4_hw_config,
1336 	.schedule_events	= p4_pmu_schedule_events,
1337 	/*
1338 	 * This handles erratum N15 in intel doc 249199-029,
1339 	 * the counter may not be updated correctly on write
1340 	 * so we need a second write operation to do the trick
1341 	 * (the official workaround didn't work)
1342 	 *
1343 	 * the former idea is taken from OProfile code
1344 	 */
1345 	.perfctr_second_write	= 1,
1346 
1347 	.format_attrs		= intel_p4_formats_attr,
1348 };
1349 
1350 __init int p4_pmu_init(void)
1351 {
1352 	unsigned int low, high;
1353 	int i, reg;
1354 
1355 	/* If we get stripped -- indexing fails */
1356 	BUILD_BUG_ON(ARCH_P4_MAX_CCCR > INTEL_PMC_MAX_GENERIC);
1357 
1358 	rdmsr(MSR_IA32_MISC_ENABLE, low, high);
1359 	if (!(low & (1 << 7))) {
1360 		pr_cont("unsupported Netburst CPU model %d ",
1361 			boot_cpu_data.x86_model);
1362 		return -ENODEV;
1363 	}
1364 
1365 	memcpy(hw_cache_event_ids, p4_hw_cache_event_ids,
1366 		sizeof(hw_cache_event_ids));
1367 
1368 	pr_cont("Netburst events, ");
1369 
1370 	x86_pmu = p4_pmu;
1371 
1372 	/*
1373 	 * Even though the counters are configured to interrupt a particular
1374 	 * logical processor when an overflow happens, testing has shown that
1375 	 * on kdump kernels (which uses a single cpu), thread1's counter
1376 	 * continues to run and will report an NMI on thread0.  Due to the
1377 	 * overflow bug, this leads to a stream of unknown NMIs.
1378 	 *
1379 	 * Solve this by zero'ing out the registers to mimic a reset.
1380 	 */
1381 	for (i = 0; i < x86_pmu.num_counters; i++) {
1382 		reg = x86_pmu_config_addr(i);
1383 		wrmsrl_safe(reg, 0ULL);
1384 	}
1385 
1386 	return 0;
1387 }
1388