1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/perf_event.h> 3 #include <linux/types.h> 4 5 #include <asm/perf_event.h> 6 #include <asm/msr.h> 7 #include <asm/insn.h> 8 9 #include "../perf_event.h" 10 11 enum { 12 LBR_FORMAT_32 = 0x00, 13 LBR_FORMAT_LIP = 0x01, 14 LBR_FORMAT_EIP = 0x02, 15 LBR_FORMAT_EIP_FLAGS = 0x03, 16 LBR_FORMAT_EIP_FLAGS2 = 0x04, 17 LBR_FORMAT_INFO = 0x05, 18 LBR_FORMAT_TIME = 0x06, 19 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME, 20 }; 21 22 static const enum { 23 LBR_EIP_FLAGS = 1, 24 LBR_TSX = 2, 25 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = { 26 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS, 27 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX, 28 }; 29 30 /* 31 * Intel LBR_SELECT bits 32 * Intel Vol3a, April 2011, Section 16.7 Table 16-10 33 * 34 * Hardware branch filter (not available on all CPUs) 35 */ 36 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */ 37 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */ 38 #define LBR_JCC_BIT 2 /* do not capture conditional branches */ 39 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */ 40 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */ 41 #define LBR_RETURN_BIT 5 /* do not capture near returns */ 42 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */ 43 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */ 44 #define LBR_FAR_BIT 8 /* do not capture far branches */ 45 #define LBR_CALL_STACK_BIT 9 /* enable call stack */ 46 47 /* 48 * Following bit only exists in Linux; we mask it out before writing it to 49 * the actual MSR. But it helps the constraint perf code to understand 50 * that this is a separate configuration. 51 */ 52 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */ 53 54 #define LBR_KERNEL (1 << LBR_KERNEL_BIT) 55 #define LBR_USER (1 << LBR_USER_BIT) 56 #define LBR_JCC (1 << LBR_JCC_BIT) 57 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT) 58 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT) 59 #define LBR_RETURN (1 << LBR_RETURN_BIT) 60 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT) 61 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT) 62 #define LBR_FAR (1 << LBR_FAR_BIT) 63 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT) 64 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT) 65 66 #define LBR_PLM (LBR_KERNEL | LBR_USER) 67 68 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */ 69 #define LBR_NOT_SUPP -1 /* LBR filter not supported */ 70 #define LBR_IGN 0 /* ignored */ 71 72 #define LBR_ANY \ 73 (LBR_JCC |\ 74 LBR_REL_CALL |\ 75 LBR_IND_CALL |\ 76 LBR_RETURN |\ 77 LBR_REL_JMP |\ 78 LBR_IND_JMP |\ 79 LBR_FAR) 80 81 #define LBR_FROM_FLAG_MISPRED BIT_ULL(63) 82 #define LBR_FROM_FLAG_IN_TX BIT_ULL(62) 83 #define LBR_FROM_FLAG_ABORT BIT_ULL(61) 84 85 #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59)) 86 87 /* 88 * x86control flow change classification 89 * x86control flow changes include branches, interrupts, traps, faults 90 */ 91 enum { 92 X86_BR_NONE = 0, /* unknown */ 93 94 X86_BR_USER = 1 << 0, /* branch target is user */ 95 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */ 96 97 X86_BR_CALL = 1 << 2, /* call */ 98 X86_BR_RET = 1 << 3, /* return */ 99 X86_BR_SYSCALL = 1 << 4, /* syscall */ 100 X86_BR_SYSRET = 1 << 5, /* syscall return */ 101 X86_BR_INT = 1 << 6, /* sw interrupt */ 102 X86_BR_IRET = 1 << 7, /* return from interrupt */ 103 X86_BR_JCC = 1 << 8, /* conditional */ 104 X86_BR_JMP = 1 << 9, /* jump */ 105 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */ 106 X86_BR_IND_CALL = 1 << 11,/* indirect calls */ 107 X86_BR_ABORT = 1 << 12,/* transaction abort */ 108 X86_BR_IN_TX = 1 << 13,/* in transaction */ 109 X86_BR_NO_TX = 1 << 14,/* not in transaction */ 110 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */ 111 X86_BR_CALL_STACK = 1 << 16,/* call stack */ 112 X86_BR_IND_JMP = 1 << 17,/* indirect jump */ 113 114 X86_BR_TYPE_SAVE = 1 << 18,/* indicate to save branch type */ 115 116 }; 117 118 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL) 119 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX) 120 121 #define X86_BR_ANY \ 122 (X86_BR_CALL |\ 123 X86_BR_RET |\ 124 X86_BR_SYSCALL |\ 125 X86_BR_SYSRET |\ 126 X86_BR_INT |\ 127 X86_BR_IRET |\ 128 X86_BR_JCC |\ 129 X86_BR_JMP |\ 130 X86_BR_IRQ |\ 131 X86_BR_ABORT |\ 132 X86_BR_IND_CALL |\ 133 X86_BR_IND_JMP |\ 134 X86_BR_ZERO_CALL) 135 136 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY) 137 138 #define X86_BR_ANY_CALL \ 139 (X86_BR_CALL |\ 140 X86_BR_IND_CALL |\ 141 X86_BR_ZERO_CALL |\ 142 X86_BR_SYSCALL |\ 143 X86_BR_IRQ |\ 144 X86_BR_INT) 145 146 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc); 147 148 /* 149 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI 150 * otherwise it becomes near impossible to get a reliable stack. 151 */ 152 153 static void __intel_pmu_lbr_enable(bool pmi) 154 { 155 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 156 u64 debugctl, lbr_select = 0, orig_debugctl; 157 158 /* 159 * No need to unfreeze manually, as v4 can do that as part 160 * of the GLOBAL_STATUS ack. 161 */ 162 if (pmi && x86_pmu.version >= 4) 163 return; 164 165 /* 166 * No need to reprogram LBR_SELECT in a PMI, as it 167 * did not change. 168 */ 169 if (cpuc->lbr_sel) 170 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask; 171 if (!pmi && cpuc->lbr_sel) 172 wrmsrl(MSR_LBR_SELECT, lbr_select); 173 174 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 175 orig_debugctl = debugctl; 176 debugctl |= DEBUGCTLMSR_LBR; 177 /* 178 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI. 179 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions 180 * may cause superfluous increase/decrease of LBR_TOS. 181 */ 182 if (!(lbr_select & LBR_CALL_STACK)) 183 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 184 if (orig_debugctl != debugctl) 185 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 186 } 187 188 static void __intel_pmu_lbr_disable(void) 189 { 190 u64 debugctl; 191 192 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 193 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI); 194 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 195 } 196 197 static void intel_pmu_lbr_reset_32(void) 198 { 199 int i; 200 201 for (i = 0; i < x86_pmu.lbr_nr; i++) 202 wrmsrl(x86_pmu.lbr_from + i, 0); 203 } 204 205 static void intel_pmu_lbr_reset_64(void) 206 { 207 int i; 208 209 for (i = 0; i < x86_pmu.lbr_nr; i++) { 210 wrmsrl(x86_pmu.lbr_from + i, 0); 211 wrmsrl(x86_pmu.lbr_to + i, 0); 212 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) 213 wrmsrl(MSR_LBR_INFO_0 + i, 0); 214 } 215 } 216 217 void intel_pmu_lbr_reset(void) 218 { 219 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 220 221 if (!x86_pmu.lbr_nr) 222 return; 223 224 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) 225 intel_pmu_lbr_reset_32(); 226 else 227 intel_pmu_lbr_reset_64(); 228 229 cpuc->last_task_ctx = NULL; 230 cpuc->last_log_id = 0; 231 } 232 233 /* 234 * TOS = most recently recorded branch 235 */ 236 static inline u64 intel_pmu_lbr_tos(void) 237 { 238 u64 tos; 239 240 rdmsrl(x86_pmu.lbr_tos, tos); 241 return tos; 242 } 243 244 enum { 245 LBR_NONE, 246 LBR_VALID, 247 }; 248 249 /* 250 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in 251 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when 252 * TSX is not supported they have no consistent behavior: 253 * 254 * - For wrmsr(), bits 61:62 are considered part of the sign extension. 255 * - For HW updates (branch captures) bits 61:62 are always OFF and are not 256 * part of the sign extension. 257 * 258 * Therefore, if: 259 * 260 * 1) LBR has TSX format 261 * 2) CPU has no TSX support enabled 262 * 263 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any 264 * value from rdmsr() must be converted to have a 61 bits sign extension, 265 * ignoring the TSX flags. 266 */ 267 static inline bool lbr_from_signext_quirk_needed(void) 268 { 269 int lbr_format = x86_pmu.intel_cap.lbr_format; 270 bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) || 271 boot_cpu_has(X86_FEATURE_RTM); 272 273 return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX); 274 } 275 276 DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key); 277 278 /* If quirk is enabled, ensure sign extension is 63 bits: */ 279 inline u64 lbr_from_signext_quirk_wr(u64 val) 280 { 281 if (static_branch_unlikely(&lbr_from_quirk_key)) { 282 /* 283 * Sign extend into bits 61:62 while preserving bit 63. 284 * 285 * Quirk is enabled when TSX is disabled. Therefore TSX bits 286 * in val are always OFF and must be changed to be sign 287 * extension bits. Since bits 59:60 are guaranteed to be 288 * part of the sign extension bits, we can just copy them 289 * to 61:62. 290 */ 291 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2; 292 } 293 return val; 294 } 295 296 /* 297 * If quirk is needed, ensure sign extension is 61 bits: 298 */ 299 static u64 lbr_from_signext_quirk_rd(u64 val) 300 { 301 if (static_branch_unlikely(&lbr_from_quirk_key)) { 302 /* 303 * Quirk is on when TSX is not enabled. Therefore TSX 304 * flags must be read as OFF. 305 */ 306 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT); 307 } 308 return val; 309 } 310 311 static inline void wrlbr_from(unsigned int idx, u64 val) 312 { 313 val = lbr_from_signext_quirk_wr(val); 314 wrmsrl(x86_pmu.lbr_from + idx, val); 315 } 316 317 static inline void wrlbr_to(unsigned int idx, u64 val) 318 { 319 wrmsrl(x86_pmu.lbr_to + idx, val); 320 } 321 322 static inline u64 rdlbr_from(unsigned int idx) 323 { 324 u64 val; 325 326 rdmsrl(x86_pmu.lbr_from + idx, val); 327 328 return lbr_from_signext_quirk_rd(val); 329 } 330 331 static inline u64 rdlbr_to(unsigned int idx) 332 { 333 u64 val; 334 335 rdmsrl(x86_pmu.lbr_to + idx, val); 336 337 return val; 338 } 339 340 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx) 341 { 342 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 343 int i; 344 unsigned lbr_idx, mask; 345 u64 tos; 346 347 if (task_ctx->lbr_callstack_users == 0 || 348 task_ctx->lbr_stack_state == LBR_NONE) { 349 intel_pmu_lbr_reset(); 350 return; 351 } 352 353 tos = task_ctx->tos; 354 /* 355 * Does not restore the LBR registers, if 356 * - No one else touched them, and 357 * - Did not enter C6 358 */ 359 if ((task_ctx == cpuc->last_task_ctx) && 360 (task_ctx->log_id == cpuc->last_log_id) && 361 rdlbr_from(tos)) { 362 task_ctx->lbr_stack_state = LBR_NONE; 363 return; 364 } 365 366 mask = x86_pmu.lbr_nr - 1; 367 for (i = 0; i < task_ctx->valid_lbrs; i++) { 368 lbr_idx = (tos - i) & mask; 369 wrlbr_from(lbr_idx, task_ctx->lbr_from[i]); 370 wrlbr_to (lbr_idx, task_ctx->lbr_to[i]); 371 372 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) 373 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); 374 } 375 376 for (; i < x86_pmu.lbr_nr; i++) { 377 lbr_idx = (tos - i) & mask; 378 wrlbr_from(lbr_idx, 0); 379 wrlbr_to(lbr_idx, 0); 380 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) 381 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, 0); 382 } 383 384 wrmsrl(x86_pmu.lbr_tos, tos); 385 task_ctx->lbr_stack_state = LBR_NONE; 386 } 387 388 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx) 389 { 390 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 391 unsigned lbr_idx, mask; 392 u64 tos, from; 393 int i; 394 395 if (task_ctx->lbr_callstack_users == 0) { 396 task_ctx->lbr_stack_state = LBR_NONE; 397 return; 398 } 399 400 mask = x86_pmu.lbr_nr - 1; 401 tos = intel_pmu_lbr_tos(); 402 for (i = 0; i < x86_pmu.lbr_nr; i++) { 403 lbr_idx = (tos - i) & mask; 404 from = rdlbr_from(lbr_idx); 405 if (!from) 406 break; 407 task_ctx->lbr_from[i] = from; 408 task_ctx->lbr_to[i] = rdlbr_to(lbr_idx); 409 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) 410 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); 411 } 412 task_ctx->valid_lbrs = i; 413 task_ctx->tos = tos; 414 task_ctx->lbr_stack_state = LBR_VALID; 415 416 cpuc->last_task_ctx = task_ctx; 417 cpuc->last_log_id = ++task_ctx->log_id; 418 } 419 420 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in) 421 { 422 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 423 struct x86_perf_task_context *task_ctx; 424 425 if (!cpuc->lbr_users) 426 return; 427 428 /* 429 * If LBR callstack feature is enabled and the stack was saved when 430 * the task was scheduled out, restore the stack. Otherwise flush 431 * the LBR stack. 432 */ 433 task_ctx = ctx ? ctx->task_ctx_data : NULL; 434 if (task_ctx) { 435 if (sched_in) 436 __intel_pmu_lbr_restore(task_ctx); 437 else 438 __intel_pmu_lbr_save(task_ctx); 439 return; 440 } 441 442 /* 443 * Since a context switch can flip the address space and LBR entries 444 * are not tagged with an identifier, we need to wipe the LBR, even for 445 * per-cpu events. You simply cannot resolve the branches from the old 446 * address space. 447 */ 448 if (sched_in) 449 intel_pmu_lbr_reset(); 450 } 451 452 static inline bool branch_user_callstack(unsigned br_sel) 453 { 454 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK); 455 } 456 457 void intel_pmu_lbr_add(struct perf_event *event) 458 { 459 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 460 struct x86_perf_task_context *task_ctx; 461 462 if (!x86_pmu.lbr_nr) 463 return; 464 465 cpuc->br_sel = event->hw.branch_reg.reg; 466 467 if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) { 468 task_ctx = event->ctx->task_ctx_data; 469 task_ctx->lbr_callstack_users++; 470 } 471 472 /* 473 * Request pmu::sched_task() callback, which will fire inside the 474 * regular perf event scheduling, so that call will: 475 * 476 * - restore or wipe; when LBR-callstack, 477 * - wipe; otherwise, 478 * 479 * when this is from __perf_event_task_sched_in(). 480 * 481 * However, if this is from perf_install_in_context(), no such callback 482 * will follow and we'll need to reset the LBR here if this is the 483 * first LBR event. 484 * 485 * The problem is, we cannot tell these cases apart... but we can 486 * exclude the biggest chunk of cases by looking at 487 * event->total_time_running. An event that has accrued runtime cannot 488 * be 'new'. Conversely, a new event can get installed through the 489 * context switch path for the first time. 490 */ 491 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0) 492 cpuc->lbr_pebs_users++; 493 perf_sched_cb_inc(event->ctx->pmu); 494 if (!cpuc->lbr_users++ && !event->total_time_running) 495 intel_pmu_lbr_reset(); 496 } 497 498 void intel_pmu_lbr_del(struct perf_event *event) 499 { 500 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 501 struct x86_perf_task_context *task_ctx; 502 503 if (!x86_pmu.lbr_nr) 504 return; 505 506 if (branch_user_callstack(cpuc->br_sel) && 507 event->ctx->task_ctx_data) { 508 task_ctx = event->ctx->task_ctx_data; 509 task_ctx->lbr_callstack_users--; 510 } 511 512 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0) 513 cpuc->lbr_pebs_users--; 514 cpuc->lbr_users--; 515 WARN_ON_ONCE(cpuc->lbr_users < 0); 516 WARN_ON_ONCE(cpuc->lbr_pebs_users < 0); 517 perf_sched_cb_dec(event->ctx->pmu); 518 } 519 520 void intel_pmu_lbr_enable_all(bool pmi) 521 { 522 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 523 524 if (cpuc->lbr_users) 525 __intel_pmu_lbr_enable(pmi); 526 } 527 528 void intel_pmu_lbr_disable_all(void) 529 { 530 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 531 532 if (cpuc->lbr_users) 533 __intel_pmu_lbr_disable(); 534 } 535 536 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc) 537 { 538 unsigned long mask = x86_pmu.lbr_nr - 1; 539 u64 tos = intel_pmu_lbr_tos(); 540 int i; 541 542 for (i = 0; i < x86_pmu.lbr_nr; i++) { 543 unsigned long lbr_idx = (tos - i) & mask; 544 union { 545 struct { 546 u32 from; 547 u32 to; 548 }; 549 u64 lbr; 550 } msr_lastbranch; 551 552 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr); 553 554 cpuc->lbr_entries[i].from = msr_lastbranch.from; 555 cpuc->lbr_entries[i].to = msr_lastbranch.to; 556 cpuc->lbr_entries[i].mispred = 0; 557 cpuc->lbr_entries[i].predicted = 0; 558 cpuc->lbr_entries[i].in_tx = 0; 559 cpuc->lbr_entries[i].abort = 0; 560 cpuc->lbr_entries[i].cycles = 0; 561 cpuc->lbr_entries[i].type = 0; 562 cpuc->lbr_entries[i].reserved = 0; 563 } 564 cpuc->lbr_stack.nr = i; 565 } 566 567 /* 568 * Due to lack of segmentation in Linux the effective address (offset) 569 * is the same as the linear address, allowing us to merge the LIP and EIP 570 * LBR formats. 571 */ 572 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc) 573 { 574 bool need_info = false, call_stack = false; 575 unsigned long mask = x86_pmu.lbr_nr - 1; 576 int lbr_format = x86_pmu.intel_cap.lbr_format; 577 u64 tos = intel_pmu_lbr_tos(); 578 int i; 579 int out = 0; 580 int num = x86_pmu.lbr_nr; 581 582 if (cpuc->lbr_sel) { 583 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO); 584 if (cpuc->lbr_sel->config & LBR_CALL_STACK) 585 call_stack = true; 586 } 587 588 for (i = 0; i < num; i++) { 589 unsigned long lbr_idx = (tos - i) & mask; 590 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0; 591 int skip = 0; 592 u16 cycles = 0; 593 int lbr_flags = lbr_desc[lbr_format]; 594 595 from = rdlbr_from(lbr_idx); 596 to = rdlbr_to(lbr_idx); 597 598 /* 599 * Read LBR call stack entries 600 * until invalid entry (0s) is detected. 601 */ 602 if (call_stack && !from) 603 break; 604 605 if (lbr_format == LBR_FORMAT_INFO && need_info) { 606 u64 info; 607 608 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info); 609 mis = !!(info & LBR_INFO_MISPRED); 610 pred = !mis; 611 in_tx = !!(info & LBR_INFO_IN_TX); 612 abort = !!(info & LBR_INFO_ABORT); 613 cycles = (info & LBR_INFO_CYCLES); 614 } 615 616 if (lbr_format == LBR_FORMAT_TIME) { 617 mis = !!(from & LBR_FROM_FLAG_MISPRED); 618 pred = !mis; 619 skip = 1; 620 cycles = ((to >> 48) & LBR_INFO_CYCLES); 621 622 to = (u64)((((s64)to) << 16) >> 16); 623 } 624 625 if (lbr_flags & LBR_EIP_FLAGS) { 626 mis = !!(from & LBR_FROM_FLAG_MISPRED); 627 pred = !mis; 628 skip = 1; 629 } 630 if (lbr_flags & LBR_TSX) { 631 in_tx = !!(from & LBR_FROM_FLAG_IN_TX); 632 abort = !!(from & LBR_FROM_FLAG_ABORT); 633 skip = 3; 634 } 635 from = (u64)((((s64)from) << skip) >> skip); 636 637 /* 638 * Some CPUs report duplicated abort records, 639 * with the second entry not having an abort bit set. 640 * Skip them here. This loop runs backwards, 641 * so we need to undo the previous record. 642 * If the abort just happened outside the window 643 * the extra entry cannot be removed. 644 */ 645 if (abort && x86_pmu.lbr_double_abort && out > 0) 646 out--; 647 648 cpuc->lbr_entries[out].from = from; 649 cpuc->lbr_entries[out].to = to; 650 cpuc->lbr_entries[out].mispred = mis; 651 cpuc->lbr_entries[out].predicted = pred; 652 cpuc->lbr_entries[out].in_tx = in_tx; 653 cpuc->lbr_entries[out].abort = abort; 654 cpuc->lbr_entries[out].cycles = cycles; 655 cpuc->lbr_entries[out].type = 0; 656 cpuc->lbr_entries[out].reserved = 0; 657 out++; 658 } 659 cpuc->lbr_stack.nr = out; 660 } 661 662 void intel_pmu_lbr_read(void) 663 { 664 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 665 666 /* 667 * Don't read when all LBRs users are using adaptive PEBS. 668 * 669 * This could be smarter and actually check the event, 670 * but this simple approach seems to work for now. 671 */ 672 if (!cpuc->lbr_users || cpuc->lbr_users == cpuc->lbr_pebs_users) 673 return; 674 675 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) 676 intel_pmu_lbr_read_32(cpuc); 677 else 678 intel_pmu_lbr_read_64(cpuc); 679 680 intel_pmu_lbr_filter(cpuc); 681 } 682 683 /* 684 * SW filter is used: 685 * - in case there is no HW filter 686 * - in case the HW filter has errata or limitations 687 */ 688 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event) 689 { 690 u64 br_type = event->attr.branch_sample_type; 691 int mask = 0; 692 693 if (br_type & PERF_SAMPLE_BRANCH_USER) 694 mask |= X86_BR_USER; 695 696 if (br_type & PERF_SAMPLE_BRANCH_KERNEL) 697 mask |= X86_BR_KERNEL; 698 699 /* we ignore BRANCH_HV here */ 700 701 if (br_type & PERF_SAMPLE_BRANCH_ANY) 702 mask |= X86_BR_ANY; 703 704 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL) 705 mask |= X86_BR_ANY_CALL; 706 707 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN) 708 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET; 709 710 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL) 711 mask |= X86_BR_IND_CALL; 712 713 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX) 714 mask |= X86_BR_ABORT; 715 716 if (br_type & PERF_SAMPLE_BRANCH_IN_TX) 717 mask |= X86_BR_IN_TX; 718 719 if (br_type & PERF_SAMPLE_BRANCH_NO_TX) 720 mask |= X86_BR_NO_TX; 721 722 if (br_type & PERF_SAMPLE_BRANCH_COND) 723 mask |= X86_BR_JCC; 724 725 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) { 726 if (!x86_pmu_has_lbr_callstack()) 727 return -EOPNOTSUPP; 728 if (mask & ~(X86_BR_USER | X86_BR_KERNEL)) 729 return -EINVAL; 730 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET | 731 X86_BR_CALL_STACK; 732 } 733 734 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP) 735 mask |= X86_BR_IND_JMP; 736 737 if (br_type & PERF_SAMPLE_BRANCH_CALL) 738 mask |= X86_BR_CALL | X86_BR_ZERO_CALL; 739 740 if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE) 741 mask |= X86_BR_TYPE_SAVE; 742 743 /* 744 * stash actual user request into reg, it may 745 * be used by fixup code for some CPU 746 */ 747 event->hw.branch_reg.reg = mask; 748 return 0; 749 } 750 751 /* 752 * setup the HW LBR filter 753 * Used only when available, may not be enough to disambiguate 754 * all branches, may need the help of the SW filter 755 */ 756 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event) 757 { 758 struct hw_perf_event_extra *reg; 759 u64 br_type = event->attr.branch_sample_type; 760 u64 mask = 0, v; 761 int i; 762 763 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) { 764 if (!(br_type & (1ULL << i))) 765 continue; 766 767 v = x86_pmu.lbr_sel_map[i]; 768 if (v == LBR_NOT_SUPP) 769 return -EOPNOTSUPP; 770 771 if (v != LBR_IGN) 772 mask |= v; 773 } 774 775 reg = &event->hw.branch_reg; 776 reg->idx = EXTRA_REG_LBR; 777 778 /* 779 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate 780 * in suppress mode. So LBR_SELECT should be set to 781 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK) 782 * But the 10th bit LBR_CALL_STACK does not operate 783 * in suppress mode. 784 */ 785 reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK); 786 787 if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) && 788 (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) && 789 (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)) 790 reg->config |= LBR_NO_INFO; 791 792 return 0; 793 } 794 795 int intel_pmu_setup_lbr_filter(struct perf_event *event) 796 { 797 int ret = 0; 798 799 /* 800 * no LBR on this PMU 801 */ 802 if (!x86_pmu.lbr_nr) 803 return -EOPNOTSUPP; 804 805 /* 806 * setup SW LBR filter 807 */ 808 ret = intel_pmu_setup_sw_lbr_filter(event); 809 if (ret) 810 return ret; 811 812 /* 813 * setup HW LBR filter, if any 814 */ 815 if (x86_pmu.lbr_sel_map) 816 ret = intel_pmu_setup_hw_lbr_filter(event); 817 818 return ret; 819 } 820 821 /* 822 * return the type of control flow change at address "from" 823 * instruction is not necessarily a branch (in case of interrupt). 824 * 825 * The branch type returned also includes the priv level of the 826 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL). 827 * 828 * If a branch type is unknown OR the instruction cannot be 829 * decoded (e.g., text page not present), then X86_BR_NONE is 830 * returned. 831 */ 832 static int branch_type(unsigned long from, unsigned long to, int abort) 833 { 834 struct insn insn; 835 void *addr; 836 int bytes_read, bytes_left; 837 int ret = X86_BR_NONE; 838 int ext, to_plm, from_plm; 839 u8 buf[MAX_INSN_SIZE]; 840 int is64 = 0; 841 842 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER; 843 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER; 844 845 /* 846 * maybe zero if lbr did not fill up after a reset by the time 847 * we get a PMU interrupt 848 */ 849 if (from == 0 || to == 0) 850 return X86_BR_NONE; 851 852 if (abort) 853 return X86_BR_ABORT | to_plm; 854 855 if (from_plm == X86_BR_USER) { 856 /* 857 * can happen if measuring at the user level only 858 * and we interrupt in a kernel thread, e.g., idle. 859 */ 860 if (!current->mm) 861 return X86_BR_NONE; 862 863 /* may fail if text not present */ 864 bytes_left = copy_from_user_nmi(buf, (void __user *)from, 865 MAX_INSN_SIZE); 866 bytes_read = MAX_INSN_SIZE - bytes_left; 867 if (!bytes_read) 868 return X86_BR_NONE; 869 870 addr = buf; 871 } else { 872 /* 873 * The LBR logs any address in the IP, even if the IP just 874 * faulted. This means userspace can control the from address. 875 * Ensure we don't blindy read any address by validating it is 876 * a known text address. 877 */ 878 if (kernel_text_address(from)) { 879 addr = (void *)from; 880 /* 881 * Assume we can get the maximum possible size 882 * when grabbing kernel data. This is not 883 * _strictly_ true since we could possibly be 884 * executing up next to a memory hole, but 885 * it is very unlikely to be a problem. 886 */ 887 bytes_read = MAX_INSN_SIZE; 888 } else { 889 return X86_BR_NONE; 890 } 891 } 892 893 /* 894 * decoder needs to know the ABI especially 895 * on 64-bit systems running 32-bit apps 896 */ 897 #ifdef CONFIG_X86_64 898 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32); 899 #endif 900 insn_init(&insn, addr, bytes_read, is64); 901 insn_get_opcode(&insn); 902 if (!insn.opcode.got) 903 return X86_BR_ABORT; 904 905 switch (insn.opcode.bytes[0]) { 906 case 0xf: 907 switch (insn.opcode.bytes[1]) { 908 case 0x05: /* syscall */ 909 case 0x34: /* sysenter */ 910 ret = X86_BR_SYSCALL; 911 break; 912 case 0x07: /* sysret */ 913 case 0x35: /* sysexit */ 914 ret = X86_BR_SYSRET; 915 break; 916 case 0x80 ... 0x8f: /* conditional */ 917 ret = X86_BR_JCC; 918 break; 919 default: 920 ret = X86_BR_NONE; 921 } 922 break; 923 case 0x70 ... 0x7f: /* conditional */ 924 ret = X86_BR_JCC; 925 break; 926 case 0xc2: /* near ret */ 927 case 0xc3: /* near ret */ 928 case 0xca: /* far ret */ 929 case 0xcb: /* far ret */ 930 ret = X86_BR_RET; 931 break; 932 case 0xcf: /* iret */ 933 ret = X86_BR_IRET; 934 break; 935 case 0xcc ... 0xce: /* int */ 936 ret = X86_BR_INT; 937 break; 938 case 0xe8: /* call near rel */ 939 insn_get_immediate(&insn); 940 if (insn.immediate1.value == 0) { 941 /* zero length call */ 942 ret = X86_BR_ZERO_CALL; 943 break; 944 } 945 /* fall through */ 946 case 0x9a: /* call far absolute */ 947 ret = X86_BR_CALL; 948 break; 949 case 0xe0 ... 0xe3: /* loop jmp */ 950 ret = X86_BR_JCC; 951 break; 952 case 0xe9 ... 0xeb: /* jmp */ 953 ret = X86_BR_JMP; 954 break; 955 case 0xff: /* call near absolute, call far absolute ind */ 956 insn_get_modrm(&insn); 957 ext = (insn.modrm.bytes[0] >> 3) & 0x7; 958 switch (ext) { 959 case 2: /* near ind call */ 960 case 3: /* far ind call */ 961 ret = X86_BR_IND_CALL; 962 break; 963 case 4: 964 case 5: 965 ret = X86_BR_IND_JMP; 966 break; 967 } 968 break; 969 default: 970 ret = X86_BR_NONE; 971 } 972 /* 973 * interrupts, traps, faults (and thus ring transition) may 974 * occur on any instructions. Thus, to classify them correctly, 975 * we need to first look at the from and to priv levels. If they 976 * are different and to is in the kernel, then it indicates 977 * a ring transition. If the from instruction is not a ring 978 * transition instr (syscall, systenter, int), then it means 979 * it was a irq, trap or fault. 980 * 981 * we have no way of detecting kernel to kernel faults. 982 */ 983 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL 984 && ret != X86_BR_SYSCALL && ret != X86_BR_INT) 985 ret = X86_BR_IRQ; 986 987 /* 988 * branch priv level determined by target as 989 * is done by HW when LBR_SELECT is implemented 990 */ 991 if (ret != X86_BR_NONE) 992 ret |= to_plm; 993 994 return ret; 995 } 996 997 #define X86_BR_TYPE_MAP_MAX 16 998 999 static int branch_map[X86_BR_TYPE_MAP_MAX] = { 1000 PERF_BR_CALL, /* X86_BR_CALL */ 1001 PERF_BR_RET, /* X86_BR_RET */ 1002 PERF_BR_SYSCALL, /* X86_BR_SYSCALL */ 1003 PERF_BR_SYSRET, /* X86_BR_SYSRET */ 1004 PERF_BR_UNKNOWN, /* X86_BR_INT */ 1005 PERF_BR_UNKNOWN, /* X86_BR_IRET */ 1006 PERF_BR_COND, /* X86_BR_JCC */ 1007 PERF_BR_UNCOND, /* X86_BR_JMP */ 1008 PERF_BR_UNKNOWN, /* X86_BR_IRQ */ 1009 PERF_BR_IND_CALL, /* X86_BR_IND_CALL */ 1010 PERF_BR_UNKNOWN, /* X86_BR_ABORT */ 1011 PERF_BR_UNKNOWN, /* X86_BR_IN_TX */ 1012 PERF_BR_UNKNOWN, /* X86_BR_NO_TX */ 1013 PERF_BR_CALL, /* X86_BR_ZERO_CALL */ 1014 PERF_BR_UNKNOWN, /* X86_BR_CALL_STACK */ 1015 PERF_BR_IND, /* X86_BR_IND_JMP */ 1016 }; 1017 1018 static int 1019 common_branch_type(int type) 1020 { 1021 int i; 1022 1023 type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */ 1024 1025 if (type) { 1026 i = __ffs(type); 1027 if (i < X86_BR_TYPE_MAP_MAX) 1028 return branch_map[i]; 1029 } 1030 1031 return PERF_BR_UNKNOWN; 1032 } 1033 1034 /* 1035 * implement actual branch filter based on user demand. 1036 * Hardware may not exactly satisfy that request, thus 1037 * we need to inspect opcodes. Mismatched branches are 1038 * discarded. Therefore, the number of branches returned 1039 * in PERF_SAMPLE_BRANCH_STACK sample may vary. 1040 */ 1041 static void 1042 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc) 1043 { 1044 u64 from, to; 1045 int br_sel = cpuc->br_sel; 1046 int i, j, type; 1047 bool compress = false; 1048 1049 /* if sampling all branches, then nothing to filter */ 1050 if (((br_sel & X86_BR_ALL) == X86_BR_ALL) && 1051 ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE)) 1052 return; 1053 1054 for (i = 0; i < cpuc->lbr_stack.nr; i++) { 1055 1056 from = cpuc->lbr_entries[i].from; 1057 to = cpuc->lbr_entries[i].to; 1058 1059 type = branch_type(from, to, cpuc->lbr_entries[i].abort); 1060 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) { 1061 if (cpuc->lbr_entries[i].in_tx) 1062 type |= X86_BR_IN_TX; 1063 else 1064 type |= X86_BR_NO_TX; 1065 } 1066 1067 /* if type does not correspond, then discard */ 1068 if (type == X86_BR_NONE || (br_sel & type) != type) { 1069 cpuc->lbr_entries[i].from = 0; 1070 compress = true; 1071 } 1072 1073 if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE) 1074 cpuc->lbr_entries[i].type = common_branch_type(type); 1075 } 1076 1077 if (!compress) 1078 return; 1079 1080 /* remove all entries with from=0 */ 1081 for (i = 0; i < cpuc->lbr_stack.nr; ) { 1082 if (!cpuc->lbr_entries[i].from) { 1083 j = i; 1084 while (++j < cpuc->lbr_stack.nr) 1085 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j]; 1086 cpuc->lbr_stack.nr--; 1087 if (!cpuc->lbr_entries[i].from) 1088 continue; 1089 } 1090 i++; 1091 } 1092 } 1093 1094 void intel_pmu_store_pebs_lbrs(struct pebs_lbr *lbr) 1095 { 1096 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1097 int i; 1098 1099 cpuc->lbr_stack.nr = x86_pmu.lbr_nr; 1100 for (i = 0; i < x86_pmu.lbr_nr; i++) { 1101 u64 info = lbr->lbr[i].info; 1102 struct perf_branch_entry *e = &cpuc->lbr_entries[i]; 1103 1104 e->from = lbr->lbr[i].from; 1105 e->to = lbr->lbr[i].to; 1106 e->mispred = !!(info & LBR_INFO_MISPRED); 1107 e->predicted = !(info & LBR_INFO_MISPRED); 1108 e->in_tx = !!(info & LBR_INFO_IN_TX); 1109 e->abort = !!(info & LBR_INFO_ABORT); 1110 e->cycles = info & LBR_INFO_CYCLES; 1111 e->reserved = 0; 1112 } 1113 intel_pmu_lbr_filter(cpuc); 1114 } 1115 1116 /* 1117 * Map interface branch filters onto LBR filters 1118 */ 1119 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { 1120 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, 1121 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, 1122 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, 1123 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, 1124 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP 1125 | LBR_IND_JMP | LBR_FAR, 1126 /* 1127 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches 1128 */ 1129 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = 1130 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR, 1131 /* 1132 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL 1133 */ 1134 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP, 1135 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, 1136 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, 1137 }; 1138 1139 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { 1140 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, 1141 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, 1142 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, 1143 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, 1144 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, 1145 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL 1146 | LBR_FAR, 1147 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, 1148 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, 1149 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, 1150 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, 1151 }; 1152 1153 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { 1154 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, 1155 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, 1156 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, 1157 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, 1158 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, 1159 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL 1160 | LBR_FAR, 1161 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, 1162 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, 1163 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL 1164 | LBR_RETURN | LBR_CALL_STACK, 1165 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, 1166 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, 1167 }; 1168 1169 /* core */ 1170 void __init intel_pmu_lbr_init_core(void) 1171 { 1172 x86_pmu.lbr_nr = 4; 1173 x86_pmu.lbr_tos = MSR_LBR_TOS; 1174 x86_pmu.lbr_from = MSR_LBR_CORE_FROM; 1175 x86_pmu.lbr_to = MSR_LBR_CORE_TO; 1176 1177 /* 1178 * SW branch filter usage: 1179 * - compensate for lack of HW filter 1180 */ 1181 } 1182 1183 /* nehalem/westmere */ 1184 void __init intel_pmu_lbr_init_nhm(void) 1185 { 1186 x86_pmu.lbr_nr = 16; 1187 x86_pmu.lbr_tos = MSR_LBR_TOS; 1188 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1189 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1190 1191 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1192 x86_pmu.lbr_sel_map = nhm_lbr_sel_map; 1193 1194 /* 1195 * SW branch filter usage: 1196 * - workaround LBR_SEL errata (see above) 1197 * - support syscall, sysret capture. 1198 * That requires LBR_FAR but that means far 1199 * jmp need to be filtered out 1200 */ 1201 } 1202 1203 /* sandy bridge */ 1204 void __init intel_pmu_lbr_init_snb(void) 1205 { 1206 x86_pmu.lbr_nr = 16; 1207 x86_pmu.lbr_tos = MSR_LBR_TOS; 1208 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1209 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1210 1211 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1212 x86_pmu.lbr_sel_map = snb_lbr_sel_map; 1213 1214 /* 1215 * SW branch filter usage: 1216 * - support syscall, sysret capture. 1217 * That requires LBR_FAR but that means far 1218 * jmp need to be filtered out 1219 */ 1220 } 1221 1222 /* haswell */ 1223 void intel_pmu_lbr_init_hsw(void) 1224 { 1225 x86_pmu.lbr_nr = 16; 1226 x86_pmu.lbr_tos = MSR_LBR_TOS; 1227 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1228 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1229 1230 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1231 x86_pmu.lbr_sel_map = hsw_lbr_sel_map; 1232 1233 if (lbr_from_signext_quirk_needed()) 1234 static_branch_enable(&lbr_from_quirk_key); 1235 } 1236 1237 /* skylake */ 1238 __init void intel_pmu_lbr_init_skl(void) 1239 { 1240 x86_pmu.lbr_nr = 32; 1241 x86_pmu.lbr_tos = MSR_LBR_TOS; 1242 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1243 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1244 1245 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1246 x86_pmu.lbr_sel_map = hsw_lbr_sel_map; 1247 1248 /* 1249 * SW branch filter usage: 1250 * - support syscall, sysret capture. 1251 * That requires LBR_FAR but that means far 1252 * jmp need to be filtered out 1253 */ 1254 } 1255 1256 /* atom */ 1257 void __init intel_pmu_lbr_init_atom(void) 1258 { 1259 /* 1260 * only models starting at stepping 10 seems 1261 * to have an operational LBR which can freeze 1262 * on PMU interrupt 1263 */ 1264 if (boot_cpu_data.x86_model == 28 1265 && boot_cpu_data.x86_stepping < 10) { 1266 pr_cont("LBR disabled due to erratum"); 1267 return; 1268 } 1269 1270 x86_pmu.lbr_nr = 8; 1271 x86_pmu.lbr_tos = MSR_LBR_TOS; 1272 x86_pmu.lbr_from = MSR_LBR_CORE_FROM; 1273 x86_pmu.lbr_to = MSR_LBR_CORE_TO; 1274 1275 /* 1276 * SW branch filter usage: 1277 * - compensate for lack of HW filter 1278 */ 1279 } 1280 1281 /* slm */ 1282 void __init intel_pmu_lbr_init_slm(void) 1283 { 1284 x86_pmu.lbr_nr = 8; 1285 x86_pmu.lbr_tos = MSR_LBR_TOS; 1286 x86_pmu.lbr_from = MSR_LBR_CORE_FROM; 1287 x86_pmu.lbr_to = MSR_LBR_CORE_TO; 1288 1289 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1290 x86_pmu.lbr_sel_map = nhm_lbr_sel_map; 1291 1292 /* 1293 * SW branch filter usage: 1294 * - compensate for lack of HW filter 1295 */ 1296 pr_cont("8-deep LBR, "); 1297 } 1298 1299 /* Knights Landing */ 1300 void intel_pmu_lbr_init_knl(void) 1301 { 1302 x86_pmu.lbr_nr = 8; 1303 x86_pmu.lbr_tos = MSR_LBR_TOS; 1304 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1305 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1306 1307 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1308 x86_pmu.lbr_sel_map = snb_lbr_sel_map; 1309 1310 /* Knights Landing does have MISPREDICT bit */ 1311 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP) 1312 x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS; 1313 } 1314