xref: /linux/arch/x86/events/intel/lbr.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
4 
5 #include <asm/cpu_device_id.h>
6 #include <asm/perf_event.h>
7 #include <asm/msr.h>
8 
9 #include "../perf_event.h"
10 
11 /*
12  * Intel LBR_SELECT bits
13  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
14  *
15  * Hardware branch filter (not available on all CPUs)
16  */
17 #define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
18 #define LBR_USER_BIT		1 /* do not capture at ring > 0 */
19 #define LBR_JCC_BIT		2 /* do not capture conditional branches */
20 #define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
21 #define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
22 #define LBR_RETURN_BIT		5 /* do not capture near returns */
23 #define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
24 #define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
25 #define LBR_FAR_BIT		8 /* do not capture far branches */
26 #define LBR_CALL_STACK_BIT	9 /* enable call stack */
27 
28 /*
29  * Following bit only exists in Linux; we mask it out before writing it to
30  * the actual MSR. But it helps the constraint perf code to understand
31  * that this is a separate configuration.
32  */
33 #define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */
34 
35 #define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
36 #define LBR_USER	(1 << LBR_USER_BIT)
37 #define LBR_JCC		(1 << LBR_JCC_BIT)
38 #define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
39 #define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
40 #define LBR_RETURN	(1 << LBR_RETURN_BIT)
41 #define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
42 #define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
43 #define LBR_FAR		(1 << LBR_FAR_BIT)
44 #define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
45 #define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
46 
47 #define LBR_PLM (LBR_KERNEL | LBR_USER)
48 
49 #define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
50 #define LBR_NOT_SUPP	-1	/* LBR filter not supported */
51 #define LBR_IGN		0	/* ignored */
52 
53 #define LBR_ANY		 \
54 	(LBR_JCC	|\
55 	 LBR_REL_CALL	|\
56 	 LBR_IND_CALL	|\
57 	 LBR_RETURN	|\
58 	 LBR_REL_JMP	|\
59 	 LBR_IND_JMP	|\
60 	 LBR_FAR)
61 
62 #define LBR_FROM_FLAG_MISPRED	BIT_ULL(63)
63 #define LBR_FROM_FLAG_IN_TX	BIT_ULL(62)
64 #define LBR_FROM_FLAG_ABORT	BIT_ULL(61)
65 
66 #define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59))
67 
68 /*
69  * Intel LBR_CTL bits
70  *
71  * Hardware branch filter for Arch LBR
72  */
73 #define ARCH_LBR_KERNEL_BIT		1  /* capture at ring0 */
74 #define ARCH_LBR_USER_BIT		2  /* capture at ring > 0 */
75 #define ARCH_LBR_CALL_STACK_BIT		3  /* enable call stack */
76 #define ARCH_LBR_JCC_BIT		16 /* capture conditional branches */
77 #define ARCH_LBR_REL_JMP_BIT		17 /* capture relative jumps */
78 #define ARCH_LBR_IND_JMP_BIT		18 /* capture indirect jumps */
79 #define ARCH_LBR_REL_CALL_BIT		19 /* capture relative calls */
80 #define ARCH_LBR_IND_CALL_BIT		20 /* capture indirect calls */
81 #define ARCH_LBR_RETURN_BIT		21 /* capture near returns */
82 #define ARCH_LBR_OTHER_BRANCH_BIT	22 /* capture other branches */
83 
84 #define ARCH_LBR_KERNEL			(1ULL << ARCH_LBR_KERNEL_BIT)
85 #define ARCH_LBR_USER			(1ULL << ARCH_LBR_USER_BIT)
86 #define ARCH_LBR_CALL_STACK		(1ULL << ARCH_LBR_CALL_STACK_BIT)
87 #define ARCH_LBR_JCC			(1ULL << ARCH_LBR_JCC_BIT)
88 #define ARCH_LBR_REL_JMP		(1ULL << ARCH_LBR_REL_JMP_BIT)
89 #define ARCH_LBR_IND_JMP		(1ULL << ARCH_LBR_IND_JMP_BIT)
90 #define ARCH_LBR_REL_CALL		(1ULL << ARCH_LBR_REL_CALL_BIT)
91 #define ARCH_LBR_IND_CALL		(1ULL << ARCH_LBR_IND_CALL_BIT)
92 #define ARCH_LBR_RETURN			(1ULL << ARCH_LBR_RETURN_BIT)
93 #define ARCH_LBR_OTHER_BRANCH		(1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
94 
95 #define ARCH_LBR_ANY			 \
96 	(ARCH_LBR_JCC			|\
97 	 ARCH_LBR_REL_JMP		|\
98 	 ARCH_LBR_IND_JMP		|\
99 	 ARCH_LBR_REL_CALL		|\
100 	 ARCH_LBR_IND_CALL		|\
101 	 ARCH_LBR_RETURN		|\
102 	 ARCH_LBR_OTHER_BRANCH)
103 
104 #define ARCH_LBR_CTL_MASK			0x7f000e
105 
106 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
107 
108 static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
109 {
110 	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
111 		return !!(config & ARCH_LBR_CALL_STACK);
112 
113 	return !!(config & LBR_CALL_STACK);
114 }
115 
116 /*
117  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
118  * otherwise it becomes near impossible to get a reliable stack.
119  */
120 
121 static void __intel_pmu_lbr_enable(bool pmi)
122 {
123 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
124 	u64 debugctl, lbr_select = 0, orig_debugctl;
125 
126 	/*
127 	 * No need to unfreeze manually, as v4 can do that as part
128 	 * of the GLOBAL_STATUS ack.
129 	 */
130 	if (pmi && x86_pmu.version >= 4)
131 		return;
132 
133 	/*
134 	 * No need to reprogram LBR_SELECT in a PMI, as it
135 	 * did not change.
136 	 */
137 	if (cpuc->lbr_sel)
138 		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
139 	if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
140 		wrmsrl(MSR_LBR_SELECT, lbr_select);
141 
142 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
143 	orig_debugctl = debugctl;
144 
145 	if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
146 		debugctl |= DEBUGCTLMSR_LBR;
147 	/*
148 	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
149 	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
150 	 * may cause superfluous increase/decrease of LBR_TOS.
151 	 */
152 	if (is_lbr_call_stack_bit_set(lbr_select))
153 		debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
154 	else
155 		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
156 
157 	if (orig_debugctl != debugctl)
158 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
159 
160 	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
161 		wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
162 }
163 
164 void intel_pmu_lbr_reset_32(void)
165 {
166 	int i;
167 
168 	for (i = 0; i < x86_pmu.lbr_nr; i++)
169 		wrmsrl(x86_pmu.lbr_from + i, 0);
170 }
171 
172 void intel_pmu_lbr_reset_64(void)
173 {
174 	int i;
175 
176 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
177 		wrmsrl(x86_pmu.lbr_from + i, 0);
178 		wrmsrl(x86_pmu.lbr_to   + i, 0);
179 		if (x86_pmu.lbr_has_info)
180 			wrmsrl(x86_pmu.lbr_info + i, 0);
181 	}
182 }
183 
184 static void intel_pmu_arch_lbr_reset(void)
185 {
186 	/* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
187 	wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
188 }
189 
190 void intel_pmu_lbr_reset(void)
191 {
192 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
193 
194 	if (!x86_pmu.lbr_nr)
195 		return;
196 
197 	x86_pmu.lbr_reset();
198 
199 	cpuc->last_task_ctx = NULL;
200 	cpuc->last_log_id = 0;
201 	if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && cpuc->lbr_select)
202 		wrmsrl(MSR_LBR_SELECT, 0);
203 }
204 
205 /*
206  * TOS = most recently recorded branch
207  */
208 static inline u64 intel_pmu_lbr_tos(void)
209 {
210 	u64 tos;
211 
212 	rdmsrl(x86_pmu.lbr_tos, tos);
213 	return tos;
214 }
215 
216 enum {
217 	LBR_NONE,
218 	LBR_VALID,
219 };
220 
221 /*
222  * For format LBR_FORMAT_EIP_FLAGS2, bits 61:62 in MSR_LAST_BRANCH_FROM_x
223  * are the TSX flags when TSX is supported, but when TSX is not supported
224  * they have no consistent behavior:
225  *
226  *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
227  *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
228  *     part of the sign extension.
229  *
230  * Therefore, if:
231  *
232  *   1) LBR format LBR_FORMAT_EIP_FLAGS2
233  *   2) CPU has no TSX support enabled
234  *
235  * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
236  * value from rdmsr() must be converted to have a 61 bits sign extension,
237  * ignoring the TSX flags.
238  */
239 static inline bool lbr_from_signext_quirk_needed(void)
240 {
241 	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
242 			   boot_cpu_has(X86_FEATURE_RTM);
243 
244 	return !tsx_support;
245 }
246 
247 static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
248 
249 /* If quirk is enabled, ensure sign extension is 63 bits: */
250 inline u64 lbr_from_signext_quirk_wr(u64 val)
251 {
252 	if (static_branch_unlikely(&lbr_from_quirk_key)) {
253 		/*
254 		 * Sign extend into bits 61:62 while preserving bit 63.
255 		 *
256 		 * Quirk is enabled when TSX is disabled. Therefore TSX bits
257 		 * in val are always OFF and must be changed to be sign
258 		 * extension bits. Since bits 59:60 are guaranteed to be
259 		 * part of the sign extension bits, we can just copy them
260 		 * to 61:62.
261 		 */
262 		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
263 	}
264 	return val;
265 }
266 
267 /*
268  * If quirk is needed, ensure sign extension is 61 bits:
269  */
270 static u64 lbr_from_signext_quirk_rd(u64 val)
271 {
272 	if (static_branch_unlikely(&lbr_from_quirk_key)) {
273 		/*
274 		 * Quirk is on when TSX is not enabled. Therefore TSX
275 		 * flags must be read as OFF.
276 		 */
277 		val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
278 	}
279 	return val;
280 }
281 
282 static __always_inline void wrlbr_from(unsigned int idx, u64 val)
283 {
284 	val = lbr_from_signext_quirk_wr(val);
285 	wrmsrl(x86_pmu.lbr_from + idx, val);
286 }
287 
288 static __always_inline void wrlbr_to(unsigned int idx, u64 val)
289 {
290 	wrmsrl(x86_pmu.lbr_to + idx, val);
291 }
292 
293 static __always_inline void wrlbr_info(unsigned int idx, u64 val)
294 {
295 	wrmsrl(x86_pmu.lbr_info + idx, val);
296 }
297 
298 static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
299 {
300 	u64 val;
301 
302 	if (lbr)
303 		return lbr->from;
304 
305 	rdmsrl(x86_pmu.lbr_from + idx, val);
306 
307 	return lbr_from_signext_quirk_rd(val);
308 }
309 
310 static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
311 {
312 	u64 val;
313 
314 	if (lbr)
315 		return lbr->to;
316 
317 	rdmsrl(x86_pmu.lbr_to + idx, val);
318 
319 	return val;
320 }
321 
322 static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
323 {
324 	u64 val;
325 
326 	if (lbr)
327 		return lbr->info;
328 
329 	rdmsrl(x86_pmu.lbr_info + idx, val);
330 
331 	return val;
332 }
333 
334 static inline void
335 wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
336 {
337 	wrlbr_from(idx, lbr->from);
338 	wrlbr_to(idx, lbr->to);
339 	if (need_info)
340 		wrlbr_info(idx, lbr->info);
341 }
342 
343 static inline bool
344 rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
345 {
346 	u64 from = rdlbr_from(idx, NULL);
347 
348 	/* Don't read invalid entry */
349 	if (!from)
350 		return false;
351 
352 	lbr->from = from;
353 	lbr->to = rdlbr_to(idx, NULL);
354 	if (need_info)
355 		lbr->info = rdlbr_info(idx, NULL);
356 
357 	return true;
358 }
359 
360 void intel_pmu_lbr_restore(void *ctx)
361 {
362 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
363 	struct x86_perf_task_context *task_ctx = ctx;
364 	bool need_info = x86_pmu.lbr_has_info;
365 	u64 tos = task_ctx->tos;
366 	unsigned lbr_idx, mask;
367 	int i;
368 
369 	mask = x86_pmu.lbr_nr - 1;
370 	for (i = 0; i < task_ctx->valid_lbrs; i++) {
371 		lbr_idx = (tos - i) & mask;
372 		wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
373 	}
374 
375 	for (; i < x86_pmu.lbr_nr; i++) {
376 		lbr_idx = (tos - i) & mask;
377 		wrlbr_from(lbr_idx, 0);
378 		wrlbr_to(lbr_idx, 0);
379 		if (need_info)
380 			wrlbr_info(lbr_idx, 0);
381 	}
382 
383 	wrmsrl(x86_pmu.lbr_tos, tos);
384 
385 	if (cpuc->lbr_select)
386 		wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
387 }
388 
389 static void intel_pmu_arch_lbr_restore(void *ctx)
390 {
391 	struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
392 	struct lbr_entry *entries = task_ctx->entries;
393 	int i;
394 
395 	/* Fast reset the LBRs before restore if the call stack is not full. */
396 	if (!entries[x86_pmu.lbr_nr - 1].from)
397 		intel_pmu_arch_lbr_reset();
398 
399 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
400 		if (!entries[i].from)
401 			break;
402 		wrlbr_all(&entries[i], i, true);
403 	}
404 }
405 
406 /*
407  * Restore the Architecture LBR state from the xsave area in the perf
408  * context data for the task via the XRSTORS instruction.
409  */
410 static void intel_pmu_arch_lbr_xrstors(void *ctx)
411 {
412 	struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
413 
414 	xrstors(&task_ctx->xsave, XFEATURE_MASK_LBR);
415 }
416 
417 static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
418 {
419 	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
420 		return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
421 
422 	return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
423 }
424 
425 static void __intel_pmu_lbr_restore(void *ctx)
426 {
427 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
428 
429 	if (task_context_opt(ctx)->lbr_callstack_users == 0 ||
430 	    task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
431 		intel_pmu_lbr_reset();
432 		return;
433 	}
434 
435 	/*
436 	 * Does not restore the LBR registers, if
437 	 * - No one else touched them, and
438 	 * - Was not cleared in Cstate
439 	 */
440 	if ((ctx == cpuc->last_task_ctx) &&
441 	    (task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
442 	    !lbr_is_reset_in_cstate(ctx)) {
443 		task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
444 		return;
445 	}
446 
447 	x86_pmu.lbr_restore(ctx);
448 
449 	task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
450 }
451 
452 void intel_pmu_lbr_save(void *ctx)
453 {
454 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
455 	struct x86_perf_task_context *task_ctx = ctx;
456 	bool need_info = x86_pmu.lbr_has_info;
457 	unsigned lbr_idx, mask;
458 	u64 tos;
459 	int i;
460 
461 	mask = x86_pmu.lbr_nr - 1;
462 	tos = intel_pmu_lbr_tos();
463 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
464 		lbr_idx = (tos - i) & mask;
465 		if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
466 			break;
467 	}
468 	task_ctx->valid_lbrs = i;
469 	task_ctx->tos = tos;
470 
471 	if (cpuc->lbr_select)
472 		rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
473 }
474 
475 static void intel_pmu_arch_lbr_save(void *ctx)
476 {
477 	struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
478 	struct lbr_entry *entries = task_ctx->entries;
479 	int i;
480 
481 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
482 		if (!rdlbr_all(&entries[i], i, true))
483 			break;
484 	}
485 
486 	/* LBR call stack is not full. Reset is required in restore. */
487 	if (i < x86_pmu.lbr_nr)
488 		entries[x86_pmu.lbr_nr - 1].from = 0;
489 }
490 
491 /*
492  * Save the Architecture LBR state to the xsave area in the perf
493  * context data for the task via the XSAVES instruction.
494  */
495 static void intel_pmu_arch_lbr_xsaves(void *ctx)
496 {
497 	struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
498 
499 	xsaves(&task_ctx->xsave, XFEATURE_MASK_LBR);
500 }
501 
502 static void __intel_pmu_lbr_save(void *ctx)
503 {
504 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
505 
506 	if (task_context_opt(ctx)->lbr_callstack_users == 0) {
507 		task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
508 		return;
509 	}
510 
511 	x86_pmu.lbr_save(ctx);
512 
513 	task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
514 
515 	cpuc->last_task_ctx = ctx;
516 	cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
517 }
518 
519 void intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
520 				 struct perf_event_pmu_context *next_epc)
521 {
522 	void *prev_ctx_data, *next_ctx_data;
523 
524 	swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
525 
526 	/*
527 	 * Architecture specific synchronization makes sense in case
528 	 * both prev_epc->task_ctx_data and next_epc->task_ctx_data
529 	 * pointers are allocated.
530 	 */
531 
532 	prev_ctx_data = next_epc->task_ctx_data;
533 	next_ctx_data = prev_epc->task_ctx_data;
534 
535 	if (!prev_ctx_data || !next_ctx_data)
536 		return;
537 
538 	swap(task_context_opt(prev_ctx_data)->lbr_callstack_users,
539 	     task_context_opt(next_ctx_data)->lbr_callstack_users);
540 }
541 
542 void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
543 {
544 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
545 	void *task_ctx;
546 
547 	if (!cpuc->lbr_users)
548 		return;
549 
550 	/*
551 	 * If LBR callstack feature is enabled and the stack was saved when
552 	 * the task was scheduled out, restore the stack. Otherwise flush
553 	 * the LBR stack.
554 	 */
555 	task_ctx = pmu_ctx ? pmu_ctx->task_ctx_data : NULL;
556 	if (task_ctx) {
557 		if (sched_in)
558 			__intel_pmu_lbr_restore(task_ctx);
559 		else
560 			__intel_pmu_lbr_save(task_ctx);
561 		return;
562 	}
563 
564 	/*
565 	 * Since a context switch can flip the address space and LBR entries
566 	 * are not tagged with an identifier, we need to wipe the LBR, even for
567 	 * per-cpu events. You simply cannot resolve the branches from the old
568 	 * address space.
569 	 */
570 	if (sched_in)
571 		intel_pmu_lbr_reset();
572 }
573 
574 static inline bool branch_user_callstack(unsigned br_sel)
575 {
576 	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
577 }
578 
579 void intel_pmu_lbr_add(struct perf_event *event)
580 {
581 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
582 
583 	if (!x86_pmu.lbr_nr)
584 		return;
585 
586 	if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
587 		cpuc->lbr_select = 1;
588 
589 	cpuc->br_sel = event->hw.branch_reg.reg;
590 
591 	if (branch_user_callstack(cpuc->br_sel) && event->pmu_ctx->task_ctx_data)
592 		task_context_opt(event->pmu_ctx->task_ctx_data)->lbr_callstack_users++;
593 
594 	/*
595 	 * Request pmu::sched_task() callback, which will fire inside the
596 	 * regular perf event scheduling, so that call will:
597 	 *
598 	 *  - restore or wipe; when LBR-callstack,
599 	 *  - wipe; otherwise,
600 	 *
601 	 * when this is from __perf_event_task_sched_in().
602 	 *
603 	 * However, if this is from perf_install_in_context(), no such callback
604 	 * will follow and we'll need to reset the LBR here if this is the
605 	 * first LBR event.
606 	 *
607 	 * The problem is, we cannot tell these cases apart... but we can
608 	 * exclude the biggest chunk of cases by looking at
609 	 * event->total_time_running. An event that has accrued runtime cannot
610 	 * be 'new'. Conversely, a new event can get installed through the
611 	 * context switch path for the first time.
612 	 */
613 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
614 		cpuc->lbr_pebs_users++;
615 	perf_sched_cb_inc(event->pmu);
616 	if (!cpuc->lbr_users++ && !event->total_time_running)
617 		intel_pmu_lbr_reset();
618 }
619 
620 void release_lbr_buffers(void)
621 {
622 	struct kmem_cache *kmem_cache;
623 	struct cpu_hw_events *cpuc;
624 	int cpu;
625 
626 	if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
627 		return;
628 
629 	for_each_possible_cpu(cpu) {
630 		cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
631 		kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
632 		if (kmem_cache && cpuc->lbr_xsave) {
633 			kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
634 			cpuc->lbr_xsave = NULL;
635 		}
636 	}
637 }
638 
639 void reserve_lbr_buffers(void)
640 {
641 	struct kmem_cache *kmem_cache;
642 	struct cpu_hw_events *cpuc;
643 	int cpu;
644 
645 	if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
646 		return;
647 
648 	for_each_possible_cpu(cpu) {
649 		cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
650 		kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
651 		if (!kmem_cache || cpuc->lbr_xsave)
652 			continue;
653 
654 		cpuc->lbr_xsave = kmem_cache_alloc_node(kmem_cache,
655 							GFP_KERNEL | __GFP_ZERO,
656 							cpu_to_node(cpu));
657 	}
658 }
659 
660 void intel_pmu_lbr_del(struct perf_event *event)
661 {
662 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
663 
664 	if (!x86_pmu.lbr_nr)
665 		return;
666 
667 	if (branch_user_callstack(cpuc->br_sel) &&
668 	    event->pmu_ctx->task_ctx_data)
669 		task_context_opt(event->pmu_ctx->task_ctx_data)->lbr_callstack_users--;
670 
671 	if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
672 		cpuc->lbr_select = 0;
673 
674 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
675 		cpuc->lbr_pebs_users--;
676 	cpuc->lbr_users--;
677 	WARN_ON_ONCE(cpuc->lbr_users < 0);
678 	WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
679 	perf_sched_cb_dec(event->pmu);
680 
681 	/*
682 	 * The logged occurrences information is only valid for the
683 	 * current LBR group. If another LBR group is scheduled in
684 	 * later, the information from the stale LBRs will be wrongly
685 	 * interpreted. Reset the LBRs here.
686 	 *
687 	 * Only clear once for a branch counter group with the leader
688 	 * event. Because
689 	 * - Cannot simply reset the LBRs with the !cpuc->lbr_users.
690 	 *   Because it's possible that the last LBR user is not in a
691 	 *   branch counter group, e.g., a branch_counters group +
692 	 *   several normal LBR events.
693 	 * - The LBR reset can be done with any one of the events in a
694 	 *   branch counter group, since they are always scheduled together.
695 	 *   It's easy to force the leader event an LBR event.
696 	 */
697 	if (is_branch_counters_group(event) && event == event->group_leader)
698 		intel_pmu_lbr_reset();
699 }
700 
701 static inline bool vlbr_exclude_host(void)
702 {
703 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
704 
705 	return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
706 		(unsigned long *)&cpuc->intel_ctrl_guest_mask);
707 }
708 
709 void intel_pmu_lbr_enable_all(bool pmi)
710 {
711 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
712 
713 	if (cpuc->lbr_users && !vlbr_exclude_host())
714 		__intel_pmu_lbr_enable(pmi);
715 }
716 
717 void intel_pmu_lbr_disable_all(void)
718 {
719 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
720 
721 	if (cpuc->lbr_users && !vlbr_exclude_host()) {
722 		if (static_cpu_has(X86_FEATURE_ARCH_LBR))
723 			return __intel_pmu_arch_lbr_disable();
724 
725 		__intel_pmu_lbr_disable();
726 	}
727 }
728 
729 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
730 {
731 	unsigned long mask = x86_pmu.lbr_nr - 1;
732 	struct perf_branch_entry *br = cpuc->lbr_entries;
733 	u64 tos = intel_pmu_lbr_tos();
734 	int i;
735 
736 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
737 		unsigned long lbr_idx = (tos - i) & mask;
738 		union {
739 			struct {
740 				u32 from;
741 				u32 to;
742 			};
743 			u64     lbr;
744 		} msr_lastbranch;
745 
746 		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
747 
748 		perf_clear_branch_entry_bitfields(br);
749 
750 		br->from	= msr_lastbranch.from;
751 		br->to		= msr_lastbranch.to;
752 		br++;
753 	}
754 	cpuc->lbr_stack.nr = i;
755 	cpuc->lbr_stack.hw_idx = tos;
756 }
757 
758 /*
759  * Due to lack of segmentation in Linux the effective address (offset)
760  * is the same as the linear address, allowing us to merge the LIP and EIP
761  * LBR formats.
762  */
763 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
764 {
765 	bool need_info = false, call_stack = false;
766 	unsigned long mask = x86_pmu.lbr_nr - 1;
767 	struct perf_branch_entry *br = cpuc->lbr_entries;
768 	u64 tos = intel_pmu_lbr_tos();
769 	int i;
770 	int out = 0;
771 	int num = x86_pmu.lbr_nr;
772 
773 	if (cpuc->lbr_sel) {
774 		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
775 		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
776 			call_stack = true;
777 	}
778 
779 	for (i = 0; i < num; i++) {
780 		unsigned long lbr_idx = (tos - i) & mask;
781 		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
782 		u16 cycles = 0;
783 
784 		from = rdlbr_from(lbr_idx, NULL);
785 		to   = rdlbr_to(lbr_idx, NULL);
786 
787 		/*
788 		 * Read LBR call stack entries
789 		 * until invalid entry (0s) is detected.
790 		 */
791 		if (call_stack && !from)
792 			break;
793 
794 		if (x86_pmu.lbr_has_info) {
795 			if (need_info) {
796 				u64 info;
797 
798 				info = rdlbr_info(lbr_idx, NULL);
799 				mis = !!(info & LBR_INFO_MISPRED);
800 				pred = !mis;
801 				cycles = (info & LBR_INFO_CYCLES);
802 				if (x86_pmu.lbr_has_tsx) {
803 					in_tx = !!(info & LBR_INFO_IN_TX);
804 					abort = !!(info & LBR_INFO_ABORT);
805 				}
806 			}
807 		} else {
808 			int skip = 0;
809 
810 			if (x86_pmu.lbr_from_flags) {
811 				mis = !!(from & LBR_FROM_FLAG_MISPRED);
812 				pred = !mis;
813 				skip = 1;
814 			}
815 			if (x86_pmu.lbr_has_tsx) {
816 				in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
817 				abort = !!(from & LBR_FROM_FLAG_ABORT);
818 				skip = 3;
819 			}
820 			from = (u64)((((s64)from) << skip) >> skip);
821 
822 			if (x86_pmu.lbr_to_cycles) {
823 				cycles = ((to >> 48) & LBR_INFO_CYCLES);
824 				to = (u64)((((s64)to) << 16) >> 16);
825 			}
826 		}
827 
828 		/*
829 		 * Some CPUs report duplicated abort records,
830 		 * with the second entry not having an abort bit set.
831 		 * Skip them here. This loop runs backwards,
832 		 * so we need to undo the previous record.
833 		 * If the abort just happened outside the window
834 		 * the extra entry cannot be removed.
835 		 */
836 		if (abort && x86_pmu.lbr_double_abort && out > 0)
837 			out--;
838 
839 		perf_clear_branch_entry_bitfields(br+out);
840 		br[out].from	 = from;
841 		br[out].to	 = to;
842 		br[out].mispred	 = mis;
843 		br[out].predicted = pred;
844 		br[out].in_tx	 = in_tx;
845 		br[out].abort	 = abort;
846 		br[out].cycles	 = cycles;
847 		out++;
848 	}
849 	cpuc->lbr_stack.nr = out;
850 	cpuc->lbr_stack.hw_idx = tos;
851 }
852 
853 static DEFINE_STATIC_KEY_FALSE(x86_lbr_mispred);
854 static DEFINE_STATIC_KEY_FALSE(x86_lbr_cycles);
855 static DEFINE_STATIC_KEY_FALSE(x86_lbr_type);
856 
857 static __always_inline int get_lbr_br_type(u64 info)
858 {
859 	int type = 0;
860 
861 	if (static_branch_likely(&x86_lbr_type))
862 		type = (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
863 
864 	return type;
865 }
866 
867 static __always_inline bool get_lbr_mispred(u64 info)
868 {
869 	bool mispred = 0;
870 
871 	if (static_branch_likely(&x86_lbr_mispred))
872 		mispred = !!(info & LBR_INFO_MISPRED);
873 
874 	return mispred;
875 }
876 
877 static __always_inline u16 get_lbr_cycles(u64 info)
878 {
879 	u16 cycles = info & LBR_INFO_CYCLES;
880 
881 	if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
882 	    (!static_branch_likely(&x86_lbr_cycles) ||
883 	     !(info & LBR_INFO_CYC_CNT_VALID)))
884 		cycles = 0;
885 
886 	return cycles;
887 }
888 
889 static_assert((64 - PERF_BRANCH_ENTRY_INFO_BITS_MAX) > LBR_INFO_BR_CNTR_NUM * LBR_INFO_BR_CNTR_BITS);
890 
891 static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
892 				struct lbr_entry *entries)
893 {
894 	struct perf_branch_entry *e;
895 	struct lbr_entry *lbr;
896 	u64 from, to, info;
897 	int i;
898 
899 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
900 		lbr = entries ? &entries[i] : NULL;
901 		e = &cpuc->lbr_entries[i];
902 
903 		from = rdlbr_from(i, lbr);
904 		/*
905 		 * Read LBR entries until invalid entry (0s) is detected.
906 		 */
907 		if (!from)
908 			break;
909 
910 		to = rdlbr_to(i, lbr);
911 		info = rdlbr_info(i, lbr);
912 
913 		perf_clear_branch_entry_bitfields(e);
914 
915 		e->from		= from;
916 		e->to		= to;
917 		e->mispred	= get_lbr_mispred(info);
918 		e->predicted	= !e->mispred;
919 		e->in_tx	= !!(info & LBR_INFO_IN_TX);
920 		e->abort	= !!(info & LBR_INFO_ABORT);
921 		e->cycles	= get_lbr_cycles(info);
922 		e->type		= get_lbr_br_type(info);
923 
924 		/*
925 		 * Leverage the reserved field of cpuc->lbr_entries[i] to
926 		 * temporarily store the branch counters information.
927 		 * The later code will decide what content can be disclosed
928 		 * to the perf tool. Pleae see intel_pmu_lbr_counters_reorder().
929 		 */
930 		e->reserved	= (info >> LBR_INFO_BR_CNTR_OFFSET) & LBR_INFO_BR_CNTR_FULL_MASK;
931 	}
932 
933 	cpuc->lbr_stack.nr = i;
934 }
935 
936 /*
937  * The enabled order may be different from the counter order.
938  * Update the lbr_counters with the enabled order.
939  */
940 static void intel_pmu_lbr_counters_reorder(struct cpu_hw_events *cpuc,
941 					   struct perf_event *event)
942 {
943 	int i, j, pos = 0, order[X86_PMC_IDX_MAX];
944 	struct perf_event *leader, *sibling;
945 	u64 src, dst, cnt;
946 
947 	leader = event->group_leader;
948 	if (branch_sample_counters(leader))
949 		order[pos++] = leader->hw.idx;
950 
951 	for_each_sibling_event(sibling, leader) {
952 		if (!branch_sample_counters(sibling))
953 			continue;
954 		order[pos++] = sibling->hw.idx;
955 	}
956 
957 	WARN_ON_ONCE(!pos);
958 
959 	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
960 		src = cpuc->lbr_entries[i].reserved;
961 		dst = 0;
962 		for (j = 0; j < pos; j++) {
963 			cnt = (src >> (order[j] * LBR_INFO_BR_CNTR_BITS)) & LBR_INFO_BR_CNTR_MASK;
964 			dst |= cnt << j * LBR_INFO_BR_CNTR_BITS;
965 		}
966 		cpuc->lbr_counters[i] = dst;
967 		cpuc->lbr_entries[i].reserved = 0;
968 	}
969 }
970 
971 void intel_pmu_lbr_save_brstack(struct perf_sample_data *data,
972 				struct cpu_hw_events *cpuc,
973 				struct perf_event *event)
974 {
975 	if (is_branch_counters_group(event)) {
976 		intel_pmu_lbr_counters_reorder(cpuc, event);
977 		perf_sample_save_brstack(data, event, &cpuc->lbr_stack, cpuc->lbr_counters);
978 		return;
979 	}
980 
981 	perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
982 }
983 
984 static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
985 {
986 	intel_pmu_store_lbr(cpuc, NULL);
987 }
988 
989 static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
990 {
991 	struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
992 
993 	if (!xsave) {
994 		intel_pmu_store_lbr(cpuc, NULL);
995 		return;
996 	}
997 	xsaves(&xsave->xsave, XFEATURE_MASK_LBR);
998 
999 	intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
1000 }
1001 
1002 void intel_pmu_lbr_read(void)
1003 {
1004 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1005 
1006 	/*
1007 	 * Don't read when all LBRs users are using adaptive PEBS.
1008 	 *
1009 	 * This could be smarter and actually check the event,
1010 	 * but this simple approach seems to work for now.
1011 	 */
1012 	if (!cpuc->lbr_users || vlbr_exclude_host() ||
1013 	    cpuc->lbr_users == cpuc->lbr_pebs_users)
1014 		return;
1015 
1016 	x86_pmu.lbr_read(cpuc);
1017 
1018 	intel_pmu_lbr_filter(cpuc);
1019 }
1020 
1021 /*
1022  * SW filter is used:
1023  * - in case there is no HW filter
1024  * - in case the HW filter has errata or limitations
1025  */
1026 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
1027 {
1028 	u64 br_type = event->attr.branch_sample_type;
1029 	int mask = 0;
1030 
1031 	if (br_type & PERF_SAMPLE_BRANCH_USER)
1032 		mask |= X86_BR_USER;
1033 
1034 	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
1035 		mask |= X86_BR_KERNEL;
1036 
1037 	/* we ignore BRANCH_HV here */
1038 
1039 	if (br_type & PERF_SAMPLE_BRANCH_ANY)
1040 		mask |= X86_BR_ANY;
1041 
1042 	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
1043 		mask |= X86_BR_ANY_CALL;
1044 
1045 	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
1046 		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
1047 
1048 	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
1049 		mask |= X86_BR_IND_CALL;
1050 
1051 	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
1052 		mask |= X86_BR_ABORT;
1053 
1054 	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
1055 		mask |= X86_BR_IN_TX;
1056 
1057 	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
1058 		mask |= X86_BR_NO_TX;
1059 
1060 	if (br_type & PERF_SAMPLE_BRANCH_COND)
1061 		mask |= X86_BR_JCC;
1062 
1063 	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
1064 		if (!x86_pmu_has_lbr_callstack())
1065 			return -EOPNOTSUPP;
1066 		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
1067 			return -EINVAL;
1068 		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
1069 			X86_BR_CALL_STACK;
1070 	}
1071 
1072 	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
1073 		mask |= X86_BR_IND_JMP;
1074 
1075 	if (br_type & PERF_SAMPLE_BRANCH_CALL)
1076 		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
1077 
1078 	if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
1079 		mask |= X86_BR_TYPE_SAVE;
1080 
1081 	/*
1082 	 * stash actual user request into reg, it may
1083 	 * be used by fixup code for some CPU
1084 	 */
1085 	event->hw.branch_reg.reg = mask;
1086 	return 0;
1087 }
1088 
1089 /*
1090  * setup the HW LBR filter
1091  * Used only when available, may not be enough to disambiguate
1092  * all branches, may need the help of the SW filter
1093  */
1094 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
1095 {
1096 	struct hw_perf_event_extra *reg;
1097 	u64 br_type = event->attr.branch_sample_type;
1098 	u64 mask = 0, v;
1099 	int i;
1100 
1101 	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
1102 		if (!(br_type & (1ULL << i)))
1103 			continue;
1104 
1105 		v = x86_pmu.lbr_sel_map[i];
1106 		if (v == LBR_NOT_SUPP)
1107 			return -EOPNOTSUPP;
1108 
1109 		if (v != LBR_IGN)
1110 			mask |= v;
1111 	}
1112 
1113 	reg = &event->hw.branch_reg;
1114 	reg->idx = EXTRA_REG_LBR;
1115 
1116 	if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
1117 		reg->config = mask;
1118 
1119 		/*
1120 		 * The Arch LBR HW can retrieve the common branch types
1121 		 * from the LBR_INFO. It doesn't require the high overhead
1122 		 * SW disassemble.
1123 		 * Enable the branch type by default for the Arch LBR.
1124 		 */
1125 		reg->reg |= X86_BR_TYPE_SAVE;
1126 		return 0;
1127 	}
1128 
1129 	/*
1130 	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
1131 	 * in suppress mode. So LBR_SELECT should be set to
1132 	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
1133 	 * But the 10th bit LBR_CALL_STACK does not operate
1134 	 * in suppress mode.
1135 	 */
1136 	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
1137 
1138 	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
1139 	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
1140 	    x86_pmu.lbr_has_info)
1141 		reg->config |= LBR_NO_INFO;
1142 
1143 	return 0;
1144 }
1145 
1146 int intel_pmu_setup_lbr_filter(struct perf_event *event)
1147 {
1148 	int ret = 0;
1149 
1150 	/*
1151 	 * no LBR on this PMU
1152 	 */
1153 	if (!x86_pmu.lbr_nr)
1154 		return -EOPNOTSUPP;
1155 
1156 	/*
1157 	 * setup SW LBR filter
1158 	 */
1159 	ret = intel_pmu_setup_sw_lbr_filter(event);
1160 	if (ret)
1161 		return ret;
1162 
1163 	/*
1164 	 * setup HW LBR filter, if any
1165 	 */
1166 	if (x86_pmu.lbr_sel_map)
1167 		ret = intel_pmu_setup_hw_lbr_filter(event);
1168 
1169 	return ret;
1170 }
1171 
1172 enum {
1173 	ARCH_LBR_BR_TYPE_JCC			= 0,
1174 	ARCH_LBR_BR_TYPE_NEAR_IND_JMP		= 1,
1175 	ARCH_LBR_BR_TYPE_NEAR_REL_JMP		= 2,
1176 	ARCH_LBR_BR_TYPE_NEAR_IND_CALL		= 3,
1177 	ARCH_LBR_BR_TYPE_NEAR_REL_CALL		= 4,
1178 	ARCH_LBR_BR_TYPE_NEAR_RET		= 5,
1179 	ARCH_LBR_BR_TYPE_KNOWN_MAX		= ARCH_LBR_BR_TYPE_NEAR_RET,
1180 
1181 	ARCH_LBR_BR_TYPE_MAP_MAX		= 16,
1182 };
1183 
1184 static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
1185 	[ARCH_LBR_BR_TYPE_JCC]			= X86_BR_JCC,
1186 	[ARCH_LBR_BR_TYPE_NEAR_IND_JMP]		= X86_BR_IND_JMP,
1187 	[ARCH_LBR_BR_TYPE_NEAR_REL_JMP]		= X86_BR_JMP,
1188 	[ARCH_LBR_BR_TYPE_NEAR_IND_CALL]	= X86_BR_IND_CALL,
1189 	[ARCH_LBR_BR_TYPE_NEAR_REL_CALL]	= X86_BR_CALL,
1190 	[ARCH_LBR_BR_TYPE_NEAR_RET]		= X86_BR_RET,
1191 };
1192 
1193 /*
1194  * implement actual branch filter based on user demand.
1195  * Hardware may not exactly satisfy that request, thus
1196  * we need to inspect opcodes. Mismatched branches are
1197  * discarded. Therefore, the number of branches returned
1198  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1199  */
1200 static void
1201 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1202 {
1203 	u64 from, to;
1204 	int br_sel = cpuc->br_sel;
1205 	int i, j, type, to_plm;
1206 	bool compress = false;
1207 
1208 	/* if sampling all branches, then nothing to filter */
1209 	if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1210 	    ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1211 		return;
1212 
1213 	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1214 
1215 		from = cpuc->lbr_entries[i].from;
1216 		to = cpuc->lbr_entries[i].to;
1217 		type = cpuc->lbr_entries[i].type;
1218 
1219 		/*
1220 		 * Parse the branch type recorded in LBR_x_INFO MSR.
1221 		 * Doesn't support OTHER_BRANCH decoding for now.
1222 		 * OTHER_BRANCH branch type still rely on software decoding.
1223 		 */
1224 		if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
1225 		    type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
1226 			to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1227 			type = arch_lbr_br_type_map[type] | to_plm;
1228 		} else
1229 			type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1230 		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1231 			if (cpuc->lbr_entries[i].in_tx)
1232 				type |= X86_BR_IN_TX;
1233 			else
1234 				type |= X86_BR_NO_TX;
1235 		}
1236 
1237 		/* if type does not correspond, then discard */
1238 		if (type == X86_BR_NONE || (br_sel & type) != type) {
1239 			cpuc->lbr_entries[i].from = 0;
1240 			compress = true;
1241 		}
1242 
1243 		if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1244 			cpuc->lbr_entries[i].type = common_branch_type(type);
1245 	}
1246 
1247 	if (!compress)
1248 		return;
1249 
1250 	/* remove all entries with from=0 */
1251 	for (i = 0; i < cpuc->lbr_stack.nr; ) {
1252 		if (!cpuc->lbr_entries[i].from) {
1253 			j = i;
1254 			while (++j < cpuc->lbr_stack.nr) {
1255 				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1256 				cpuc->lbr_counters[j-1] = cpuc->lbr_counters[j];
1257 			}
1258 			cpuc->lbr_stack.nr--;
1259 			if (!cpuc->lbr_entries[i].from)
1260 				continue;
1261 		}
1262 		i++;
1263 	}
1264 }
1265 
1266 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
1267 {
1268 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1269 
1270 	/* Cannot get TOS for large PEBS and Arch LBR */
1271 	if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
1272 	    (cpuc->n_pebs == cpuc->n_large_pebs))
1273 		cpuc->lbr_stack.hw_idx = -1ULL;
1274 	else
1275 		cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
1276 
1277 	intel_pmu_store_lbr(cpuc, lbr);
1278 	intel_pmu_lbr_filter(cpuc);
1279 }
1280 
1281 /*
1282  * Map interface branch filters onto LBR filters
1283  */
1284 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1285 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1286 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1287 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1288 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1289 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
1290 						| LBR_IND_JMP | LBR_FAR,
1291 	/*
1292 	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1293 	 */
1294 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1295 	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1296 	/*
1297 	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1298 	 */
1299 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1300 	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1301 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1302 };
1303 
1304 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1305 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1306 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1307 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1308 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1309 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1310 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1311 						| LBR_FAR,
1312 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1313 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1314 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1315 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1316 };
1317 
1318 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1319 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1320 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1321 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1322 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1323 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1324 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1325 						| LBR_FAR,
1326 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1327 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1328 	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1329 						| LBR_RETURN | LBR_CALL_STACK,
1330 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1331 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1332 };
1333 
1334 static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1335 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= ARCH_LBR_ANY,
1336 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= ARCH_LBR_USER,
1337 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= ARCH_LBR_KERNEL,
1338 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1339 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= ARCH_LBR_RETURN |
1340 						  ARCH_LBR_OTHER_BRANCH,
1341 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = ARCH_LBR_REL_CALL |
1342 						  ARCH_LBR_IND_CALL |
1343 						  ARCH_LBR_OTHER_BRANCH,
1344 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = ARCH_LBR_IND_CALL,
1345 	[PERF_SAMPLE_BRANCH_COND_SHIFT]         = ARCH_LBR_JCC,
1346 	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = ARCH_LBR_REL_CALL |
1347 						  ARCH_LBR_IND_CALL |
1348 						  ARCH_LBR_RETURN |
1349 						  ARCH_LBR_CALL_STACK,
1350 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= ARCH_LBR_IND_JMP,
1351 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= ARCH_LBR_REL_CALL,
1352 };
1353 
1354 /* core */
1355 void __init intel_pmu_lbr_init_core(void)
1356 {
1357 	x86_pmu.lbr_nr     = 4;
1358 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1359 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1360 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1361 
1362 	/*
1363 	 * SW branch filter usage:
1364 	 * - compensate for lack of HW filter
1365 	 */
1366 }
1367 
1368 /* nehalem/westmere */
1369 void __init intel_pmu_lbr_init_nhm(void)
1370 {
1371 	x86_pmu.lbr_nr     = 16;
1372 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1373 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1374 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1375 
1376 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1377 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1378 
1379 	/*
1380 	 * SW branch filter usage:
1381 	 * - workaround LBR_SEL errata (see above)
1382 	 * - support syscall, sysret capture.
1383 	 *   That requires LBR_FAR but that means far
1384 	 *   jmp need to be filtered out
1385 	 */
1386 }
1387 
1388 /* sandy bridge */
1389 void __init intel_pmu_lbr_init_snb(void)
1390 {
1391 	x86_pmu.lbr_nr	 = 16;
1392 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1393 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1394 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1395 
1396 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1397 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1398 
1399 	/*
1400 	 * SW branch filter usage:
1401 	 * - support syscall, sysret capture.
1402 	 *   That requires LBR_FAR but that means far
1403 	 *   jmp need to be filtered out
1404 	 */
1405 }
1406 
1407 static inline struct kmem_cache *
1408 create_lbr_kmem_cache(size_t size, size_t align)
1409 {
1410 	return kmem_cache_create("x86_lbr", size, align, 0, NULL);
1411 }
1412 
1413 /* haswell */
1414 void intel_pmu_lbr_init_hsw(void)
1415 {
1416 	size_t size = sizeof(struct x86_perf_task_context);
1417 
1418 	x86_pmu.lbr_nr	 = 16;
1419 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1420 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1421 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1422 
1423 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1424 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1425 
1426 	x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1427 }
1428 
1429 /* skylake */
1430 __init void intel_pmu_lbr_init_skl(void)
1431 {
1432 	size_t size = sizeof(struct x86_perf_task_context);
1433 
1434 	x86_pmu.lbr_nr	 = 32;
1435 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1436 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1437 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1438 	x86_pmu.lbr_info = MSR_LBR_INFO_0;
1439 
1440 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1441 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1442 
1443 	x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1444 
1445 	/*
1446 	 * SW branch filter usage:
1447 	 * - support syscall, sysret capture.
1448 	 *   That requires LBR_FAR but that means far
1449 	 *   jmp need to be filtered out
1450 	 */
1451 }
1452 
1453 /* atom */
1454 void __init intel_pmu_lbr_init_atom(void)
1455 {
1456 	/*
1457 	 * only models starting at stepping 10 seems
1458 	 * to have an operational LBR which can freeze
1459 	 * on PMU interrupt
1460 	 */
1461 	if (boot_cpu_data.x86_vfm == INTEL_ATOM_BONNELL
1462 	    && boot_cpu_data.x86_stepping < 10) {
1463 		pr_cont("LBR disabled due to erratum");
1464 		return;
1465 	}
1466 
1467 	x86_pmu.lbr_nr	   = 8;
1468 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1469 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1470 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1471 
1472 	/*
1473 	 * SW branch filter usage:
1474 	 * - compensate for lack of HW filter
1475 	 */
1476 }
1477 
1478 /* slm */
1479 void __init intel_pmu_lbr_init_slm(void)
1480 {
1481 	x86_pmu.lbr_nr	   = 8;
1482 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1483 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1484 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1485 
1486 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1487 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1488 
1489 	/*
1490 	 * SW branch filter usage:
1491 	 * - compensate for lack of HW filter
1492 	 */
1493 	pr_cont("8-deep LBR, ");
1494 }
1495 
1496 /* Knights Landing */
1497 void intel_pmu_lbr_init_knl(void)
1498 {
1499 	x86_pmu.lbr_nr	   = 8;
1500 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1501 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1502 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1503 
1504 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1505 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1506 
1507 	/* Knights Landing does have MISPREDICT bit */
1508 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1509 		x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1510 }
1511 
1512 void intel_pmu_lbr_init(void)
1513 {
1514 	switch (x86_pmu.intel_cap.lbr_format) {
1515 	case LBR_FORMAT_EIP_FLAGS2:
1516 		x86_pmu.lbr_has_tsx = 1;
1517 		x86_pmu.lbr_from_flags = 1;
1518 		if (lbr_from_signext_quirk_needed())
1519 			static_branch_enable(&lbr_from_quirk_key);
1520 		break;
1521 
1522 	case LBR_FORMAT_EIP_FLAGS:
1523 		x86_pmu.lbr_from_flags = 1;
1524 		break;
1525 
1526 	case LBR_FORMAT_INFO:
1527 		x86_pmu.lbr_has_tsx = 1;
1528 		fallthrough;
1529 	case LBR_FORMAT_INFO2:
1530 		x86_pmu.lbr_has_info = 1;
1531 		break;
1532 
1533 	case LBR_FORMAT_TIME:
1534 		x86_pmu.lbr_from_flags = 1;
1535 		x86_pmu.lbr_to_cycles = 1;
1536 		break;
1537 	}
1538 
1539 	if (x86_pmu.lbr_has_info) {
1540 		/*
1541 		 * Only used in combination with baseline pebs.
1542 		 */
1543 		static_branch_enable(&x86_lbr_mispred);
1544 		static_branch_enable(&x86_lbr_cycles);
1545 	}
1546 }
1547 
1548 /*
1549  * LBR state size is variable based on the max number of registers.
1550  * This calculates the expected state size, which should match
1551  * what the hardware enumerates for the size of XFEATURE_LBR.
1552  */
1553 static inline unsigned int get_lbr_state_size(void)
1554 {
1555 	return sizeof(struct arch_lbr_state) +
1556 	       x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1557 }
1558 
1559 static bool is_arch_lbr_xsave_available(void)
1560 {
1561 	if (!boot_cpu_has(X86_FEATURE_XSAVES))
1562 		return false;
1563 
1564 	/*
1565 	 * Check the LBR state with the corresponding software structure.
1566 	 * Disable LBR XSAVES support if the size doesn't match.
1567 	 */
1568 	if (xfeature_size(XFEATURE_LBR) == 0)
1569 		return false;
1570 
1571 	if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
1572 		return false;
1573 
1574 	return true;
1575 }
1576 
1577 void __init intel_pmu_arch_lbr_init(void)
1578 {
1579 	struct pmu *pmu = x86_get_pmu(smp_processor_id());
1580 	union cpuid28_eax eax;
1581 	union cpuid28_ebx ebx;
1582 	union cpuid28_ecx ecx;
1583 	unsigned int unused_edx;
1584 	bool arch_lbr_xsave;
1585 	size_t size;
1586 	u64 lbr_nr;
1587 
1588 	/* Arch LBR Capabilities */
1589 	cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
1590 
1591 	lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
1592 	if (!lbr_nr)
1593 		goto clear_arch_lbr;
1594 
1595 	/* Apply the max depth of Arch LBR */
1596 	if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
1597 		goto clear_arch_lbr;
1598 
1599 	x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
1600 	x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
1601 	x86_pmu.lbr_lip = eax.split.lbr_lip;
1602 	x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
1603 	x86_pmu.lbr_filter = ebx.split.lbr_filter;
1604 	x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
1605 	x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
1606 	x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
1607 	x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
1608 	x86_pmu.lbr_counters = ecx.split.lbr_counters;
1609 	x86_pmu.lbr_nr = lbr_nr;
1610 
1611 	if (!!x86_pmu.lbr_counters)
1612 		x86_pmu.flags |= PMU_FL_BR_CNTR;
1613 
1614 	if (x86_pmu.lbr_mispred)
1615 		static_branch_enable(&x86_lbr_mispred);
1616 	if (x86_pmu.lbr_timed_lbr)
1617 		static_branch_enable(&x86_lbr_cycles);
1618 	if (x86_pmu.lbr_br_type)
1619 		static_branch_enable(&x86_lbr_type);
1620 
1621 	arch_lbr_xsave = is_arch_lbr_xsave_available();
1622 	if (arch_lbr_xsave) {
1623 		size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
1624 		       get_lbr_state_size();
1625 		pmu->task_ctx_cache = create_lbr_kmem_cache(size,
1626 							    XSAVE_ALIGNMENT);
1627 	}
1628 
1629 	if (!pmu->task_ctx_cache) {
1630 		arch_lbr_xsave = false;
1631 
1632 		size = sizeof(struct x86_perf_task_context_arch_lbr) +
1633 		       lbr_nr * sizeof(struct lbr_entry);
1634 		pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1635 	}
1636 
1637 	x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
1638 	x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
1639 	x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
1640 
1641 	/* LBR callstack requires both CPL and Branch Filtering support */
1642 	if (!x86_pmu.lbr_cpl ||
1643 	    !x86_pmu.lbr_filter ||
1644 	    !x86_pmu.lbr_call_stack)
1645 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
1646 
1647 	if (!x86_pmu.lbr_cpl) {
1648 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
1649 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
1650 	} else if (!x86_pmu.lbr_filter) {
1651 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
1652 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
1653 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
1654 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
1655 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
1656 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
1657 		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
1658 	}
1659 
1660 	x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
1661 	x86_pmu.lbr_ctl_map  = arch_lbr_ctl_map;
1662 
1663 	if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
1664 		x86_pmu.lbr_ctl_map = NULL;
1665 
1666 	x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
1667 	if (arch_lbr_xsave) {
1668 		x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
1669 		x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
1670 		x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
1671 		pr_cont("XSAVE ");
1672 	} else {
1673 		x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
1674 		x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
1675 		x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
1676 	}
1677 
1678 	pr_cont("Architectural LBR, ");
1679 
1680 	return;
1681 
1682 clear_arch_lbr:
1683 	setup_clear_cpu_cap(X86_FEATURE_ARCH_LBR);
1684 }
1685 
1686 /**
1687  * x86_perf_get_lbr - get the LBR records information
1688  *
1689  * @lbr: the caller's memory to store the LBR records information
1690  */
1691 void x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
1692 {
1693 	lbr->nr = x86_pmu.lbr_nr;
1694 	lbr->from = x86_pmu.lbr_from;
1695 	lbr->to = x86_pmu.lbr_to;
1696 	lbr->info = x86_pmu.lbr_info;
1697 	lbr->has_callstack = x86_pmu_has_lbr_callstack();
1698 }
1699 EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
1700 
1701 struct event_constraint vlbr_constraint =
1702 	__EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
1703 			  FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);
1704