1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bitops.h> 3 #include <linux/types.h> 4 #include <linux/slab.h> 5 #include <linux/sched/clock.h> 6 7 #include <asm/cpu_entry_area.h> 8 #include <asm/debugreg.h> 9 #include <asm/perf_event.h> 10 #include <asm/tlbflush.h> 11 #include <asm/insn.h> 12 #include <asm/io.h> 13 #include <asm/msr.h> 14 #include <asm/timer.h> 15 16 #include "../perf_event.h" 17 18 /* Waste a full page so it can be mapped into the cpu_entry_area */ 19 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); 20 21 /* The size of a BTS record in bytes: */ 22 #define BTS_RECORD_SIZE 24 23 24 #define PEBS_FIXUP_SIZE PAGE_SIZE 25 26 /* 27 * pebs_record_32 for p4 and core not supported 28 29 struct pebs_record_32 { 30 u32 flags, ip; 31 u32 ax, bc, cx, dx; 32 u32 si, di, bp, sp; 33 }; 34 35 */ 36 37 union intel_x86_pebs_dse { 38 u64 val; 39 struct { 40 unsigned int ld_dse:4; 41 unsigned int ld_stlb_miss:1; 42 unsigned int ld_locked:1; 43 unsigned int ld_data_blk:1; 44 unsigned int ld_addr_blk:1; 45 unsigned int ld_reserved:24; 46 }; 47 struct { 48 unsigned int st_l1d_hit:1; 49 unsigned int st_reserved1:3; 50 unsigned int st_stlb_miss:1; 51 unsigned int st_locked:1; 52 unsigned int st_reserved2:26; 53 }; 54 struct { 55 unsigned int st_lat_dse:4; 56 unsigned int st_lat_stlb_miss:1; 57 unsigned int st_lat_locked:1; 58 unsigned int ld_reserved3:26; 59 }; 60 struct { 61 unsigned int mtl_dse:5; 62 unsigned int mtl_locked:1; 63 unsigned int mtl_stlb_miss:1; 64 unsigned int mtl_fwd_blk:1; 65 unsigned int ld_reserved4:24; 66 }; 67 struct { 68 unsigned int lnc_dse:8; 69 unsigned int ld_reserved5:2; 70 unsigned int lnc_stlb_miss:1; 71 unsigned int lnc_locked:1; 72 unsigned int lnc_data_blk:1; 73 unsigned int lnc_addr_blk:1; 74 unsigned int ld_reserved6:18; 75 }; 76 }; 77 78 79 /* 80 * Map PEBS Load Latency Data Source encodings to generic 81 * memory data source information 82 */ 83 #define P(a, b) PERF_MEM_S(a, b) 84 #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) 85 #define LEVEL(x) P(LVLNUM, x) 86 #define REM P(REMOTE, REMOTE) 87 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) 88 89 /* Version for Sandy Bridge and later */ 90 static u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = { 91 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ 92 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ 93 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ 94 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ 95 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ 96 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ 97 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ 98 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ 99 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ 100 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ 101 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ 102 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ 103 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ 104 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ 105 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ 106 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ 107 }; 108 109 /* Patch up minor differences in the bits */ 110 void __init intel_pmu_pebs_data_source_nhm(void) 111 { 112 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 113 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 114 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 115 } 116 117 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source) 118 { 119 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); 120 121 data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); 122 data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); 123 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); 124 data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); 125 data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); 126 } 127 128 void __init intel_pmu_pebs_data_source_skl(bool pmem) 129 { 130 __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source); 131 } 132 133 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source) 134 { 135 data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 136 data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 137 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); 138 } 139 140 void __init intel_pmu_pebs_data_source_grt(void) 141 { 142 __intel_pmu_pebs_data_source_grt(pebs_data_source); 143 } 144 145 void __init intel_pmu_pebs_data_source_adl(void) 146 { 147 u64 *data_source; 148 149 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; 150 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 151 __intel_pmu_pebs_data_source_skl(false, data_source); 152 153 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; 154 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 155 __intel_pmu_pebs_data_source_grt(data_source); 156 } 157 158 static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source) 159 { 160 data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); 161 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 162 data_source[0x0a] = OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE); 163 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); 164 data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD); 165 data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM); 166 } 167 168 void __init intel_pmu_pebs_data_source_mtl(void) 169 { 170 u64 *data_source; 171 172 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; 173 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 174 __intel_pmu_pebs_data_source_skl(false, data_source); 175 176 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; 177 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 178 __intel_pmu_pebs_data_source_cmt(data_source); 179 } 180 181 void __init intel_pmu_pebs_data_source_arl_h(void) 182 { 183 u64 *data_source; 184 185 intel_pmu_pebs_data_source_lnl(); 186 187 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX].pebs_data_source; 188 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 189 __intel_pmu_pebs_data_source_cmt(data_source); 190 } 191 192 void __init intel_pmu_pebs_data_source_cmt(void) 193 { 194 __intel_pmu_pebs_data_source_cmt(pebs_data_source); 195 } 196 197 /* Version for Lion Cove and later */ 198 static u64 lnc_pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = { 199 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA), /* 0x00: ukn L3 */ 200 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 hit */ 201 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x02: L1 hit */ 202 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x03: LFB/L1 Miss Handling Buffer hit */ 203 0, /* 0x04: Reserved */ 204 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x05: L2 Hit */ 205 OP_LH | LEVEL(L2_MHB) | P(SNOOP, NONE), /* 0x06: L2 Miss Handling Buffer Hit */ 206 0, /* 0x07: Reserved */ 207 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x08: L3 Hit */ 208 0, /* 0x09: Reserved */ 209 0, /* 0x0a: Reserved */ 210 0, /* 0x0b: Reserved */ 211 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD), /* 0x0c: L3 Hit Snoop Fwd */ 212 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x0d: L3 Hit Snoop HitM */ 213 0, /* 0x0e: Reserved */ 214 P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x0f: L3 Miss Snoop HitM */ 215 OP_LH | LEVEL(MSC) | P(SNOOP, NONE), /* 0x10: Memory-side Cache Hit */ 216 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE), /* 0x11: Local Memory Hit */ 217 }; 218 219 void __init intel_pmu_pebs_data_source_lnl(void) 220 { 221 u64 *data_source; 222 223 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; 224 memcpy(data_source, lnc_pebs_data_source, sizeof(lnc_pebs_data_source)); 225 226 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; 227 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 228 __intel_pmu_pebs_data_source_cmt(data_source); 229 } 230 231 static u64 precise_store_data(u64 status) 232 { 233 union intel_x86_pebs_dse dse; 234 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); 235 236 dse.val = status; 237 238 /* 239 * bit 4: TLB access 240 * 1 = stored missed 2nd level TLB 241 * 242 * so it either hit the walker or the OS 243 * otherwise hit 2nd level TLB 244 */ 245 if (dse.st_stlb_miss) 246 val |= P(TLB, MISS); 247 else 248 val |= P(TLB, HIT); 249 250 /* 251 * bit 0: hit L1 data cache 252 * if not set, then all we know is that 253 * it missed L1D 254 */ 255 if (dse.st_l1d_hit) 256 val |= P(LVL, HIT); 257 else 258 val |= P(LVL, MISS); 259 260 /* 261 * bit 5: Locked prefix 262 */ 263 if (dse.st_locked) 264 val |= P(LOCK, LOCKED); 265 266 return val; 267 } 268 269 static u64 precise_datala_hsw(struct perf_event *event, u64 status) 270 { 271 union perf_mem_data_src dse; 272 273 dse.val = PERF_MEM_NA; 274 275 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) 276 dse.mem_op = PERF_MEM_OP_STORE; 277 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) 278 dse.mem_op = PERF_MEM_OP_LOAD; 279 280 /* 281 * L1 info only valid for following events: 282 * 283 * MEM_UOPS_RETIRED.STLB_MISS_STORES 284 * MEM_UOPS_RETIRED.LOCK_STORES 285 * MEM_UOPS_RETIRED.SPLIT_STORES 286 * MEM_UOPS_RETIRED.ALL_STORES 287 */ 288 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { 289 if (status & 1) 290 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; 291 else 292 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; 293 } 294 return dse.val; 295 } 296 297 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock) 298 { 299 /* 300 * TLB access 301 * 0 = did not miss 2nd level TLB 302 * 1 = missed 2nd level TLB 303 */ 304 if (tlb) 305 *val |= P(TLB, MISS) | P(TLB, L2); 306 else 307 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); 308 309 /* locked prefix */ 310 if (lock) 311 *val |= P(LOCK, LOCKED); 312 } 313 314 /* Retrieve the latency data for e-core of ADL */ 315 static u64 __grt_latency_data(struct perf_event *event, u64 status, 316 u8 dse, bool tlb, bool lock, bool blk) 317 { 318 u64 val; 319 320 WARN_ON_ONCE(is_hybrid() && 321 hybrid_pmu(event->pmu)->pmu_type == hybrid_big); 322 323 dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK; 324 val = hybrid_var(event->pmu, pebs_data_source)[dse]; 325 326 pebs_set_tlb_lock(&val, tlb, lock); 327 328 if (blk) 329 val |= P(BLK, DATA); 330 else 331 val |= P(BLK, NA); 332 333 return val; 334 } 335 336 u64 grt_latency_data(struct perf_event *event, u64 status) 337 { 338 union intel_x86_pebs_dse dse; 339 340 dse.val = status; 341 342 return __grt_latency_data(event, status, dse.ld_dse, 343 dse.ld_locked, dse.ld_stlb_miss, 344 dse.ld_data_blk); 345 } 346 347 /* Retrieve the latency data for e-core of MTL */ 348 u64 cmt_latency_data(struct perf_event *event, u64 status) 349 { 350 union intel_x86_pebs_dse dse; 351 352 dse.val = status; 353 354 return __grt_latency_data(event, status, dse.mtl_dse, 355 dse.mtl_stlb_miss, dse.mtl_locked, 356 dse.mtl_fwd_blk); 357 } 358 359 static u64 lnc_latency_data(struct perf_event *event, u64 status) 360 { 361 union intel_x86_pebs_dse dse; 362 union perf_mem_data_src src; 363 u64 val; 364 365 dse.val = status; 366 367 /* LNC core latency data */ 368 val = hybrid_var(event->pmu, pebs_data_source)[status & PERF_PEBS_DATA_SOURCE_MASK]; 369 if (!val) 370 val = P(OP, LOAD) | LEVEL(NA) | P(SNOOP, NA); 371 372 if (dse.lnc_stlb_miss) 373 val |= P(TLB, MISS) | P(TLB, L2); 374 else 375 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); 376 377 if (dse.lnc_locked) 378 val |= P(LOCK, LOCKED); 379 380 if (dse.lnc_data_blk) 381 val |= P(BLK, DATA); 382 if (dse.lnc_addr_blk) 383 val |= P(BLK, ADDR); 384 if (!dse.lnc_data_blk && !dse.lnc_addr_blk) 385 val |= P(BLK, NA); 386 387 src.val = val; 388 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) 389 src.mem_op = P(OP, STORE); 390 391 return src.val; 392 } 393 394 u64 lnl_latency_data(struct perf_event *event, u64 status) 395 { 396 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); 397 398 if (pmu->pmu_type == hybrid_small) 399 return cmt_latency_data(event, status); 400 401 return lnc_latency_data(event, status); 402 } 403 404 u64 arl_h_latency_data(struct perf_event *event, u64 status) 405 { 406 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); 407 408 if (pmu->pmu_type == hybrid_tiny) 409 return cmt_latency_data(event, status); 410 411 return lnl_latency_data(event, status); 412 } 413 414 static u64 load_latency_data(struct perf_event *event, u64 status) 415 { 416 union intel_x86_pebs_dse dse; 417 u64 val; 418 419 dse.val = status; 420 421 /* 422 * use the mapping table for bit 0-3 423 */ 424 val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse]; 425 426 /* 427 * Nehalem models do not support TLB, Lock infos 428 */ 429 if (x86_pmu.pebs_no_tlb) { 430 val |= P(TLB, NA) | P(LOCK, NA); 431 return val; 432 } 433 434 pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked); 435 436 /* 437 * Ice Lake and earlier models do not support block infos. 438 */ 439 if (!x86_pmu.pebs_block) { 440 val |= P(BLK, NA); 441 return val; 442 } 443 /* 444 * bit 6: load was blocked since its data could not be forwarded 445 * from a preceding store 446 */ 447 if (dse.ld_data_blk) 448 val |= P(BLK, DATA); 449 450 /* 451 * bit 7: load was blocked due to potential address conflict with 452 * a preceding store 453 */ 454 if (dse.ld_addr_blk) 455 val |= P(BLK, ADDR); 456 457 if (!dse.ld_data_blk && !dse.ld_addr_blk) 458 val |= P(BLK, NA); 459 460 return val; 461 } 462 463 static u64 store_latency_data(struct perf_event *event, u64 status) 464 { 465 union intel_x86_pebs_dse dse; 466 union perf_mem_data_src src; 467 u64 val; 468 469 dse.val = status; 470 471 /* 472 * use the mapping table for bit 0-3 473 */ 474 val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse]; 475 476 pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked); 477 478 val |= P(BLK, NA); 479 480 /* 481 * the pebs_data_source table is only for loads 482 * so override the mem_op to say STORE instead 483 */ 484 src.val = val; 485 src.mem_op = P(OP,STORE); 486 487 return src.val; 488 } 489 490 struct pebs_record_core { 491 u64 flags, ip; 492 u64 ax, bx, cx, dx; 493 u64 si, di, bp, sp; 494 u64 r8, r9, r10, r11; 495 u64 r12, r13, r14, r15; 496 }; 497 498 struct pebs_record_nhm { 499 u64 flags, ip; 500 u64 ax, bx, cx, dx; 501 u64 si, di, bp, sp; 502 u64 r8, r9, r10, r11; 503 u64 r12, r13, r14, r15; 504 u64 status, dla, dse, lat; 505 }; 506 507 /* 508 * Same as pebs_record_nhm, with two additional fields. 509 */ 510 struct pebs_record_hsw { 511 u64 flags, ip; 512 u64 ax, bx, cx, dx; 513 u64 si, di, bp, sp; 514 u64 r8, r9, r10, r11; 515 u64 r12, r13, r14, r15; 516 u64 status, dla, dse, lat; 517 u64 real_ip, tsx_tuning; 518 }; 519 520 union hsw_tsx_tuning { 521 struct { 522 u32 cycles_last_block : 32, 523 hle_abort : 1, 524 rtm_abort : 1, 525 instruction_abort : 1, 526 non_instruction_abort : 1, 527 retry : 1, 528 data_conflict : 1, 529 capacity_writes : 1, 530 capacity_reads : 1; 531 }; 532 u64 value; 533 }; 534 535 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL 536 537 /* Same as HSW, plus TSC */ 538 539 struct pebs_record_skl { 540 u64 flags, ip; 541 u64 ax, bx, cx, dx; 542 u64 si, di, bp, sp; 543 u64 r8, r9, r10, r11; 544 u64 r12, r13, r14, r15; 545 u64 status, dla, dse, lat; 546 u64 real_ip, tsx_tuning; 547 u64 tsc; 548 }; 549 550 void init_debug_store_on_cpu(int cpu) 551 { 552 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; 553 554 if (!ds) 555 return; 556 557 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 558 (u32)((u64)(unsigned long)ds), 559 (u32)((u64)(unsigned long)ds >> 32)); 560 } 561 562 void fini_debug_store_on_cpu(int cpu) 563 { 564 if (!per_cpu(cpu_hw_events, cpu).ds) 565 return; 566 567 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); 568 } 569 570 static DEFINE_PER_CPU(void *, insn_buffer); 571 572 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) 573 { 574 unsigned long start = (unsigned long)cea; 575 phys_addr_t pa; 576 size_t msz = 0; 577 578 pa = virt_to_phys(addr); 579 580 preempt_disable(); 581 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) 582 cea_set_pte(cea, pa, prot); 583 584 /* 585 * This is a cross-CPU update of the cpu_entry_area, we must shoot down 586 * all TLB entries for it. 587 */ 588 flush_tlb_kernel_range(start, start + size); 589 preempt_enable(); 590 } 591 592 static void ds_clear_cea(void *cea, size_t size) 593 { 594 unsigned long start = (unsigned long)cea; 595 size_t msz = 0; 596 597 preempt_disable(); 598 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) 599 cea_set_pte(cea, 0, PAGE_NONE); 600 601 flush_tlb_kernel_range(start, start + size); 602 preempt_enable(); 603 } 604 605 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) 606 { 607 unsigned int order = get_order(size); 608 int node = cpu_to_node(cpu); 609 struct page *page; 610 611 page = __alloc_pages_node(node, flags | __GFP_ZERO, order); 612 return page ? page_address(page) : NULL; 613 } 614 615 static void dsfree_pages(const void *buffer, size_t size) 616 { 617 if (buffer) 618 free_pages((unsigned long)buffer, get_order(size)); 619 } 620 621 static int alloc_pebs_buffer(int cpu) 622 { 623 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 624 struct debug_store *ds = hwev->ds; 625 size_t bsiz = x86_pmu.pebs_buffer_size; 626 int max, node = cpu_to_node(cpu); 627 void *buffer, *insn_buff, *cea; 628 629 if (!intel_pmu_has_pebs()) 630 return 0; 631 632 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); 633 if (unlikely(!buffer)) 634 return -ENOMEM; 635 636 if (x86_pmu.arch_pebs) { 637 hwev->pebs_vaddr = buffer; 638 return 0; 639 } 640 641 /* 642 * HSW+ already provides us the eventing ip; no need to allocate this 643 * buffer then. 644 */ 645 if (x86_pmu.intel_cap.pebs_format < 2) { 646 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); 647 if (!insn_buff) { 648 dsfree_pages(buffer, bsiz); 649 return -ENOMEM; 650 } 651 per_cpu(insn_buffer, cpu) = insn_buff; 652 } 653 hwev->pebs_vaddr = buffer; 654 /* Update the cpu entry area mapping */ 655 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 656 ds->pebs_buffer_base = (unsigned long) cea; 657 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); 658 ds->pebs_index = ds->pebs_buffer_base; 659 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); 660 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; 661 return 0; 662 } 663 664 static void release_pebs_buffer(int cpu) 665 { 666 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 667 void *cea; 668 669 if (!intel_pmu_has_pebs()) 670 return; 671 672 if (x86_pmu.ds_pebs) { 673 kfree(per_cpu(insn_buffer, cpu)); 674 per_cpu(insn_buffer, cpu) = NULL; 675 676 /* Clear the fixmap */ 677 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 678 ds_clear_cea(cea, x86_pmu.pebs_buffer_size); 679 } 680 681 dsfree_pages(hwev->pebs_vaddr, x86_pmu.pebs_buffer_size); 682 hwev->pebs_vaddr = NULL; 683 } 684 685 static int alloc_bts_buffer(int cpu) 686 { 687 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 688 struct debug_store *ds = hwev->ds; 689 void *buffer, *cea; 690 int max; 691 692 if (!x86_pmu.bts) 693 return 0; 694 695 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); 696 if (unlikely(!buffer)) { 697 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); 698 return -ENOMEM; 699 } 700 hwev->ds_bts_vaddr = buffer; 701 /* Update the fixmap */ 702 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 703 ds->bts_buffer_base = (unsigned long) cea; 704 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); 705 ds->bts_index = ds->bts_buffer_base; 706 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; 707 ds->bts_absolute_maximum = ds->bts_buffer_base + 708 max * BTS_RECORD_SIZE; 709 ds->bts_interrupt_threshold = ds->bts_absolute_maximum - 710 (max / 16) * BTS_RECORD_SIZE; 711 return 0; 712 } 713 714 static void release_bts_buffer(int cpu) 715 { 716 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 717 void *cea; 718 719 if (!x86_pmu.bts) 720 return; 721 722 /* Clear the fixmap */ 723 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 724 ds_clear_cea(cea, BTS_BUFFER_SIZE); 725 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); 726 hwev->ds_bts_vaddr = NULL; 727 } 728 729 static int alloc_ds_buffer(int cpu) 730 { 731 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; 732 733 memset(ds, 0, sizeof(*ds)); 734 per_cpu(cpu_hw_events, cpu).ds = ds; 735 return 0; 736 } 737 738 static void release_ds_buffer(int cpu) 739 { 740 per_cpu(cpu_hw_events, cpu).ds = NULL; 741 } 742 743 void release_ds_buffers(void) 744 { 745 int cpu; 746 747 if (!x86_pmu.bts && !x86_pmu.ds_pebs) 748 return; 749 750 for_each_possible_cpu(cpu) 751 release_ds_buffer(cpu); 752 753 for_each_possible_cpu(cpu) { 754 /* 755 * Again, ignore errors from offline CPUs, they will no longer 756 * observe cpu_hw_events.ds and not program the DS_AREA when 757 * they come up. 758 */ 759 fini_debug_store_on_cpu(cpu); 760 } 761 762 for_each_possible_cpu(cpu) { 763 if (x86_pmu.ds_pebs) 764 release_pebs_buffer(cpu); 765 release_bts_buffer(cpu); 766 } 767 } 768 769 void reserve_ds_buffers(void) 770 { 771 int bts_err = 0, pebs_err = 0; 772 int cpu; 773 774 x86_pmu.bts_active = 0; 775 776 if (x86_pmu.ds_pebs) 777 x86_pmu.pebs_active = 0; 778 779 if (!x86_pmu.bts && !x86_pmu.ds_pebs) 780 return; 781 782 if (!x86_pmu.bts) 783 bts_err = 1; 784 785 if (!x86_pmu.ds_pebs) 786 pebs_err = 1; 787 788 for_each_possible_cpu(cpu) { 789 if (alloc_ds_buffer(cpu)) { 790 bts_err = 1; 791 pebs_err = 1; 792 } 793 794 if (!bts_err && alloc_bts_buffer(cpu)) 795 bts_err = 1; 796 797 if (x86_pmu.ds_pebs && !pebs_err && 798 alloc_pebs_buffer(cpu)) 799 pebs_err = 1; 800 801 if (bts_err && pebs_err) 802 break; 803 } 804 805 if (bts_err) { 806 for_each_possible_cpu(cpu) 807 release_bts_buffer(cpu); 808 } 809 810 if (x86_pmu.ds_pebs && pebs_err) { 811 for_each_possible_cpu(cpu) 812 release_pebs_buffer(cpu); 813 } 814 815 if (bts_err && pebs_err) { 816 for_each_possible_cpu(cpu) 817 release_ds_buffer(cpu); 818 } else { 819 if (x86_pmu.bts && !bts_err) 820 x86_pmu.bts_active = 1; 821 822 if (x86_pmu.ds_pebs && !pebs_err) 823 x86_pmu.pebs_active = 1; 824 825 for_each_possible_cpu(cpu) { 826 /* 827 * Ignores wrmsr_on_cpu() errors for offline CPUs they 828 * will get this call through intel_pmu_cpu_starting(). 829 */ 830 init_debug_store_on_cpu(cpu); 831 } 832 } 833 } 834 835 inline int alloc_arch_pebs_buf_on_cpu(int cpu) 836 { 837 if (!x86_pmu.arch_pebs) 838 return 0; 839 840 return alloc_pebs_buffer(cpu); 841 } 842 843 inline void release_arch_pebs_buf_on_cpu(int cpu) 844 { 845 if (!x86_pmu.arch_pebs) 846 return; 847 848 release_pebs_buffer(cpu); 849 } 850 851 void init_arch_pebs_on_cpu(int cpu) 852 { 853 struct cpu_hw_events *cpuc = per_cpu_ptr(&cpu_hw_events, cpu); 854 u64 arch_pebs_base; 855 856 if (!x86_pmu.arch_pebs) 857 return; 858 859 if (!cpuc->pebs_vaddr) { 860 WARN(1, "Fail to allocate PEBS buffer on CPU %d\n", cpu); 861 x86_pmu.pebs_active = 0; 862 return; 863 } 864 865 /* 866 * 4KB-aligned pointer of the output buffer 867 * (__alloc_pages_node() return page aligned address) 868 * Buffer Size = 4KB * 2^SIZE 869 * contiguous physical buffer (__alloc_pages_node() with order) 870 */ 871 arch_pebs_base = virt_to_phys(cpuc->pebs_vaddr) | PEBS_BUFFER_SHIFT; 872 wrmsr_on_cpu(cpu, MSR_IA32_PEBS_BASE, (u32)arch_pebs_base, 873 (u32)(arch_pebs_base >> 32)); 874 x86_pmu.pebs_active = 1; 875 } 876 877 inline void fini_arch_pebs_on_cpu(int cpu) 878 { 879 if (!x86_pmu.arch_pebs) 880 return; 881 882 wrmsr_on_cpu(cpu, MSR_IA32_PEBS_BASE, 0, 0); 883 } 884 885 /* 886 * BTS 887 */ 888 889 struct event_constraint bts_constraint = 890 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); 891 892 void intel_pmu_enable_bts(u64 config) 893 { 894 unsigned long debugctlmsr; 895 896 debugctlmsr = get_debugctlmsr(); 897 898 debugctlmsr |= DEBUGCTLMSR_TR; 899 debugctlmsr |= DEBUGCTLMSR_BTS; 900 if (config & ARCH_PERFMON_EVENTSEL_INT) 901 debugctlmsr |= DEBUGCTLMSR_BTINT; 902 903 if (!(config & ARCH_PERFMON_EVENTSEL_OS)) 904 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; 905 906 if (!(config & ARCH_PERFMON_EVENTSEL_USR)) 907 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; 908 909 update_debugctlmsr(debugctlmsr); 910 } 911 912 void intel_pmu_disable_bts(void) 913 { 914 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 915 unsigned long debugctlmsr; 916 917 if (!cpuc->ds) 918 return; 919 920 debugctlmsr = get_debugctlmsr(); 921 922 debugctlmsr &= 923 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | 924 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); 925 926 update_debugctlmsr(debugctlmsr); 927 } 928 929 int intel_pmu_drain_bts_buffer(void) 930 { 931 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 932 struct debug_store *ds = cpuc->ds; 933 struct bts_record { 934 u64 from; 935 u64 to; 936 u64 flags; 937 }; 938 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 939 struct bts_record *at, *base, *top; 940 struct perf_output_handle handle; 941 struct perf_event_header header; 942 struct perf_sample_data data; 943 unsigned long skip = 0; 944 struct pt_regs regs; 945 946 if (!event) 947 return 0; 948 949 if (!x86_pmu.bts_active) 950 return 0; 951 952 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; 953 top = (struct bts_record *)(unsigned long)ds->bts_index; 954 955 if (top <= base) 956 return 0; 957 958 memset(®s, 0, sizeof(regs)); 959 960 ds->bts_index = ds->bts_buffer_base; 961 962 perf_sample_data_init(&data, 0, event->hw.last_period); 963 964 /* 965 * BTS leaks kernel addresses in branches across the cpl boundary, 966 * such as traps or system calls, so unless the user is asking for 967 * kernel tracing (and right now it's not possible), we'd need to 968 * filter them out. But first we need to count how many of those we 969 * have in the current batch. This is an extra O(n) pass, however, 970 * it's much faster than the other one especially considering that 971 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the 972 * alloc_bts_buffer()). 973 */ 974 for (at = base; at < top; at++) { 975 /* 976 * Note that right now *this* BTS code only works if 977 * attr::exclude_kernel is set, but let's keep this extra 978 * check here in case that changes. 979 */ 980 if (event->attr.exclude_kernel && 981 (kernel_ip(at->from) || kernel_ip(at->to))) 982 skip++; 983 } 984 985 /* 986 * Prepare a generic sample, i.e. fill in the invariant fields. 987 * We will overwrite the from and to address before we output 988 * the sample. 989 */ 990 rcu_read_lock(); 991 perf_prepare_sample(&data, event, ®s); 992 perf_prepare_header(&header, &data, event, ®s); 993 994 if (perf_output_begin(&handle, &data, event, 995 header.size * (top - base - skip))) 996 goto unlock; 997 998 for (at = base; at < top; at++) { 999 /* Filter out any records that contain kernel addresses. */ 1000 if (event->attr.exclude_kernel && 1001 (kernel_ip(at->from) || kernel_ip(at->to))) 1002 continue; 1003 1004 data.ip = at->from; 1005 data.addr = at->to; 1006 1007 perf_output_sample(&handle, &header, &data, event); 1008 } 1009 1010 perf_output_end(&handle); 1011 1012 /* There's new data available. */ 1013 event->hw.interrupts++; 1014 event->pending_kill = POLL_IN; 1015 unlock: 1016 rcu_read_unlock(); 1017 return 1; 1018 } 1019 1020 void intel_pmu_drain_pebs_buffer(void) 1021 { 1022 struct perf_sample_data data; 1023 1024 static_call(x86_pmu_drain_pebs)(NULL, &data); 1025 } 1026 1027 /* 1028 * PEBS 1029 */ 1030 struct event_constraint intel_core2_pebs_event_constraints[] = { 1031 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 1032 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ 1033 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ 1034 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ 1035 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 1036 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 1037 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), 1038 EVENT_CONSTRAINT_END 1039 }; 1040 1041 struct event_constraint intel_atom_pebs_event_constraints[] = { 1042 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 1043 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ 1044 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 1045 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 1046 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), 1047 /* Allow all events as PEBS with no flags */ 1048 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 1049 EVENT_CONSTRAINT_END 1050 }; 1051 1052 struct event_constraint intel_slm_pebs_event_constraints[] = { 1053 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 1054 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1), 1055 /* Allow all events as PEBS with no flags */ 1056 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 1057 EVENT_CONSTRAINT_END 1058 }; 1059 1060 struct event_constraint intel_glm_pebs_event_constraints[] = { 1061 /* Allow all events as PEBS with no flags */ 1062 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 1063 EVENT_CONSTRAINT_END 1064 }; 1065 1066 struct event_constraint intel_grt_pebs_event_constraints[] = { 1067 /* Allow all events as PEBS with no flags */ 1068 INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3), 1069 INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf), 1070 EVENT_CONSTRAINT_END 1071 }; 1072 1073 struct event_constraint intel_nehalem_pebs_event_constraints[] = { 1074 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 1075 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 1076 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 1077 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ 1078 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 1079 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 1080 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ 1081 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 1082 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 1083 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 1084 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 1085 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 1086 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 1087 EVENT_CONSTRAINT_END 1088 }; 1089 1090 struct event_constraint intel_westmere_pebs_event_constraints[] = { 1091 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 1092 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 1093 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 1094 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ 1095 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 1096 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 1097 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ 1098 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 1099 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 1100 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 1101 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 1102 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 1103 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 1104 EVENT_CONSTRAINT_END 1105 }; 1106 1107 struct event_constraint intel_snb_pebs_event_constraints[] = { 1108 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 1109 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 1110 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 1111 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 1112 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 1113 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 1114 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 1115 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 1116 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 1117 /* Allow all events as PEBS with no flags */ 1118 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 1119 EVENT_CONSTRAINT_END 1120 }; 1121 1122 struct event_constraint intel_ivb_pebs_event_constraints[] = { 1123 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 1124 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 1125 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 1126 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 1127 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 1128 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 1129 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 1130 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 1131 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 1132 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 1133 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 1134 /* Allow all events as PEBS with no flags */ 1135 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 1136 EVENT_CONSTRAINT_END 1137 }; 1138 1139 struct event_constraint intel_hsw_pebs_event_constraints[] = { 1140 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 1141 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 1142 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 1143 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 1144 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 1145 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 1146 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 1147 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 1148 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 1149 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 1150 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 1151 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 1152 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 1153 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 1154 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 1155 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 1156 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 1157 /* Allow all events as PEBS with no flags */ 1158 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 1159 EVENT_CONSTRAINT_END 1160 }; 1161 1162 struct event_constraint intel_bdw_pebs_event_constraints[] = { 1163 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 1164 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 1165 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 1166 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 1167 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 1168 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 1169 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 1170 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 1171 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 1172 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 1173 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 1174 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 1175 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 1176 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 1177 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 1178 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 1179 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 1180 /* Allow all events as PEBS with no flags */ 1181 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 1182 EVENT_CONSTRAINT_END 1183 }; 1184 1185 1186 struct event_constraint intel_skl_pebs_event_constraints[] = { 1187 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 1188 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 1189 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 1190 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ 1191 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 1192 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ 1193 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1194 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1195 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1196 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ 1197 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1198 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1199 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1200 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1201 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 1202 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 1203 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ 1204 /* Allow all events as PEBS with no flags */ 1205 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 1206 EVENT_CONSTRAINT_END 1207 }; 1208 1209 struct event_constraint intel_icl_pebs_event_constraints[] = { 1210 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */ 1211 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 1212 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */ 1213 1214 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 1215 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1216 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1217 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1218 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1219 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1220 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1221 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1222 1223 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */ 1224 1225 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 1226 1227 /* 1228 * Everything else is handled by PMU_FL_PEBS_ALL, because we 1229 * need the full constraints from the main table. 1230 */ 1231 1232 EVENT_CONSTRAINT_END 1233 }; 1234 1235 struct event_constraint intel_glc_pebs_event_constraints[] = { 1236 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 1237 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), 1238 1239 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe), 1240 INTEL_PLD_CONSTRAINT(0x1cd, 0xfe), 1241 INTEL_PSD_CONSTRAINT(0x2cd, 0x1), 1242 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1243 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1244 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1245 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1246 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1247 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1248 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1249 1250 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), 1251 1252 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), 1253 1254 /* 1255 * Everything else is handled by PMU_FL_PEBS_ALL, because we 1256 * need the full constraints from the main table. 1257 */ 1258 1259 EVENT_CONSTRAINT_END 1260 }; 1261 1262 struct event_constraint intel_lnc_pebs_event_constraints[] = { 1263 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 1264 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), 1265 1266 INTEL_HYBRID_LDLAT_CONSTRAINT(0x1cd, 0x3fc), 1267 INTEL_HYBRID_STLAT_CONSTRAINT(0x2cd, 0x3), 1268 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1269 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1270 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1271 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1272 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1273 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1274 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1275 1276 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), 1277 1278 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), 1279 1280 /* 1281 * Everything else is handled by PMU_FL_PEBS_ALL, because we 1282 * need the full constraints from the main table. 1283 */ 1284 1285 EVENT_CONSTRAINT_END 1286 }; 1287 1288 struct event_constraint *intel_pebs_constraints(struct perf_event *event) 1289 { 1290 struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints); 1291 struct event_constraint *c; 1292 1293 if (!event->attr.precise_ip) 1294 return NULL; 1295 1296 if (pebs_constraints) { 1297 for_each_event_constraint(c, pebs_constraints) { 1298 if (constraint_match(c, event->hw.config)) { 1299 event->hw.flags |= c->flags; 1300 return c; 1301 } 1302 } 1303 } 1304 1305 /* 1306 * Extended PEBS support 1307 * Makes the PEBS code search the normal constraints. 1308 */ 1309 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 1310 return NULL; 1311 1312 return &emptyconstraint; 1313 } 1314 1315 /* 1316 * We need the sched_task callback even for per-cpu events when we use 1317 * the large interrupt threshold, such that we can provide PID and TID 1318 * to PEBS samples. 1319 */ 1320 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) 1321 { 1322 if (cpuc->n_pebs == cpuc->n_pebs_via_pt) 1323 return false; 1324 1325 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); 1326 } 1327 1328 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) 1329 { 1330 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1331 1332 if (!sched_in && pebs_needs_sched_cb(cpuc)) 1333 intel_pmu_drain_pebs_buffer(); 1334 } 1335 1336 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) 1337 { 1338 struct debug_store *ds = cpuc->ds; 1339 int max_pebs_events = intel_pmu_max_num_pebs(cpuc->pmu); 1340 u64 threshold; 1341 int reserved; 1342 1343 if (cpuc->n_pebs_via_pt) 1344 return; 1345 1346 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 1347 reserved = max_pebs_events + x86_pmu_max_num_counters_fixed(cpuc->pmu); 1348 else 1349 reserved = max_pebs_events; 1350 1351 if (cpuc->n_pebs == cpuc->n_large_pebs) { 1352 threshold = ds->pebs_absolute_maximum - 1353 reserved * cpuc->pebs_record_size; 1354 } else { 1355 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size; 1356 } 1357 1358 ds->pebs_interrupt_threshold = threshold; 1359 } 1360 1361 #define PEBS_DATACFG_CNTRS(x) \ 1362 ((x >> PEBS_DATACFG_CNTR_SHIFT) & PEBS_DATACFG_CNTR_MASK) 1363 1364 #define PEBS_DATACFG_CNTR_BIT(x) \ 1365 (((1ULL << x) & PEBS_DATACFG_CNTR_MASK) << PEBS_DATACFG_CNTR_SHIFT) 1366 1367 #define PEBS_DATACFG_FIX(x) \ 1368 ((x >> PEBS_DATACFG_FIX_SHIFT) & PEBS_DATACFG_FIX_MASK) 1369 1370 #define PEBS_DATACFG_FIX_BIT(x) \ 1371 (((1ULL << (x)) & PEBS_DATACFG_FIX_MASK) \ 1372 << PEBS_DATACFG_FIX_SHIFT) 1373 1374 static void adaptive_pebs_record_size_update(void) 1375 { 1376 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1377 u64 pebs_data_cfg = cpuc->pebs_data_cfg; 1378 int sz = sizeof(struct pebs_basic); 1379 1380 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO) 1381 sz += sizeof(struct pebs_meminfo); 1382 if (pebs_data_cfg & PEBS_DATACFG_GP) 1383 sz += sizeof(struct pebs_gprs); 1384 if (pebs_data_cfg & PEBS_DATACFG_XMMS) 1385 sz += sizeof(struct pebs_xmm); 1386 if (pebs_data_cfg & PEBS_DATACFG_LBRS) 1387 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry); 1388 if (pebs_data_cfg & (PEBS_DATACFG_METRICS | PEBS_DATACFG_CNTR)) { 1389 sz += sizeof(struct pebs_cntr_header); 1390 1391 /* Metrics base and Metrics Data */ 1392 if (pebs_data_cfg & PEBS_DATACFG_METRICS) 1393 sz += 2 * sizeof(u64); 1394 1395 if (pebs_data_cfg & PEBS_DATACFG_CNTR) { 1396 sz += (hweight64(PEBS_DATACFG_CNTRS(pebs_data_cfg)) + 1397 hweight64(PEBS_DATACFG_FIX(pebs_data_cfg))) * 1398 sizeof(u64); 1399 } 1400 } 1401 1402 cpuc->pebs_record_size = sz; 1403 } 1404 1405 static void __intel_pmu_pebs_update_cfg(struct perf_event *event, 1406 int idx, u64 *pebs_data_cfg) 1407 { 1408 if (is_metric_event(event)) { 1409 *pebs_data_cfg |= PEBS_DATACFG_METRICS; 1410 return; 1411 } 1412 1413 *pebs_data_cfg |= PEBS_DATACFG_CNTR; 1414 1415 if (idx >= INTEL_PMC_IDX_FIXED) 1416 *pebs_data_cfg |= PEBS_DATACFG_FIX_BIT(idx - INTEL_PMC_IDX_FIXED); 1417 else 1418 *pebs_data_cfg |= PEBS_DATACFG_CNTR_BIT(idx); 1419 } 1420 1421 1422 void intel_pmu_pebs_late_setup(struct cpu_hw_events *cpuc) 1423 { 1424 struct perf_event *event; 1425 u64 pebs_data_cfg = 0; 1426 int i; 1427 1428 for (i = 0; i < cpuc->n_events; i++) { 1429 event = cpuc->event_list[i]; 1430 if (!is_pebs_counter_event_group(event)) 1431 continue; 1432 __intel_pmu_pebs_update_cfg(event, cpuc->assign[i], &pebs_data_cfg); 1433 } 1434 1435 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) 1436 cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW; 1437 } 1438 1439 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \ 1440 PERF_SAMPLE_PHYS_ADDR | \ 1441 PERF_SAMPLE_WEIGHT_TYPE | \ 1442 PERF_SAMPLE_TRANSACTION | \ 1443 PERF_SAMPLE_DATA_PAGE_SIZE) 1444 1445 static u64 pebs_update_adaptive_cfg(struct perf_event *event) 1446 { 1447 struct perf_event_attr *attr = &event->attr; 1448 u64 sample_type = attr->sample_type; 1449 u64 pebs_data_cfg = 0; 1450 bool gprs, tsx_weight; 1451 1452 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) && 1453 attr->precise_ip > 1) 1454 return pebs_data_cfg; 1455 1456 if (sample_type & PERF_PEBS_MEMINFO_TYPE) 1457 pebs_data_cfg |= PEBS_DATACFG_MEMINFO; 1458 1459 /* 1460 * We need GPRs when: 1461 * + user requested them 1462 * + precise_ip < 2 for the non event IP 1463 * + For RTM TSX weight we need GPRs for the abort code. 1464 */ 1465 gprs = ((sample_type & PERF_SAMPLE_REGS_INTR) && 1466 (attr->sample_regs_intr & PEBS_GP_REGS)) || 1467 ((sample_type & PERF_SAMPLE_REGS_USER) && 1468 (attr->sample_regs_user & PEBS_GP_REGS)); 1469 1470 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) && 1471 ((attr->config & INTEL_ARCH_EVENT_MASK) == 1472 x86_pmu.rtm_abort_event); 1473 1474 if (gprs || (attr->precise_ip < 2) || tsx_weight) 1475 pebs_data_cfg |= PEBS_DATACFG_GP; 1476 1477 if ((sample_type & PERF_SAMPLE_REGS_INTR) && 1478 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK)) 1479 pebs_data_cfg |= PEBS_DATACFG_XMMS; 1480 1481 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 1482 /* 1483 * For now always log all LBRs. Could configure this 1484 * later. 1485 */ 1486 pebs_data_cfg |= PEBS_DATACFG_LBRS | 1487 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT); 1488 } 1489 1490 return pebs_data_cfg; 1491 } 1492 1493 static void 1494 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, 1495 struct perf_event *event, bool add) 1496 { 1497 struct pmu *pmu = event->pmu; 1498 1499 /* 1500 * Make sure we get updated with the first PEBS event. 1501 * During removal, ->pebs_data_cfg is still valid for 1502 * the last PEBS event. Don't clear it. 1503 */ 1504 if ((cpuc->n_pebs == 1) && add) 1505 cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW; 1506 1507 if (needed_cb != pebs_needs_sched_cb(cpuc)) { 1508 if (!needed_cb) 1509 perf_sched_cb_inc(pmu); 1510 else 1511 perf_sched_cb_dec(pmu); 1512 1513 cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW; 1514 } 1515 1516 /* 1517 * The PEBS record doesn't shrink on pmu::del(). Doing so would require 1518 * iterating all remaining PEBS events to reconstruct the config. 1519 */ 1520 if (x86_pmu.intel_cap.pebs_baseline && add) { 1521 u64 pebs_data_cfg; 1522 1523 pebs_data_cfg = pebs_update_adaptive_cfg(event); 1524 /* 1525 * Be sure to update the thresholds when we change the record. 1526 */ 1527 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) 1528 cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW; 1529 } 1530 } 1531 1532 u64 intel_get_arch_pebs_data_config(struct perf_event *event) 1533 { 1534 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1535 u64 pebs_data_cfg = 0; 1536 u64 cntr_mask; 1537 1538 if (WARN_ON(event->hw.idx < 0 || event->hw.idx >= X86_PMC_IDX_MAX)) 1539 return 0; 1540 1541 pebs_data_cfg |= pebs_update_adaptive_cfg(event); 1542 1543 cntr_mask = (PEBS_DATACFG_CNTR_MASK << PEBS_DATACFG_CNTR_SHIFT) | 1544 (PEBS_DATACFG_FIX_MASK << PEBS_DATACFG_FIX_SHIFT) | 1545 PEBS_DATACFG_CNTR | PEBS_DATACFG_METRICS; 1546 pebs_data_cfg |= cpuc->pebs_data_cfg & cntr_mask; 1547 1548 return pebs_data_cfg; 1549 } 1550 1551 void intel_pmu_pebs_add(struct perf_event *event) 1552 { 1553 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1554 struct hw_perf_event *hwc = &event->hw; 1555 bool needed_cb = pebs_needs_sched_cb(cpuc); 1556 1557 cpuc->n_pebs++; 1558 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1559 cpuc->n_large_pebs++; 1560 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) 1561 cpuc->n_pebs_via_pt++; 1562 1563 pebs_update_state(needed_cb, cpuc, event, true); 1564 } 1565 1566 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event) 1567 { 1568 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1569 1570 if (!is_pebs_pt(event)) 1571 return; 1572 1573 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK)) 1574 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK; 1575 } 1576 1577 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event) 1578 { 1579 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1580 struct hw_perf_event *hwc = &event->hw; 1581 struct debug_store *ds = cpuc->ds; 1582 u64 value = ds->pebs_event_reset[hwc->idx]; 1583 u32 base = MSR_RELOAD_PMC0; 1584 unsigned int idx = hwc->idx; 1585 1586 if (!is_pebs_pt(event)) 1587 return; 1588 1589 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 1590 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD; 1591 1592 cpuc->pebs_enabled |= PEBS_OUTPUT_PT; 1593 1594 if (hwc->idx >= INTEL_PMC_IDX_FIXED) { 1595 base = MSR_RELOAD_FIXED_CTR0; 1596 idx = hwc->idx - INTEL_PMC_IDX_FIXED; 1597 if (x86_pmu.intel_cap.pebs_format < 5) 1598 value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx]; 1599 else 1600 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx]; 1601 } 1602 wrmsrq(base + idx, value); 1603 } 1604 1605 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc) 1606 { 1607 if (cpuc->n_pebs == cpuc->n_large_pebs && 1608 cpuc->n_pebs != cpuc->n_pebs_via_pt) 1609 intel_pmu_drain_pebs_buffer(); 1610 } 1611 1612 static void __intel_pmu_pebs_enable(struct perf_event *event) 1613 { 1614 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1615 struct hw_perf_event *hwc = &event->hw; 1616 1617 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; 1618 cpuc->pebs_enabled |= 1ULL << hwc->idx; 1619 } 1620 1621 void intel_pmu_pebs_enable(struct perf_event *event) 1622 { 1623 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1624 u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW; 1625 struct hw_perf_event *hwc = &event->hw; 1626 struct debug_store *ds = cpuc->ds; 1627 unsigned int idx = hwc->idx; 1628 1629 __intel_pmu_pebs_enable(event); 1630 1631 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5)) 1632 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); 1633 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1634 cpuc->pebs_enabled |= 1ULL << 63; 1635 1636 if (x86_pmu.intel_cap.pebs_baseline) { 1637 hwc->config |= ICL_EVENTSEL_ADAPTIVE; 1638 if (pebs_data_cfg != cpuc->active_pebs_data_cfg) { 1639 /* 1640 * drain_pebs() assumes uniform record size; 1641 * hence we need to drain when changing said 1642 * size. 1643 */ 1644 intel_pmu_drain_pebs_buffer(); 1645 adaptive_pebs_record_size_update(); 1646 wrmsrq(MSR_PEBS_DATA_CFG, pebs_data_cfg); 1647 cpuc->active_pebs_data_cfg = pebs_data_cfg; 1648 } 1649 } 1650 if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) { 1651 cpuc->pebs_data_cfg = pebs_data_cfg; 1652 pebs_update_threshold(cpuc); 1653 } 1654 1655 if (idx >= INTEL_PMC_IDX_FIXED) { 1656 if (x86_pmu.intel_cap.pebs_format < 5) 1657 idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED); 1658 else 1659 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED); 1660 } 1661 1662 /* 1663 * Use auto-reload if possible to save a MSR write in the PMI. 1664 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. 1665 */ 1666 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 1667 ds->pebs_event_reset[idx] = 1668 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; 1669 } else { 1670 ds->pebs_event_reset[idx] = 0; 1671 } 1672 1673 intel_pmu_pebs_via_pt_enable(event); 1674 } 1675 1676 void intel_pmu_pebs_del(struct perf_event *event) 1677 { 1678 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1679 struct hw_perf_event *hwc = &event->hw; 1680 bool needed_cb = pebs_needs_sched_cb(cpuc); 1681 1682 cpuc->n_pebs--; 1683 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1684 cpuc->n_large_pebs--; 1685 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) 1686 cpuc->n_pebs_via_pt--; 1687 1688 pebs_update_state(needed_cb, cpuc, event, false); 1689 } 1690 1691 static void __intel_pmu_pebs_disable(struct perf_event *event) 1692 { 1693 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1694 struct hw_perf_event *hwc = &event->hw; 1695 1696 intel_pmu_drain_large_pebs(cpuc); 1697 cpuc->pebs_enabled &= ~(1ULL << hwc->idx); 1698 hwc->config |= ARCH_PERFMON_EVENTSEL_INT; 1699 } 1700 1701 void intel_pmu_pebs_disable(struct perf_event *event) 1702 { 1703 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1704 struct hw_perf_event *hwc = &event->hw; 1705 1706 __intel_pmu_pebs_disable(event); 1707 1708 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && 1709 (x86_pmu.version < 5)) 1710 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); 1711 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1712 cpuc->pebs_enabled &= ~(1ULL << 63); 1713 1714 intel_pmu_pebs_via_pt_disable(event); 1715 1716 if (cpuc->enabled) 1717 wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1718 } 1719 1720 void intel_pmu_pebs_enable_all(void) 1721 { 1722 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1723 1724 if (cpuc->pebs_enabled) 1725 wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1726 } 1727 1728 void intel_pmu_pebs_disable_all(void) 1729 { 1730 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1731 1732 if (cpuc->pebs_enabled) 1733 __intel_pmu_pebs_disable_all(); 1734 } 1735 1736 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) 1737 { 1738 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1739 unsigned long from = cpuc->lbr_entries[0].from; 1740 unsigned long old_to, to = cpuc->lbr_entries[0].to; 1741 unsigned long ip = regs->ip; 1742 int is_64bit = 0; 1743 void *kaddr; 1744 int size; 1745 1746 /* 1747 * We don't need to fixup if the PEBS assist is fault like 1748 */ 1749 if (!x86_pmu.intel_cap.pebs_trap) 1750 return 1; 1751 1752 /* 1753 * No LBR entry, no basic block, no rewinding 1754 */ 1755 if (!cpuc->lbr_stack.nr || !from || !to) 1756 return 0; 1757 1758 /* 1759 * Basic blocks should never cross user/kernel boundaries 1760 */ 1761 if (kernel_ip(ip) != kernel_ip(to)) 1762 return 0; 1763 1764 /* 1765 * unsigned math, either ip is before the start (impossible) or 1766 * the basic block is larger than 1 page (sanity) 1767 */ 1768 if ((ip - to) > PEBS_FIXUP_SIZE) 1769 return 0; 1770 1771 /* 1772 * We sampled a branch insn, rewind using the LBR stack 1773 */ 1774 if (ip == to) { 1775 set_linear_ip(regs, from); 1776 return 1; 1777 } 1778 1779 size = ip - to; 1780 if (!kernel_ip(ip)) { 1781 int bytes; 1782 u8 *buf = this_cpu_read(insn_buffer); 1783 1784 /* 'size' must fit our buffer, see above */ 1785 bytes = copy_from_user_nmi(buf, (void __user *)to, size); 1786 if (bytes != 0) 1787 return 0; 1788 1789 kaddr = buf; 1790 } else { 1791 kaddr = (void *)to; 1792 } 1793 1794 do { 1795 struct insn insn; 1796 1797 old_to = to; 1798 1799 #ifdef CONFIG_X86_64 1800 is_64bit = kernel_ip(to) || any_64bit_mode(regs); 1801 #endif 1802 insn_init(&insn, kaddr, size, is_64bit); 1803 1804 /* 1805 * Make sure there was not a problem decoding the instruction. 1806 * This is doubly important because we have an infinite loop if 1807 * insn.length=0. 1808 */ 1809 if (insn_get_length(&insn)) 1810 break; 1811 1812 to += insn.length; 1813 kaddr += insn.length; 1814 size -= insn.length; 1815 } while (to < ip); 1816 1817 if (to == ip) { 1818 set_linear_ip(regs, old_to); 1819 return 1; 1820 } 1821 1822 /* 1823 * Even though we decoded the basic block, the instruction stream 1824 * never matched the given IP, either the TO or the IP got corrupted. 1825 */ 1826 return 0; 1827 } 1828 1829 static inline u64 intel_get_tsx_weight(u64 tsx_tuning) 1830 { 1831 if (tsx_tuning) { 1832 union hsw_tsx_tuning tsx = { .value = tsx_tuning }; 1833 return tsx.cycles_last_block; 1834 } 1835 return 0; 1836 } 1837 1838 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax) 1839 { 1840 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; 1841 1842 /* For RTM XABORTs also log the abort code from AX */ 1843 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1)) 1844 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 1845 return txn; 1846 } 1847 1848 static inline u64 get_pebs_status(void *n) 1849 { 1850 if (x86_pmu.intel_cap.pebs_format < 4) 1851 return ((struct pebs_record_nhm *)n)->status; 1852 return ((struct pebs_basic *)n)->applicable_counters; 1853 } 1854 1855 #define PERF_X86_EVENT_PEBS_HSW_PREC \ 1856 (PERF_X86_EVENT_PEBS_ST_HSW | \ 1857 PERF_X86_EVENT_PEBS_LD_HSW | \ 1858 PERF_X86_EVENT_PEBS_NA_HSW) 1859 1860 static u64 get_data_src(struct perf_event *event, u64 aux) 1861 { 1862 u64 val = PERF_MEM_NA; 1863 int fl = event->hw.flags; 1864 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); 1865 1866 if (fl & PERF_X86_EVENT_PEBS_LDLAT) 1867 val = load_latency_data(event, aux); 1868 else if (fl & PERF_X86_EVENT_PEBS_STLAT) 1869 val = store_latency_data(event, aux); 1870 else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID) 1871 val = x86_pmu.pebs_latency_data(event, aux); 1872 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) 1873 val = precise_datala_hsw(event, aux); 1874 else if (fst) 1875 val = precise_store_data(aux); 1876 return val; 1877 } 1878 1879 static void setup_pebs_time(struct perf_event *event, 1880 struct perf_sample_data *data, 1881 u64 tsc) 1882 { 1883 /* Converting to a user-defined clock is not supported yet. */ 1884 if (event->attr.use_clockid != 0) 1885 return; 1886 1887 /* 1888 * Doesn't support the conversion when the TSC is unstable. 1889 * The TSC unstable case is a corner case and very unlikely to 1890 * happen. If it happens, the TSC in a PEBS record will be 1891 * dropped and fall back to perf_event_clock(). 1892 */ 1893 if (!using_native_sched_clock() || !sched_clock_stable()) 1894 return; 1895 1896 data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset; 1897 data->sample_flags |= PERF_SAMPLE_TIME; 1898 } 1899 1900 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ 1901 PERF_SAMPLE_PHYS_ADDR | \ 1902 PERF_SAMPLE_DATA_PAGE_SIZE) 1903 1904 static void setup_pebs_fixed_sample_data(struct perf_event *event, 1905 struct pt_regs *iregs, void *__pebs, 1906 struct perf_sample_data *data, 1907 struct pt_regs *regs) 1908 { 1909 /* 1910 * We cast to the biggest pebs_record but are careful not to 1911 * unconditionally access the 'extra' entries. 1912 */ 1913 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1914 struct pebs_record_skl *pebs = __pebs; 1915 u64 sample_type; 1916 int fll; 1917 1918 if (pebs == NULL) 1919 return; 1920 1921 sample_type = event->attr.sample_type; 1922 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT; 1923 1924 perf_sample_data_init(data, 0, event->hw.last_period); 1925 1926 /* 1927 * Use latency for weight (only avail with PEBS-LL) 1928 */ 1929 if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) { 1930 data->weight.full = pebs->lat; 1931 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1932 } 1933 1934 /* 1935 * data.data_src encodes the data source 1936 */ 1937 if (sample_type & PERF_SAMPLE_DATA_SRC) { 1938 data->data_src.val = get_data_src(event, pebs->dse); 1939 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 1940 } 1941 1942 /* 1943 * We must however always use iregs for the unwinder to stay sane; the 1944 * record BP,SP,IP can point into thin air when the record is from a 1945 * previous PMI context or an (I)RET happened between the record and 1946 * PMI. 1947 */ 1948 perf_sample_save_callchain(data, event, iregs); 1949 1950 /* 1951 * We use the interrupt regs as a base because the PEBS record does not 1952 * contain a full regs set, specifically it seems to lack segment 1953 * descriptors, which get used by things like user_mode(). 1954 * 1955 * In the simple case fix up only the IP for PERF_SAMPLE_IP. 1956 */ 1957 *regs = *iregs; 1958 1959 /* 1960 * Initialize regs_>flags from PEBS, 1961 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3), 1962 * i.e., do not rely on it being zero: 1963 */ 1964 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT; 1965 1966 if (sample_type & PERF_SAMPLE_REGS_INTR) { 1967 regs->ax = pebs->ax; 1968 regs->bx = pebs->bx; 1969 regs->cx = pebs->cx; 1970 regs->dx = pebs->dx; 1971 regs->si = pebs->si; 1972 regs->di = pebs->di; 1973 1974 regs->bp = pebs->bp; 1975 regs->sp = pebs->sp; 1976 1977 #ifndef CONFIG_X86_32 1978 regs->r8 = pebs->r8; 1979 regs->r9 = pebs->r9; 1980 regs->r10 = pebs->r10; 1981 regs->r11 = pebs->r11; 1982 regs->r12 = pebs->r12; 1983 regs->r13 = pebs->r13; 1984 regs->r14 = pebs->r14; 1985 regs->r15 = pebs->r15; 1986 #endif 1987 } 1988 1989 if (event->attr.precise_ip > 1) { 1990 /* 1991 * Haswell and later processors have an 'eventing IP' 1992 * (real IP) which fixes the off-by-1 skid in hardware. 1993 * Use it when precise_ip >= 2 : 1994 */ 1995 if (x86_pmu.intel_cap.pebs_format >= 2) { 1996 set_linear_ip(regs, pebs->real_ip); 1997 regs->flags |= PERF_EFLAGS_EXACT; 1998 } else { 1999 /* Otherwise, use PEBS off-by-1 IP: */ 2000 set_linear_ip(regs, pebs->ip); 2001 2002 /* 2003 * With precise_ip >= 2, try to fix up the off-by-1 IP 2004 * using the LBR. If successful, the fixup function 2005 * corrects regs->ip and calls set_linear_ip() on regs: 2006 */ 2007 if (intel_pmu_pebs_fixup_ip(regs)) 2008 regs->flags |= PERF_EFLAGS_EXACT; 2009 } 2010 } else { 2011 /* 2012 * When precise_ip == 1, return the PEBS off-by-1 IP, 2013 * no fixup attempted: 2014 */ 2015 set_linear_ip(regs, pebs->ip); 2016 } 2017 2018 2019 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) && 2020 x86_pmu.intel_cap.pebs_format >= 1) { 2021 data->addr = pebs->dla; 2022 data->sample_flags |= PERF_SAMPLE_ADDR; 2023 } 2024 2025 if (x86_pmu.intel_cap.pebs_format >= 2) { 2026 /* Only set the TSX weight when no memory weight. */ 2027 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) { 2028 data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning); 2029 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 2030 } 2031 if (sample_type & PERF_SAMPLE_TRANSACTION) { 2032 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning, 2033 pebs->ax); 2034 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 2035 } 2036 } 2037 2038 /* 2039 * v3 supplies an accurate time stamp, so we use that 2040 * for the time stamp. 2041 * 2042 * We can only do this for the default trace clock. 2043 */ 2044 if (x86_pmu.intel_cap.pebs_format >= 3) 2045 setup_pebs_time(event, data, pebs->tsc); 2046 2047 perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL); 2048 } 2049 2050 static void adaptive_pebs_save_regs(struct pt_regs *regs, 2051 struct pebs_gprs *gprs) 2052 { 2053 regs->ax = gprs->ax; 2054 regs->bx = gprs->bx; 2055 regs->cx = gprs->cx; 2056 regs->dx = gprs->dx; 2057 regs->si = gprs->si; 2058 regs->di = gprs->di; 2059 regs->bp = gprs->bp; 2060 regs->sp = gprs->sp; 2061 #ifndef CONFIG_X86_32 2062 regs->r8 = gprs->r8; 2063 regs->r9 = gprs->r9; 2064 regs->r10 = gprs->r10; 2065 regs->r11 = gprs->r11; 2066 regs->r12 = gprs->r12; 2067 regs->r13 = gprs->r13; 2068 regs->r14 = gprs->r14; 2069 regs->r15 = gprs->r15; 2070 #endif 2071 } 2072 2073 static void intel_perf_event_update_pmc(struct perf_event *event, u64 pmc) 2074 { 2075 int shift = 64 - x86_pmu.cntval_bits; 2076 struct hw_perf_event *hwc; 2077 u64 delta, prev_pmc; 2078 2079 /* 2080 * A recorded counter may not have an assigned event in the 2081 * following cases. The value should be dropped. 2082 * - An event is deleted. There is still an active PEBS event. 2083 * The PEBS record doesn't shrink on pmu::del(). 2084 * If the counter of the deleted event once occurred in a PEBS 2085 * record, PEBS still records the counter until the counter is 2086 * reassigned. 2087 * - An event is stopped for some reason, e.g., throttled. 2088 * During this period, another event is added and takes the 2089 * counter of the stopped event. The stopped event is assigned 2090 * to another new and uninitialized counter, since the 2091 * x86_pmu_start(RELOAD) is not invoked for a stopped event. 2092 * The PEBS__DATA_CFG is updated regardless of the event state. 2093 * The uninitialized counter can be recorded in a PEBS record. 2094 * But the cpuc->events[uninitialized_counter] is always NULL, 2095 * because the event is stopped. The uninitialized value is 2096 * safely dropped. 2097 */ 2098 if (!event) 2099 return; 2100 2101 hwc = &event->hw; 2102 prev_pmc = local64_read(&hwc->prev_count); 2103 2104 /* Only update the count when the PMU is disabled */ 2105 WARN_ON(this_cpu_read(cpu_hw_events.enabled)); 2106 local64_set(&hwc->prev_count, pmc); 2107 2108 delta = (pmc << shift) - (prev_pmc << shift); 2109 delta >>= shift; 2110 2111 local64_add(delta, &event->count); 2112 local64_sub(delta, &hwc->period_left); 2113 } 2114 2115 static inline void __setup_pebs_counter_group(struct cpu_hw_events *cpuc, 2116 struct perf_event *event, 2117 struct pebs_cntr_header *cntr, 2118 void *next_record) 2119 { 2120 int bit; 2121 2122 for_each_set_bit(bit, (unsigned long *)&cntr->cntr, INTEL_PMC_MAX_GENERIC) { 2123 intel_perf_event_update_pmc(cpuc->events[bit], *(u64 *)next_record); 2124 next_record += sizeof(u64); 2125 } 2126 2127 for_each_set_bit(bit, (unsigned long *)&cntr->fixed, INTEL_PMC_MAX_FIXED) { 2128 /* The slots event will be handled with perf_metric later */ 2129 if ((cntr->metrics == INTEL_CNTR_METRICS) && 2130 (bit + INTEL_PMC_IDX_FIXED == INTEL_PMC_IDX_FIXED_SLOTS)) { 2131 next_record += sizeof(u64); 2132 continue; 2133 } 2134 intel_perf_event_update_pmc(cpuc->events[bit + INTEL_PMC_IDX_FIXED], 2135 *(u64 *)next_record); 2136 next_record += sizeof(u64); 2137 } 2138 2139 /* HW will reload the value right after the overflow. */ 2140 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2141 local64_set(&event->hw.prev_count, (u64)-event->hw.sample_period); 2142 2143 if (cntr->metrics == INTEL_CNTR_METRICS) { 2144 static_call(intel_pmu_update_topdown_event) 2145 (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS], 2146 (u64 *)next_record); 2147 next_record += 2 * sizeof(u64); 2148 } 2149 } 2150 2151 #define PEBS_LATENCY_MASK 0xffff 2152 2153 static inline void __setup_perf_sample_data(struct perf_event *event, 2154 struct pt_regs *iregs, 2155 struct perf_sample_data *data) 2156 { 2157 perf_sample_data_init(data, 0, event->hw.last_period); 2158 2159 /* 2160 * We must however always use iregs for the unwinder to stay sane; the 2161 * record BP,SP,IP can point into thin air when the record is from a 2162 * previous PMI context or an (I)RET happened between the record and 2163 * PMI. 2164 */ 2165 perf_sample_save_callchain(data, event, iregs); 2166 } 2167 2168 static inline void __setup_pebs_basic_group(struct perf_event *event, 2169 struct pt_regs *regs, 2170 struct perf_sample_data *data, 2171 u64 sample_type, u64 ip, 2172 u64 tsc, u16 retire) 2173 { 2174 /* The ip in basic is EventingIP */ 2175 set_linear_ip(regs, ip); 2176 regs->flags = PERF_EFLAGS_EXACT; 2177 setup_pebs_time(event, data, tsc); 2178 2179 if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) 2180 data->weight.var3_w = retire; 2181 } 2182 2183 static inline void __setup_pebs_gpr_group(struct perf_event *event, 2184 struct pt_regs *regs, 2185 struct pebs_gprs *gprs, 2186 u64 sample_type) 2187 { 2188 if (event->attr.precise_ip < 2) { 2189 set_linear_ip(regs, gprs->ip); 2190 regs->flags &= ~PERF_EFLAGS_EXACT; 2191 } 2192 2193 if (sample_type & (PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER)) 2194 adaptive_pebs_save_regs(regs, gprs); 2195 } 2196 2197 static inline void __setup_pebs_meminfo_group(struct perf_event *event, 2198 struct perf_sample_data *data, 2199 u64 sample_type, u64 latency, 2200 u16 instr_latency, u64 address, 2201 u64 aux, u64 tsx_tuning, u64 ax) 2202 { 2203 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 2204 u64 tsx_latency = intel_get_tsx_weight(tsx_tuning); 2205 2206 data->weight.var2_w = instr_latency; 2207 2208 /* 2209 * Although meminfo::latency is defined as a u64, 2210 * only the lower 32 bits include the valid data 2211 * in practice on Ice Lake and earlier platforms. 2212 */ 2213 if (sample_type & PERF_SAMPLE_WEIGHT) 2214 data->weight.full = latency ?: tsx_latency; 2215 else 2216 data->weight.var1_dw = (u32)latency ?: tsx_latency; 2217 2218 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 2219 } 2220 2221 if (sample_type & PERF_SAMPLE_DATA_SRC) { 2222 data->data_src.val = get_data_src(event, aux); 2223 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 2224 } 2225 2226 if (sample_type & PERF_SAMPLE_ADDR_TYPE) { 2227 data->addr = address; 2228 data->sample_flags |= PERF_SAMPLE_ADDR; 2229 } 2230 2231 if (sample_type & PERF_SAMPLE_TRANSACTION) { 2232 data->txn = intel_get_tsx_transaction(tsx_tuning, ax); 2233 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 2234 } 2235 } 2236 2237 /* 2238 * With adaptive PEBS the layout depends on what fields are configured. 2239 */ 2240 static void setup_pebs_adaptive_sample_data(struct perf_event *event, 2241 struct pt_regs *iregs, void *__pebs, 2242 struct perf_sample_data *data, 2243 struct pt_regs *regs) 2244 { 2245 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2246 u64 sample_type = event->attr.sample_type; 2247 struct pebs_basic *basic = __pebs; 2248 void *next_record = basic + 1; 2249 struct pebs_meminfo *meminfo = NULL; 2250 struct pebs_gprs *gprs = NULL; 2251 struct x86_perf_regs *perf_regs; 2252 u64 format_group; 2253 u16 retire; 2254 2255 if (basic == NULL) 2256 return; 2257 2258 perf_regs = container_of(regs, struct x86_perf_regs, regs); 2259 perf_regs->xmm_regs = NULL; 2260 2261 format_group = basic->format_group; 2262 2263 __setup_perf_sample_data(event, iregs, data); 2264 2265 *regs = *iregs; 2266 2267 /* basic group */ 2268 retire = x86_pmu.flags & PMU_FL_RETIRE_LATENCY ? 2269 basic->retire_latency : 0; 2270 __setup_pebs_basic_group(event, regs, data, sample_type, 2271 basic->ip, basic->tsc, retire); 2272 2273 /* 2274 * The record for MEMINFO is in front of GP 2275 * But PERF_SAMPLE_TRANSACTION needs gprs->ax. 2276 * Save the pointer here but process later. 2277 */ 2278 if (format_group & PEBS_DATACFG_MEMINFO) { 2279 meminfo = next_record; 2280 next_record = meminfo + 1; 2281 } 2282 2283 if (format_group & PEBS_DATACFG_GP) { 2284 gprs = next_record; 2285 next_record = gprs + 1; 2286 2287 __setup_pebs_gpr_group(event, regs, gprs, sample_type); 2288 } 2289 2290 if (format_group & PEBS_DATACFG_MEMINFO) { 2291 u64 latency = x86_pmu.flags & PMU_FL_INSTR_LATENCY ? 2292 meminfo->cache_latency : meminfo->mem_latency; 2293 u64 instr_latency = x86_pmu.flags & PMU_FL_INSTR_LATENCY ? 2294 meminfo->instr_latency : 0; 2295 u64 ax = gprs ? gprs->ax : 0; 2296 2297 __setup_pebs_meminfo_group(event, data, sample_type, latency, 2298 instr_latency, meminfo->address, 2299 meminfo->aux, meminfo->tsx_tuning, 2300 ax); 2301 } 2302 2303 if (format_group & PEBS_DATACFG_XMMS) { 2304 struct pebs_xmm *xmm = next_record; 2305 2306 next_record = xmm + 1; 2307 perf_regs->xmm_regs = xmm->xmm; 2308 } 2309 2310 if (format_group & PEBS_DATACFG_LBRS) { 2311 struct lbr_entry *lbr = next_record; 2312 int num_lbr = ((format_group >> PEBS_DATACFG_LBR_SHIFT) 2313 & 0xff) + 1; 2314 next_record = next_record + num_lbr * sizeof(struct lbr_entry); 2315 2316 if (has_branch_stack(event)) { 2317 intel_pmu_store_pebs_lbrs(lbr); 2318 intel_pmu_lbr_save_brstack(data, cpuc, event); 2319 } 2320 } 2321 2322 if (format_group & (PEBS_DATACFG_CNTR | PEBS_DATACFG_METRICS)) { 2323 struct pebs_cntr_header *cntr = next_record; 2324 unsigned int nr; 2325 2326 next_record += sizeof(struct pebs_cntr_header); 2327 /* 2328 * The PEBS_DATA_CFG is a global register, which is the 2329 * superset configuration for all PEBS events. 2330 * For the PEBS record of non-sample-read group, ignore 2331 * the counter snapshot fields. 2332 */ 2333 if (is_pebs_counter_event_group(event)) { 2334 __setup_pebs_counter_group(cpuc, event, cntr, next_record); 2335 data->sample_flags |= PERF_SAMPLE_READ; 2336 } 2337 2338 nr = hweight32(cntr->cntr) + hweight32(cntr->fixed); 2339 if (cntr->metrics == INTEL_CNTR_METRICS) 2340 nr += 2; 2341 next_record += nr * sizeof(u64); 2342 } 2343 2344 WARN_ONCE(next_record != __pebs + basic->format_size, 2345 "PEBS record size %u, expected %llu, config %llx\n", 2346 basic->format_size, 2347 (u64)(next_record - __pebs), 2348 format_group); 2349 } 2350 2351 static inline bool arch_pebs_record_continued(struct arch_pebs_header *header) 2352 { 2353 /* Continue bit or null PEBS record indicates fragment follows. */ 2354 return header->cont || !(header->format & GENMASK_ULL(63, 16)); 2355 } 2356 2357 static void setup_arch_pebs_sample_data(struct perf_event *event, 2358 struct pt_regs *iregs, 2359 void *__pebs, 2360 struct perf_sample_data *data, 2361 struct pt_regs *regs) 2362 { 2363 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2364 u64 sample_type = event->attr.sample_type; 2365 struct arch_pebs_header *header = NULL; 2366 struct arch_pebs_aux *meminfo = NULL; 2367 struct arch_pebs_gprs *gprs = NULL; 2368 struct x86_perf_regs *perf_regs; 2369 void *next_record; 2370 void *at = __pebs; 2371 2372 if (at == NULL) 2373 return; 2374 2375 perf_regs = container_of(regs, struct x86_perf_regs, regs); 2376 perf_regs->xmm_regs = NULL; 2377 2378 __setup_perf_sample_data(event, iregs, data); 2379 2380 *regs = *iregs; 2381 2382 again: 2383 header = at; 2384 next_record = at + sizeof(struct arch_pebs_header); 2385 if (header->basic) { 2386 struct arch_pebs_basic *basic = next_record; 2387 u16 retire = 0; 2388 2389 next_record = basic + 1; 2390 2391 if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) 2392 retire = basic->valid ? basic->retire : 0; 2393 __setup_pebs_basic_group(event, regs, data, sample_type, 2394 basic->ip, basic->tsc, retire); 2395 } 2396 2397 /* 2398 * The record for MEMINFO is in front of GP 2399 * But PERF_SAMPLE_TRANSACTION needs gprs->ax. 2400 * Save the pointer here but process later. 2401 */ 2402 if (header->aux) { 2403 meminfo = next_record; 2404 next_record = meminfo + 1; 2405 } 2406 2407 if (header->gpr) { 2408 gprs = next_record; 2409 next_record = gprs + 1; 2410 2411 __setup_pebs_gpr_group(event, regs, 2412 (struct pebs_gprs *)gprs, 2413 sample_type); 2414 } 2415 2416 if (header->aux) { 2417 u64 ax = gprs ? gprs->ax : 0; 2418 2419 __setup_pebs_meminfo_group(event, data, sample_type, 2420 meminfo->cache_latency, 2421 meminfo->instr_latency, 2422 meminfo->address, meminfo->aux, 2423 meminfo->tsx_tuning, ax); 2424 } 2425 2426 if (header->xmm) { 2427 struct pebs_xmm *xmm; 2428 2429 next_record += sizeof(struct arch_pebs_xer_header); 2430 2431 xmm = next_record; 2432 perf_regs->xmm_regs = xmm->xmm; 2433 next_record = xmm + 1; 2434 } 2435 2436 if (header->lbr) { 2437 struct arch_pebs_lbr_header *lbr_header = next_record; 2438 struct lbr_entry *lbr; 2439 int num_lbr; 2440 2441 next_record = lbr_header + 1; 2442 lbr = next_record; 2443 2444 num_lbr = header->lbr == ARCH_PEBS_LBR_NUM_VAR ? 2445 lbr_header->depth : 2446 header->lbr * ARCH_PEBS_BASE_LBR_ENTRIES; 2447 next_record += num_lbr * sizeof(struct lbr_entry); 2448 2449 if (has_branch_stack(event)) { 2450 intel_pmu_store_pebs_lbrs(lbr); 2451 intel_pmu_lbr_save_brstack(data, cpuc, event); 2452 } 2453 } 2454 2455 if (header->cntr) { 2456 struct arch_pebs_cntr_header *cntr = next_record; 2457 unsigned int nr; 2458 2459 next_record += sizeof(struct arch_pebs_cntr_header); 2460 2461 if (is_pebs_counter_event_group(event)) { 2462 __setup_pebs_counter_group(cpuc, event, 2463 (struct pebs_cntr_header *)cntr, next_record); 2464 data->sample_flags |= PERF_SAMPLE_READ; 2465 } 2466 2467 nr = hweight32(cntr->cntr) + hweight32(cntr->fixed); 2468 if (cntr->metrics == INTEL_CNTR_METRICS) 2469 nr += 2; 2470 next_record += nr * sizeof(u64); 2471 } 2472 2473 /* Parse followed fragments if there are. */ 2474 if (arch_pebs_record_continued(header)) { 2475 at = at + header->size; 2476 goto again; 2477 } 2478 } 2479 2480 static inline void * 2481 get_next_pebs_record_by_bit(void *base, void *top, int bit) 2482 { 2483 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2484 void *at; 2485 u64 pebs_status; 2486 2487 /* 2488 * fmt0 does not have a status bitfield (does not use 2489 * perf_record_nhm format) 2490 */ 2491 if (x86_pmu.intel_cap.pebs_format < 1) 2492 return base; 2493 2494 if (base == NULL) 2495 return NULL; 2496 2497 for (at = base; at < top; at += cpuc->pebs_record_size) { 2498 unsigned long status = get_pebs_status(at); 2499 2500 if (test_bit(bit, (unsigned long *)&status)) { 2501 /* PEBS v3 has accurate status bits */ 2502 if (x86_pmu.intel_cap.pebs_format >= 3) 2503 return at; 2504 2505 if (status == (1 << bit)) 2506 return at; 2507 2508 /* clear non-PEBS bit and re-check */ 2509 pebs_status = status & cpuc->pebs_enabled; 2510 pebs_status &= PEBS_COUNTER_MASK; 2511 if (pebs_status == (1 << bit)) 2512 return at; 2513 } 2514 } 2515 return NULL; 2516 } 2517 2518 /* 2519 * Special variant of intel_pmu_save_and_restart() for auto-reload. 2520 */ 2521 static int 2522 intel_pmu_save_and_restart_reload(struct perf_event *event, int count) 2523 { 2524 struct hw_perf_event *hwc = &event->hw; 2525 int shift = 64 - x86_pmu.cntval_bits; 2526 u64 period = hwc->sample_period; 2527 u64 prev_raw_count, new_raw_count; 2528 s64 new, old; 2529 2530 WARN_ON(!period); 2531 2532 /* 2533 * drain_pebs() only happens when the PMU is disabled. 2534 */ 2535 WARN_ON(this_cpu_read(cpu_hw_events.enabled)); 2536 2537 prev_raw_count = local64_read(&hwc->prev_count); 2538 new_raw_count = rdpmc(hwc->event_base_rdpmc); 2539 local64_set(&hwc->prev_count, new_raw_count); 2540 2541 /* 2542 * Since the counter increments a negative counter value and 2543 * overflows on the sign switch, giving the interval: 2544 * 2545 * [-period, 0] 2546 * 2547 * the difference between two consecutive reads is: 2548 * 2549 * A) value2 - value1; 2550 * when no overflows have happened in between, 2551 * 2552 * B) (0 - value1) + (value2 - (-period)); 2553 * when one overflow happened in between, 2554 * 2555 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); 2556 * when @n overflows happened in between. 2557 * 2558 * Here A) is the obvious difference, B) is the extension to the 2559 * discrete interval, where the first term is to the top of the 2560 * interval and the second term is from the bottom of the next 2561 * interval and C) the extension to multiple intervals, where the 2562 * middle term is the whole intervals covered. 2563 * 2564 * An equivalent of C, by reduction, is: 2565 * 2566 * value2 - value1 + n * period 2567 */ 2568 new = ((s64)(new_raw_count << shift) >> shift); 2569 old = ((s64)(prev_raw_count << shift) >> shift); 2570 local64_add(new - old + count * period, &event->count); 2571 2572 local64_set(&hwc->period_left, -new); 2573 2574 perf_event_update_userpage(event); 2575 2576 return 0; 2577 } 2578 2579 typedef void (*setup_fn)(struct perf_event *, struct pt_regs *, void *, 2580 struct perf_sample_data *, struct pt_regs *); 2581 2582 static struct pt_regs dummy_iregs; 2583 2584 static __always_inline void 2585 __intel_pmu_pebs_event(struct perf_event *event, 2586 struct pt_regs *iregs, 2587 struct pt_regs *regs, 2588 struct perf_sample_data *data, 2589 void *at, 2590 setup_fn setup_sample) 2591 { 2592 setup_sample(event, iregs, at, data, regs); 2593 perf_event_output(event, data, regs); 2594 } 2595 2596 static __always_inline void 2597 __intel_pmu_pebs_last_event(struct perf_event *event, 2598 struct pt_regs *iregs, 2599 struct pt_regs *regs, 2600 struct perf_sample_data *data, 2601 void *at, 2602 int count, 2603 setup_fn setup_sample) 2604 { 2605 struct hw_perf_event *hwc = &event->hw; 2606 2607 setup_sample(event, iregs, at, data, regs); 2608 if (iregs == &dummy_iregs) { 2609 /* 2610 * The PEBS records may be drained in the non-overflow context, 2611 * e.g., large PEBS + context switch. Perf should treat the 2612 * last record the same as other PEBS records, and doesn't 2613 * invoke the generic overflow handler. 2614 */ 2615 perf_event_output(event, data, regs); 2616 } else { 2617 /* 2618 * All but the last records are processed. 2619 * The last one is left to be able to call the overflow handler. 2620 */ 2621 perf_event_overflow(event, data, regs); 2622 } 2623 2624 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 2625 if ((is_pebs_counter_event_group(event))) { 2626 /* 2627 * The value of each sample has been updated when setup 2628 * the corresponding sample data. 2629 */ 2630 perf_event_update_userpage(event); 2631 } else { 2632 /* 2633 * Now, auto-reload is only enabled in fixed period mode. 2634 * The reload value is always hwc->sample_period. 2635 * May need to change it, if auto-reload is enabled in 2636 * freq mode later. 2637 */ 2638 intel_pmu_save_and_restart_reload(event, count); 2639 } 2640 } else { 2641 /* 2642 * For a non-precise event, it's possible the 2643 * counters-snapshotting records a positive value for the 2644 * overflowed event. Then the HW auto-reload mechanism 2645 * reset the counter to 0 immediately, because the 2646 * pebs_event_reset is cleared if the PERF_X86_EVENT_AUTO_RELOAD 2647 * is not set. The counter backwards may be observed in a 2648 * PMI handler. 2649 * 2650 * Since the event value has been updated when processing the 2651 * counters-snapshotting record, only needs to set the new 2652 * period for the counter. 2653 */ 2654 if (is_pebs_counter_event_group(event)) 2655 static_call(x86_pmu_set_period)(event); 2656 else 2657 intel_pmu_save_and_restart(event); 2658 } 2659 } 2660 2661 static __always_inline void 2662 __intel_pmu_pebs_events(struct perf_event *event, 2663 struct pt_regs *iregs, 2664 struct perf_sample_data *data, 2665 void *base, void *top, 2666 int bit, int count, 2667 setup_fn setup_sample) 2668 { 2669 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2670 struct x86_perf_regs perf_regs; 2671 struct pt_regs *regs = &perf_regs.regs; 2672 void *at = get_next_pebs_record_by_bit(base, top, bit); 2673 int cnt = count; 2674 2675 if (!iregs) 2676 iregs = &dummy_iregs; 2677 2678 while (cnt > 1) { 2679 __intel_pmu_pebs_event(event, iregs, regs, data, at, setup_sample); 2680 at += cpuc->pebs_record_size; 2681 at = get_next_pebs_record_by_bit(at, top, bit); 2682 cnt--; 2683 } 2684 2685 __intel_pmu_pebs_last_event(event, iregs, regs, data, at, count, setup_sample); 2686 } 2687 2688 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data) 2689 { 2690 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2691 struct debug_store *ds = cpuc->ds; 2692 struct perf_event *event = cpuc->events[0]; /* PMC0 only */ 2693 struct pebs_record_core *at, *top; 2694 int n; 2695 2696 if (!x86_pmu.pebs_active) 2697 return; 2698 2699 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; 2700 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; 2701 2702 /* 2703 * Whatever else happens, drain the thing 2704 */ 2705 ds->pebs_index = ds->pebs_buffer_base; 2706 2707 if (!test_bit(0, cpuc->active_mask)) 2708 return; 2709 2710 WARN_ON_ONCE(!event); 2711 2712 if (!event->attr.precise_ip) 2713 return; 2714 2715 n = top - at; 2716 if (n <= 0) { 2717 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2718 intel_pmu_save_and_restart_reload(event, 0); 2719 return; 2720 } 2721 2722 __intel_pmu_pebs_events(event, iregs, data, at, top, 0, n, 2723 setup_pebs_fixed_sample_data); 2724 } 2725 2726 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, u64 mask) 2727 { 2728 u64 pebs_enabled = cpuc->pebs_enabled & mask; 2729 struct perf_event *event; 2730 int bit; 2731 2732 /* 2733 * The drain_pebs() could be called twice in a short period 2734 * for auto-reload event in pmu::read(). There are no 2735 * overflows have happened in between. 2736 * It needs to call intel_pmu_save_and_restart_reload() to 2737 * update the event->count for this case. 2738 */ 2739 for_each_set_bit(bit, (unsigned long *)&pebs_enabled, X86_PMC_IDX_MAX) { 2740 event = cpuc->events[bit]; 2741 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2742 intel_pmu_save_and_restart_reload(event, 0); 2743 } 2744 } 2745 2746 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data) 2747 { 2748 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2749 struct debug_store *ds = cpuc->ds; 2750 struct perf_event *event; 2751 void *base, *at, *top; 2752 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2753 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2754 int max_pebs_events = intel_pmu_max_num_pebs(NULL); 2755 int bit, i, size; 2756 u64 mask; 2757 2758 if (!x86_pmu.pebs_active) 2759 return; 2760 2761 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; 2762 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; 2763 2764 ds->pebs_index = ds->pebs_buffer_base; 2765 2766 mask = x86_pmu.pebs_events_mask; 2767 size = max_pebs_events; 2768 if (x86_pmu.flags & PMU_FL_PEBS_ALL) { 2769 mask |= x86_pmu.fixed_cntr_mask64 << INTEL_PMC_IDX_FIXED; 2770 size = INTEL_PMC_IDX_FIXED + x86_pmu_max_num_counters_fixed(NULL); 2771 } 2772 2773 if (unlikely(base >= top)) { 2774 intel_pmu_pebs_event_update_no_drain(cpuc, mask); 2775 return; 2776 } 2777 2778 for (at = base; at < top; at += x86_pmu.pebs_record_size) { 2779 struct pebs_record_nhm *p = at; 2780 u64 pebs_status; 2781 2782 pebs_status = p->status & cpuc->pebs_enabled; 2783 pebs_status &= mask; 2784 2785 /* PEBS v3 has more accurate status bits */ 2786 if (x86_pmu.intel_cap.pebs_format >= 3) { 2787 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 2788 counts[bit]++; 2789 2790 continue; 2791 } 2792 2793 /* 2794 * On some CPUs the PEBS status can be zero when PEBS is 2795 * racing with clearing of GLOBAL_STATUS. 2796 * 2797 * Normally we would drop that record, but in the 2798 * case when there is only a single active PEBS event 2799 * we can assume it's for that event. 2800 */ 2801 if (!pebs_status && cpuc->pebs_enabled && 2802 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) 2803 pebs_status = p->status = cpuc->pebs_enabled; 2804 2805 bit = find_first_bit((unsigned long *)&pebs_status, 2806 max_pebs_events); 2807 2808 if (!(x86_pmu.pebs_events_mask & (1 << bit))) 2809 continue; 2810 2811 /* 2812 * The PEBS hardware does not deal well with the situation 2813 * when events happen near to each other and multiple bits 2814 * are set. But it should happen rarely. 2815 * 2816 * If these events include one PEBS and multiple non-PEBS 2817 * events, it doesn't impact PEBS record. The record will 2818 * be handled normally. (slow path) 2819 * 2820 * If these events include two or more PEBS events, the 2821 * records for the events can be collapsed into a single 2822 * one, and it's not possible to reconstruct all events 2823 * that caused the PEBS record. It's called collision. 2824 * If collision happened, the record will be dropped. 2825 */ 2826 if (pebs_status != (1ULL << bit)) { 2827 for_each_set_bit(i, (unsigned long *)&pebs_status, size) 2828 error[i]++; 2829 continue; 2830 } 2831 2832 counts[bit]++; 2833 } 2834 2835 for_each_set_bit(bit, (unsigned long *)&mask, size) { 2836 if ((counts[bit] == 0) && (error[bit] == 0)) 2837 continue; 2838 2839 event = cpuc->events[bit]; 2840 if (WARN_ON_ONCE(!event)) 2841 continue; 2842 2843 if (WARN_ON_ONCE(!event->attr.precise_ip)) 2844 continue; 2845 2846 /* log dropped samples number */ 2847 if (error[bit]) { 2848 perf_log_lost_samples(event, error[bit]); 2849 2850 if (iregs) 2851 perf_event_account_interrupt(event); 2852 } 2853 2854 if (counts[bit]) { 2855 __intel_pmu_pebs_events(event, iregs, data, base, 2856 top, bit, counts[bit], 2857 setup_pebs_fixed_sample_data); 2858 } 2859 } 2860 } 2861 2862 static __always_inline void 2863 __intel_pmu_handle_pebs_record(struct pt_regs *iregs, 2864 struct pt_regs *regs, 2865 struct perf_sample_data *data, 2866 void *at, u64 pebs_status, 2867 short *counts, void **last, 2868 setup_fn setup_sample) 2869 { 2870 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2871 struct perf_event *event; 2872 int bit; 2873 2874 for_each_set_bit(bit, (unsigned long *)&pebs_status, X86_PMC_IDX_MAX) { 2875 event = cpuc->events[bit]; 2876 2877 if (WARN_ON_ONCE(!event) || 2878 WARN_ON_ONCE(!event->attr.precise_ip)) 2879 continue; 2880 2881 if (counts[bit]++) { 2882 __intel_pmu_pebs_event(event, iregs, regs, data, 2883 last[bit], setup_sample); 2884 } 2885 2886 last[bit] = at; 2887 } 2888 } 2889 2890 static __always_inline void 2891 __intel_pmu_handle_last_pebs_record(struct pt_regs *iregs, 2892 struct pt_regs *regs, 2893 struct perf_sample_data *data, 2894 u64 mask, short *counts, void **last, 2895 setup_fn setup_sample) 2896 { 2897 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2898 struct perf_event *event; 2899 int bit; 2900 2901 for_each_set_bit(bit, (unsigned long *)&mask, X86_PMC_IDX_MAX) { 2902 if (!counts[bit]) 2903 continue; 2904 2905 event = cpuc->events[bit]; 2906 2907 __intel_pmu_pebs_last_event(event, iregs, regs, data, last[bit], 2908 counts[bit], setup_sample); 2909 } 2910 2911 } 2912 2913 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data) 2914 { 2915 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2916 void *last[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS]; 2917 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2918 struct debug_store *ds = cpuc->ds; 2919 struct x86_perf_regs perf_regs; 2920 struct pt_regs *regs = &perf_regs.regs; 2921 struct pebs_basic *basic; 2922 void *base, *at, *top; 2923 u64 mask; 2924 2925 if (!x86_pmu.pebs_active) 2926 return; 2927 2928 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base; 2929 top = (struct pebs_basic *)(unsigned long)ds->pebs_index; 2930 2931 ds->pebs_index = ds->pebs_buffer_base; 2932 2933 mask = hybrid(cpuc->pmu, pebs_events_mask) | 2934 (hybrid(cpuc->pmu, fixed_cntr_mask64) << INTEL_PMC_IDX_FIXED); 2935 mask &= cpuc->pebs_enabled; 2936 2937 if (unlikely(base >= top)) { 2938 intel_pmu_pebs_event_update_no_drain(cpuc, mask); 2939 return; 2940 } 2941 2942 if (!iregs) 2943 iregs = &dummy_iregs; 2944 2945 /* Process all but the last event for each counter. */ 2946 for (at = base; at < top; at += basic->format_size) { 2947 u64 pebs_status; 2948 2949 basic = at; 2950 if (basic->format_size != cpuc->pebs_record_size) 2951 continue; 2952 2953 pebs_status = mask & basic->applicable_counters; 2954 __intel_pmu_handle_pebs_record(iregs, regs, data, at, 2955 pebs_status, counts, last, 2956 setup_pebs_adaptive_sample_data); 2957 } 2958 2959 __intel_pmu_handle_last_pebs_record(iregs, regs, data, mask, counts, last, 2960 setup_pebs_adaptive_sample_data); 2961 } 2962 2963 static void intel_pmu_drain_arch_pebs(struct pt_regs *iregs, 2964 struct perf_sample_data *data) 2965 { 2966 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2967 void *last[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS]; 2968 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2969 union arch_pebs_index index; 2970 struct x86_perf_regs perf_regs; 2971 struct pt_regs *regs = &perf_regs.regs; 2972 void *base, *at, *top; 2973 u64 mask; 2974 2975 rdmsrq(MSR_IA32_PEBS_INDEX, index.whole); 2976 2977 if (unlikely(!index.wr)) { 2978 intel_pmu_pebs_event_update_no_drain(cpuc, X86_PMC_IDX_MAX); 2979 return; 2980 } 2981 2982 base = cpuc->pebs_vaddr; 2983 top = cpuc->pebs_vaddr + (index.wr << ARCH_PEBS_INDEX_WR_SHIFT); 2984 2985 index.wr = 0; 2986 index.full = 0; 2987 index.en = 1; 2988 if (cpuc->n_pebs == cpuc->n_large_pebs) 2989 index.thresh = ARCH_PEBS_THRESH_MULTI; 2990 else 2991 index.thresh = ARCH_PEBS_THRESH_SINGLE; 2992 wrmsrq(MSR_IA32_PEBS_INDEX, index.whole); 2993 2994 mask = hybrid(cpuc->pmu, arch_pebs_cap).counters & cpuc->pebs_enabled; 2995 2996 if (!iregs) 2997 iregs = &dummy_iregs; 2998 2999 /* Process all but the last event for each counter. */ 3000 for (at = base; at < top;) { 3001 struct arch_pebs_header *header; 3002 struct arch_pebs_basic *basic; 3003 u64 pebs_status; 3004 3005 header = at; 3006 3007 if (WARN_ON_ONCE(!header->size)) 3008 break; 3009 3010 /* 1st fragment or single record must have basic group */ 3011 if (!header->basic) { 3012 at += header->size; 3013 continue; 3014 } 3015 3016 basic = at + sizeof(struct arch_pebs_header); 3017 pebs_status = mask & basic->applicable_counters; 3018 __intel_pmu_handle_pebs_record(iregs, regs, data, at, 3019 pebs_status, counts, last, 3020 setup_arch_pebs_sample_data); 3021 3022 /* Skip non-last fragments */ 3023 while (arch_pebs_record_continued(header)) { 3024 if (!header->size) 3025 break; 3026 at += header->size; 3027 header = at; 3028 } 3029 3030 /* Skip last fragment or the single record */ 3031 at += header->size; 3032 } 3033 3034 __intel_pmu_handle_last_pebs_record(iregs, regs, data, mask, 3035 counts, last, 3036 setup_arch_pebs_sample_data); 3037 } 3038 3039 static void __init intel_arch_pebs_init(void) 3040 { 3041 /* 3042 * Current hybrid platforms always both support arch-PEBS or not 3043 * on all kinds of cores. So directly set x86_pmu.arch_pebs flag 3044 * if boot cpu supports arch-PEBS. 3045 */ 3046 x86_pmu.arch_pebs = 1; 3047 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; 3048 x86_pmu.drain_pebs = intel_pmu_drain_arch_pebs; 3049 x86_pmu.pebs_capable = ~0ULL; 3050 x86_pmu.flags |= PMU_FL_PEBS_ALL; 3051 3052 x86_pmu.pebs_enable = __intel_pmu_pebs_enable; 3053 x86_pmu.pebs_disable = __intel_pmu_pebs_disable; 3054 } 3055 3056 /* 3057 * PEBS probe and setup 3058 */ 3059 3060 static void __init intel_ds_pebs_init(void) 3061 { 3062 /* 3063 * No support for 32bit formats 3064 */ 3065 if (!boot_cpu_has(X86_FEATURE_DTES64)) 3066 return; 3067 3068 x86_pmu.ds_pebs = boot_cpu_has(X86_FEATURE_PEBS); 3069 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; 3070 if (x86_pmu.version <= 4) 3071 x86_pmu.pebs_no_isolation = 1; 3072 3073 if (x86_pmu.ds_pebs) { 3074 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; 3075 char *pebs_qual = ""; 3076 int format = x86_pmu.intel_cap.pebs_format; 3077 3078 if (format < 4) 3079 x86_pmu.intel_cap.pebs_baseline = 0; 3080 3081 x86_pmu.pebs_enable = intel_pmu_pebs_enable; 3082 x86_pmu.pebs_disable = intel_pmu_pebs_disable; 3083 x86_pmu.pebs_enable_all = intel_pmu_pebs_enable_all; 3084 x86_pmu.pebs_disable_all = intel_pmu_pebs_disable_all; 3085 3086 switch (format) { 3087 case 0: 3088 pr_cont("PEBS fmt0%c, ", pebs_type); 3089 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); 3090 /* 3091 * Using >PAGE_SIZE buffers makes the WRMSR to 3092 * PERF_GLOBAL_CTRL in intel_pmu_enable_all() 3093 * mysteriously hang on Core2. 3094 * 3095 * As a workaround, we don't do this. 3096 */ 3097 x86_pmu.pebs_buffer_size = PAGE_SIZE; 3098 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; 3099 break; 3100 3101 case 1: 3102 pr_cont("PEBS fmt1%c, ", pebs_type); 3103 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); 3104 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 3105 break; 3106 3107 case 2: 3108 pr_cont("PEBS fmt2%c, ", pebs_type); 3109 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); 3110 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 3111 break; 3112 3113 case 3: 3114 pr_cont("PEBS fmt3%c, ", pebs_type); 3115 x86_pmu.pebs_record_size = 3116 sizeof(struct pebs_record_skl); 3117 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 3118 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; 3119 break; 3120 3121 case 6: 3122 if (x86_pmu.intel_cap.pebs_baseline) 3123 x86_pmu.large_pebs_flags |= PERF_SAMPLE_READ; 3124 fallthrough; 3125 case 5: 3126 x86_pmu.pebs_ept = 1; 3127 fallthrough; 3128 case 4: 3129 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl; 3130 x86_pmu.pebs_record_size = sizeof(struct pebs_basic); 3131 if (x86_pmu.intel_cap.pebs_baseline) { 3132 x86_pmu.large_pebs_flags |= 3133 PERF_SAMPLE_BRANCH_STACK | 3134 PERF_SAMPLE_TIME; 3135 x86_pmu.flags |= PMU_FL_PEBS_ALL; 3136 x86_pmu.pebs_capable = ~0ULL; 3137 pebs_qual = "-baseline"; 3138 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS; 3139 } else { 3140 /* Only basic record supported */ 3141 x86_pmu.large_pebs_flags &= 3142 ~(PERF_SAMPLE_ADDR | 3143 PERF_SAMPLE_TIME | 3144 PERF_SAMPLE_DATA_SRC | 3145 PERF_SAMPLE_TRANSACTION | 3146 PERF_SAMPLE_REGS_USER | 3147 PERF_SAMPLE_REGS_INTR); 3148 } 3149 pr_cont("PEBS fmt%d%c%s, ", format, pebs_type, pebs_qual); 3150 3151 /* 3152 * The PEBS-via-PT is not supported on hybrid platforms, 3153 * because not all CPUs of a hybrid machine support it. 3154 * The global x86_pmu.intel_cap, which only contains the 3155 * common capabilities, is used to check the availability 3156 * of the feature. The per-PMU pebs_output_pt_available 3157 * in a hybrid machine should be ignored. 3158 */ 3159 if (x86_pmu.intel_cap.pebs_output_pt_available) { 3160 pr_cont("PEBS-via-PT, "); 3161 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT; 3162 } 3163 3164 break; 3165 3166 default: 3167 pr_cont("no PEBS fmt%d%c, ", format, pebs_type); 3168 x86_pmu.ds_pebs = 0; 3169 } 3170 } 3171 } 3172 3173 void __init intel_pebs_init(void) 3174 { 3175 if (x86_pmu.intel_cap.pebs_format == 0xf) 3176 intel_arch_pebs_init(); 3177 else 3178 intel_ds_pebs_init(); 3179 } 3180 3181 void perf_restore_debug_store(void) 3182 { 3183 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 3184 3185 if (!x86_pmu.bts && !x86_pmu.ds_pebs) 3186 return; 3187 3188 wrmsrq(MSR_IA32_DS_AREA, (unsigned long)ds); 3189 } 3190