1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bitops.h> 3 #include <linux/types.h> 4 #include <linux/slab.h> 5 #include <linux/sched/clock.h> 6 7 #include <asm/cpu_entry_area.h> 8 #include <asm/debugreg.h> 9 #include <asm/perf_event.h> 10 #include <asm/tlbflush.h> 11 #include <asm/insn.h> 12 #include <asm/io.h> 13 #include <asm/timer.h> 14 15 #include "../perf_event.h" 16 17 /* Waste a full page so it can be mapped into the cpu_entry_area */ 18 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); 19 20 /* The size of a BTS record in bytes: */ 21 #define BTS_RECORD_SIZE 24 22 23 #define PEBS_FIXUP_SIZE PAGE_SIZE 24 25 /* 26 * pebs_record_32 for p4 and core not supported 27 28 struct pebs_record_32 { 29 u32 flags, ip; 30 u32 ax, bc, cx, dx; 31 u32 si, di, bp, sp; 32 }; 33 34 */ 35 36 union intel_x86_pebs_dse { 37 u64 val; 38 struct { 39 unsigned int ld_dse:4; 40 unsigned int ld_stlb_miss:1; 41 unsigned int ld_locked:1; 42 unsigned int ld_data_blk:1; 43 unsigned int ld_addr_blk:1; 44 unsigned int ld_reserved:24; 45 }; 46 struct { 47 unsigned int st_l1d_hit:1; 48 unsigned int st_reserved1:3; 49 unsigned int st_stlb_miss:1; 50 unsigned int st_locked:1; 51 unsigned int st_reserved2:26; 52 }; 53 struct { 54 unsigned int st_lat_dse:4; 55 unsigned int st_lat_stlb_miss:1; 56 unsigned int st_lat_locked:1; 57 unsigned int ld_reserved3:26; 58 }; 59 struct { 60 unsigned int mtl_dse:5; 61 unsigned int mtl_locked:1; 62 unsigned int mtl_stlb_miss:1; 63 unsigned int mtl_fwd_blk:1; 64 unsigned int ld_reserved4:24; 65 }; 66 }; 67 68 69 /* 70 * Map PEBS Load Latency Data Source encodings to generic 71 * memory data source information 72 */ 73 #define P(a, b) PERF_MEM_S(a, b) 74 #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) 75 #define LEVEL(x) P(LVLNUM, x) 76 #define REM P(REMOTE, REMOTE) 77 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) 78 79 /* Version for Sandy Bridge and later */ 80 static u64 pebs_data_source[] = { 81 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ 82 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ 83 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ 84 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ 85 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ 86 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ 87 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ 88 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ 89 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ 90 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ 91 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ 92 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ 93 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ 94 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ 95 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ 96 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ 97 }; 98 99 /* Patch up minor differences in the bits */ 100 void __init intel_pmu_pebs_data_source_nhm(void) 101 { 102 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 103 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 104 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 105 } 106 107 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source) 108 { 109 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); 110 111 data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); 112 data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); 113 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); 114 data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); 115 data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); 116 } 117 118 void __init intel_pmu_pebs_data_source_skl(bool pmem) 119 { 120 __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source); 121 } 122 123 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source) 124 { 125 data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 126 data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 127 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); 128 } 129 130 void __init intel_pmu_pebs_data_source_grt(void) 131 { 132 __intel_pmu_pebs_data_source_grt(pebs_data_source); 133 } 134 135 void __init intel_pmu_pebs_data_source_adl(void) 136 { 137 u64 *data_source; 138 139 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; 140 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 141 __intel_pmu_pebs_data_source_skl(false, data_source); 142 143 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; 144 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 145 __intel_pmu_pebs_data_source_grt(data_source); 146 } 147 148 static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source) 149 { 150 data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); 151 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 152 data_source[0x0a] = OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE); 153 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); 154 data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD); 155 data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM); 156 } 157 158 void __init intel_pmu_pebs_data_source_mtl(void) 159 { 160 u64 *data_source; 161 162 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; 163 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 164 __intel_pmu_pebs_data_source_skl(false, data_source); 165 166 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; 167 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 168 __intel_pmu_pebs_data_source_cmt(data_source); 169 } 170 171 void __init intel_pmu_pebs_data_source_cmt(void) 172 { 173 __intel_pmu_pebs_data_source_cmt(pebs_data_source); 174 } 175 176 static u64 precise_store_data(u64 status) 177 { 178 union intel_x86_pebs_dse dse; 179 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); 180 181 dse.val = status; 182 183 /* 184 * bit 4: TLB access 185 * 1 = stored missed 2nd level TLB 186 * 187 * so it either hit the walker or the OS 188 * otherwise hit 2nd level TLB 189 */ 190 if (dse.st_stlb_miss) 191 val |= P(TLB, MISS); 192 else 193 val |= P(TLB, HIT); 194 195 /* 196 * bit 0: hit L1 data cache 197 * if not set, then all we know is that 198 * it missed L1D 199 */ 200 if (dse.st_l1d_hit) 201 val |= P(LVL, HIT); 202 else 203 val |= P(LVL, MISS); 204 205 /* 206 * bit 5: Locked prefix 207 */ 208 if (dse.st_locked) 209 val |= P(LOCK, LOCKED); 210 211 return val; 212 } 213 214 static u64 precise_datala_hsw(struct perf_event *event, u64 status) 215 { 216 union perf_mem_data_src dse; 217 218 dse.val = PERF_MEM_NA; 219 220 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) 221 dse.mem_op = PERF_MEM_OP_STORE; 222 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) 223 dse.mem_op = PERF_MEM_OP_LOAD; 224 225 /* 226 * L1 info only valid for following events: 227 * 228 * MEM_UOPS_RETIRED.STLB_MISS_STORES 229 * MEM_UOPS_RETIRED.LOCK_STORES 230 * MEM_UOPS_RETIRED.SPLIT_STORES 231 * MEM_UOPS_RETIRED.ALL_STORES 232 */ 233 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { 234 if (status & 1) 235 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; 236 else 237 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; 238 } 239 return dse.val; 240 } 241 242 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock) 243 { 244 /* 245 * TLB access 246 * 0 = did not miss 2nd level TLB 247 * 1 = missed 2nd level TLB 248 */ 249 if (tlb) 250 *val |= P(TLB, MISS) | P(TLB, L2); 251 else 252 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); 253 254 /* locked prefix */ 255 if (lock) 256 *val |= P(LOCK, LOCKED); 257 } 258 259 /* Retrieve the latency data for e-core of ADL */ 260 static u64 __adl_latency_data_small(struct perf_event *event, u64 status, 261 u8 dse, bool tlb, bool lock, bool blk) 262 { 263 u64 val; 264 265 WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big); 266 267 dse &= PERF_PEBS_DATA_SOURCE_MASK; 268 val = hybrid_var(event->pmu, pebs_data_source)[dse]; 269 270 pebs_set_tlb_lock(&val, tlb, lock); 271 272 if (blk) 273 val |= P(BLK, DATA); 274 else 275 val |= P(BLK, NA); 276 277 return val; 278 } 279 280 u64 adl_latency_data_small(struct perf_event *event, u64 status) 281 { 282 union intel_x86_pebs_dse dse; 283 284 dse.val = status; 285 286 return __adl_latency_data_small(event, status, dse.ld_dse, 287 dse.ld_locked, dse.ld_stlb_miss, 288 dse.ld_data_blk); 289 } 290 291 /* Retrieve the latency data for e-core of MTL */ 292 u64 mtl_latency_data_small(struct perf_event *event, u64 status) 293 { 294 union intel_x86_pebs_dse dse; 295 296 dse.val = status; 297 298 return __adl_latency_data_small(event, status, dse.mtl_dse, 299 dse.mtl_stlb_miss, dse.mtl_locked, 300 dse.mtl_fwd_blk); 301 } 302 303 static u64 load_latency_data(struct perf_event *event, u64 status) 304 { 305 union intel_x86_pebs_dse dse; 306 u64 val; 307 308 dse.val = status; 309 310 /* 311 * use the mapping table for bit 0-3 312 */ 313 val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse]; 314 315 /* 316 * Nehalem models do not support TLB, Lock infos 317 */ 318 if (x86_pmu.pebs_no_tlb) { 319 val |= P(TLB, NA) | P(LOCK, NA); 320 return val; 321 } 322 323 pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked); 324 325 /* 326 * Ice Lake and earlier models do not support block infos. 327 */ 328 if (!x86_pmu.pebs_block) { 329 val |= P(BLK, NA); 330 return val; 331 } 332 /* 333 * bit 6: load was blocked since its data could not be forwarded 334 * from a preceding store 335 */ 336 if (dse.ld_data_blk) 337 val |= P(BLK, DATA); 338 339 /* 340 * bit 7: load was blocked due to potential address conflict with 341 * a preceding store 342 */ 343 if (dse.ld_addr_blk) 344 val |= P(BLK, ADDR); 345 346 if (!dse.ld_data_blk && !dse.ld_addr_blk) 347 val |= P(BLK, NA); 348 349 return val; 350 } 351 352 static u64 store_latency_data(struct perf_event *event, u64 status) 353 { 354 union intel_x86_pebs_dse dse; 355 union perf_mem_data_src src; 356 u64 val; 357 358 dse.val = status; 359 360 /* 361 * use the mapping table for bit 0-3 362 */ 363 val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse]; 364 365 pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked); 366 367 val |= P(BLK, NA); 368 369 /* 370 * the pebs_data_source table is only for loads 371 * so override the mem_op to say STORE instead 372 */ 373 src.val = val; 374 src.mem_op = P(OP,STORE); 375 376 return src.val; 377 } 378 379 struct pebs_record_core { 380 u64 flags, ip; 381 u64 ax, bx, cx, dx; 382 u64 si, di, bp, sp; 383 u64 r8, r9, r10, r11; 384 u64 r12, r13, r14, r15; 385 }; 386 387 struct pebs_record_nhm { 388 u64 flags, ip; 389 u64 ax, bx, cx, dx; 390 u64 si, di, bp, sp; 391 u64 r8, r9, r10, r11; 392 u64 r12, r13, r14, r15; 393 u64 status, dla, dse, lat; 394 }; 395 396 /* 397 * Same as pebs_record_nhm, with two additional fields. 398 */ 399 struct pebs_record_hsw { 400 u64 flags, ip; 401 u64 ax, bx, cx, dx; 402 u64 si, di, bp, sp; 403 u64 r8, r9, r10, r11; 404 u64 r12, r13, r14, r15; 405 u64 status, dla, dse, lat; 406 u64 real_ip, tsx_tuning; 407 }; 408 409 union hsw_tsx_tuning { 410 struct { 411 u32 cycles_last_block : 32, 412 hle_abort : 1, 413 rtm_abort : 1, 414 instruction_abort : 1, 415 non_instruction_abort : 1, 416 retry : 1, 417 data_conflict : 1, 418 capacity_writes : 1, 419 capacity_reads : 1; 420 }; 421 u64 value; 422 }; 423 424 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL 425 426 /* Same as HSW, plus TSC */ 427 428 struct pebs_record_skl { 429 u64 flags, ip; 430 u64 ax, bx, cx, dx; 431 u64 si, di, bp, sp; 432 u64 r8, r9, r10, r11; 433 u64 r12, r13, r14, r15; 434 u64 status, dla, dse, lat; 435 u64 real_ip, tsx_tuning; 436 u64 tsc; 437 }; 438 439 void init_debug_store_on_cpu(int cpu) 440 { 441 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; 442 443 if (!ds) 444 return; 445 446 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 447 (u32)((u64)(unsigned long)ds), 448 (u32)((u64)(unsigned long)ds >> 32)); 449 } 450 451 void fini_debug_store_on_cpu(int cpu) 452 { 453 if (!per_cpu(cpu_hw_events, cpu).ds) 454 return; 455 456 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); 457 } 458 459 static DEFINE_PER_CPU(void *, insn_buffer); 460 461 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) 462 { 463 unsigned long start = (unsigned long)cea; 464 phys_addr_t pa; 465 size_t msz = 0; 466 467 pa = virt_to_phys(addr); 468 469 preempt_disable(); 470 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) 471 cea_set_pte(cea, pa, prot); 472 473 /* 474 * This is a cross-CPU update of the cpu_entry_area, we must shoot down 475 * all TLB entries for it. 476 */ 477 flush_tlb_kernel_range(start, start + size); 478 preempt_enable(); 479 } 480 481 static void ds_clear_cea(void *cea, size_t size) 482 { 483 unsigned long start = (unsigned long)cea; 484 size_t msz = 0; 485 486 preempt_disable(); 487 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) 488 cea_set_pte(cea, 0, PAGE_NONE); 489 490 flush_tlb_kernel_range(start, start + size); 491 preempt_enable(); 492 } 493 494 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) 495 { 496 unsigned int order = get_order(size); 497 int node = cpu_to_node(cpu); 498 struct page *page; 499 500 page = __alloc_pages_node(node, flags | __GFP_ZERO, order); 501 return page ? page_address(page) : NULL; 502 } 503 504 static void dsfree_pages(const void *buffer, size_t size) 505 { 506 if (buffer) 507 free_pages((unsigned long)buffer, get_order(size)); 508 } 509 510 static int alloc_pebs_buffer(int cpu) 511 { 512 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 513 struct debug_store *ds = hwev->ds; 514 size_t bsiz = x86_pmu.pebs_buffer_size; 515 int max, node = cpu_to_node(cpu); 516 void *buffer, *insn_buff, *cea; 517 518 if (!x86_pmu.pebs) 519 return 0; 520 521 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); 522 if (unlikely(!buffer)) 523 return -ENOMEM; 524 525 /* 526 * HSW+ already provides us the eventing ip; no need to allocate this 527 * buffer then. 528 */ 529 if (x86_pmu.intel_cap.pebs_format < 2) { 530 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); 531 if (!insn_buff) { 532 dsfree_pages(buffer, bsiz); 533 return -ENOMEM; 534 } 535 per_cpu(insn_buffer, cpu) = insn_buff; 536 } 537 hwev->ds_pebs_vaddr = buffer; 538 /* Update the cpu entry area mapping */ 539 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 540 ds->pebs_buffer_base = (unsigned long) cea; 541 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); 542 ds->pebs_index = ds->pebs_buffer_base; 543 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); 544 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; 545 return 0; 546 } 547 548 static void release_pebs_buffer(int cpu) 549 { 550 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 551 void *cea; 552 553 if (!x86_pmu.pebs) 554 return; 555 556 kfree(per_cpu(insn_buffer, cpu)); 557 per_cpu(insn_buffer, cpu) = NULL; 558 559 /* Clear the fixmap */ 560 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 561 ds_clear_cea(cea, x86_pmu.pebs_buffer_size); 562 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size); 563 hwev->ds_pebs_vaddr = NULL; 564 } 565 566 static int alloc_bts_buffer(int cpu) 567 { 568 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 569 struct debug_store *ds = hwev->ds; 570 void *buffer, *cea; 571 int max; 572 573 if (!x86_pmu.bts) 574 return 0; 575 576 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); 577 if (unlikely(!buffer)) { 578 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); 579 return -ENOMEM; 580 } 581 hwev->ds_bts_vaddr = buffer; 582 /* Update the fixmap */ 583 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 584 ds->bts_buffer_base = (unsigned long) cea; 585 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); 586 ds->bts_index = ds->bts_buffer_base; 587 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; 588 ds->bts_absolute_maximum = ds->bts_buffer_base + 589 max * BTS_RECORD_SIZE; 590 ds->bts_interrupt_threshold = ds->bts_absolute_maximum - 591 (max / 16) * BTS_RECORD_SIZE; 592 return 0; 593 } 594 595 static void release_bts_buffer(int cpu) 596 { 597 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 598 void *cea; 599 600 if (!x86_pmu.bts) 601 return; 602 603 /* Clear the fixmap */ 604 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 605 ds_clear_cea(cea, BTS_BUFFER_SIZE); 606 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); 607 hwev->ds_bts_vaddr = NULL; 608 } 609 610 static int alloc_ds_buffer(int cpu) 611 { 612 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; 613 614 memset(ds, 0, sizeof(*ds)); 615 per_cpu(cpu_hw_events, cpu).ds = ds; 616 return 0; 617 } 618 619 static void release_ds_buffer(int cpu) 620 { 621 per_cpu(cpu_hw_events, cpu).ds = NULL; 622 } 623 624 void release_ds_buffers(void) 625 { 626 int cpu; 627 628 if (!x86_pmu.bts && !x86_pmu.pebs) 629 return; 630 631 for_each_possible_cpu(cpu) 632 release_ds_buffer(cpu); 633 634 for_each_possible_cpu(cpu) { 635 /* 636 * Again, ignore errors from offline CPUs, they will no longer 637 * observe cpu_hw_events.ds and not program the DS_AREA when 638 * they come up. 639 */ 640 fini_debug_store_on_cpu(cpu); 641 } 642 643 for_each_possible_cpu(cpu) { 644 release_pebs_buffer(cpu); 645 release_bts_buffer(cpu); 646 } 647 } 648 649 void reserve_ds_buffers(void) 650 { 651 int bts_err = 0, pebs_err = 0; 652 int cpu; 653 654 x86_pmu.bts_active = 0; 655 x86_pmu.pebs_active = 0; 656 657 if (!x86_pmu.bts && !x86_pmu.pebs) 658 return; 659 660 if (!x86_pmu.bts) 661 bts_err = 1; 662 663 if (!x86_pmu.pebs) 664 pebs_err = 1; 665 666 for_each_possible_cpu(cpu) { 667 if (alloc_ds_buffer(cpu)) { 668 bts_err = 1; 669 pebs_err = 1; 670 } 671 672 if (!bts_err && alloc_bts_buffer(cpu)) 673 bts_err = 1; 674 675 if (!pebs_err && alloc_pebs_buffer(cpu)) 676 pebs_err = 1; 677 678 if (bts_err && pebs_err) 679 break; 680 } 681 682 if (bts_err) { 683 for_each_possible_cpu(cpu) 684 release_bts_buffer(cpu); 685 } 686 687 if (pebs_err) { 688 for_each_possible_cpu(cpu) 689 release_pebs_buffer(cpu); 690 } 691 692 if (bts_err && pebs_err) { 693 for_each_possible_cpu(cpu) 694 release_ds_buffer(cpu); 695 } else { 696 if (x86_pmu.bts && !bts_err) 697 x86_pmu.bts_active = 1; 698 699 if (x86_pmu.pebs && !pebs_err) 700 x86_pmu.pebs_active = 1; 701 702 for_each_possible_cpu(cpu) { 703 /* 704 * Ignores wrmsr_on_cpu() errors for offline CPUs they 705 * will get this call through intel_pmu_cpu_starting(). 706 */ 707 init_debug_store_on_cpu(cpu); 708 } 709 } 710 } 711 712 /* 713 * BTS 714 */ 715 716 struct event_constraint bts_constraint = 717 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); 718 719 void intel_pmu_enable_bts(u64 config) 720 { 721 unsigned long debugctlmsr; 722 723 debugctlmsr = get_debugctlmsr(); 724 725 debugctlmsr |= DEBUGCTLMSR_TR; 726 debugctlmsr |= DEBUGCTLMSR_BTS; 727 if (config & ARCH_PERFMON_EVENTSEL_INT) 728 debugctlmsr |= DEBUGCTLMSR_BTINT; 729 730 if (!(config & ARCH_PERFMON_EVENTSEL_OS)) 731 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; 732 733 if (!(config & ARCH_PERFMON_EVENTSEL_USR)) 734 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; 735 736 update_debugctlmsr(debugctlmsr); 737 } 738 739 void intel_pmu_disable_bts(void) 740 { 741 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 742 unsigned long debugctlmsr; 743 744 if (!cpuc->ds) 745 return; 746 747 debugctlmsr = get_debugctlmsr(); 748 749 debugctlmsr &= 750 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | 751 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); 752 753 update_debugctlmsr(debugctlmsr); 754 } 755 756 int intel_pmu_drain_bts_buffer(void) 757 { 758 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 759 struct debug_store *ds = cpuc->ds; 760 struct bts_record { 761 u64 from; 762 u64 to; 763 u64 flags; 764 }; 765 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 766 struct bts_record *at, *base, *top; 767 struct perf_output_handle handle; 768 struct perf_event_header header; 769 struct perf_sample_data data; 770 unsigned long skip = 0; 771 struct pt_regs regs; 772 773 if (!event) 774 return 0; 775 776 if (!x86_pmu.bts_active) 777 return 0; 778 779 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; 780 top = (struct bts_record *)(unsigned long)ds->bts_index; 781 782 if (top <= base) 783 return 0; 784 785 memset(®s, 0, sizeof(regs)); 786 787 ds->bts_index = ds->bts_buffer_base; 788 789 perf_sample_data_init(&data, 0, event->hw.last_period); 790 791 /* 792 * BTS leaks kernel addresses in branches across the cpl boundary, 793 * such as traps or system calls, so unless the user is asking for 794 * kernel tracing (and right now it's not possible), we'd need to 795 * filter them out. But first we need to count how many of those we 796 * have in the current batch. This is an extra O(n) pass, however, 797 * it's much faster than the other one especially considering that 798 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the 799 * alloc_bts_buffer()). 800 */ 801 for (at = base; at < top; at++) { 802 /* 803 * Note that right now *this* BTS code only works if 804 * attr::exclude_kernel is set, but let's keep this extra 805 * check here in case that changes. 806 */ 807 if (event->attr.exclude_kernel && 808 (kernel_ip(at->from) || kernel_ip(at->to))) 809 skip++; 810 } 811 812 /* 813 * Prepare a generic sample, i.e. fill in the invariant fields. 814 * We will overwrite the from and to address before we output 815 * the sample. 816 */ 817 rcu_read_lock(); 818 perf_prepare_sample(&data, event, ®s); 819 perf_prepare_header(&header, &data, event, ®s); 820 821 if (perf_output_begin(&handle, &data, event, 822 header.size * (top - base - skip))) 823 goto unlock; 824 825 for (at = base; at < top; at++) { 826 /* Filter out any records that contain kernel addresses. */ 827 if (event->attr.exclude_kernel && 828 (kernel_ip(at->from) || kernel_ip(at->to))) 829 continue; 830 831 data.ip = at->from; 832 data.addr = at->to; 833 834 perf_output_sample(&handle, &header, &data, event); 835 } 836 837 perf_output_end(&handle); 838 839 /* There's new data available. */ 840 event->hw.interrupts++; 841 event->pending_kill = POLL_IN; 842 unlock: 843 rcu_read_unlock(); 844 return 1; 845 } 846 847 static inline void intel_pmu_drain_pebs_buffer(void) 848 { 849 struct perf_sample_data data; 850 851 x86_pmu.drain_pebs(NULL, &data); 852 } 853 854 /* 855 * PEBS 856 */ 857 struct event_constraint intel_core2_pebs_event_constraints[] = { 858 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 859 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ 860 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ 861 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ 862 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 863 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 864 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), 865 EVENT_CONSTRAINT_END 866 }; 867 868 struct event_constraint intel_atom_pebs_event_constraints[] = { 869 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 870 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ 871 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 872 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 873 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), 874 /* Allow all events as PEBS with no flags */ 875 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 876 EVENT_CONSTRAINT_END 877 }; 878 879 struct event_constraint intel_slm_pebs_event_constraints[] = { 880 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 881 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1), 882 /* Allow all events as PEBS with no flags */ 883 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 884 EVENT_CONSTRAINT_END 885 }; 886 887 struct event_constraint intel_glm_pebs_event_constraints[] = { 888 /* Allow all events as PEBS with no flags */ 889 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 890 EVENT_CONSTRAINT_END 891 }; 892 893 struct event_constraint intel_grt_pebs_event_constraints[] = { 894 /* Allow all events as PEBS with no flags */ 895 INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3), 896 INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf), 897 EVENT_CONSTRAINT_END 898 }; 899 900 struct event_constraint intel_nehalem_pebs_event_constraints[] = { 901 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 902 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 903 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 904 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ 905 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 906 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 907 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ 908 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 909 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 910 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 911 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 912 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 913 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 914 EVENT_CONSTRAINT_END 915 }; 916 917 struct event_constraint intel_westmere_pebs_event_constraints[] = { 918 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 919 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 920 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 921 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ 922 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 923 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 924 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ 925 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 926 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 927 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 928 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 929 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 930 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 931 EVENT_CONSTRAINT_END 932 }; 933 934 struct event_constraint intel_snb_pebs_event_constraints[] = { 935 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 936 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 937 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 938 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 939 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 940 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 941 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 942 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 943 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 944 /* Allow all events as PEBS with no flags */ 945 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 946 EVENT_CONSTRAINT_END 947 }; 948 949 struct event_constraint intel_ivb_pebs_event_constraints[] = { 950 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 951 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 952 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 953 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 954 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 955 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 956 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 957 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 958 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 959 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 960 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 961 /* Allow all events as PEBS with no flags */ 962 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 963 EVENT_CONSTRAINT_END 964 }; 965 966 struct event_constraint intel_hsw_pebs_event_constraints[] = { 967 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 968 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 969 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 970 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 971 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 972 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 973 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 974 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 975 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 976 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 977 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 978 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 979 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 980 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 981 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 982 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 983 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 984 /* Allow all events as PEBS with no flags */ 985 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 986 EVENT_CONSTRAINT_END 987 }; 988 989 struct event_constraint intel_bdw_pebs_event_constraints[] = { 990 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 991 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 992 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 993 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 994 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 995 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 996 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 997 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 998 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 999 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 1000 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 1001 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 1002 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 1003 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 1004 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 1005 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 1006 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 1007 /* Allow all events as PEBS with no flags */ 1008 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 1009 EVENT_CONSTRAINT_END 1010 }; 1011 1012 1013 struct event_constraint intel_skl_pebs_event_constraints[] = { 1014 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 1015 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 1016 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 1017 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ 1018 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 1019 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ 1020 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1021 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1022 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1023 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ 1024 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1025 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1026 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1027 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1028 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 1029 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 1030 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ 1031 /* Allow all events as PEBS with no flags */ 1032 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 1033 EVENT_CONSTRAINT_END 1034 }; 1035 1036 struct event_constraint intel_icl_pebs_event_constraints[] = { 1037 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */ 1038 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 1039 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */ 1040 1041 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 1042 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1043 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1044 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1045 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1046 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1047 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1048 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1049 1050 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */ 1051 1052 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 1053 1054 /* 1055 * Everything else is handled by PMU_FL_PEBS_ALL, because we 1056 * need the full constraints from the main table. 1057 */ 1058 1059 EVENT_CONSTRAINT_END 1060 }; 1061 1062 struct event_constraint intel_glc_pebs_event_constraints[] = { 1063 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 1064 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), 1065 1066 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe), 1067 INTEL_PLD_CONSTRAINT(0x1cd, 0xfe), 1068 INTEL_PSD_CONSTRAINT(0x2cd, 0x1), 1069 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1070 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1071 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1072 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1073 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1074 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1075 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1076 1077 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), 1078 1079 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), 1080 1081 /* 1082 * Everything else is handled by PMU_FL_PEBS_ALL, because we 1083 * need the full constraints from the main table. 1084 */ 1085 1086 EVENT_CONSTRAINT_END 1087 }; 1088 1089 struct event_constraint *intel_pebs_constraints(struct perf_event *event) 1090 { 1091 struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints); 1092 struct event_constraint *c; 1093 1094 if (!event->attr.precise_ip) 1095 return NULL; 1096 1097 if (pebs_constraints) { 1098 for_each_event_constraint(c, pebs_constraints) { 1099 if (constraint_match(c, event->hw.config)) { 1100 event->hw.flags |= c->flags; 1101 return c; 1102 } 1103 } 1104 } 1105 1106 /* 1107 * Extended PEBS support 1108 * Makes the PEBS code search the normal constraints. 1109 */ 1110 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 1111 return NULL; 1112 1113 return &emptyconstraint; 1114 } 1115 1116 /* 1117 * We need the sched_task callback even for per-cpu events when we use 1118 * the large interrupt threshold, such that we can provide PID and TID 1119 * to PEBS samples. 1120 */ 1121 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) 1122 { 1123 if (cpuc->n_pebs == cpuc->n_pebs_via_pt) 1124 return false; 1125 1126 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); 1127 } 1128 1129 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) 1130 { 1131 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1132 1133 if (!sched_in && pebs_needs_sched_cb(cpuc)) 1134 intel_pmu_drain_pebs_buffer(); 1135 } 1136 1137 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) 1138 { 1139 struct debug_store *ds = cpuc->ds; 1140 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events); 1141 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 1142 u64 threshold; 1143 int reserved; 1144 1145 if (cpuc->n_pebs_via_pt) 1146 return; 1147 1148 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 1149 reserved = max_pebs_events + num_counters_fixed; 1150 else 1151 reserved = max_pebs_events; 1152 1153 if (cpuc->n_pebs == cpuc->n_large_pebs) { 1154 threshold = ds->pebs_absolute_maximum - 1155 reserved * cpuc->pebs_record_size; 1156 } else { 1157 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size; 1158 } 1159 1160 ds->pebs_interrupt_threshold = threshold; 1161 } 1162 1163 static void adaptive_pebs_record_size_update(void) 1164 { 1165 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1166 u64 pebs_data_cfg = cpuc->pebs_data_cfg; 1167 int sz = sizeof(struct pebs_basic); 1168 1169 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO) 1170 sz += sizeof(struct pebs_meminfo); 1171 if (pebs_data_cfg & PEBS_DATACFG_GP) 1172 sz += sizeof(struct pebs_gprs); 1173 if (pebs_data_cfg & PEBS_DATACFG_XMMS) 1174 sz += sizeof(struct pebs_xmm); 1175 if (pebs_data_cfg & PEBS_DATACFG_LBRS) 1176 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry); 1177 1178 cpuc->pebs_record_size = sz; 1179 } 1180 1181 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \ 1182 PERF_SAMPLE_PHYS_ADDR | \ 1183 PERF_SAMPLE_WEIGHT_TYPE | \ 1184 PERF_SAMPLE_TRANSACTION | \ 1185 PERF_SAMPLE_DATA_PAGE_SIZE) 1186 1187 static u64 pebs_update_adaptive_cfg(struct perf_event *event) 1188 { 1189 struct perf_event_attr *attr = &event->attr; 1190 u64 sample_type = attr->sample_type; 1191 u64 pebs_data_cfg = 0; 1192 bool gprs, tsx_weight; 1193 1194 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) && 1195 attr->precise_ip > 1) 1196 return pebs_data_cfg; 1197 1198 if (sample_type & PERF_PEBS_MEMINFO_TYPE) 1199 pebs_data_cfg |= PEBS_DATACFG_MEMINFO; 1200 1201 /* 1202 * We need GPRs when: 1203 * + user requested them 1204 * + precise_ip < 2 for the non event IP 1205 * + For RTM TSX weight we need GPRs for the abort code. 1206 */ 1207 gprs = (sample_type & PERF_SAMPLE_REGS_INTR) && 1208 (attr->sample_regs_intr & PEBS_GP_REGS); 1209 1210 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) && 1211 ((attr->config & INTEL_ARCH_EVENT_MASK) == 1212 x86_pmu.rtm_abort_event); 1213 1214 if (gprs || (attr->precise_ip < 2) || tsx_weight) 1215 pebs_data_cfg |= PEBS_DATACFG_GP; 1216 1217 if ((sample_type & PERF_SAMPLE_REGS_INTR) && 1218 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK)) 1219 pebs_data_cfg |= PEBS_DATACFG_XMMS; 1220 1221 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 1222 /* 1223 * For now always log all LBRs. Could configure this 1224 * later. 1225 */ 1226 pebs_data_cfg |= PEBS_DATACFG_LBRS | 1227 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT); 1228 } 1229 1230 return pebs_data_cfg; 1231 } 1232 1233 static void 1234 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, 1235 struct perf_event *event, bool add) 1236 { 1237 struct pmu *pmu = event->pmu; 1238 1239 /* 1240 * Make sure we get updated with the first PEBS 1241 * event. It will trigger also during removal, but 1242 * that does not hurt: 1243 */ 1244 if (cpuc->n_pebs == 1) 1245 cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW; 1246 1247 if (needed_cb != pebs_needs_sched_cb(cpuc)) { 1248 if (!needed_cb) 1249 perf_sched_cb_inc(pmu); 1250 else 1251 perf_sched_cb_dec(pmu); 1252 1253 cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW; 1254 } 1255 1256 /* 1257 * The PEBS record doesn't shrink on pmu::del(). Doing so would require 1258 * iterating all remaining PEBS events to reconstruct the config. 1259 */ 1260 if (x86_pmu.intel_cap.pebs_baseline && add) { 1261 u64 pebs_data_cfg; 1262 1263 pebs_data_cfg = pebs_update_adaptive_cfg(event); 1264 /* 1265 * Be sure to update the thresholds when we change the record. 1266 */ 1267 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) 1268 cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW; 1269 } 1270 } 1271 1272 void intel_pmu_pebs_add(struct perf_event *event) 1273 { 1274 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1275 struct hw_perf_event *hwc = &event->hw; 1276 bool needed_cb = pebs_needs_sched_cb(cpuc); 1277 1278 cpuc->n_pebs++; 1279 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1280 cpuc->n_large_pebs++; 1281 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) 1282 cpuc->n_pebs_via_pt++; 1283 1284 pebs_update_state(needed_cb, cpuc, event, true); 1285 } 1286 1287 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event) 1288 { 1289 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1290 1291 if (!is_pebs_pt(event)) 1292 return; 1293 1294 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK)) 1295 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK; 1296 } 1297 1298 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event) 1299 { 1300 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1301 struct hw_perf_event *hwc = &event->hw; 1302 struct debug_store *ds = cpuc->ds; 1303 u64 value = ds->pebs_event_reset[hwc->idx]; 1304 u32 base = MSR_RELOAD_PMC0; 1305 unsigned int idx = hwc->idx; 1306 1307 if (!is_pebs_pt(event)) 1308 return; 1309 1310 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 1311 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD; 1312 1313 cpuc->pebs_enabled |= PEBS_OUTPUT_PT; 1314 1315 if (hwc->idx >= INTEL_PMC_IDX_FIXED) { 1316 base = MSR_RELOAD_FIXED_CTR0; 1317 idx = hwc->idx - INTEL_PMC_IDX_FIXED; 1318 if (x86_pmu.intel_cap.pebs_format < 5) 1319 value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx]; 1320 else 1321 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx]; 1322 } 1323 wrmsrl(base + idx, value); 1324 } 1325 1326 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc) 1327 { 1328 if (cpuc->n_pebs == cpuc->n_large_pebs && 1329 cpuc->n_pebs != cpuc->n_pebs_via_pt) 1330 intel_pmu_drain_pebs_buffer(); 1331 } 1332 1333 void intel_pmu_pebs_enable(struct perf_event *event) 1334 { 1335 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1336 u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW; 1337 struct hw_perf_event *hwc = &event->hw; 1338 struct debug_store *ds = cpuc->ds; 1339 unsigned int idx = hwc->idx; 1340 1341 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; 1342 1343 cpuc->pebs_enabled |= 1ULL << hwc->idx; 1344 1345 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5)) 1346 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); 1347 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1348 cpuc->pebs_enabled |= 1ULL << 63; 1349 1350 if (x86_pmu.intel_cap.pebs_baseline) { 1351 hwc->config |= ICL_EVENTSEL_ADAPTIVE; 1352 if (pebs_data_cfg != cpuc->active_pebs_data_cfg) { 1353 /* 1354 * drain_pebs() assumes uniform record size; 1355 * hence we need to drain when changing said 1356 * size. 1357 */ 1358 intel_pmu_drain_large_pebs(cpuc); 1359 adaptive_pebs_record_size_update(); 1360 wrmsrl(MSR_PEBS_DATA_CFG, pebs_data_cfg); 1361 cpuc->active_pebs_data_cfg = pebs_data_cfg; 1362 } 1363 } 1364 if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) { 1365 cpuc->pebs_data_cfg = pebs_data_cfg; 1366 pebs_update_threshold(cpuc); 1367 } 1368 1369 if (idx >= INTEL_PMC_IDX_FIXED) { 1370 if (x86_pmu.intel_cap.pebs_format < 5) 1371 idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED); 1372 else 1373 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED); 1374 } 1375 1376 /* 1377 * Use auto-reload if possible to save a MSR write in the PMI. 1378 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. 1379 */ 1380 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 1381 ds->pebs_event_reset[idx] = 1382 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; 1383 } else { 1384 ds->pebs_event_reset[idx] = 0; 1385 } 1386 1387 intel_pmu_pebs_via_pt_enable(event); 1388 } 1389 1390 void intel_pmu_pebs_del(struct perf_event *event) 1391 { 1392 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1393 struct hw_perf_event *hwc = &event->hw; 1394 bool needed_cb = pebs_needs_sched_cb(cpuc); 1395 1396 cpuc->n_pebs--; 1397 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1398 cpuc->n_large_pebs--; 1399 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) 1400 cpuc->n_pebs_via_pt--; 1401 1402 pebs_update_state(needed_cb, cpuc, event, false); 1403 } 1404 1405 void intel_pmu_pebs_disable(struct perf_event *event) 1406 { 1407 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1408 struct hw_perf_event *hwc = &event->hw; 1409 1410 intel_pmu_drain_large_pebs(cpuc); 1411 1412 cpuc->pebs_enabled &= ~(1ULL << hwc->idx); 1413 1414 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && 1415 (x86_pmu.version < 5)) 1416 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); 1417 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1418 cpuc->pebs_enabled &= ~(1ULL << 63); 1419 1420 intel_pmu_pebs_via_pt_disable(event); 1421 1422 if (cpuc->enabled) 1423 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1424 1425 hwc->config |= ARCH_PERFMON_EVENTSEL_INT; 1426 } 1427 1428 void intel_pmu_pebs_enable_all(void) 1429 { 1430 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1431 1432 if (cpuc->pebs_enabled) 1433 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1434 } 1435 1436 void intel_pmu_pebs_disable_all(void) 1437 { 1438 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1439 1440 if (cpuc->pebs_enabled) 1441 __intel_pmu_pebs_disable_all(); 1442 } 1443 1444 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) 1445 { 1446 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1447 unsigned long from = cpuc->lbr_entries[0].from; 1448 unsigned long old_to, to = cpuc->lbr_entries[0].to; 1449 unsigned long ip = regs->ip; 1450 int is_64bit = 0; 1451 void *kaddr; 1452 int size; 1453 1454 /* 1455 * We don't need to fixup if the PEBS assist is fault like 1456 */ 1457 if (!x86_pmu.intel_cap.pebs_trap) 1458 return 1; 1459 1460 /* 1461 * No LBR entry, no basic block, no rewinding 1462 */ 1463 if (!cpuc->lbr_stack.nr || !from || !to) 1464 return 0; 1465 1466 /* 1467 * Basic blocks should never cross user/kernel boundaries 1468 */ 1469 if (kernel_ip(ip) != kernel_ip(to)) 1470 return 0; 1471 1472 /* 1473 * unsigned math, either ip is before the start (impossible) or 1474 * the basic block is larger than 1 page (sanity) 1475 */ 1476 if ((ip - to) > PEBS_FIXUP_SIZE) 1477 return 0; 1478 1479 /* 1480 * We sampled a branch insn, rewind using the LBR stack 1481 */ 1482 if (ip == to) { 1483 set_linear_ip(regs, from); 1484 return 1; 1485 } 1486 1487 size = ip - to; 1488 if (!kernel_ip(ip)) { 1489 int bytes; 1490 u8 *buf = this_cpu_read(insn_buffer); 1491 1492 /* 'size' must fit our buffer, see above */ 1493 bytes = copy_from_user_nmi(buf, (void __user *)to, size); 1494 if (bytes != 0) 1495 return 0; 1496 1497 kaddr = buf; 1498 } else { 1499 kaddr = (void *)to; 1500 } 1501 1502 do { 1503 struct insn insn; 1504 1505 old_to = to; 1506 1507 #ifdef CONFIG_X86_64 1508 is_64bit = kernel_ip(to) || any_64bit_mode(regs); 1509 #endif 1510 insn_init(&insn, kaddr, size, is_64bit); 1511 1512 /* 1513 * Make sure there was not a problem decoding the instruction. 1514 * This is doubly important because we have an infinite loop if 1515 * insn.length=0. 1516 */ 1517 if (insn_get_length(&insn)) 1518 break; 1519 1520 to += insn.length; 1521 kaddr += insn.length; 1522 size -= insn.length; 1523 } while (to < ip); 1524 1525 if (to == ip) { 1526 set_linear_ip(regs, old_to); 1527 return 1; 1528 } 1529 1530 /* 1531 * Even though we decoded the basic block, the instruction stream 1532 * never matched the given IP, either the TO or the IP got corrupted. 1533 */ 1534 return 0; 1535 } 1536 1537 static inline u64 intel_get_tsx_weight(u64 tsx_tuning) 1538 { 1539 if (tsx_tuning) { 1540 union hsw_tsx_tuning tsx = { .value = tsx_tuning }; 1541 return tsx.cycles_last_block; 1542 } 1543 return 0; 1544 } 1545 1546 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax) 1547 { 1548 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; 1549 1550 /* For RTM XABORTs also log the abort code from AX */ 1551 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1)) 1552 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 1553 return txn; 1554 } 1555 1556 static inline u64 get_pebs_status(void *n) 1557 { 1558 if (x86_pmu.intel_cap.pebs_format < 4) 1559 return ((struct pebs_record_nhm *)n)->status; 1560 return ((struct pebs_basic *)n)->applicable_counters; 1561 } 1562 1563 #define PERF_X86_EVENT_PEBS_HSW_PREC \ 1564 (PERF_X86_EVENT_PEBS_ST_HSW | \ 1565 PERF_X86_EVENT_PEBS_LD_HSW | \ 1566 PERF_X86_EVENT_PEBS_NA_HSW) 1567 1568 static u64 get_data_src(struct perf_event *event, u64 aux) 1569 { 1570 u64 val = PERF_MEM_NA; 1571 int fl = event->hw.flags; 1572 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); 1573 1574 if (fl & PERF_X86_EVENT_PEBS_LDLAT) 1575 val = load_latency_data(event, aux); 1576 else if (fl & PERF_X86_EVENT_PEBS_STLAT) 1577 val = store_latency_data(event, aux); 1578 else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID) 1579 val = x86_pmu.pebs_latency_data(event, aux); 1580 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) 1581 val = precise_datala_hsw(event, aux); 1582 else if (fst) 1583 val = precise_store_data(aux); 1584 return val; 1585 } 1586 1587 static void setup_pebs_time(struct perf_event *event, 1588 struct perf_sample_data *data, 1589 u64 tsc) 1590 { 1591 /* Converting to a user-defined clock is not supported yet. */ 1592 if (event->attr.use_clockid != 0) 1593 return; 1594 1595 /* 1596 * Doesn't support the conversion when the TSC is unstable. 1597 * The TSC unstable case is a corner case and very unlikely to 1598 * happen. If it happens, the TSC in a PEBS record will be 1599 * dropped and fall back to perf_event_clock(). 1600 */ 1601 if (!using_native_sched_clock() || !sched_clock_stable()) 1602 return; 1603 1604 data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset; 1605 data->sample_flags |= PERF_SAMPLE_TIME; 1606 } 1607 1608 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ 1609 PERF_SAMPLE_PHYS_ADDR | \ 1610 PERF_SAMPLE_DATA_PAGE_SIZE) 1611 1612 static void setup_pebs_fixed_sample_data(struct perf_event *event, 1613 struct pt_regs *iregs, void *__pebs, 1614 struct perf_sample_data *data, 1615 struct pt_regs *regs) 1616 { 1617 /* 1618 * We cast to the biggest pebs_record but are careful not to 1619 * unconditionally access the 'extra' entries. 1620 */ 1621 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1622 struct pebs_record_skl *pebs = __pebs; 1623 u64 sample_type; 1624 int fll; 1625 1626 if (pebs == NULL) 1627 return; 1628 1629 sample_type = event->attr.sample_type; 1630 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT; 1631 1632 perf_sample_data_init(data, 0, event->hw.last_period); 1633 1634 data->period = event->hw.last_period; 1635 1636 /* 1637 * Use latency for weight (only avail with PEBS-LL) 1638 */ 1639 if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) { 1640 data->weight.full = pebs->lat; 1641 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1642 } 1643 1644 /* 1645 * data.data_src encodes the data source 1646 */ 1647 if (sample_type & PERF_SAMPLE_DATA_SRC) { 1648 data->data_src.val = get_data_src(event, pebs->dse); 1649 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 1650 } 1651 1652 /* 1653 * We must however always use iregs for the unwinder to stay sane; the 1654 * record BP,SP,IP can point into thin air when the record is from a 1655 * previous PMI context or an (I)RET happened between the record and 1656 * PMI. 1657 */ 1658 if (sample_type & PERF_SAMPLE_CALLCHAIN) 1659 perf_sample_save_callchain(data, event, iregs); 1660 1661 /* 1662 * We use the interrupt regs as a base because the PEBS record does not 1663 * contain a full regs set, specifically it seems to lack segment 1664 * descriptors, which get used by things like user_mode(). 1665 * 1666 * In the simple case fix up only the IP for PERF_SAMPLE_IP. 1667 */ 1668 *regs = *iregs; 1669 1670 /* 1671 * Initialize regs_>flags from PEBS, 1672 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3), 1673 * i.e., do not rely on it being zero: 1674 */ 1675 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT; 1676 1677 if (sample_type & PERF_SAMPLE_REGS_INTR) { 1678 regs->ax = pebs->ax; 1679 regs->bx = pebs->bx; 1680 regs->cx = pebs->cx; 1681 regs->dx = pebs->dx; 1682 regs->si = pebs->si; 1683 regs->di = pebs->di; 1684 1685 regs->bp = pebs->bp; 1686 regs->sp = pebs->sp; 1687 1688 #ifndef CONFIG_X86_32 1689 regs->r8 = pebs->r8; 1690 regs->r9 = pebs->r9; 1691 regs->r10 = pebs->r10; 1692 regs->r11 = pebs->r11; 1693 regs->r12 = pebs->r12; 1694 regs->r13 = pebs->r13; 1695 regs->r14 = pebs->r14; 1696 regs->r15 = pebs->r15; 1697 #endif 1698 } 1699 1700 if (event->attr.precise_ip > 1) { 1701 /* 1702 * Haswell and later processors have an 'eventing IP' 1703 * (real IP) which fixes the off-by-1 skid in hardware. 1704 * Use it when precise_ip >= 2 : 1705 */ 1706 if (x86_pmu.intel_cap.pebs_format >= 2) { 1707 set_linear_ip(regs, pebs->real_ip); 1708 regs->flags |= PERF_EFLAGS_EXACT; 1709 } else { 1710 /* Otherwise, use PEBS off-by-1 IP: */ 1711 set_linear_ip(regs, pebs->ip); 1712 1713 /* 1714 * With precise_ip >= 2, try to fix up the off-by-1 IP 1715 * using the LBR. If successful, the fixup function 1716 * corrects regs->ip and calls set_linear_ip() on regs: 1717 */ 1718 if (intel_pmu_pebs_fixup_ip(regs)) 1719 regs->flags |= PERF_EFLAGS_EXACT; 1720 } 1721 } else { 1722 /* 1723 * When precise_ip == 1, return the PEBS off-by-1 IP, 1724 * no fixup attempted: 1725 */ 1726 set_linear_ip(regs, pebs->ip); 1727 } 1728 1729 1730 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) && 1731 x86_pmu.intel_cap.pebs_format >= 1) { 1732 data->addr = pebs->dla; 1733 data->sample_flags |= PERF_SAMPLE_ADDR; 1734 } 1735 1736 if (x86_pmu.intel_cap.pebs_format >= 2) { 1737 /* Only set the TSX weight when no memory weight. */ 1738 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) { 1739 data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning); 1740 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1741 } 1742 if (sample_type & PERF_SAMPLE_TRANSACTION) { 1743 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning, 1744 pebs->ax); 1745 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 1746 } 1747 } 1748 1749 /* 1750 * v3 supplies an accurate time stamp, so we use that 1751 * for the time stamp. 1752 * 1753 * We can only do this for the default trace clock. 1754 */ 1755 if (x86_pmu.intel_cap.pebs_format >= 3) 1756 setup_pebs_time(event, data, pebs->tsc); 1757 1758 if (has_branch_stack(event)) 1759 perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL); 1760 } 1761 1762 static void adaptive_pebs_save_regs(struct pt_regs *regs, 1763 struct pebs_gprs *gprs) 1764 { 1765 regs->ax = gprs->ax; 1766 regs->bx = gprs->bx; 1767 regs->cx = gprs->cx; 1768 regs->dx = gprs->dx; 1769 regs->si = gprs->si; 1770 regs->di = gprs->di; 1771 regs->bp = gprs->bp; 1772 regs->sp = gprs->sp; 1773 #ifndef CONFIG_X86_32 1774 regs->r8 = gprs->r8; 1775 regs->r9 = gprs->r9; 1776 regs->r10 = gprs->r10; 1777 regs->r11 = gprs->r11; 1778 regs->r12 = gprs->r12; 1779 regs->r13 = gprs->r13; 1780 regs->r14 = gprs->r14; 1781 regs->r15 = gprs->r15; 1782 #endif 1783 } 1784 1785 #define PEBS_LATENCY_MASK 0xffff 1786 #define PEBS_CACHE_LATENCY_OFFSET 32 1787 #define PEBS_RETIRE_LATENCY_OFFSET 32 1788 1789 /* 1790 * With adaptive PEBS the layout depends on what fields are configured. 1791 */ 1792 1793 static void setup_pebs_adaptive_sample_data(struct perf_event *event, 1794 struct pt_regs *iregs, void *__pebs, 1795 struct perf_sample_data *data, 1796 struct pt_regs *regs) 1797 { 1798 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1799 struct pebs_basic *basic = __pebs; 1800 void *next_record = basic + 1; 1801 u64 sample_type; 1802 u64 format_size; 1803 struct pebs_meminfo *meminfo = NULL; 1804 struct pebs_gprs *gprs = NULL; 1805 struct x86_perf_regs *perf_regs; 1806 1807 if (basic == NULL) 1808 return; 1809 1810 perf_regs = container_of(regs, struct x86_perf_regs, regs); 1811 perf_regs->xmm_regs = NULL; 1812 1813 sample_type = event->attr.sample_type; 1814 format_size = basic->format_size; 1815 perf_sample_data_init(data, 0, event->hw.last_period); 1816 data->period = event->hw.last_period; 1817 1818 setup_pebs_time(event, data, basic->tsc); 1819 1820 /* 1821 * We must however always use iregs for the unwinder to stay sane; the 1822 * record BP,SP,IP can point into thin air when the record is from a 1823 * previous PMI context or an (I)RET happened between the record and 1824 * PMI. 1825 */ 1826 if (sample_type & PERF_SAMPLE_CALLCHAIN) 1827 perf_sample_save_callchain(data, event, iregs); 1828 1829 *regs = *iregs; 1830 /* The ip in basic is EventingIP */ 1831 set_linear_ip(regs, basic->ip); 1832 regs->flags = PERF_EFLAGS_EXACT; 1833 1834 if ((sample_type & PERF_SAMPLE_WEIGHT_STRUCT) && (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)) 1835 data->weight.var3_w = format_size >> PEBS_RETIRE_LATENCY_OFFSET & PEBS_LATENCY_MASK; 1836 1837 /* 1838 * The record for MEMINFO is in front of GP 1839 * But PERF_SAMPLE_TRANSACTION needs gprs->ax. 1840 * Save the pointer here but process later. 1841 */ 1842 if (format_size & PEBS_DATACFG_MEMINFO) { 1843 meminfo = next_record; 1844 next_record = meminfo + 1; 1845 } 1846 1847 if (format_size & PEBS_DATACFG_GP) { 1848 gprs = next_record; 1849 next_record = gprs + 1; 1850 1851 if (event->attr.precise_ip < 2) { 1852 set_linear_ip(regs, gprs->ip); 1853 regs->flags &= ~PERF_EFLAGS_EXACT; 1854 } 1855 1856 if (sample_type & PERF_SAMPLE_REGS_INTR) 1857 adaptive_pebs_save_regs(regs, gprs); 1858 } 1859 1860 if (format_size & PEBS_DATACFG_MEMINFO) { 1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 1862 u64 weight = meminfo->latency; 1863 1864 if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) { 1865 data->weight.var2_w = weight & PEBS_LATENCY_MASK; 1866 weight >>= PEBS_CACHE_LATENCY_OFFSET; 1867 } 1868 1869 /* 1870 * Although meminfo::latency is defined as a u64, 1871 * only the lower 32 bits include the valid data 1872 * in practice on Ice Lake and earlier platforms. 1873 */ 1874 if (sample_type & PERF_SAMPLE_WEIGHT) { 1875 data->weight.full = weight ?: 1876 intel_get_tsx_weight(meminfo->tsx_tuning); 1877 } else { 1878 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?: 1879 intel_get_tsx_weight(meminfo->tsx_tuning); 1880 } 1881 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1882 } 1883 1884 if (sample_type & PERF_SAMPLE_DATA_SRC) { 1885 data->data_src.val = get_data_src(event, meminfo->aux); 1886 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 1887 } 1888 1889 if (sample_type & PERF_SAMPLE_ADDR_TYPE) { 1890 data->addr = meminfo->address; 1891 data->sample_flags |= PERF_SAMPLE_ADDR; 1892 } 1893 1894 if (sample_type & PERF_SAMPLE_TRANSACTION) { 1895 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning, 1896 gprs ? gprs->ax : 0); 1897 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 1898 } 1899 } 1900 1901 if (format_size & PEBS_DATACFG_XMMS) { 1902 struct pebs_xmm *xmm = next_record; 1903 1904 next_record = xmm + 1; 1905 perf_regs->xmm_regs = xmm->xmm; 1906 } 1907 1908 if (format_size & PEBS_DATACFG_LBRS) { 1909 struct lbr_entry *lbr = next_record; 1910 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT) 1911 & 0xff) + 1; 1912 next_record = next_record + num_lbr * sizeof(struct lbr_entry); 1913 1914 if (has_branch_stack(event)) { 1915 intel_pmu_store_pebs_lbrs(lbr); 1916 intel_pmu_lbr_save_brstack(data, cpuc, event); 1917 } 1918 } 1919 1920 WARN_ONCE(next_record != __pebs + (format_size >> 48), 1921 "PEBS record size %llu, expected %llu, config %llx\n", 1922 format_size >> 48, 1923 (u64)(next_record - __pebs), 1924 basic->format_size); 1925 } 1926 1927 static inline void * 1928 get_next_pebs_record_by_bit(void *base, void *top, int bit) 1929 { 1930 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1931 void *at; 1932 u64 pebs_status; 1933 1934 /* 1935 * fmt0 does not have a status bitfield (does not use 1936 * perf_record_nhm format) 1937 */ 1938 if (x86_pmu.intel_cap.pebs_format < 1) 1939 return base; 1940 1941 if (base == NULL) 1942 return NULL; 1943 1944 for (at = base; at < top; at += cpuc->pebs_record_size) { 1945 unsigned long status = get_pebs_status(at); 1946 1947 if (test_bit(bit, (unsigned long *)&status)) { 1948 /* PEBS v3 has accurate status bits */ 1949 if (x86_pmu.intel_cap.pebs_format >= 3) 1950 return at; 1951 1952 if (status == (1 << bit)) 1953 return at; 1954 1955 /* clear non-PEBS bit and re-check */ 1956 pebs_status = status & cpuc->pebs_enabled; 1957 pebs_status &= PEBS_COUNTER_MASK; 1958 if (pebs_status == (1 << bit)) 1959 return at; 1960 } 1961 } 1962 return NULL; 1963 } 1964 1965 void intel_pmu_auto_reload_read(struct perf_event *event) 1966 { 1967 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)); 1968 1969 perf_pmu_disable(event->pmu); 1970 intel_pmu_drain_pebs_buffer(); 1971 perf_pmu_enable(event->pmu); 1972 } 1973 1974 /* 1975 * Special variant of intel_pmu_save_and_restart() for auto-reload. 1976 */ 1977 static int 1978 intel_pmu_save_and_restart_reload(struct perf_event *event, int count) 1979 { 1980 struct hw_perf_event *hwc = &event->hw; 1981 int shift = 64 - x86_pmu.cntval_bits; 1982 u64 period = hwc->sample_period; 1983 u64 prev_raw_count, new_raw_count; 1984 s64 new, old; 1985 1986 WARN_ON(!period); 1987 1988 /* 1989 * drain_pebs() only happens when the PMU is disabled. 1990 */ 1991 WARN_ON(this_cpu_read(cpu_hw_events.enabled)); 1992 1993 prev_raw_count = local64_read(&hwc->prev_count); 1994 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 1995 local64_set(&hwc->prev_count, new_raw_count); 1996 1997 /* 1998 * Since the counter increments a negative counter value and 1999 * overflows on the sign switch, giving the interval: 2000 * 2001 * [-period, 0] 2002 * 2003 * the difference between two consecutive reads is: 2004 * 2005 * A) value2 - value1; 2006 * when no overflows have happened in between, 2007 * 2008 * B) (0 - value1) + (value2 - (-period)); 2009 * when one overflow happened in between, 2010 * 2011 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); 2012 * when @n overflows happened in between. 2013 * 2014 * Here A) is the obvious difference, B) is the extension to the 2015 * discrete interval, where the first term is to the top of the 2016 * interval and the second term is from the bottom of the next 2017 * interval and C) the extension to multiple intervals, where the 2018 * middle term is the whole intervals covered. 2019 * 2020 * An equivalent of C, by reduction, is: 2021 * 2022 * value2 - value1 + n * period 2023 */ 2024 new = ((s64)(new_raw_count << shift) >> shift); 2025 old = ((s64)(prev_raw_count << shift) >> shift); 2026 local64_add(new - old + count * period, &event->count); 2027 2028 local64_set(&hwc->period_left, -new); 2029 2030 perf_event_update_userpage(event); 2031 2032 return 0; 2033 } 2034 2035 static __always_inline void 2036 __intel_pmu_pebs_event(struct perf_event *event, 2037 struct pt_regs *iregs, 2038 struct perf_sample_data *data, 2039 void *base, void *top, 2040 int bit, int count, 2041 void (*setup_sample)(struct perf_event *, 2042 struct pt_regs *, 2043 void *, 2044 struct perf_sample_data *, 2045 struct pt_regs *)) 2046 { 2047 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2048 struct hw_perf_event *hwc = &event->hw; 2049 struct x86_perf_regs perf_regs; 2050 struct pt_regs *regs = &perf_regs.regs; 2051 void *at = get_next_pebs_record_by_bit(base, top, bit); 2052 static struct pt_regs dummy_iregs; 2053 2054 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 2055 /* 2056 * Now, auto-reload is only enabled in fixed period mode. 2057 * The reload value is always hwc->sample_period. 2058 * May need to change it, if auto-reload is enabled in 2059 * freq mode later. 2060 */ 2061 intel_pmu_save_and_restart_reload(event, count); 2062 } else if (!intel_pmu_save_and_restart(event)) 2063 return; 2064 2065 if (!iregs) 2066 iregs = &dummy_iregs; 2067 2068 while (count > 1) { 2069 setup_sample(event, iregs, at, data, regs); 2070 perf_event_output(event, data, regs); 2071 at += cpuc->pebs_record_size; 2072 at = get_next_pebs_record_by_bit(at, top, bit); 2073 count--; 2074 } 2075 2076 setup_sample(event, iregs, at, data, regs); 2077 if (iregs == &dummy_iregs) { 2078 /* 2079 * The PEBS records may be drained in the non-overflow context, 2080 * e.g., large PEBS + context switch. Perf should treat the 2081 * last record the same as other PEBS records, and doesn't 2082 * invoke the generic overflow handler. 2083 */ 2084 perf_event_output(event, data, regs); 2085 } else { 2086 /* 2087 * All but the last records are processed. 2088 * The last one is left to be able to call the overflow handler. 2089 */ 2090 if (perf_event_overflow(event, data, regs)) 2091 x86_pmu_stop(event, 0); 2092 } 2093 } 2094 2095 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data) 2096 { 2097 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2098 struct debug_store *ds = cpuc->ds; 2099 struct perf_event *event = cpuc->events[0]; /* PMC0 only */ 2100 struct pebs_record_core *at, *top; 2101 int n; 2102 2103 if (!x86_pmu.pebs_active) 2104 return; 2105 2106 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; 2107 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; 2108 2109 /* 2110 * Whatever else happens, drain the thing 2111 */ 2112 ds->pebs_index = ds->pebs_buffer_base; 2113 2114 if (!test_bit(0, cpuc->active_mask)) 2115 return; 2116 2117 WARN_ON_ONCE(!event); 2118 2119 if (!event->attr.precise_ip) 2120 return; 2121 2122 n = top - at; 2123 if (n <= 0) { 2124 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2125 intel_pmu_save_and_restart_reload(event, 0); 2126 return; 2127 } 2128 2129 __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n, 2130 setup_pebs_fixed_sample_data); 2131 } 2132 2133 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size) 2134 { 2135 struct perf_event *event; 2136 int bit; 2137 2138 /* 2139 * The drain_pebs() could be called twice in a short period 2140 * for auto-reload event in pmu::read(). There are no 2141 * overflows have happened in between. 2142 * It needs to call intel_pmu_save_and_restart_reload() to 2143 * update the event->count for this case. 2144 */ 2145 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) { 2146 event = cpuc->events[bit]; 2147 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2148 intel_pmu_save_and_restart_reload(event, 0); 2149 } 2150 } 2151 2152 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data) 2153 { 2154 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2155 struct debug_store *ds = cpuc->ds; 2156 struct perf_event *event; 2157 void *base, *at, *top; 2158 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2159 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2160 int bit, i, size; 2161 u64 mask; 2162 2163 if (!x86_pmu.pebs_active) 2164 return; 2165 2166 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; 2167 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; 2168 2169 ds->pebs_index = ds->pebs_buffer_base; 2170 2171 mask = (1ULL << x86_pmu.max_pebs_events) - 1; 2172 size = x86_pmu.max_pebs_events; 2173 if (x86_pmu.flags & PMU_FL_PEBS_ALL) { 2174 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED; 2175 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; 2176 } 2177 2178 if (unlikely(base >= top)) { 2179 intel_pmu_pebs_event_update_no_drain(cpuc, size); 2180 return; 2181 } 2182 2183 for (at = base; at < top; at += x86_pmu.pebs_record_size) { 2184 struct pebs_record_nhm *p = at; 2185 u64 pebs_status; 2186 2187 pebs_status = p->status & cpuc->pebs_enabled; 2188 pebs_status &= mask; 2189 2190 /* PEBS v3 has more accurate status bits */ 2191 if (x86_pmu.intel_cap.pebs_format >= 3) { 2192 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 2193 counts[bit]++; 2194 2195 continue; 2196 } 2197 2198 /* 2199 * On some CPUs the PEBS status can be zero when PEBS is 2200 * racing with clearing of GLOBAL_STATUS. 2201 * 2202 * Normally we would drop that record, but in the 2203 * case when there is only a single active PEBS event 2204 * we can assume it's for that event. 2205 */ 2206 if (!pebs_status && cpuc->pebs_enabled && 2207 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) 2208 pebs_status = p->status = cpuc->pebs_enabled; 2209 2210 bit = find_first_bit((unsigned long *)&pebs_status, 2211 x86_pmu.max_pebs_events); 2212 if (bit >= x86_pmu.max_pebs_events) 2213 continue; 2214 2215 /* 2216 * The PEBS hardware does not deal well with the situation 2217 * when events happen near to each other and multiple bits 2218 * are set. But it should happen rarely. 2219 * 2220 * If these events include one PEBS and multiple non-PEBS 2221 * events, it doesn't impact PEBS record. The record will 2222 * be handled normally. (slow path) 2223 * 2224 * If these events include two or more PEBS events, the 2225 * records for the events can be collapsed into a single 2226 * one, and it's not possible to reconstruct all events 2227 * that caused the PEBS record. It's called collision. 2228 * If collision happened, the record will be dropped. 2229 */ 2230 if (pebs_status != (1ULL << bit)) { 2231 for_each_set_bit(i, (unsigned long *)&pebs_status, size) 2232 error[i]++; 2233 continue; 2234 } 2235 2236 counts[bit]++; 2237 } 2238 2239 for_each_set_bit(bit, (unsigned long *)&mask, size) { 2240 if ((counts[bit] == 0) && (error[bit] == 0)) 2241 continue; 2242 2243 event = cpuc->events[bit]; 2244 if (WARN_ON_ONCE(!event)) 2245 continue; 2246 2247 if (WARN_ON_ONCE(!event->attr.precise_ip)) 2248 continue; 2249 2250 /* log dropped samples number */ 2251 if (error[bit]) { 2252 perf_log_lost_samples(event, error[bit]); 2253 2254 if (iregs && perf_event_account_interrupt(event)) 2255 x86_pmu_stop(event, 0); 2256 } 2257 2258 if (counts[bit]) { 2259 __intel_pmu_pebs_event(event, iregs, data, base, 2260 top, bit, counts[bit], 2261 setup_pebs_fixed_sample_data); 2262 } 2263 } 2264 } 2265 2266 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data) 2267 { 2268 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2269 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2270 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events); 2271 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 2272 struct debug_store *ds = cpuc->ds; 2273 struct perf_event *event; 2274 void *base, *at, *top; 2275 int bit, size; 2276 u64 mask; 2277 2278 if (!x86_pmu.pebs_active) 2279 return; 2280 2281 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base; 2282 top = (struct pebs_basic *)(unsigned long)ds->pebs_index; 2283 2284 ds->pebs_index = ds->pebs_buffer_base; 2285 2286 mask = ((1ULL << max_pebs_events) - 1) | 2287 (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED); 2288 size = INTEL_PMC_IDX_FIXED + num_counters_fixed; 2289 2290 if (unlikely(base >= top)) { 2291 intel_pmu_pebs_event_update_no_drain(cpuc, size); 2292 return; 2293 } 2294 2295 for (at = base; at < top; at += cpuc->pebs_record_size) { 2296 u64 pebs_status; 2297 2298 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled; 2299 pebs_status &= mask; 2300 2301 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 2302 counts[bit]++; 2303 } 2304 2305 for_each_set_bit(bit, (unsigned long *)&mask, size) { 2306 if (counts[bit] == 0) 2307 continue; 2308 2309 event = cpuc->events[bit]; 2310 if (WARN_ON_ONCE(!event)) 2311 continue; 2312 2313 if (WARN_ON_ONCE(!event->attr.precise_ip)) 2314 continue; 2315 2316 __intel_pmu_pebs_event(event, iregs, data, base, 2317 top, bit, counts[bit], 2318 setup_pebs_adaptive_sample_data); 2319 } 2320 } 2321 2322 /* 2323 * BTS, PEBS probe and setup 2324 */ 2325 2326 void __init intel_ds_init(void) 2327 { 2328 /* 2329 * No support for 32bit formats 2330 */ 2331 if (!boot_cpu_has(X86_FEATURE_DTES64)) 2332 return; 2333 2334 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS); 2335 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS); 2336 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; 2337 if (x86_pmu.version <= 4) 2338 x86_pmu.pebs_no_isolation = 1; 2339 2340 if (x86_pmu.pebs) { 2341 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; 2342 char *pebs_qual = ""; 2343 int format = x86_pmu.intel_cap.pebs_format; 2344 2345 if (format < 4) 2346 x86_pmu.intel_cap.pebs_baseline = 0; 2347 2348 switch (format) { 2349 case 0: 2350 pr_cont("PEBS fmt0%c, ", pebs_type); 2351 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); 2352 /* 2353 * Using >PAGE_SIZE buffers makes the WRMSR to 2354 * PERF_GLOBAL_CTRL in intel_pmu_enable_all() 2355 * mysteriously hang on Core2. 2356 * 2357 * As a workaround, we don't do this. 2358 */ 2359 x86_pmu.pebs_buffer_size = PAGE_SIZE; 2360 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; 2361 break; 2362 2363 case 1: 2364 pr_cont("PEBS fmt1%c, ", pebs_type); 2365 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); 2366 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2367 break; 2368 2369 case 2: 2370 pr_cont("PEBS fmt2%c, ", pebs_type); 2371 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); 2372 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2373 break; 2374 2375 case 3: 2376 pr_cont("PEBS fmt3%c, ", pebs_type); 2377 x86_pmu.pebs_record_size = 2378 sizeof(struct pebs_record_skl); 2379 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2380 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; 2381 break; 2382 2383 case 5: 2384 x86_pmu.pebs_ept = 1; 2385 fallthrough; 2386 case 4: 2387 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl; 2388 x86_pmu.pebs_record_size = sizeof(struct pebs_basic); 2389 if (x86_pmu.intel_cap.pebs_baseline) { 2390 x86_pmu.large_pebs_flags |= 2391 PERF_SAMPLE_BRANCH_STACK | 2392 PERF_SAMPLE_TIME; 2393 x86_pmu.flags |= PMU_FL_PEBS_ALL; 2394 x86_pmu.pebs_capable = ~0ULL; 2395 pebs_qual = "-baseline"; 2396 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS; 2397 } else { 2398 /* Only basic record supported */ 2399 x86_pmu.large_pebs_flags &= 2400 ~(PERF_SAMPLE_ADDR | 2401 PERF_SAMPLE_TIME | 2402 PERF_SAMPLE_DATA_SRC | 2403 PERF_SAMPLE_TRANSACTION | 2404 PERF_SAMPLE_REGS_USER | 2405 PERF_SAMPLE_REGS_INTR); 2406 } 2407 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual); 2408 2409 if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) { 2410 pr_cont("PEBS-via-PT, "); 2411 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT; 2412 } 2413 2414 break; 2415 2416 default: 2417 pr_cont("no PEBS fmt%d%c, ", format, pebs_type); 2418 x86_pmu.pebs = 0; 2419 } 2420 } 2421 } 2422 2423 void perf_restore_debug_store(void) 2424 { 2425 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2426 2427 if (!x86_pmu.bts && !x86_pmu.pebs) 2428 return; 2429 2430 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds); 2431 } 2432