1 /* 2 * Netburst Performance Events (P4, old Xeon) 3 * 4 * Copyright (C) 2010 Parallels, Inc., Cyrill Gorcunov <gorcunov@openvz.org> 5 * Copyright (C) 2010 Intel Corporation, Lin Ming <ming.m.lin@intel.com> 6 * 7 * For licencing details see kernel-base/COPYING 8 */ 9 10 #include <linux/perf_event.h> 11 12 #include <asm/perf_event_p4.h> 13 #include <asm/hardirq.h> 14 #include <asm/apic.h> 15 16 #include "../perf_event.h" 17 18 #define P4_CNTR_LIMIT 3 19 /* 20 * array indices: 0,1 - HT threads, used with HT enabled cpu 21 */ 22 struct p4_event_bind { 23 unsigned int opcode; /* Event code and ESCR selector */ 24 unsigned int escr_msr[2]; /* ESCR MSR for this event */ 25 unsigned int escr_emask; /* valid ESCR EventMask bits */ 26 unsigned int shared; /* event is shared across threads */ 27 char cntr[2][P4_CNTR_LIMIT]; /* counter index (offset), -1 on abscence */ 28 }; 29 30 struct p4_pebs_bind { 31 unsigned int metric_pebs; 32 unsigned int metric_vert; 33 }; 34 35 /* it sets P4_PEBS_ENABLE_UOP_TAG as well */ 36 #define P4_GEN_PEBS_BIND(name, pebs, vert) \ 37 [P4_PEBS_METRIC__##name] = { \ 38 .metric_pebs = pebs | P4_PEBS_ENABLE_UOP_TAG, \ 39 .metric_vert = vert, \ 40 } 41 42 /* 43 * note we have P4_PEBS_ENABLE_UOP_TAG always set here 44 * 45 * it's needed for mapping P4_PEBS_CONFIG_METRIC_MASK bits of 46 * event configuration to find out which values are to be 47 * written into MSR_IA32_PEBS_ENABLE and MSR_P4_PEBS_MATRIX_VERT 48 * resgisters 49 */ 50 static struct p4_pebs_bind p4_pebs_bind_map[] = { 51 P4_GEN_PEBS_BIND(1stl_cache_load_miss_retired, 0x0000001, 0x0000001), 52 P4_GEN_PEBS_BIND(2ndl_cache_load_miss_retired, 0x0000002, 0x0000001), 53 P4_GEN_PEBS_BIND(dtlb_load_miss_retired, 0x0000004, 0x0000001), 54 P4_GEN_PEBS_BIND(dtlb_store_miss_retired, 0x0000004, 0x0000002), 55 P4_GEN_PEBS_BIND(dtlb_all_miss_retired, 0x0000004, 0x0000003), 56 P4_GEN_PEBS_BIND(tagged_mispred_branch, 0x0018000, 0x0000010), 57 P4_GEN_PEBS_BIND(mob_load_replay_retired, 0x0000200, 0x0000001), 58 P4_GEN_PEBS_BIND(split_load_retired, 0x0000400, 0x0000001), 59 P4_GEN_PEBS_BIND(split_store_retired, 0x0000400, 0x0000002), 60 }; 61 62 /* 63 * Note that we don't use CCCR1 here, there is an 64 * exception for P4_BSQ_ALLOCATION but we just have 65 * no workaround 66 * 67 * consider this binding as resources which particular 68 * event may borrow, it doesn't contain EventMask, 69 * Tags and friends -- they are left to a caller 70 */ 71 static struct p4_event_bind p4_event_bind_map[] = { 72 [P4_EVENT_TC_DELIVER_MODE] = { 73 .opcode = P4_OPCODE(P4_EVENT_TC_DELIVER_MODE), 74 .escr_msr = { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 }, 75 .escr_emask = 76 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DD) | 77 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DB) | 78 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DI) | 79 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BD) | 80 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BB) | 81 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BI) | 82 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, ID), 83 .shared = 1, 84 .cntr = { {4, 5, -1}, {6, 7, -1} }, 85 }, 86 [P4_EVENT_BPU_FETCH_REQUEST] = { 87 .opcode = P4_OPCODE(P4_EVENT_BPU_FETCH_REQUEST), 88 .escr_msr = { MSR_P4_BPU_ESCR0, MSR_P4_BPU_ESCR1 }, 89 .escr_emask = 90 P4_ESCR_EMASK_BIT(P4_EVENT_BPU_FETCH_REQUEST, TCMISS), 91 .cntr = { {0, -1, -1}, {2, -1, -1} }, 92 }, 93 [P4_EVENT_ITLB_REFERENCE] = { 94 .opcode = P4_OPCODE(P4_EVENT_ITLB_REFERENCE), 95 .escr_msr = { MSR_P4_ITLB_ESCR0, MSR_P4_ITLB_ESCR1 }, 96 .escr_emask = 97 P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT) | 98 P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, MISS) | 99 P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT_UK), 100 .cntr = { {0, -1, -1}, {2, -1, -1} }, 101 }, 102 [P4_EVENT_MEMORY_CANCEL] = { 103 .opcode = P4_OPCODE(P4_EVENT_MEMORY_CANCEL), 104 .escr_msr = { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 }, 105 .escr_emask = 106 P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, ST_RB_FULL) | 107 P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, 64K_CONF), 108 .cntr = { {8, 9, -1}, {10, 11, -1} }, 109 }, 110 [P4_EVENT_MEMORY_COMPLETE] = { 111 .opcode = P4_OPCODE(P4_EVENT_MEMORY_COMPLETE), 112 .escr_msr = { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 }, 113 .escr_emask = 114 P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, LSC) | 115 P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, SSC), 116 .cntr = { {8, 9, -1}, {10, 11, -1} }, 117 }, 118 [P4_EVENT_LOAD_PORT_REPLAY] = { 119 .opcode = P4_OPCODE(P4_EVENT_LOAD_PORT_REPLAY), 120 .escr_msr = { MSR_P4_SAAT_ESCR0, MSR_P4_SAAT_ESCR1 }, 121 .escr_emask = 122 P4_ESCR_EMASK_BIT(P4_EVENT_LOAD_PORT_REPLAY, SPLIT_LD), 123 .cntr = { {8, 9, -1}, {10, 11, -1} }, 124 }, 125 [P4_EVENT_STORE_PORT_REPLAY] = { 126 .opcode = P4_OPCODE(P4_EVENT_STORE_PORT_REPLAY), 127 .escr_msr = { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 }, 128 .escr_emask = 129 P4_ESCR_EMASK_BIT(P4_EVENT_STORE_PORT_REPLAY, SPLIT_ST), 130 .cntr = { {8, 9, -1}, {10, 11, -1} }, 131 }, 132 [P4_EVENT_MOB_LOAD_REPLAY] = { 133 .opcode = P4_OPCODE(P4_EVENT_MOB_LOAD_REPLAY), 134 .escr_msr = { MSR_P4_MOB_ESCR0, MSR_P4_MOB_ESCR1 }, 135 .escr_emask = 136 P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STA) | 137 P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STD) | 138 P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, PARTIAL_DATA) | 139 P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, UNALGN_ADDR), 140 .cntr = { {0, -1, -1}, {2, -1, -1} }, 141 }, 142 [P4_EVENT_PAGE_WALK_TYPE] = { 143 .opcode = P4_OPCODE(P4_EVENT_PAGE_WALK_TYPE), 144 .escr_msr = { MSR_P4_PMH_ESCR0, MSR_P4_PMH_ESCR1 }, 145 .escr_emask = 146 P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, DTMISS) | 147 P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, ITMISS), 148 .shared = 1, 149 .cntr = { {0, -1, -1}, {2, -1, -1} }, 150 }, 151 [P4_EVENT_BSQ_CACHE_REFERENCE] = { 152 .opcode = P4_OPCODE(P4_EVENT_BSQ_CACHE_REFERENCE), 153 .escr_msr = { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR1 }, 154 .escr_emask = 155 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS) | 156 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE) | 157 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM) | 158 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS) | 159 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE) | 160 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM) | 161 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS) | 162 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS) | 163 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS), 164 .cntr = { {0, -1, -1}, {2, -1, -1} }, 165 }, 166 [P4_EVENT_IOQ_ALLOCATION] = { 167 .opcode = P4_OPCODE(P4_EVENT_IOQ_ALLOCATION), 168 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 169 .escr_emask = 170 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, DEFAULT) | 171 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_READ) | 172 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_WRITE) | 173 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_UC) | 174 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WC) | 175 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WT) | 176 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WP) | 177 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WB) | 178 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OWN) | 179 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OTHER) | 180 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, PREFETCH), 181 .cntr = { {0, -1, -1}, {2, -1, -1} }, 182 }, 183 [P4_EVENT_IOQ_ACTIVE_ENTRIES] = { /* shared ESCR */ 184 .opcode = P4_OPCODE(P4_EVENT_IOQ_ACTIVE_ENTRIES), 185 .escr_msr = { MSR_P4_FSB_ESCR1, MSR_P4_FSB_ESCR1 }, 186 .escr_emask = 187 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, DEFAULT) | 188 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_READ) | 189 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_WRITE) | 190 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_UC) | 191 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WC) | 192 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WT) | 193 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WP) | 194 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WB) | 195 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OWN) | 196 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OTHER) | 197 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, PREFETCH), 198 .cntr = { {2, -1, -1}, {3, -1, -1} }, 199 }, 200 [P4_EVENT_FSB_DATA_ACTIVITY] = { 201 .opcode = P4_OPCODE(P4_EVENT_FSB_DATA_ACTIVITY), 202 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 203 .escr_emask = 204 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV) | 205 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN) | 206 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OTHER) | 207 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_DRV) | 208 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OWN) | 209 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OTHER), 210 .shared = 1, 211 .cntr = { {0, -1, -1}, {2, -1, -1} }, 212 }, 213 [P4_EVENT_BSQ_ALLOCATION] = { /* shared ESCR, broken CCCR1 */ 214 .opcode = P4_OPCODE(P4_EVENT_BSQ_ALLOCATION), 215 .escr_msr = { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR0 }, 216 .escr_emask = 217 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE0) | 218 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE1) | 219 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN0) | 220 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN1) | 221 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_IO_TYPE) | 222 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LOCK_TYPE) | 223 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_CACHE_TYPE) | 224 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_SPLIT_TYPE) | 225 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_DEM_TYPE) | 226 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_ORD_TYPE) | 227 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE0) | 228 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE1) | 229 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE2), 230 .cntr = { {0, -1, -1}, {1, -1, -1} }, 231 }, 232 [P4_EVENT_BSQ_ACTIVE_ENTRIES] = { /* shared ESCR */ 233 .opcode = P4_OPCODE(P4_EVENT_BSQ_ACTIVE_ENTRIES), 234 .escr_msr = { MSR_P4_BSU_ESCR1 , MSR_P4_BSU_ESCR1 }, 235 .escr_emask = 236 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE0) | 237 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE1) | 238 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN0) | 239 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN1) | 240 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_IO_TYPE) | 241 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LOCK_TYPE) | 242 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_CACHE_TYPE) | 243 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_SPLIT_TYPE) | 244 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_DEM_TYPE) | 245 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_ORD_TYPE) | 246 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE0) | 247 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE1) | 248 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE2), 249 .cntr = { {2, -1, -1}, {3, -1, -1} }, 250 }, 251 [P4_EVENT_SSE_INPUT_ASSIST] = { 252 .opcode = P4_OPCODE(P4_EVENT_SSE_INPUT_ASSIST), 253 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 254 .escr_emask = 255 P4_ESCR_EMASK_BIT(P4_EVENT_SSE_INPUT_ASSIST, ALL), 256 .shared = 1, 257 .cntr = { {8, 9, -1}, {10, 11, -1} }, 258 }, 259 [P4_EVENT_PACKED_SP_UOP] = { 260 .opcode = P4_OPCODE(P4_EVENT_PACKED_SP_UOP), 261 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 262 .escr_emask = 263 P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_SP_UOP, ALL), 264 .shared = 1, 265 .cntr = { {8, 9, -1}, {10, 11, -1} }, 266 }, 267 [P4_EVENT_PACKED_DP_UOP] = { 268 .opcode = P4_OPCODE(P4_EVENT_PACKED_DP_UOP), 269 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 270 .escr_emask = 271 P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_DP_UOP, ALL), 272 .shared = 1, 273 .cntr = { {8, 9, -1}, {10, 11, -1} }, 274 }, 275 [P4_EVENT_SCALAR_SP_UOP] = { 276 .opcode = P4_OPCODE(P4_EVENT_SCALAR_SP_UOP), 277 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 278 .escr_emask = 279 P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_SP_UOP, ALL), 280 .shared = 1, 281 .cntr = { {8, 9, -1}, {10, 11, -1} }, 282 }, 283 [P4_EVENT_SCALAR_DP_UOP] = { 284 .opcode = P4_OPCODE(P4_EVENT_SCALAR_DP_UOP), 285 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 286 .escr_emask = 287 P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_DP_UOP, ALL), 288 .shared = 1, 289 .cntr = { {8, 9, -1}, {10, 11, -1} }, 290 }, 291 [P4_EVENT_64BIT_MMX_UOP] = { 292 .opcode = P4_OPCODE(P4_EVENT_64BIT_MMX_UOP), 293 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 294 .escr_emask = 295 P4_ESCR_EMASK_BIT(P4_EVENT_64BIT_MMX_UOP, ALL), 296 .shared = 1, 297 .cntr = { {8, 9, -1}, {10, 11, -1} }, 298 }, 299 [P4_EVENT_128BIT_MMX_UOP] = { 300 .opcode = P4_OPCODE(P4_EVENT_128BIT_MMX_UOP), 301 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 302 .escr_emask = 303 P4_ESCR_EMASK_BIT(P4_EVENT_128BIT_MMX_UOP, ALL), 304 .shared = 1, 305 .cntr = { {8, 9, -1}, {10, 11, -1} }, 306 }, 307 [P4_EVENT_X87_FP_UOP] = { 308 .opcode = P4_OPCODE(P4_EVENT_X87_FP_UOP), 309 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 }, 310 .escr_emask = 311 P4_ESCR_EMASK_BIT(P4_EVENT_X87_FP_UOP, ALL), 312 .shared = 1, 313 .cntr = { {8, 9, -1}, {10, 11, -1} }, 314 }, 315 [P4_EVENT_TC_MISC] = { 316 .opcode = P4_OPCODE(P4_EVENT_TC_MISC), 317 .escr_msr = { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 }, 318 .escr_emask = 319 P4_ESCR_EMASK_BIT(P4_EVENT_TC_MISC, FLUSH), 320 .cntr = { {4, 5, -1}, {6, 7, -1} }, 321 }, 322 [P4_EVENT_GLOBAL_POWER_EVENTS] = { 323 .opcode = P4_OPCODE(P4_EVENT_GLOBAL_POWER_EVENTS), 324 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 325 .escr_emask = 326 P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING), 327 .cntr = { {0, -1, -1}, {2, -1, -1} }, 328 }, 329 [P4_EVENT_TC_MS_XFER] = { 330 .opcode = P4_OPCODE(P4_EVENT_TC_MS_XFER), 331 .escr_msr = { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 }, 332 .escr_emask = 333 P4_ESCR_EMASK_BIT(P4_EVENT_TC_MS_XFER, CISC), 334 .cntr = { {4, 5, -1}, {6, 7, -1} }, 335 }, 336 [P4_EVENT_UOP_QUEUE_WRITES] = { 337 .opcode = P4_OPCODE(P4_EVENT_UOP_QUEUE_WRITES), 338 .escr_msr = { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 }, 339 .escr_emask = 340 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_BUILD) | 341 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_DELIVER) | 342 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_ROM), 343 .cntr = { {4, 5, -1}, {6, 7, -1} }, 344 }, 345 [P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE] = { 346 .opcode = P4_OPCODE(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE), 347 .escr_msr = { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR0 }, 348 .escr_emask = 349 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CONDITIONAL) | 350 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CALL) | 351 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, RETURN) | 352 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, INDIRECT), 353 .cntr = { {4, 5, -1}, {6, 7, -1} }, 354 }, 355 [P4_EVENT_RETIRED_BRANCH_TYPE] = { 356 .opcode = P4_OPCODE(P4_EVENT_RETIRED_BRANCH_TYPE), 357 .escr_msr = { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR1 }, 358 .escr_emask = 359 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL) | 360 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL) | 361 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN) | 362 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT), 363 .cntr = { {4, 5, -1}, {6, 7, -1} }, 364 }, 365 [P4_EVENT_RESOURCE_STALL] = { 366 .opcode = P4_OPCODE(P4_EVENT_RESOURCE_STALL), 367 .escr_msr = { MSR_P4_ALF_ESCR0, MSR_P4_ALF_ESCR1 }, 368 .escr_emask = 369 P4_ESCR_EMASK_BIT(P4_EVENT_RESOURCE_STALL, SBFULL), 370 .cntr = { {12, 13, 16}, {14, 15, 17} }, 371 }, 372 [P4_EVENT_WC_BUFFER] = { 373 .opcode = P4_OPCODE(P4_EVENT_WC_BUFFER), 374 .escr_msr = { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 }, 375 .escr_emask = 376 P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_EVICTS) | 377 P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_FULL_EVICTS), 378 .shared = 1, 379 .cntr = { {8, 9, -1}, {10, 11, -1} }, 380 }, 381 [P4_EVENT_B2B_CYCLES] = { 382 .opcode = P4_OPCODE(P4_EVENT_B2B_CYCLES), 383 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 384 .escr_emask = 0, 385 .cntr = { {0, -1, -1}, {2, -1, -1} }, 386 }, 387 [P4_EVENT_BNR] = { 388 .opcode = P4_OPCODE(P4_EVENT_BNR), 389 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 390 .escr_emask = 0, 391 .cntr = { {0, -1, -1}, {2, -1, -1} }, 392 }, 393 [P4_EVENT_SNOOP] = { 394 .opcode = P4_OPCODE(P4_EVENT_SNOOP), 395 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 396 .escr_emask = 0, 397 .cntr = { {0, -1, -1}, {2, -1, -1} }, 398 }, 399 [P4_EVENT_RESPONSE] = { 400 .opcode = P4_OPCODE(P4_EVENT_RESPONSE), 401 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 }, 402 .escr_emask = 0, 403 .cntr = { {0, -1, -1}, {2, -1, -1} }, 404 }, 405 [P4_EVENT_FRONT_END_EVENT] = { 406 .opcode = P4_OPCODE(P4_EVENT_FRONT_END_EVENT), 407 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, 408 .escr_emask = 409 P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, NBOGUS) | 410 P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, BOGUS), 411 .cntr = { {12, 13, 16}, {14, 15, 17} }, 412 }, 413 [P4_EVENT_EXECUTION_EVENT] = { 414 .opcode = P4_OPCODE(P4_EVENT_EXECUTION_EVENT), 415 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, 416 .escr_emask = 417 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0) | 418 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1) | 419 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2) | 420 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3) | 421 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0) | 422 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1) | 423 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2) | 424 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3), 425 .cntr = { {12, 13, 16}, {14, 15, 17} }, 426 }, 427 [P4_EVENT_REPLAY_EVENT] = { 428 .opcode = P4_OPCODE(P4_EVENT_REPLAY_EVENT), 429 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, 430 .escr_emask = 431 P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, NBOGUS) | 432 P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, BOGUS), 433 .cntr = { {12, 13, 16}, {14, 15, 17} }, 434 }, 435 [P4_EVENT_INSTR_RETIRED] = { 436 .opcode = P4_OPCODE(P4_EVENT_INSTR_RETIRED), 437 .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 }, 438 .escr_emask = 439 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG) | 440 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSTAG) | 441 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG) | 442 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSTAG), 443 .cntr = { {12, 13, 16}, {14, 15, 17} }, 444 }, 445 [P4_EVENT_UOPS_RETIRED] = { 446 .opcode = P4_OPCODE(P4_EVENT_UOPS_RETIRED), 447 .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 }, 448 .escr_emask = 449 P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, NBOGUS) | 450 P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, BOGUS), 451 .cntr = { {12, 13, 16}, {14, 15, 17} }, 452 }, 453 [P4_EVENT_UOP_TYPE] = { 454 .opcode = P4_OPCODE(P4_EVENT_UOP_TYPE), 455 .escr_msr = { MSR_P4_RAT_ESCR0, MSR_P4_RAT_ESCR1 }, 456 .escr_emask = 457 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGLOADS) | 458 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGSTORES), 459 .cntr = { {12, 13, 16}, {14, 15, 17} }, 460 }, 461 [P4_EVENT_BRANCH_RETIRED] = { 462 .opcode = P4_OPCODE(P4_EVENT_BRANCH_RETIRED), 463 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, 464 .escr_emask = 465 P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNP) | 466 P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNM) | 467 P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTP) | 468 P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTM), 469 .cntr = { {12, 13, 16}, {14, 15, 17} }, 470 }, 471 [P4_EVENT_MISPRED_BRANCH_RETIRED] = { 472 .opcode = P4_OPCODE(P4_EVENT_MISPRED_BRANCH_RETIRED), 473 .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 }, 474 .escr_emask = 475 P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS), 476 .cntr = { {12, 13, 16}, {14, 15, 17} }, 477 }, 478 [P4_EVENT_X87_ASSIST] = { 479 .opcode = P4_OPCODE(P4_EVENT_X87_ASSIST), 480 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, 481 .escr_emask = 482 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSU) | 483 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSO) | 484 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAO) | 485 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAU) | 486 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, PREA), 487 .cntr = { {12, 13, 16}, {14, 15, 17} }, 488 }, 489 [P4_EVENT_MACHINE_CLEAR] = { 490 .opcode = P4_OPCODE(P4_EVENT_MACHINE_CLEAR), 491 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 }, 492 .escr_emask = 493 P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, CLEAR) | 494 P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, MOCLEAR) | 495 P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, SMCLEAR), 496 .cntr = { {12, 13, 16}, {14, 15, 17} }, 497 }, 498 [P4_EVENT_INSTR_COMPLETED] = { 499 .opcode = P4_OPCODE(P4_EVENT_INSTR_COMPLETED), 500 .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 }, 501 .escr_emask = 502 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, NBOGUS) | 503 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, BOGUS), 504 .cntr = { {12, 13, 16}, {14, 15, 17} }, 505 }, 506 }; 507 508 #define P4_GEN_CACHE_EVENT(event, bit, metric) \ 509 p4_config_pack_escr(P4_ESCR_EVENT(event) | \ 510 P4_ESCR_EMASK_BIT(event, bit)) | \ 511 p4_config_pack_cccr(metric | \ 512 P4_CCCR_ESEL(P4_OPCODE_ESEL(P4_OPCODE(event)))) 513 514 static __initconst const u64 p4_hw_cache_event_ids 515 [PERF_COUNT_HW_CACHE_MAX] 516 [PERF_COUNT_HW_CACHE_OP_MAX] 517 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 518 { 519 [ C(L1D ) ] = { 520 [ C(OP_READ) ] = { 521 [ C(RESULT_ACCESS) ] = 0x0, 522 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS, 523 P4_PEBS_METRIC__1stl_cache_load_miss_retired), 524 }, 525 }, 526 [ C(LL ) ] = { 527 [ C(OP_READ) ] = { 528 [ C(RESULT_ACCESS) ] = 0x0, 529 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS, 530 P4_PEBS_METRIC__2ndl_cache_load_miss_retired), 531 }, 532 }, 533 [ C(DTLB) ] = { 534 [ C(OP_READ) ] = { 535 [ C(RESULT_ACCESS) ] = 0x0, 536 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS, 537 P4_PEBS_METRIC__dtlb_load_miss_retired), 538 }, 539 [ C(OP_WRITE) ] = { 540 [ C(RESULT_ACCESS) ] = 0x0, 541 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS, 542 P4_PEBS_METRIC__dtlb_store_miss_retired), 543 }, 544 }, 545 [ C(ITLB) ] = { 546 [ C(OP_READ) ] = { 547 [ C(RESULT_ACCESS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, HIT, 548 P4_PEBS_METRIC__none), 549 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, MISS, 550 P4_PEBS_METRIC__none), 551 }, 552 [ C(OP_WRITE) ] = { 553 [ C(RESULT_ACCESS) ] = -1, 554 [ C(RESULT_MISS) ] = -1, 555 }, 556 [ C(OP_PREFETCH) ] = { 557 [ C(RESULT_ACCESS) ] = -1, 558 [ C(RESULT_MISS) ] = -1, 559 }, 560 }, 561 [ C(NODE) ] = { 562 [ C(OP_READ) ] = { 563 [ C(RESULT_ACCESS) ] = -1, 564 [ C(RESULT_MISS) ] = -1, 565 }, 566 [ C(OP_WRITE) ] = { 567 [ C(RESULT_ACCESS) ] = -1, 568 [ C(RESULT_MISS) ] = -1, 569 }, 570 [ C(OP_PREFETCH) ] = { 571 [ C(RESULT_ACCESS) ] = -1, 572 [ C(RESULT_MISS) ] = -1, 573 }, 574 }, 575 }; 576 577 /* 578 * Because of Netburst being quite restricted in how many 579 * identical events may run simultaneously, we introduce event aliases, 580 * ie the different events which have the same functionality but 581 * utilize non-intersected resources (ESCR/CCCR/counter registers). 582 * 583 * This allow us to relax restrictions a bit and run two or more 584 * identical events together. 585 * 586 * Never set any custom internal bits such as P4_CONFIG_HT, 587 * P4_CONFIG_ALIASABLE or bits for P4_PEBS_METRIC, they are 588 * either up to date automatically or not applicable at all. 589 */ 590 struct p4_event_alias { 591 u64 original; 592 u64 alternative; 593 } p4_event_aliases[] = { 594 { 595 /* 596 * Non-halted cycles can be substituted with non-sleeping cycles (see 597 * Intel SDM Vol3b for details). We need this alias to be able 598 * to run nmi-watchdog and 'perf top' (or any other user space tool 599 * which is interested in running PERF_COUNT_HW_CPU_CYCLES) 600 * simultaneously. 601 */ 602 .original = 603 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS) | 604 P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)), 605 .alternative = 606 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_EXECUTION_EVENT) | 607 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)| 608 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)| 609 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)| 610 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)| 611 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0) | 612 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1) | 613 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2) | 614 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3))| 615 p4_config_pack_cccr(P4_CCCR_THRESHOLD(15) | P4_CCCR_COMPLEMENT | 616 P4_CCCR_COMPARE), 617 }, 618 }; 619 620 static u64 p4_get_alias_event(u64 config) 621 { 622 u64 config_match; 623 int i; 624 625 /* 626 * Only event with special mark is allowed, 627 * we're to be sure it didn't come as malformed 628 * RAW event. 629 */ 630 if (!(config & P4_CONFIG_ALIASABLE)) 631 return 0; 632 633 config_match = config & P4_CONFIG_EVENT_ALIAS_MASK; 634 635 for (i = 0; i < ARRAY_SIZE(p4_event_aliases); i++) { 636 if (config_match == p4_event_aliases[i].original) { 637 config_match = p4_event_aliases[i].alternative; 638 break; 639 } else if (config_match == p4_event_aliases[i].alternative) { 640 config_match = p4_event_aliases[i].original; 641 break; 642 } 643 } 644 645 if (i >= ARRAY_SIZE(p4_event_aliases)) 646 return 0; 647 648 return config_match | (config & P4_CONFIG_EVENT_ALIAS_IMMUTABLE_BITS); 649 } 650 651 static u64 p4_general_events[PERF_COUNT_HW_MAX] = { 652 /* non-halted CPU clocks */ 653 [PERF_COUNT_HW_CPU_CYCLES] = 654 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS) | 655 P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)) | 656 P4_CONFIG_ALIASABLE, 657 658 /* 659 * retired instructions 660 * in a sake of simplicity we don't use the FSB tagging 661 */ 662 [PERF_COUNT_HW_INSTRUCTIONS] = 663 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_INSTR_RETIRED) | 664 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG) | 665 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)), 666 667 /* cache hits */ 668 [PERF_COUNT_HW_CACHE_REFERENCES] = 669 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE) | 670 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS) | 671 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE) | 672 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM) | 673 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS) | 674 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE) | 675 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)), 676 677 /* cache misses */ 678 [PERF_COUNT_HW_CACHE_MISSES] = 679 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE) | 680 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS) | 681 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS) | 682 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS)), 683 684 /* branch instructions retired */ 685 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 686 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_RETIRED_BRANCH_TYPE) | 687 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL) | 688 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL) | 689 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN) | 690 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT)), 691 692 /* mispredicted branches retired */ 693 [PERF_COUNT_HW_BRANCH_MISSES] = 694 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_MISPRED_BRANCH_RETIRED) | 695 P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS)), 696 697 /* bus ready clocks (cpu is driving #DRDY_DRV\#DRDY_OWN): */ 698 [PERF_COUNT_HW_BUS_CYCLES] = 699 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_FSB_DATA_ACTIVITY) | 700 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV) | 701 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN)) | 702 p4_config_pack_cccr(P4_CCCR_EDGE | P4_CCCR_COMPARE), 703 }; 704 705 static struct p4_event_bind *p4_config_get_bind(u64 config) 706 { 707 unsigned int evnt = p4_config_unpack_event(config); 708 struct p4_event_bind *bind = NULL; 709 710 if (evnt < ARRAY_SIZE(p4_event_bind_map)) 711 bind = &p4_event_bind_map[evnt]; 712 713 return bind; 714 } 715 716 static u64 p4_pmu_event_map(int hw_event) 717 { 718 struct p4_event_bind *bind; 719 unsigned int esel; 720 u64 config; 721 722 config = p4_general_events[hw_event]; 723 bind = p4_config_get_bind(config); 724 esel = P4_OPCODE_ESEL(bind->opcode); 725 config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel)); 726 727 return config; 728 } 729 730 /* check cpu model specifics */ 731 static bool p4_event_match_cpu_model(unsigned int event_idx) 732 { 733 /* INSTR_COMPLETED event only exist for model 3, 4, 6 (Prescott) */ 734 if (event_idx == P4_EVENT_INSTR_COMPLETED) { 735 if (boot_cpu_data.x86_model != 3 && 736 boot_cpu_data.x86_model != 4 && 737 boot_cpu_data.x86_model != 6) 738 return false; 739 } 740 741 /* 742 * For info 743 * - IQ_ESCR0, IQ_ESCR1 only for models 1 and 2 744 */ 745 746 return true; 747 } 748 749 static int p4_validate_raw_event(struct perf_event *event) 750 { 751 unsigned int v, emask; 752 753 /* User data may have out-of-bound event index */ 754 v = p4_config_unpack_event(event->attr.config); 755 if (v >= ARRAY_SIZE(p4_event_bind_map)) 756 return -EINVAL; 757 758 /* It may be unsupported: */ 759 if (!p4_event_match_cpu_model(v)) 760 return -EINVAL; 761 762 /* 763 * NOTE: P4_CCCR_THREAD_ANY has not the same meaning as 764 * in Architectural Performance Monitoring, it means not 765 * on _which_ logical cpu to count but rather _when_, ie it 766 * depends on logical cpu state -- count event if one cpu active, 767 * none, both or any, so we just allow user to pass any value 768 * desired. 769 * 770 * In turn we always set Tx_OS/Tx_USR bits bound to logical 771 * cpu without their propagation to another cpu 772 */ 773 774 /* 775 * if an event is shared across the logical threads 776 * the user needs special permissions to be able to use it 777 */ 778 if (p4_ht_active() && p4_event_bind_map[v].shared) { 779 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 780 return -EACCES; 781 } 782 783 /* ESCR EventMask bits may be invalid */ 784 emask = p4_config_unpack_escr(event->attr.config) & P4_ESCR_EVENTMASK_MASK; 785 if (emask & ~p4_event_bind_map[v].escr_emask) 786 return -EINVAL; 787 788 /* 789 * it may have some invalid PEBS bits 790 */ 791 if (p4_config_pebs_has(event->attr.config, P4_PEBS_CONFIG_ENABLE)) 792 return -EINVAL; 793 794 v = p4_config_unpack_metric(event->attr.config); 795 if (v >= ARRAY_SIZE(p4_pebs_bind_map)) 796 return -EINVAL; 797 798 return 0; 799 } 800 801 static int p4_hw_config(struct perf_event *event) 802 { 803 int cpu = get_cpu(); 804 int rc = 0; 805 u32 escr, cccr; 806 807 /* 808 * the reason we use cpu that early is that: if we get scheduled 809 * first time on the same cpu -- we will not need swap thread 810 * specific flags in config (and will save some cpu cycles) 811 */ 812 813 cccr = p4_default_cccr_conf(cpu); 814 escr = p4_default_escr_conf(cpu, event->attr.exclude_kernel, 815 event->attr.exclude_user); 816 event->hw.config = p4_config_pack_escr(escr) | 817 p4_config_pack_cccr(cccr); 818 819 if (p4_ht_active() && p4_ht_thread(cpu)) 820 event->hw.config = p4_set_ht_bit(event->hw.config); 821 822 if (event->attr.type == PERF_TYPE_RAW) { 823 struct p4_event_bind *bind; 824 unsigned int esel; 825 /* 826 * Clear bits we reserve to be managed by kernel itself 827 * and never allowed from a user space 828 */ 829 event->attr.config &= P4_CONFIG_MASK; 830 831 rc = p4_validate_raw_event(event); 832 if (rc) 833 goto out; 834 835 /* 836 * Note that for RAW events we allow user to use P4_CCCR_RESERVED 837 * bits since we keep additional info here (for cache events and etc) 838 */ 839 event->hw.config |= event->attr.config; 840 bind = p4_config_get_bind(event->attr.config); 841 if (!bind) { 842 rc = -EINVAL; 843 goto out; 844 } 845 esel = P4_OPCODE_ESEL(bind->opcode); 846 event->hw.config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel)); 847 } 848 849 rc = x86_setup_perfctr(event); 850 out: 851 put_cpu(); 852 return rc; 853 } 854 855 static inline int p4_pmu_clear_cccr_ovf(struct hw_perf_event *hwc) 856 { 857 u64 v; 858 859 /* an official way for overflow indication */ 860 rdmsrl(hwc->config_base, v); 861 if (v & P4_CCCR_OVF) { 862 wrmsrl(hwc->config_base, v & ~P4_CCCR_OVF); 863 return 1; 864 } 865 866 /* 867 * In some circumstances the overflow might issue an NMI but did 868 * not set P4_CCCR_OVF bit. Because a counter holds a negative value 869 * we simply check for high bit being set, if it's cleared it means 870 * the counter has reached zero value and continued counting before 871 * real NMI signal was received: 872 */ 873 rdmsrl(hwc->event_base, v); 874 if (!(v & ARCH_P4_UNFLAGGED_BIT)) 875 return 1; 876 877 return 0; 878 } 879 880 static void p4_pmu_disable_pebs(void) 881 { 882 /* 883 * FIXME 884 * 885 * It's still allowed that two threads setup same cache 886 * events so we can't simply clear metrics until we knew 887 * no one is depending on us, so we need kind of counter 888 * for "ReplayEvent" users. 889 * 890 * What is more complex -- RAW events, if user (for some 891 * reason) will pass some cache event metric with improper 892 * event opcode -- it's fine from hardware point of view 893 * but completely nonsense from "meaning" of such action. 894 * 895 * So at moment let leave metrics turned on forever -- it's 896 * ok for now but need to be revisited! 897 * 898 * (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, 0); 899 * (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, 0); 900 */ 901 } 902 903 static inline void p4_pmu_disable_event(struct perf_event *event) 904 { 905 struct hw_perf_event *hwc = &event->hw; 906 907 /* 908 * If event gets disabled while counter is in overflowed 909 * state we need to clear P4_CCCR_OVF, otherwise interrupt get 910 * asserted again and again 911 */ 912 (void)wrmsrl_safe(hwc->config_base, 913 p4_config_unpack_cccr(hwc->config) & ~P4_CCCR_ENABLE & ~P4_CCCR_OVF & ~P4_CCCR_RESERVED); 914 } 915 916 static void p4_pmu_disable_all(void) 917 { 918 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 919 int idx; 920 921 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 922 struct perf_event *event = cpuc->events[idx]; 923 if (!test_bit(idx, cpuc->active_mask)) 924 continue; 925 p4_pmu_disable_event(event); 926 } 927 928 p4_pmu_disable_pebs(); 929 } 930 931 /* configuration must be valid */ 932 static void p4_pmu_enable_pebs(u64 config) 933 { 934 struct p4_pebs_bind *bind; 935 unsigned int idx; 936 937 BUILD_BUG_ON(P4_PEBS_METRIC__max > P4_PEBS_CONFIG_METRIC_MASK); 938 939 idx = p4_config_unpack_metric(config); 940 if (idx == P4_PEBS_METRIC__none) 941 return; 942 943 bind = &p4_pebs_bind_map[idx]; 944 945 (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, (u64)bind->metric_pebs); 946 (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, (u64)bind->metric_vert); 947 } 948 949 static void p4_pmu_enable_event(struct perf_event *event) 950 { 951 struct hw_perf_event *hwc = &event->hw; 952 int thread = p4_ht_config_thread(hwc->config); 953 u64 escr_conf = p4_config_unpack_escr(p4_clear_ht_bit(hwc->config)); 954 unsigned int idx = p4_config_unpack_event(hwc->config); 955 struct p4_event_bind *bind; 956 u64 escr_addr, cccr; 957 958 bind = &p4_event_bind_map[idx]; 959 escr_addr = bind->escr_msr[thread]; 960 961 /* 962 * - we dont support cascaded counters yet 963 * - and counter 1 is broken (erratum) 964 */ 965 WARN_ON_ONCE(p4_is_event_cascaded(hwc->config)); 966 WARN_ON_ONCE(hwc->idx == 1); 967 968 /* we need a real Event value */ 969 escr_conf &= ~P4_ESCR_EVENT_MASK; 970 escr_conf |= P4_ESCR_EVENT(P4_OPCODE_EVNT(bind->opcode)); 971 972 cccr = p4_config_unpack_cccr(hwc->config); 973 974 /* 975 * it could be Cache event so we need to write metrics 976 * into additional MSRs 977 */ 978 p4_pmu_enable_pebs(hwc->config); 979 980 (void)wrmsrl_safe(escr_addr, escr_conf); 981 (void)wrmsrl_safe(hwc->config_base, 982 (cccr & ~P4_CCCR_RESERVED) | P4_CCCR_ENABLE); 983 } 984 985 static void p4_pmu_enable_all(int added) 986 { 987 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 988 int idx; 989 990 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 991 struct perf_event *event = cpuc->events[idx]; 992 if (!test_bit(idx, cpuc->active_mask)) 993 continue; 994 p4_pmu_enable_event(event); 995 } 996 } 997 998 static int p4_pmu_handle_irq(struct pt_regs *regs) 999 { 1000 struct perf_sample_data data; 1001 struct cpu_hw_events *cpuc; 1002 struct perf_event *event; 1003 struct hw_perf_event *hwc; 1004 int idx, handled = 0; 1005 u64 val; 1006 1007 cpuc = this_cpu_ptr(&cpu_hw_events); 1008 1009 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 1010 int overflow; 1011 1012 if (!test_bit(idx, cpuc->active_mask)) { 1013 /* catch in-flight IRQs */ 1014 if (__test_and_clear_bit(idx, cpuc->running)) 1015 handled++; 1016 continue; 1017 } 1018 1019 event = cpuc->events[idx]; 1020 hwc = &event->hw; 1021 1022 WARN_ON_ONCE(hwc->idx != idx); 1023 1024 /* it might be unflagged overflow */ 1025 overflow = p4_pmu_clear_cccr_ovf(hwc); 1026 1027 val = x86_perf_event_update(event); 1028 if (!overflow && (val & (1ULL << (x86_pmu.cntval_bits - 1)))) 1029 continue; 1030 1031 handled += overflow; 1032 1033 /* event overflow for sure */ 1034 perf_sample_data_init(&data, 0, hwc->last_period); 1035 1036 if (!x86_perf_event_set_period(event)) 1037 continue; 1038 1039 1040 if (perf_event_overflow(event, &data, regs)) 1041 x86_pmu_stop(event, 0); 1042 } 1043 1044 if (handled) 1045 inc_irq_stat(apic_perf_irqs); 1046 1047 /* 1048 * When dealing with the unmasking of the LVTPC on P4 perf hw, it has 1049 * been observed that the OVF bit flag has to be cleared first _before_ 1050 * the LVTPC can be unmasked. 1051 * 1052 * The reason is the NMI line will continue to be asserted while the OVF 1053 * bit is set. This causes a second NMI to generate if the LVTPC is 1054 * unmasked before the OVF bit is cleared, leading to unknown NMI 1055 * messages. 1056 */ 1057 apic_write(APIC_LVTPC, APIC_DM_NMI); 1058 1059 return handled; 1060 } 1061 1062 /* 1063 * swap thread specific fields according to a thread 1064 * we are going to run on 1065 */ 1066 static void p4_pmu_swap_config_ts(struct hw_perf_event *hwc, int cpu) 1067 { 1068 u32 escr, cccr; 1069 1070 /* 1071 * we either lucky and continue on same cpu or no HT support 1072 */ 1073 if (!p4_should_swap_ts(hwc->config, cpu)) 1074 return; 1075 1076 /* 1077 * the event is migrated from an another logical 1078 * cpu, so we need to swap thread specific flags 1079 */ 1080 1081 escr = p4_config_unpack_escr(hwc->config); 1082 cccr = p4_config_unpack_cccr(hwc->config); 1083 1084 if (p4_ht_thread(cpu)) { 1085 cccr &= ~P4_CCCR_OVF_PMI_T0; 1086 cccr |= P4_CCCR_OVF_PMI_T1; 1087 if (escr & P4_ESCR_T0_OS) { 1088 escr &= ~P4_ESCR_T0_OS; 1089 escr |= P4_ESCR_T1_OS; 1090 } 1091 if (escr & P4_ESCR_T0_USR) { 1092 escr &= ~P4_ESCR_T0_USR; 1093 escr |= P4_ESCR_T1_USR; 1094 } 1095 hwc->config = p4_config_pack_escr(escr); 1096 hwc->config |= p4_config_pack_cccr(cccr); 1097 hwc->config |= P4_CONFIG_HT; 1098 } else { 1099 cccr &= ~P4_CCCR_OVF_PMI_T1; 1100 cccr |= P4_CCCR_OVF_PMI_T0; 1101 if (escr & P4_ESCR_T1_OS) { 1102 escr &= ~P4_ESCR_T1_OS; 1103 escr |= P4_ESCR_T0_OS; 1104 } 1105 if (escr & P4_ESCR_T1_USR) { 1106 escr &= ~P4_ESCR_T1_USR; 1107 escr |= P4_ESCR_T0_USR; 1108 } 1109 hwc->config = p4_config_pack_escr(escr); 1110 hwc->config |= p4_config_pack_cccr(cccr); 1111 hwc->config &= ~P4_CONFIG_HT; 1112 } 1113 } 1114 1115 /* 1116 * ESCR address hashing is tricky, ESCRs are not sequential 1117 * in memory but all starts from MSR_P4_BSU_ESCR0 (0x03a0) and 1118 * the metric between any ESCRs is laid in range [0xa0,0xe1] 1119 * 1120 * so we make ~70% filled hashtable 1121 */ 1122 1123 #define P4_ESCR_MSR_BASE 0x000003a0 1124 #define P4_ESCR_MSR_MAX 0x000003e1 1125 #define P4_ESCR_MSR_TABLE_SIZE (P4_ESCR_MSR_MAX - P4_ESCR_MSR_BASE + 1) 1126 #define P4_ESCR_MSR_IDX(msr) (msr - P4_ESCR_MSR_BASE) 1127 #define P4_ESCR_MSR_TABLE_ENTRY(msr) [P4_ESCR_MSR_IDX(msr)] = msr 1128 1129 static const unsigned int p4_escr_table[P4_ESCR_MSR_TABLE_SIZE] = { 1130 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR0), 1131 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR1), 1132 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR0), 1133 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR1), 1134 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR0), 1135 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR1), 1136 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR0), 1137 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR1), 1138 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR2), 1139 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR3), 1140 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR4), 1141 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR5), 1142 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR0), 1143 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR1), 1144 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR0), 1145 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR1), 1146 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR0), 1147 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR1), 1148 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR0), 1149 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR1), 1150 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR0), 1151 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR1), 1152 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR0), 1153 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR1), 1154 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR0), 1155 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR1), 1156 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR0), 1157 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR1), 1158 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR0), 1159 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR1), 1160 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR0), 1161 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR1), 1162 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR0), 1163 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR1), 1164 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR0), 1165 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR1), 1166 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR0), 1167 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR1), 1168 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR0), 1169 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR1), 1170 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR0), 1171 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR1), 1172 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR0), 1173 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR1), 1174 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR0), 1175 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR1), 1176 }; 1177 1178 static int p4_get_escr_idx(unsigned int addr) 1179 { 1180 unsigned int idx = P4_ESCR_MSR_IDX(addr); 1181 1182 if (unlikely(idx >= P4_ESCR_MSR_TABLE_SIZE || 1183 !p4_escr_table[idx] || 1184 p4_escr_table[idx] != addr)) { 1185 WARN_ONCE(1, "P4 PMU: Wrong address passed: %x\n", addr); 1186 return -1; 1187 } 1188 1189 return idx; 1190 } 1191 1192 static int p4_next_cntr(int thread, unsigned long *used_mask, 1193 struct p4_event_bind *bind) 1194 { 1195 int i, j; 1196 1197 for (i = 0; i < P4_CNTR_LIMIT; i++) { 1198 j = bind->cntr[thread][i]; 1199 if (j != -1 && !test_bit(j, used_mask)) 1200 return j; 1201 } 1202 1203 return -1; 1204 } 1205 1206 static int p4_pmu_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) 1207 { 1208 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; 1209 unsigned long escr_mask[BITS_TO_LONGS(P4_ESCR_MSR_TABLE_SIZE)]; 1210 int cpu = smp_processor_id(); 1211 struct hw_perf_event *hwc; 1212 struct p4_event_bind *bind; 1213 unsigned int i, thread, num; 1214 int cntr_idx, escr_idx; 1215 u64 config_alias; 1216 int pass; 1217 1218 bitmap_zero(used_mask, X86_PMC_IDX_MAX); 1219 bitmap_zero(escr_mask, P4_ESCR_MSR_TABLE_SIZE); 1220 1221 for (i = 0, num = n; i < n; i++, num--) { 1222 1223 hwc = &cpuc->event_list[i]->hw; 1224 thread = p4_ht_thread(cpu); 1225 pass = 0; 1226 1227 again: 1228 /* 1229 * It's possible to hit a circular lock 1230 * between original and alternative events 1231 * if both are scheduled already. 1232 */ 1233 if (pass > 2) 1234 goto done; 1235 1236 bind = p4_config_get_bind(hwc->config); 1237 escr_idx = p4_get_escr_idx(bind->escr_msr[thread]); 1238 if (unlikely(escr_idx == -1)) 1239 goto done; 1240 1241 if (hwc->idx != -1 && !p4_should_swap_ts(hwc->config, cpu)) { 1242 cntr_idx = hwc->idx; 1243 if (assign) 1244 assign[i] = hwc->idx; 1245 goto reserve; 1246 } 1247 1248 cntr_idx = p4_next_cntr(thread, used_mask, bind); 1249 if (cntr_idx == -1 || test_bit(escr_idx, escr_mask)) { 1250 /* 1251 * Check whether an event alias is still available. 1252 */ 1253 config_alias = p4_get_alias_event(hwc->config); 1254 if (!config_alias) 1255 goto done; 1256 hwc->config = config_alias; 1257 pass++; 1258 goto again; 1259 } 1260 /* 1261 * Perf does test runs to see if a whole group can be assigned 1262 * together succesfully. There can be multiple rounds of this. 1263 * Unfortunately, p4_pmu_swap_config_ts touches the hwc->config 1264 * bits, such that the next round of group assignments will 1265 * cause the above p4_should_swap_ts to pass instead of fail. 1266 * This leads to counters exclusive to thread0 being used by 1267 * thread1. 1268 * 1269 * Solve this with a cheap hack, reset the idx back to -1 to 1270 * force a new lookup (p4_next_cntr) to get the right counter 1271 * for the right thread. 1272 * 1273 * This probably doesn't comply with the general spirit of how 1274 * perf wants to work, but P4 is special. :-( 1275 */ 1276 if (p4_should_swap_ts(hwc->config, cpu)) 1277 hwc->idx = -1; 1278 p4_pmu_swap_config_ts(hwc, cpu); 1279 if (assign) 1280 assign[i] = cntr_idx; 1281 reserve: 1282 set_bit(cntr_idx, used_mask); 1283 set_bit(escr_idx, escr_mask); 1284 } 1285 1286 done: 1287 return num ? -EINVAL : 0; 1288 } 1289 1290 PMU_FORMAT_ATTR(cccr, "config:0-31" ); 1291 PMU_FORMAT_ATTR(escr, "config:32-62"); 1292 PMU_FORMAT_ATTR(ht, "config:63" ); 1293 1294 static struct attribute *intel_p4_formats_attr[] = { 1295 &format_attr_cccr.attr, 1296 &format_attr_escr.attr, 1297 &format_attr_ht.attr, 1298 NULL, 1299 }; 1300 1301 static __initconst const struct x86_pmu p4_pmu = { 1302 .name = "Netburst P4/Xeon", 1303 .handle_irq = p4_pmu_handle_irq, 1304 .disable_all = p4_pmu_disable_all, 1305 .enable_all = p4_pmu_enable_all, 1306 .enable = p4_pmu_enable_event, 1307 .disable = p4_pmu_disable_event, 1308 .eventsel = MSR_P4_BPU_CCCR0, 1309 .perfctr = MSR_P4_BPU_PERFCTR0, 1310 .event_map = p4_pmu_event_map, 1311 .max_events = ARRAY_SIZE(p4_general_events), 1312 .get_event_constraints = x86_get_event_constraints, 1313 /* 1314 * IF HT disabled we may need to use all 1315 * ARCH_P4_MAX_CCCR counters simulaneously 1316 * though leave it restricted at moment assuming 1317 * HT is on 1318 */ 1319 .num_counters = ARCH_P4_MAX_CCCR, 1320 .apic = 1, 1321 .cntval_bits = ARCH_P4_CNTRVAL_BITS, 1322 .cntval_mask = ARCH_P4_CNTRVAL_MASK, 1323 .max_period = (1ULL << (ARCH_P4_CNTRVAL_BITS - 1)) - 1, 1324 .hw_config = p4_hw_config, 1325 .schedule_events = p4_pmu_schedule_events, 1326 /* 1327 * This handles erratum N15 in intel doc 249199-029, 1328 * the counter may not be updated correctly on write 1329 * so we need a second write operation to do the trick 1330 * (the official workaround didn't work) 1331 * 1332 * the former idea is taken from OProfile code 1333 */ 1334 .perfctr_second_write = 1, 1335 1336 .format_attrs = intel_p4_formats_attr, 1337 }; 1338 1339 __init int p4_pmu_init(void) 1340 { 1341 unsigned int low, high; 1342 int i, reg; 1343 1344 /* If we get stripped -- indexing fails */ 1345 BUILD_BUG_ON(ARCH_P4_MAX_CCCR > INTEL_PMC_MAX_GENERIC); 1346 1347 rdmsr(MSR_IA32_MISC_ENABLE, low, high); 1348 if (!(low & (1 << 7))) { 1349 pr_cont("unsupported Netburst CPU model %d ", 1350 boot_cpu_data.x86_model); 1351 return -ENODEV; 1352 } 1353 1354 memcpy(hw_cache_event_ids, p4_hw_cache_event_ids, 1355 sizeof(hw_cache_event_ids)); 1356 1357 pr_cont("Netburst events, "); 1358 1359 x86_pmu = p4_pmu; 1360 1361 /* 1362 * Even though the counters are configured to interrupt a particular 1363 * logical processor when an overflow happens, testing has shown that 1364 * on kdump kernels (which uses a single cpu), thread1's counter 1365 * continues to run and will report an NMI on thread0. Due to the 1366 * overflow bug, this leads to a stream of unknown NMIs. 1367 * 1368 * Solve this by zero'ing out the registers to mimic a reset. 1369 */ 1370 for (i = 0; i < x86_pmu.num_counters; i++) { 1371 reg = x86_pmu_config_addr(i); 1372 wrmsrl_safe(reg, 0ULL); 1373 } 1374 1375 return 0; 1376 } 1377